1
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Wang XF, Xiang XH, Wei J, Zhang PB, Xu Q, Liu MH, Qu LQ, Wang XX, Yu L, Wu AG, Qing DL, Wu JM, Law BYK, Yu CL, Yong-Tang. Raddeanin A Protects the BRB Through Inhibiting Inflammation and Apoptosis in the Retina of Alzheimer's Disease. Neurochem Res 2024; 49:2197-2214. [PMID: 38834846 DOI: 10.1007/s11064-024-04145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular β-amyloid (Aβ) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting β-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aβ-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/β-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Laboratory Animal Centre, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
| | - Xiao-Hong Xiang
- Department of Ophthalmology in The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Wei
- Eye School and Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection of Chengdu University of TCM, Chengdu, China
| | - Peng-Bo Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 15651, China
| | - Qin Xu
- Department of Ophthalmology in The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Meng-Han Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li-Qun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xing-Xia Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Da-Lian Qing
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Jian-Ming Wu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chong-Lin Yu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China.
| | - Yong-Tang
- Laboratory Animal Centre, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Zhang Z, Kwapong WR, Cao L, Feng Z, Liu P, Wang R, Wu B, Zhang S. Correlation between serum biomarkers, brain volume, and retinal neuronal loss in early-onset Alzheimer's disease. Neurol Sci 2024; 45:2615-2623. [PMID: 38216851 DOI: 10.1007/s10072-023-07256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
PURPOSE To compare the peripapillary retinal nerve fiber layer (pRNFL), retinal nerve fiber layer (RNFL), and ganglion cell complex (GCC) thickness measurement in early-onset Alzheimer's disease (EOAD) and controls using spectral domain optical coherence tomography (SD-OCT). We also assessed the relationship between SD-OCT measurements and cognitive measures, serum biomarkers for Alzheimer's disease (AD), and cerebral microstructural volume. METHODS pRNFL, RNFL, and GCC thicknesses were measured in 43 EOAD and 42 controls using SD-OCT. Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) were used to assess cognitive status, magnetic resonance imaging (MRI) tool was used to quantify cerebral microstructural volume, and serum biomarkers were quantified from peripheral blood. RESULTS EOAD patients had thinner pRNFL (P < 0.001), RNFL (P = 0.008), and GCC (P = 0.018) thicknesses compared to controls after adjusting for multiple factors. pRNFL thickness correlated (P = 0.016) with serum t-tau level. Serum Aβ42 (P < 0.05) concentration correlated with RNFL thickness. Importantly, occipital lobe volume (P = 0.010) correlated with GCC thicknesses in EOAD patients. CONCLUSION Our findings suggest that retinal thickness may be useful markers for assessing neurodegenerative process in EOAD.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - William Robert Kwapong
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Le Cao
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Zijuan Feng
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Peng Liu
- Department of Emergency, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Ruilin Wang
- Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Bo Wu
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Shuting Zhang
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
Elmers J, Colzato LS, Ziemssen F, Ziemssen T, Beste C. Optical coherence tomography as a potential surrogate marker of dopaminergic modulation across the life span. Ageing Res Rev 2024; 96:102280. [PMID: 38518921 DOI: 10.1016/j.arr.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The retina has been considered a "window to the brain" and shares similar innervation by the dopaminergic system with the cortex in terms of an unequal distribution of D1 and D2 receptors. Here, we provide a comprehensive overview that Optical Coherence Tomography (OCT), a non-invasive imaging technique, which provides an "in vivo" representation of the retina, shows promise to be used as a surrogate marker of dopaminergic neuromodulation in cognition. Overall, most evidence supports reduced retinal thickness in individuals with dopaminergic dysregulation (e.g., patients with Parkinson's Disease, non-demented older adults) and with poor cognitive functioning. By using the theoretical framework of metacontrol, we derive hypotheses that retinal thinning associated to decreased dopamine (DA) levels affecting D1 families, might lead to a decrease in the signal-to-noise ratio (SNR) affecting cognitive persistence (depending on D1-modulated DA activity) but not cognitive flexibility (depending on D2-modulated DA activity). We argue that the use of OCT parameters might not only be an insightful for cognitive neuroscience research, but also a potentially effective tool for individualized medicine with a focus on cognition. As our society progressively ages in the forthcoming years and decades, the preservation of cognitive abilities and promoting healthy aging will hold of crucial significance. OCT has the potential to function as a swift, non-invasive, and economical method for promptly recognizing individuals with a heightened vulnerability to cognitive deterioration throughout all stages of life.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Focke Ziemssen
- Ophthalmological Clinic, University Clinic Leipzig, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
6
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Sun Y, Zhang L, Ye H, Leng L, Chen Y, Su Y, Ren P, Lu H, Peng G. Potential ocular indicators to distinguish posterior cortical atrophy and typical Alzheimer's disease: a cross-section study using optical coherence tomography angiography. Alzheimers Res Ther 2024; 16:64. [PMID: 38528626 PMCID: PMC10962115 DOI: 10.1186/s13195-024-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Posterior cortical atrophy (PCA) is a form of dementia that frequently displays significant visual dysfunction and relatively preserved cognitive and executive functions, thus hindering early diagnosis and treatment. This study aimed to investigate possible fundus markers in PCA patients and compare them with those of typical Alzheimer's disease (AD) patients to seek potential diagnostic patterns. METHODS Age-matched PCA and AD patients and healthy controls (HC) completed optometry, intraocular pressure measurement, neuropsychologic assessments, optical coherence tomography (OCT), and optical coherence tomography angiography (OCTA) examination in one visit. Overall, six outcomes of thicknesses of various retinal layers and seven outcomes of the retinal microvascular network were calculated. After adjusting for age, sex, and years of education, the OCT and OCTA results were analyzed using analysis of covariance and generalized linear models. Correlation analyses were performed using Spearman correlation, and ROC curves were plotted. RESULTS Twelve PCA patients, nineteen AD patients, and thirty HC, aged 45-80 years were included. Fifty HC, thirty AD, and twenty PCA eyes were available for foveal avascular zone (FAZ) area analysis; forty-nine HC, thirty-four AD, and eighteen PCA eyes were available for OCT and OCTA assessments. PCA patients had thinner retinal nerve fiber layer and ganglion cell layer + inner plexiform layer than HC in the 0-3 mm circle and 1-3 mm ring. Few structural differences were observed between the AD group and the other two groups. The flow area of the superficial capillary plexus and the intermediate capillary plexus was smaller in the PCA group than in the HC group in the 0-1 mm circle, 0-3 mm circle. MMSE performed better than any combination of optical parameters in identifying AD and PCA from HC (AUC = 1), while the combination of MoCA, retinal thickness and vascular density of ICP in the 1-3 mm ring, with flow area of ICP in the 0-1 mm circle showed the strongest ability to distinguish PCA from AD (AUC = 0.944). CONCLUSIONS PCA patients exhibited similar impairment patterns to AD patients in the fundus structure and microvascular network. OCTA may aid in the non-invasive detection of AD and PCA, but still remains to be substantiated.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lumi Zhang
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hui Ye
- Department of Ophthalmology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lumin Leng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yi Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yujie Su
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Peifang Ren
- Department of Ophthalmology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hong Lu
- Department of Ophthalmology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
8
|
Sekimitsu S, Shweikh Y, Shareef S, Zhao Y, Elze T, Segrè A, Wiggs J, Zebardast N. Association of retinal optical coherence tomography metrics and polygenic risk scores with cognitive function and future cognitive decline. Br J Ophthalmol 2024; 108:599-606. [PMID: 36990674 DOI: 10.1136/bjo-2022-322762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE To evaluate the potential of retinal optical coherence tomography (OCT) measurements and polygenic risk scores (PRS) to identify people at risk of cognitive impairment. METHODS Using OCT images from 50 342 UK Biobank participants, we examined associations between retinal layer thickness and genetic risk for neurodegenerative disease and combined these metrics with PRS to predict baseline cognitive function and future cognitive deterioration. Multivariate Cox proportional hazard models were used to predict cognitive performance. P values for retinal thickness analyses are false-discovery-rate-adjusted. RESULTS Higher Alzheimer's disease PRS was associated with a thicker inner nuclear layer (INL), chorio-scleral interface (CSI) and inner plexiform layer (IPL) (all p<0.05). Higher Parkinson's disease PRS was associated with thinner outer plexiform layer (p<0.001). Worse baseline cognitive performance was associated with thinner retinal nerve fibre layer (RNFL) (aOR=1.038, 95% CI (1.029 to 1.047), p<0.001) and photoreceptor (PR) segment (aOR=1.035, 95% CI (1.019 to 1.051), p<0.001), ganglion cell complex (aOR=1.007, 95% CI (1.002 to 1.013), p=0.004) and thicker ganglion cell layer (aOR=0.981, 95% CI (0.967 to 0.995), p=0.009), IPL (aOR=0.976, 95% CI (0.961 to 0.992), p=0.003), INL (aOR=0.923, 95% CI (0.905 to 0.941), p<0.001) and CSI (aOR=0.998, 95% CI (0.997 to 0.999), p<0.001). Worse future cognitive performance was associated with thicker IPL (aOR=0.945, 95% CI (0.915 to 0.999), p=0.045) and CSI (aOR=0.996, 95% CI (0.993 to 0.999) 95% CI, p=0.014). Prediction of cognitive decline was significantly improved with the addition of PRS and retinal measurements. CONCLUSIONS AND RELEVANCE Retinal OCT measurements are significantly associated with genetic risk of neurodegenerative disease and may serve as biomarkers predictive of future cognitive impairment.
Collapse
Affiliation(s)
| | - Yusrah Shweikh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Sussex Eye Hospital, University Hospitals Sussex NHS Foundation Trust, Sussex, UK
| | - Sarah Shareef
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Yan Zhao
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Tobias Elze
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayellet Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Janey Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Singlas M, Tran THC, Boucenna W, Diouf M, Godefroy O. Is internal retinal thickness an early marker of Alzheimer's and Lewy body diseases? Rev Neurol (Paris) 2024; 180:220-223. [PMID: 37925357 DOI: 10.1016/j.neurol.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/30/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Affiliation(s)
- M Singlas
- Department of Ophthalmology, Amiens University Hospital, Amiens, France
| | - T H C Tran
- Department of Ophthalmology, Amiens University Hospital, Amiens, France; Laboratory of Lille Neurosiences &Cognition, INSERM U1172, Lille, France
| | - W Boucenna
- Department of Ophthalmology, Amiens University Hospital, Amiens, France
| | - M Diouf
- Department of Biostatistic, Amiens University Hospital, Amiens, France
| | - O Godefroy
- Department of Neurology, Amiens University Hospital, 80054 Amiens, France; Laboratory of and Neurosciences Functional Pathology, (UR 4559), Picardie Jules Verne University, Picardie, France.
| |
Collapse
|
10
|
Bahr T, Vu TA, Tuttle JJ, Iezzi R. Deep Learning and Machine Learning Algorithms for Retinal Image Analysis in Neurodegenerative Disease: Systematic Review of Datasets and Models. Transl Vis Sci Technol 2024; 13:16. [PMID: 38381447 PMCID: PMC10893898 DOI: 10.1167/tvst.13.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 02/22/2024] Open
Abstract
Purpose Retinal images contain rich biomarker information for neurodegenerative disease. Recently, deep learning models have been used for automated neurodegenerative disease diagnosis and risk prediction using retinal images with good results. Methods In this review, we systematically report studies with datasets of retinal images from patients with neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and others. We also review and characterize the models in the current literature which have been used for classification, regression, or segmentation problems using retinal images in patients with neurodegenerative diseases. Results Our review found several existing datasets and models with various imaging modalities primarily in patients with Alzheimer's disease, with most datasets on the order of tens to a few hundred images. We found limited data available for the other neurodegenerative diseases. Although cross-sectional imaging data for Alzheimer's disease is becoming more abundant, datasets with longitudinal imaging of any disease are lacking. Conclusions The use of bilateral and multimodal imaging together with metadata seems to improve model performance, thus multimodal bilateral image datasets with patient metadata are needed. We identified several deep learning tools that have been useful in this context including feature extraction algorithms specifically for retinal images, retinal image preprocessing techniques, transfer learning, feature fusion, and attention mapping. Importantly, we also consider the limitations common to these models in real-world clinical applications. Translational Relevance This systematic review evaluates the deep learning models and retinal features relevant in the evaluation of retinal images of patients with neurodegenerative disease.
Collapse
Affiliation(s)
- Tyler Bahr
- Mayo Clinic, Department of Ophthalmology, Rochester, MN, USA
| | - Truong A. Vu
- University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA
| | - Jared J. Tuttle
- University of Texas Health Science Center at San Antonio, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
| | - Raymond Iezzi
- Mayo Clinic, Department of Ophthalmology, Rochester, MN, USA
| |
Collapse
|
11
|
Covey TJ, Golan D, Sergott R, Wilken J, Zarif M, Bumstead B, Buhse M, Kaczmarek O, Doniger GM, Penner IK, Hancock LM, Bogaardt H, Barrera MA, Morrow SA, Galetta S, Gudesblatt M. Peering further into the mind's eye: combining visual evoked potential and optical coherence tomography measures enhances insight into the variance in cognitive functioning in multiple sclerosis. J Neurol 2024; 271:658-673. [PMID: 38091086 DOI: 10.1007/s00415-023-12075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Spectral Optical Coherence Tomography (OCT) and Visual Evoked Potentials (VEPs) have both emerged as potentially useful biomarkers of cognitive decline in people with multiple sclerosis (PwMS). Their combined use may provide additional predictive value for identifying disease impact, progression, and remyelination capacity above-and-beyond what is captured using either approach alone. OBJECTIVE We examined the relationship between OCT/VEP measures and cognitive functioning in 205 PwMS. OCT measures included Retinal Nerve Fiber Layer Volume (RNFLV), Papillo-Macular Bundle Volume (PBMV), and Macular Volume (MV). VEP measures included latency of the P100, and inter-ocular latency. Cognitive performance was evaluated across seven separate domains of performance, and for overall cognition, using the NeuroTrax computerized testing battery. RESULTS Both OCT and VEP measures were significantly correlated with cognitive performance across several domains. Linear regression models that controlled for the influence of visual acuity revealed (1) that reduced MV was significantly predictive of poorer visual-spatial functioning, and (2) that delayed VEP latency was significantly predictive of performance in global cognitive functioning and visual-spatial functioning, after controlling for multiple comparisons. Among PwMS with normal visual acuity, PwMS with a combination of both relatively low MV and delayed VEP latency tended to have poorer performance in the domains of global, executive, and visual-spatial functioning compared to PwMS with both high MV and normal VEP latency. CONCLUSION Approaches that combine the use of OCT and VEP measures can enhance insight into underlying factors that contribute to variance in cognitive functioning in PwMS.
Collapse
Affiliation(s)
- Thomas J Covey
- Division of Cognitive and Behavioral Neurosciences, Department of Neurology, Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Sherman Hall Annex 114, Buffalo, NY, USA.
| | - Daniel Golan
- Multiple Sclerosis and Neuroimmunology Center, Clalit Health Services, Nazareth, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Robert Sergott
- Wills Eye Institute and the William H. Annesley EyeBrain Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jeffrey Wilken
- Washington Neuropsychology Research Group, Fairfax, VA, USA
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - Myassar Zarif
- South Shore Neurologic Associates, New York University, Patchogue, New York, NY, USA
| | - Barbara Bumstead
- South Shore Neurologic Associates, New York University, Patchogue, New York, NY, USA
| | - MariJean Buhse
- South Shore Neurologic Associates, New York University, Patchogue, New York, NY, USA
| | - Olivia Kaczmarek
- South Shore Neurologic Associates, New York University, Patchogue, New York, NY, USA
| | - Glen M Doniger
- Department of Clinical Research, NeuroTrax Corporation, Modiin, Israel
| | - Iris-Katharina Penner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laura M Hancock
- Department of Neurology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Hans Bogaardt
- School of Allied Health Science and Practice, University of Adelaide, Adelaide, Australia
| | - Marissa A Barrera
- Katz School of Science and Health, Yeshiva University, New York, NY, USA
| | - Sarah A Morrow
- London Health Sciences Centre, University of Western Ontario, Ontario, ON, Canada
| | - Steve Galetta
- Department of Neurology, New York University, New York, NY, USA
| | - Mark Gudesblatt
- South Shore Neurologic Associates, New York University, Patchogue, New York, NY, USA.
| |
Collapse
|
12
|
Boccaccini A, Cavaterra D, Carnevale C, Tanga L, Marini S, Bocedi A, Lacal PM, Manni G, Graziani G, Sbardella D, Tundo GR. Novel frontiers in neuroprotective therapies in glaucoma: Molecular and clinical aspects. Mol Aspects Med 2023; 94:101225. [PMID: 38000334 DOI: 10.1016/j.mam.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.
Collapse
Affiliation(s)
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Alessio Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Gianluca Manni
- IRCCS - Fondazione Bietti, Rome, Italy; Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy.
| |
Collapse
|
13
|
Li C, Zhu X, Yang K, Ju Y, Shi K, Xiao Y, Su B, Lu F, Cui L, Li M. Relationship of retinal capillary plexus and ganglion cell complex with mild cognitive impairment and dementia. Eye (Lond) 2023; 37:3743-3750. [PMID: 37270614 PMCID: PMC10698172 DOI: 10.1038/s41433-023-02592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVE To investigate relationship of the retinal capillary plexus (RCP) and ganglion cell complex (GCC) with mild cognitive impairment (MCI) and dementia in a community-based study1. METHODS This cross-sectional study incorporated the participants of the Jidong Eye Cohort Study. Optical coherence tomography angiography was performed to obtain RCP vessel density and GCC thickness with detailed segments. The Mini-mental State Examination and Montreal Cognitive Assessment were used to assess cognitive status by professional neuropsychologists. Participants were thus divided into three groups: normal, mild cognitive impairment, and dementia. Multivariable analysis was used to measure relationship of ocular parameters with cognitive impairment. RESULTS Of the 2678 participants, the mean age was 44.1 ± 11.7 years. MCI and dementia occurred in 197 (7.4%) and 80 (3%) participants, respectively. Compared to the normal group, the adjusted odds ratio (OR) with the 95% confidence interval was 0.76 (0.65-0.90) for the correlation of lower deep RCP with MCI. We found the following items significantly associated with dementia compared with the normal group: a superficial (OR, 0.68 [0.54-0.86]) and deep (OR, 0.75 [0.57-0.99]) RCP, as well as the GCC (OR, 0.68 [0.54-0.85]). Compared to the MCI group, those with dementia had decreased GCC (OR, 0.75 [0.58-0.97]). CONCLUSIONS Decreased deep RCP density was associated with MCI. Decreased superficial and deep RCP and the thin GCC were correlated with dementia. These implied that the retinal microvasculature may develop into a promising non-invasive imaging marker to predict severity of cognitive impairment.
Collapse
Affiliation(s)
- Chunmei Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoxuan Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kai Yang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Ju
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Keai Shi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunfan Xiao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Binbin Su
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fan Lu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Lele Cui
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ming Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
14
|
Santos-Ortega Á, Alba-Linero C, Urbinati F, Rocha-de-Lossada C, Orti R, Reyes-Bueno JA, Garzón-Maldonado FJ, Serrano V, de Rojas-Leal C, de la Cruz-Cosme C, España-Contreras M, Rodríguez-Calvo-de-Mora M, García-Casares N. Structural and Functional Retinal Changes in Patients with Mild Cognitive Impairment with and without Diabetes. J Clin Med 2023; 12:7035. [PMID: 38002648 PMCID: PMC10672424 DOI: 10.3390/jcm12227035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Our objective is to analyze retinal changes using optical coherence tomography angiography (OCT-A) in patients with mild cognitive impairment (MCI) to characterize structural and vascular alterations. This cross-sectional study involved 117 eyes: 39 eyes from patients with MCI plus diabetes (DM-MCI), 39 eyes from patients with MCI but no diabetes (MCI); and 39 healthy control eyes (C). All patients underwent a visual acuity measurement, a structural OCT, an OCT-A, and a neuropsychological examination. Our study showed a thinning of retinal nerve fiber layer thickness (RNFL) and a decrease in macular thickness when comparing the MCI-DM group to the C group (p = 0.008 and p = 0.016, respectively). In addition, an increase in arteriolar thickness (p = 0.016), a reduction in superficial capillary plexus density (p = 0.002), and a decrease in ganglion cell thickness (p = 0.027) were found when comparing the MCI-DM group with the MCI group. Diabetes may exacerbate retinal vascular changes when combined with mild cognitive impairment.
Collapse
Affiliation(s)
| | - Carmen Alba-Linero
- Department of Ophthalmology, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- Department of Ophthalmology, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain;
| | - Facundo Urbinati
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
| | - Carlos Rocha-de-Lossada
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
- Qvision, Opththalmology Department, VITHAS Almería Hospital, 04120 Almería, Spain
- Ophthalmology Department, VITHAS Málaga, 29016 Malaga, Spain
- Department of Surgery, Faculty of Medicine, Ophthalmology Area Doctor Fedriani, University of Sevilla, 41004 Sevilla, Spain
| | - Rafael Orti
- Department of Ophthalmology, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain;
| | | | - Francisco Javier Garzón-Maldonado
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
| | - Vicente Serrano
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
| | - Carmen de Rojas-Leal
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
| | - Carlos de la Cruz-Cosme
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
| | - Manuela España-Contreras
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
| | - Marina Rodríguez-Calvo-de-Mora
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
- Qvision, Opththalmology Department, VITHAS Almería Hospital, 04120 Almería, Spain
- Ophthalmology Department, VITHAS Málaga, 29016 Malaga, Spain
| | - Natalia García-Casares
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
- Department of Medicine, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain
- Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, 29016 Malaga, Spain
| |
Collapse
|
15
|
Wang MD, Zhang S, Liu XY, Wang PP, Zhu YF, Zhu JR, Lv CS, Li SY, Liu SF, Wen L. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer's disease mouse model through downregulating BACE1 and Aβ generation. Acta Pharmacol Sin 2023; 44:2151-2168. [PMID: 37420104 PMCID: PMC10618533 DOI: 10.1038/s41401-023-01125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson's disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg-1·d-1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 μM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aβ generation by inhibiting the β-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aβ plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aβ generation in early AD, which is a potential therapeutic intervention for early AD treatment.
Collapse
Affiliation(s)
- Meng-Dan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xing-Yang Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Pan-Pan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yi-Fan Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jun-Rong Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Chong-Shan Lv
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shi-Ying Li
- Eye Institute of Xiamen University, Department of Ophthalmology, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Sui-Feng Liu
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| | - Lei Wen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
16
|
Sheriff S, Shen T, Saks D, Schultz A, Francis H, Wen W, Jiang J, Mirzaei M, Gupta V, Fiatarone Singh M, Sachdev PS, Graham SL, Gupta V. The Association of APOE ε4 Allele with Retinal Layer Thickness and Microvasculature in Older Adults: Optic Nerve Decline and Cognitive Change Study. J Clin Med 2023; 12:6219. [PMID: 37834863 PMCID: PMC10573915 DOI: 10.3390/jcm12196219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
PURPOSE To investigate the relationship between the apolipoprotein E (APOE) ε4 allele and retinal structural and vascular characteristics in older adult participants from several research studies. We also studied the relationship between these structural and vascular characteristics with multifocal visual evoked potential (mfVEP) indices, neuropsychological parameters and MRI brain volumes in these participants. METHODS In this study, 109 participants with a mean (SD) age of 67.1 (9.0) years were recruited. Participants were classified as APOE ε4 carriers or non-carriers based on the presence or absence of the ε4 allele. Baseline measurements included peripapillary retinal nerve fibre layer optical coherence tomography (RNFL OCT), and OCT-angiography (OCT-A) for evaluation of the retinal layer thickness and vessel density (VD) parameters. A multifocal visual evoked potential (mfVEP) test, including amplitude and latency, was used to assess the visual pathway function. Finally, cognitive function was evaluated using a battery of neuropsychological tests. OCT-A images were analysed in ImageJ to quantify VD in the superficial and deep vascular plexus and the size of the foveal avascular zone (FAZ). The relationship between carriers of APOE ε4 allele and these ocular parameters was analysed using generalised estimating equation (GEE) models and data adjusted for age, sex and inter-eye differences as within-subject variables (p < 0.05). RESULTS Twenty-four participants were APOE ε4 carriers. Temporal RNFL thickness was decreased in APOE ε4 carriers (p < 0.01). Vessel density between carriers and non-carriers was not significantly different at either the superficial or deep level. The FAZ area was significantly smaller in ε4 carriers in both superficial (p < 0.01) and deep layers (p < 0.003). CONCLUSIONS Retinal abnormalities were present in participants with increased genetic risk of dementia due to presence of the ε4 allele. These findings provide preliminary evidence for their potential role in the diagnosis of dementia.
Collapse
Affiliation(s)
- Samran Sheriff
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Ting Shen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Danit Saks
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela Schultz
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Heather Francis
- School of Psychological Sciences, Macquarie University, Sydney, NSW 2019, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC 3125, Australia
| | - Maria Fiatarone Singh
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, USA
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Stuart L. Graham
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
17
|
Chen S, Zhang D, Zheng H, Cao T, Xia K, Su M, Meng Q. The association between retina thinning and hippocampal atrophy in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review. Front Aging Neurosci 2023; 15:1232941. [PMID: 37680540 PMCID: PMC10481874 DOI: 10.3389/fnagi.2023.1232941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction The retina is the "window" of the central nervous system. Previous studies discovered that retinal thickness degenerates through the pathological process of the Alzheimer's disease (AD) continuum. Hippocampal atrophy is one of the typical clinical features and diagnostic criteria of AD. Former studies have described retinal thinning in normal aging subjects and AD patients, yet the association between retinal thickness and hippocampal atrophy in AD is unclear. The optical coherence tomography (OCT) technique has access the non-invasive to retinal images and magnetic resonance imaging can outline the volume of the hippocampus. Thus, we aim to quantify the correlation between these two parameters to identify whether the retina can be a new biomarker for early AD detection. Methods We systematically searched the PubMed, Embase, and Web of Science databases from inception to May 2023 for studies investigating the correlation between retinal thickness and hippocampal volume. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the study quality. Pooled correlation coefficient r values were combined after Fisher's Z transformation. Moderator effects were detected through subgroup analysis and the meta-regression method. Results Of the 1,596 citations initially identified, we excluded 1,062 studies after screening the titles and abstract (animal models, n = 99; irrelevant literature, n = 963). Twelve studies met the inclusion criteria, among which three studies were excluded due to unextractable data. Nine studies were eligible for this meta-analysis. A positive moderate correlation between the retinal thickness was discovered in all participants of with AD, mild cognitive impairment (MCI), and normal controls (NC) (r = 0.3469, 95% CI: 0.2490-0.4377, I2 = 5.0%), which was significantly higher than that of the AD group (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%) (p < 0.05). Among different layers, the peripapillary retinal nerve fiber layer (pRNFL) indicated a moderate positive correlation with hippocampal volume (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%). The retinal pigmented epithelium (RPE) was also positively correlated [r = 0.1421, 95% CI:(-0.0447-0.3192), I2 = 84.1%]. The retinal layers and participants were the main overall heterogeneity sources. Correlation in the bilateral hemisphere did not show a significant difference. Conclusion The correlation between RNFL thickness and hippocampal volume is more predominant in both NC and AD groups than other layers. Whole retinal thickness is positively correlated to hippocampal volume not only in AD continuum, especially in MCI, but also in NC. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42022328088.
Collapse
Affiliation(s)
- Shuntai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dian Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Cao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kun Xia
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwan Su
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Vig V, Garg I, Tuz-Zahra F, Xu J, Tripodis Y, Nicks R, Xia W, Alvarez VE, Alosco ML, Stein TD, Subramanian ML. Vitreous Humor Biomarkers Reflect Pathological Changes in the Brain for Alzheimer's Disease and Chronic Traumatic Encephalopathy. J Alzheimers Dis 2023:JAD230167. [PMID: 37182888 DOI: 10.3233/jad-230167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Patients with eye disease have an increased risk for developing neurodegenerative disease. Neurodegenerative proteins can be measured in the eye; however, correlations between biomarker levels in eye fluid and neuropathological diagnoses have not been established. OBJECTIVE This exploratory, retrospective study examined vitreous humor from 41 postmortem eyes and brain tissue with neuropathological diagnoses of Alzheimer's disease (AD, n = 7), chronic traumatic encephalopathy (CTE, n = 15), both AD + CTE (n = 10), and without significant neuropathology (controls, n = 9). METHODS Protein biomarkers i.e., amyloid-β (Aβ 40,42), total tau (tTau), phosphorylated tau (pTau181,231), neurofilament light chain (NfL), and eotaxin-1 were quantitatively measured by immunoassay. Non-parametric tests were used to compare vitreous biomarker levels between groups. Spearman's rank correlation tests were used to correlate biomarker levels in vitreous and cortical tissue. The level of significance was set to α= 0.10. RESULTS In pairwise comparisons, tTau levels were significantly increased in AD and CTE groups versus controls (p = 0.08 for both) as well as AD versus AD+CTE group and CTE versus AD+CTE group (p = 0.049 for both). Vitreous NfL levels were significantly increased in low CTE (Stage I/II) versus no CTE (p = 0.096) and in low CTE versus high CTE stage (p = 0.03). Vitreous and cortical tissue levels of pTau 231 (p = 0.02, r = 0.38) and t-Tau (p = 0.04, r = -0.34) were significantly correlated. CONCLUSION The postmortem vitreous humor biomarker levels significantly correlate with AD and CTE pathology in corresponding brains, while vitreous NfL was correlated with the CTE staging. This exploratory study indicates that biomarkers in the vitreous humor may serve as a proxy for neuropathological disease.
Collapse
Affiliation(s)
- Viha Vig
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Itika Garg
- Department of Ophthalmology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jia Xu
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
19
|
Krčmář L, Jäger I, Boudriot E, Hanken K, Gabriel V, Melcher J, Klimas N, Dengl F, Schmoelz S, Pingen P, Campana M, Moussiopoulou J, Yakimov V, Ioannou G, Wichert S, DeJonge S, Zill P, Papazov B, de Almeida V, Galinski S, Gabellini N, Hasanaj G, Mortazavi M, Karali T, Hisch A, Kallweit MS, Meisinger VJ, Löhrs L, Neumeier K, Behrens S, Karch S, Schworm B, Kern C, Priglinger S, Malchow B, Steiner J, Hasan A, Padberg F, Pogarell O, Falkai P, Schmitt A, Wagner E, Keeser D, Raabe FJ. The multimodal Munich Clinical Deep Phenotyping study to bridge the translational gap in severe mental illness treatment research. Front Psychiatry 2023; 14:1179811. [PMID: 37215661 PMCID: PMC10196006 DOI: 10.3389/fpsyt.2023.1179811] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Treatment of severe mental illness (SMI) symptoms, especially negative symptoms and cognitive dysfunction in schizophrenia, remains a major unmet need. There is good evidence that SMIs have a strong genetic background and are characterized by multiple biological alterations, including disturbed brain circuits and connectivity, dysregulated neuronal excitation-inhibition, disturbed dopaminergic and glutamatergic pathways, and partially dysregulated inflammatory processes. The ways in which the dysregulated signaling pathways are interconnected remains largely unknown, in part because well-characterized clinical studies on comprehensive biomaterial are lacking. Furthermore, the development of drugs to treat SMIs such as schizophrenia is limited by the use of operationalized symptom-based clusters for diagnosis. Methods In line with the Research Domain Criteria initiative, the Clinical Deep Phenotyping (CDP) study is using a multimodal approach to reveal the neurobiological underpinnings of clinically relevant schizophrenia subgroups by performing broad transdiagnostic clinical characterization with standardized neurocognitive assessments, multimodal neuroimaging, electrophysiological assessments, retinal investigations, and omics-based analyzes of blood and cerebrospinal fluid. Moreover, to bridge the translational gap in biological psychiatry the study includes in vitro investigations on human-induced pluripotent stem cells, which are available from a subset of participants. Results Here, we report on the feasibility of this multimodal approach, which has been successfully initiated in the first participants in the CDP cohort; to date, the cohort comprises over 194 individuals with SMI and 187 age and gender matched healthy controls. In addition, we describe the applied research modalities and study objectives. Discussion The identification of cross-diagnostic and diagnosis-specific biotype-informed subgroups of patients and the translational dissection of those subgroups may help to pave the way toward precision medicine with artificial intelligence-supported tailored interventions and treatment. This aim is particularly important in psychiatry, a field where innovation is urgently needed because specific symptom domains, such as negative symptoms and cognitive dysfunction, and treatment-resistant symptoms in general are still difficult to treat.
Collapse
Affiliation(s)
- Lenka Krčmář
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Iris Jäger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Emanuel Boudriot
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Hanken
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Vanessa Gabriel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Julian Melcher
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nicole Klimas
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Fanny Dengl
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Schmoelz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Pauline Pingen
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Mattia Campana
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Georgios Ioannou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sven Wichert
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Silvia DeJonge
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Valéria de Almeida
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Galinski
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nadja Gabellini
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Genc Hasanaj
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Matin Mortazavi
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Temmuz Karali
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Hisch
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Marcel S Kallweit
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Verena J. Meisinger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lisa Löhrs
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Karin Neumeier
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Behrens
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Karch
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Benedikt Schworm
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Kern
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | | | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Center for Health and Medical Prevention, Magdeburg, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich, University Hospital, LMU Munich, Munich, Germany
- Munich Center for Neurosciences, LMU Munich, Munich, Germany
| | - Florian J. Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
20
|
Ashraf G, McGuinness M, Khan MA, Obtinalla C, Hadoux X, van Wijngaarden P. Retinal imaging biomarkers of Alzheimer's disease: A systematic review and meta-analysis of studies using brain amyloid beta status for case definition. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12421. [PMID: 37250908 PMCID: PMC10210353 DOI: 10.1002/dad2.12421] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/31/2023]
Abstract
Introduction We performed a systematic review and meta-analysis of the association between retinal imaging parameters and Alzheimer's disease (AD). Methods PubMed, EMBASE, and Scopus were systematically searched for prospective and observational studies. Included studies had AD case definition based on brain amyloid beta (Aβ) status. Study quality assessment was performed. Random-effects meta-analyses of standardized mean difference, correlation, and diagnostic accuracy were conducted. Results Thirty-eight studies were included. There was weak evidence of peripapillary retinal nerve fiber layer thinning on optical coherence tomography (OCT) (p = 0.14, 11 studies, n = 828), increased foveal avascular zone area on OCT-angiography (p = 0.18, four studies, n = 207), and reduced arteriole and venule vessel fractal dimension on fundus photography (p < 0.001 and p = 0.08, respectively, three studies, n = 297) among AD cases. Discussion Retinal imaging parameters appear to be associated with AD. Small study sizes and heterogeneity in imaging methods and reporting make it difficult to determine utility of these changes as AD biomarkers. Highlights We performed a systematic review on retinal imaging and Alzheimer's disease (AD).We only included studies in which cases were based on brain amyloid beta status.Several retinal biomarkers were associated with AD but clinical utility is uncertain.Studies should focus on biomarker-defined AD and use standardized imaging methods.
Collapse
Affiliation(s)
- Gizem Ashraf
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVictoriaAustralia
| | - Myra McGuinness
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Muhammad Azaan Khan
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Czarina Obtinalla
- Discipline of OrthopticsSchool of Allied HealthHuman Services & SportCollege of ScienceHealth & EngineeringLa Trobe UniversityMelbourneVictoriaAustralia
| | - Xavier Hadoux
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Peter van Wijngaarden
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
21
|
Hussain A, Sheikh Z, Subramanian M. The Eye as a Diagnostic Tool for Alzheimer’s Disease. Life (Basel) 2023; 13:life13030726. [PMID: 36983883 PMCID: PMC10052959 DOI: 10.3390/life13030726] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder impacting cognition, function, and behavior in the elderly population. While there are currently no disease-modifying agents capable of curing AD, early diagnosis and management in the preclinical stage can significantly improve patient morbidity and life expectancy. Currently, the diagnosis of Alzheimer’s disease is a clinical one, often supplemented by invasive and expensive biomarker testing. Over the last decade, significant advancements have been made in our understanding of AD and the role of ocular tissue as a potential biomarker. Ocular biomarkers hold the potential to provide noninvasive and easily accessible diagnostic and monitoring capabilities. This review summarizes current research for detecting biomarkers of Alzheimer’s disease in ocular tissue.
Collapse
|
22
|
Moussa M, Falfoul Y, Nasri A, El Matri K, Kacem I, Mrabet S, Chebil A, Gharbi A, Gouider R, El Matri L. Optical coherence tomography and angiography in Alzheimer's disease and other cognitive disorders. Eur J Ophthalmol 2023:11206721221148952. [PMID: 36617984 DOI: 10.1177/11206721221148952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS The aims of this study were to analyze retinal and choroidal changes on optical coherence tomography (OCT) and OCT-Angiography (OCT-A) in Alzheimer's disease (AD) patients and compare them to other forms of major dementia. We also aimed to analyze the correlation between clinical severity of global cognitive deficiency assessed by the mini-mental state exam (MMSE) score and OCT/OCT-A parameters. METHODS Retrospective cross-sectional evaluative study of AD, and age-and gender-matched patients with other dementias. Fundus examination, OCT and OCT-A were compared. RESULTS Ninety-one eyes of AD patients and 53 eyes of patients with other dementias were included. Retinal deposits were found in 6.59% of AD cases. OCT highlighted the presence of hyperreflective deposits and localized areas of outer retina and ellipsoid zone disruption, respectively in 20.87% and 15.38% of AD cases. Hyperreflective foci were noted within inner retinal layers in 4.39% of AD cases. Quantitative analysis revealed a thicker nasal retinal nerve fiber layer (p = 0.001) and ganglion cell complex in superior (p = 0.011) and temporal quadrants (p = 0.009) in eyes of AD patients, compared to other dementias. OCT-A showed a significantly higher fractal dimension of both superficial and deep capillary plexus (p = 0.005), with lower choriocapillaris density (p = 0.003) in AD patients. CONCLUSIONS Structural OCT could highlight the presence of hyperreflective deposits in AD, probably reflecting beta-amyloid deposits, associated to outer retinal disruptions. Quantitative OCT analysis showed structural differences between AD patients and other dementias, and combined OCT-A could identify microvascular changes in AD patients representing new potential differential diagnosis criteria.
Collapse
Affiliation(s)
- Mohamed Moussa
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Yousra Falfoul
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Amina Nasri
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Khaled El Matri
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Imen Kacem
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Saloua Mrabet
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Ahmed Chebil
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Alya Gharbi
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Riadh Gouider
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Leila El Matri
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
23
|
Vij R, Arora S. A systematic survey of advances in retinal imaging modalities for Alzheimer's disease diagnosis. Metab Brain Dis 2022; 37:2213-2243. [PMID: 35290546 DOI: 10.1007/s11011-022-00927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Recent advances in retinal imaging pathophysiology have shown a new function for biomarkers in Alzheimer's disease diagnosis and prognosis. The significant improvements in Optical coherence tomography (OCT) retinal imaging have led to significant clinical translation, particularly in Alzheimer's disease detection. This systematic review will provide a comprehensive overview of retinal imaging in clinical applications, with a special focus on biomarker analysis for use in Alzheimer's disease detection. Articles on OCT retinal imaging in Alzheimer's disease diagnosis were identified in PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until March 2021. Those studies using simultaneous retinal imaging acquisition were chosen, while those using sequential techniques were rejected. "Alzheimer's disease" and "Dementia" were searched alone and in combination with "OCT" and "retinal imaging". Approximately 1000 publications were searched, and after deleting duplicate articles, 145 relevant studies focused on the diagnosis of Alzheimer's disease utilizing retinal imaging were chosen for study. OCT has recently been demonstrated to be a valuable technique in clinical practice as according to this survey, 57% of the researchers employed optical coherence tomography, 19% used ocular fundus imaging, 13% used scanning laser ophthalmoscopy, and 11% have used multimodal imaging to diagnose Alzheimer disease. Retinal imaging has become an important diagnostic technique for Alzheimer's disease. Given the scarcity of available literature, it is clear that future prospective trials involving larger and more homogeneous groups are necessary, and the work can be expanded by evaluating its significance utilizing a machine-learning platform rather than simply using statistical methodologies.
Collapse
Affiliation(s)
- Richa Vij
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Sakshi Arora
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India.
| |
Collapse
|
24
|
Klimo KR, Stern-Green EA, Shelton E, Day E, Jordan L, Robich M, Racine J, McDaniel CE, VanNasdale DA, Yuhas PT. Structure and function of retinal ganglion cells in subjects with a history of repeated traumatic brain injury. Front Neurol 2022; 13:963587. [PMID: 36034275 PMCID: PMC9412167 DOI: 10.3389/fneur.2022.963587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
This study tested whether repeated traumatic brain injuries (TBIs) alter the objective structure or the objective function of retinal ganglion cells (RGCs) in human subjects recruited from an optometry clinic. Case subjects (n = 25) with a history of repeated TBIs (4.12 ± 2.76 TBIs over 0-41 years) and healthy pair-matched control subjects (n = 30) were prospectively recruited. Retinal nerve fiber layer (RNFL) thickness was quantified with spectral-domain optical coherence tomography, and scanning laser polarimetry measured RNFL phase retardation. Measurements of the photopic negative response were made using full-field flash electroretinography. There was no statistically significant difference (p = 0.42) in global RNFL thickness between the case cohort (96.6 ± 9.4 microns) and the control cohort (94.9 ± 7.0 microns). There was no statistically significant difference (p = 0.80) in global RNFL phase retardation between the case cohort (57.9 ± 5.7 nm) and the control cohort (58.2 ± 4.6 nm). There were no statistically significant differences in the peak time (p = 0.95) of the PhNR or in the amplitude (p = 0.11) of the PhNR between the case cohort (69.9 ± 6.9 ms and 24.1 ± 5.1 μV, respectively) and the control cohort (70.1 ± 8.9 ms and 27.8 ± 9.1 μV, respectively). However, PhNR amplitude was more variable (p < 0.025) in the control cohort than in the case cohort. Within the case cohort, there was a strong positive (r = 0.53), but not statistically significant (p = 0.02), association between time since last TBI and PhNR amplitude. There was also a modest positive (r = 0.45), but not statistically significant (p = 0.04), association between time since first TBI and PhNR amplitude. Our results suggest that there were no statistically significant differences in the objective structure or in the objective function of RGCs between the case cohort and the control cohort. Future large, longitudinal studies will be necessary to confirm our negative results and to more fully investigate the potential interaction between PhNR amplitude and time since first or last TBI.
Collapse
Affiliation(s)
- Kelly R. Klimo
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | | | - Erica Shelton
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Elizabeth Day
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Lisa Jordan
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Matthew Robich
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Julie Racine
- Department of Ophthalmology, Nationwide Children's Hospital, Columbus, OH, United States
| | | | - Dean A. VanNasdale
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Phillip T. Yuhas
- College of Optometry, The Ohio State University, Columbus, OH, United States,*Correspondence: Phillip T. Yuhas
| |
Collapse
|
25
|
Jeevakumar V, Sefton R, Chan J, Gopinath B, Liew G, Shah TM, Siette J. Association between retinal markers and cognition in older adults: a systematic review. BMJ Open 2022; 12:e054657. [PMID: 35728906 PMCID: PMC9214387 DOI: 10.1136/bmjopen-2021-054657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To appraise the existing literature reporting an association between retinal markers and cognitive impairment in adults aged 65 years and over and to provide directions for future use of retinal scanning as a potential tool for dementia diagnosis. DESIGN Systematic review of peer-reviewed empirical articles investigating the association of retinal markers in assessing cognitive impairment. DATA SOURCES Three electronic databases, Medline, PsycINFO and EMBASE were searched from inception until March 2022. ELIGIBILITY CRITERIA All empirical articles in English investigating the association between retinal markers and cognition in humans aged ≥65 years using various retinal scanning methodologies were included. Studies with no explicit evaluation of retinal scanning and cognitive outcomes were excluded. Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. DATA EXTRACTION AND SYNTHESIS Data extraction was conducted by two authors (VJ, RS) and reviewed by another author (JS). Results were synthesised and described narratively. RESULTS Sixty-seven eligible studies examining 6815 older adults were included. Majority of studies were cross-sectional (n=60; 89.6%). Optical coherence tomography (OCT) was the most commonly used retinal scanning methodology to measure the thickness of retinal nerve fibre layer, the ganglion cell complex, choroid and macula. 51.1% of cross-sectional studies using OCT reported an association between the thinning of at least one retinal parameter and poor cognition. Longitudinal studies (n=6) using OCT also mostly identified significant reductions in retinal nerve fibre layer thickness with cognitive decline. Study quality was overall moderate. CONCLUSION Retinal nerve fibre layer thickness is linked with cognitive performance and therefore may have the potential to detect cognitive impairment in older adults. Further longitudinal studies are required to validate our synthesis and understand underlying mechanisms before recommending implementation of OCT as a dementia screening tool in clinical practice. PROSPERO REGISTRATION NUMBER CRD42020176757.
Collapse
Affiliation(s)
- Varshanie Jeevakumar
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Rebekah Sefton
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Joyce Chan
- New Look Eyewear, Maitland, New South Wales, Australia
| | - Bamini Gopinath
- Department of Linguistics, Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Gerald Liew
- Centre for Vision Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Tejal M Shah
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia
| | - Joyce Siette
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park, New South Wales, Australia
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Westmead, New South Wales, Australia
| |
Collapse
|
26
|
Abstract
The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows for wakefulness throughout the day and a long consolidated sleep episode at night. Changes to either the sleep regulatory process or how they interact can result in an inability to fall asleep at the desired time, difficulty remaining asleep, waking too early, and/or difficulty remaining awake throughout the day. This mismatch between the desired timing of sleep and the ability to fall asleep and remain asleep is a hallmark of a class of sleep disorders called the circadian rhythm sleep-wake disorders. In this updated article, we discuss typical changes in the circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep disorders; and how neurologic diseases in older patient impact circadian rhythms and sleep.
Collapse
Affiliation(s)
- Jee Hyun Kim
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Gonghangdae-ro 260, Gangseo-gu, Seoul, Republic of Korea
| | - Alexandria R Elkhadem
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Avenue BLI438, Boston, MA 02115, USA
| | - Jeanne F Duffy
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Corbin D, Lesage F. Assessment of the predictive potential of cognitive scores from retinal images and retinal fundus metadata via deep learning using the CLSA database. Sci Rep 2022; 12:5767. [PMID: 35388080 PMCID: PMC8986784 DOI: 10.1038/s41598-022-09719-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/25/2022] [Indexed: 01/19/2023] Open
Abstract
Accumulation of beta-amyloid in the brain and cognitive decline are considered hallmarks of Alzheimer’s disease. Knowing from previous studies that these two factors can manifest in the retina, the aim was to investigate whether a deep learning method was able to predict the cognition of an individual from a RGB image of his retina and metadata. A deep learning model, EfficientNet, was used to predict cognitive scores from the Canadian Longitudinal Study on Aging (CLSA) database. The proposed model explained 22.4% of the variance in cognitive scores on the test dataset using fundus images and metadata. Metadata alone proved to be more effective in explaining the variance in the sample (20.4%) versus fundus images (9.3%) alone. Attention maps highlighted the optic nerve head as the most influential feature in predicting cognitive scores. The results demonstrate that RGB fundus images are limited in predicting cognition.
Collapse
Affiliation(s)
- Denis Corbin
- Laboratoire d'Imagerie optique et Moléculaire, Polytechnique Montréal, 2500 Chemin de Polytechnique Montréal, Montreal, QC, H3T 1J4, Canada.
| | - Frédéric Lesage
- Laboratoire d'Imagerie optique et Moléculaire, Polytechnique Montréal, 2500 Chemin de Polytechnique Montréal, Montreal, QC, H3T 1J4, Canada.,Institut de Cardiologie de Montréal, 5000 Rue Bélanger, Montreal, QC, H1T 1C8, Canada
| |
Collapse
|
28
|
Wu H, Lei Z, Ou Y, Shi X, Xu Q, Shi K, Ding J, Zhao Q, Wang X, Cai X, Liu X, Lou J, Liu X. Computed Tomography Density and β-Amyloid Deposition of Intraorbital Optic Nerve May Assist in Diagnosing Mild Cognitive Impairment and Alzheimer's Disease: A 18F-Flutemetamol Positron Emission Tomography/Computed Tomography Study. Front Aging Neurosci 2022; 14:836568. [PMID: 35370601 PMCID: PMC8970307 DOI: 10.3389/fnagi.2022.836568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Objective The aim was to study whether the computed tomography (CT) density and β-amyloid (Aβ) level of intraorbital optic nerve could assist in diagnosing mild cognitive impairment (MCI) and Alzheimer's disease (AD). Methods A total of sixty subjects were recruited in our study, including nine normal control (NC) subjects (i.e., 4 men and 5 women), twenty four MCI subjects (i.e., 11 men and 13 women), and twenty seven AD subjects (i.e., 14 men and 13 women). All subjects conducted 18F-flutemetamol amyloid positron emission tomography (PET)/CT imaging. Blinded to the clinical information of the subjects, two physicians independently measured and calculated the standardized uptake value ratio (SUVR) of the bilateral occipital cortex, SUVR of the bilateral intraorbital optic nerve, and CT density of the bilateral intraorbital optic nerve by using GE AW 4.5 Workstation. Results Between AD and NC groups, the differences of the bilateral intraorbital optic nerve SUVR were statistically significant; between AD and MCI groups, the differences of the left intraorbital optic nerve SUVR were statistically significant. Between any two of the three groups, the differences in the bilateral intraorbital optic nerve density were statistically significant. The bilateral occipital SUVR was positively correlated with the bilateral intraorbital optic nerve SUVR and negatively correlated with the bilateral intraorbital optic nerve density. Bilateral intraorbital optic nerve SUVR was negatively correlated with the bilateral intraorbital optic nerve density. The area under the receiver operating characteristic (ROC) curve of multiple logistic regression was 0.9167 (for MCI vs. NC) and 0.8951 (for AD vs. MCI). The Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) scores were positively associated with the intraorbital optic nerve density and were negatively associated with the intraorbital optic nerve SUVR. The regression equation of MoCA was y = 16.37-0.9734 × x 1 + 0.5642 × x 2-3.127 × x 3 + 0.0275 × x 4; the R 2 was 0.848. The regression equation of MMSE was y = 19.57-1.633 × x 1 + 0.4397 × x 2-1.713 × x 3 + 0.0424 × x 4; the R 2 was 0.827. Conclusion The CT density and Aβ deposition of the intraorbital optic nerve were associated with Aβ deposition of the occipital cortex and the severity of cognitive impairment. The intraorbital optic nerve CT density and intraorbital optic nerve Aβ deposition could assist in diagnosing MCI and AD.
Collapse
Affiliation(s)
- Han Wu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, China
| | - Zhe Lei
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, China
| | - Yinghui Ou
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, China
| | - Xin Shi
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Xu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Keqing Shi
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Cai
- Department of Neurology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xueyuan Liu
- Department of Neurology, Tenth People’s Hospital affiliated to Tongji University, Shanghai, China
| | - Jingjing Lou
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Differentiating Degenerative from Vascular Dementia with the Help of Optical Coherence Tomography Angiography Biomarkers. Healthcare (Basel) 2022; 10:healthcare10030539. [PMID: 35327019 PMCID: PMC8955832 DOI: 10.3390/healthcare10030539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease and vascular dementia account for the majority of cases of cognitive decline in elderly people. These two main forms of dementia, under which various subtypes fall, are often overlapping and, in some cases, definitive diagnosis may only be possible post-mortem. This has implications for the quality of care and the design of individualized interventions for these patients. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality used to visualize the retinal layers and vessels which shows encouraging results in the study of various neurological conditions, including dementia. This review aims to succinctly sum up the present state of knowledge and provide critical insight into emerging patterns of OCTA biomarker values in Alzheimer’s disease and vascular dementia. According to the current literature, vessel density seems to be a common biomarker for both forms; inner retinal layer thickness might represent a biomarker preferentially affected in degenerative dementia including Alzheimer’s, while, in contrast, the outer-layer thickness as a whole justifies attention as a potential vascular dementia biomarker. Radial peripapillary capillary density should also be further studied as a biomarker specifically linked to vascular dementia.
Collapse
|
30
|
Alzheimer's Disease Seen through the Eye: Ocular Alterations and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23052486. [PMID: 35269629 PMCID: PMC8910735 DOI: 10.3390/ijms23052486] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s Disease (AD) is one of the main neurodegenerative diseases worldwide. Unfortunately, AD shares many similarities with other dementias at early stages, which impedes an accurate premortem diagnosis. Therefore, it is urgent to find biomarkers to allow for early diagnosis of the disease. There is increasing scientific evidence highlighting the similarities between the eye and other structures of the CNS, suggesting that knowledge acquired in eye research could be useful for research and diagnosis of AD. For example, the retina and optic nerve are considered part of the central nervous system, and their damage can result in retrograde and anterograde axon degeneration, as well as abnormal protein aggregation. In the anterior eye segment, the aqueous humor and tear film may be comparable to the cerebrospinal fluid. Both fluids are enriched with molecules that can be potential neurodegenerative biomarkers. Indeed, the pathophysiology of AD, characterized by cerebral deposits of amyloid-beta (Aβ) and tau protein, is also present in the eyes of AD patients, besides numerous structural and functional changes observed in the structure of the eyes. Therefore, all this evidence suggests that ocular changes have the potential to be used as either predictive values for AD assessment or as diagnostic tools.
Collapse
|
31
|
Rotenstreich Y, Sharvit‐Ginon I, Sher I, Zloto O, Fabian ID, Abd‐Elkader A, Weller A, Heymann A, Beeri MS, Ravona‐Springer R. Thicker macula in asymptomatic APOE Ɛ4 middle-aged adults at high AD risk. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12275. [PMID: 35155732 PMCID: PMC8828987 DOI: 10.1002/dad2.12275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION We compared retinal layers' thickness between apolipoprotein E (APOE) Ɛ4 carriers and non-carriers in a cohort of cognitively normal middle-aged adults enriched for Alzheimer's disease (AD) risk. METHODS Participants (N = 245) underwent spectral domain optical coherence tomography. Multivariate analyses of covariance adjusting for age, sex, education, and best corrected vision acuity was used to compare retinal thickness between APOE groups. RESULTS Participants' mean age was 59.60 (standard deviation = 6.42) with 66.4% women and 32.2% APOE Ɛ4 carriers. Greater macular full thickness was observed in APOE Ɛ4 carriers compared to non-carriers (P = .017), reaching statistical significance for the inner and outer nasal (P = .009 and P = .005, respectively), inner superior (P = .041), and inner and outer inferior (P = .013 and P = .033, respectively) sectors. The differences between APOE groups were mainly driven by the ganglion cell layer (P < .05) and the inner plexiform layer (P < .05). DISCUSSION A thicker macula is observed already in midlife asymptomatic APOE Ɛ4 carriers at high AD risk.
Collapse
Affiliation(s)
- Ygal Rotenstreich
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Inbal Sharvit‐Ginon
- Psychology DepartmentBar Ilan UniversityRamat‐GanIsrael
- The Joseph Sagol Neuroscience Center at the Sheba Medical CenterTel HashomerIsrael
| | - Ifat Sher
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ofira Zloto
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ido Didi Fabian
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Amir Abd‐Elkader
- Goldschleger Eye InstituteSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Aron Weller
- Psychology DepartmentBar Ilan UniversityRamat‐GanIsrael
- Gonda Brain Research CenterBar Ilan UniversityRamat‐GanIsrael
| | - Anthony Heymann
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Maccabi Healthcare ServicesTel AvivIsrael
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center at the Sheba Medical CenterTel HashomerIsrael
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ramit Ravona‐Springer
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- The Joseph Sagol Neuroscience Center at the Sheba Medical CenterTel HashomerIsrael
- Department of PsychiatrySheba Medical CenterTel HashomerIsrael
| |
Collapse
|
32
|
Cunha LP, Pires LA, Cruzeiro MM, Almeida ALM, Martins LC, Martins PN, Shigaeff N, Vale TC. Optical coherence tomography in neurodegenerative disorders. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:180-191. [PMID: 35352756 PMCID: PMC9648920 DOI: 10.1590/0004-282x-anp-2021-0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Structural imaging of the brain is the most widely used diagnostic tool for investigating neurodegenerative diseases. More advanced structural imaging techniques have been applied to early or prodromic phases, but they are expensive and not widely available. Therefore, it is highly desirable to search for noninvasive, easily accessible, low-cost clinical biomarkers suitable for large-scale population screening, in order to focus on making diagnoses at the earliest stages of the disease. In this scenario, imaging studies focusing on the structures of the retina have increasingly been used for evaluating neurodegenerative diseases. The retina shares embryological, histological, biochemical, microvascular and neurotransmitter similarities with the cerebral cortex, thus making it a uniquely promising biomarker for neurodegenerative diseases. Optical coherence tomography is a modern noninvasive imaging technique that provides high-resolution two-dimensional cross-sectional images and quantitative reproducible three-dimensional volumetric measurements of the optic nerve head and retina. This technology is widely used in ophthalmology practice for diagnosing and following up several eye diseases, such as glaucoma, diabetic retinopathy and age-related macular degeneration. Its clinical impact on neurodegenerative diseases has raised enormous interest over recent years, as several clinical studies have demonstrated that these diseases give rise to reduced thickness of the inner retinal nerve fiber layer, mainly composed of retinal ganglion cells and their axons. In this review, we aimed to address the clinical utility of optical coherence tomography for diagnosing and evaluating different neurodegenerative diseases, to show the potential of this noninvasive and easily accessible method.
Collapse
Affiliation(s)
- Leonardo Provetti Cunha
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Divisão de Oftalmologia, Juiz de Fora MG, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Oftalmologia, São Paulo SP, Brazil
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Pós-Graduação em Saúde, Núcleo de Pesquisa em Neurologia, Juiz de Fora MG, Brazil
| | - Leopoldo Antônio Pires
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Pós-Graduação em Saúde, Núcleo de Pesquisa em Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Hospital Universitário, Serviço de Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Hospital Universitário, Serviço de Neurologia, Juiz de Fora MG, Brazil
| | - Marcelo Maroco Cruzeiro
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Pós-Graduação em Saúde, Núcleo de Pesquisa em Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Hospital Universitário, Serviço de Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Hospital Universitário, Serviço de Neurologia, Juiz de Fora MG, Brazil
| | - Ana Laura Maciel Almeida
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Pós-Graduação em Saúde, Núcleo de Pesquisa em Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Hospital Universitário, Serviço de Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Hospital Universitário, Serviço de Neurologia, Juiz de Fora MG, Brazil
| | - Luiza Cunha Martins
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Pós-Graduação em Saúde, Núcleo de Pesquisa em Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Departamento de Clínica Médica, Juiz de Fora MG, Brazil
| | - Pedro Nascimento Martins
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Pós-Graduação em Saúde, Núcleo de Pesquisa em Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Departamento de Clínica Médica, Juiz de Fora MG, Brazil
| | - Nadia Shigaeff
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Pós-Graduação em Saúde, Núcleo de Pesquisa em Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Instituto de Ciências Humanas, Departamento de Psicologia, Juiz de Fora MG, Brazil
| | - Thiago Cardoso Vale
- Universidade Federal de Juiz de Fora, Faculdade de Medicina, Pós-Graduação em Saúde, Núcleo de Pesquisa em Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Hospital Universitário, Serviço de Neurologia, Juiz de Fora MG, Brazil
- Universidade Federal de Juiz de Fora, Hospital Universitário, Serviço de Neurologia, Juiz de Fora MG, Brazil
| |
Collapse
|
33
|
Shi H, Koronyo Y, Rentsendorj A, Fuchs DT, Sheyn J, Black KL, Mirzaei N, Koronyo-Hamaoui M. Retinal Vasculopathy in Alzheimer's Disease. Front Neurosci 2021; 15:731614. [PMID: 34630020 PMCID: PMC8493243 DOI: 10.3389/fnins.2021.731614] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The retina has been increasingly investigated as a site of Alzheimer’s disease (AD) manifestation for over a decade. Early reports documented degeneration of retinal ganglion cells and their axonal projections. Our group provided the first evidence of the key pathological hallmarks of AD, amyloid β-protein (Aβ) plaques including vascular Aβ deposits, in the retina of AD and mild cognitively impaired (MCI) patients. Subsequent studies validated these findings and further identified electroretinography and vision deficits, retinal (p)tau and inflammation, intracellular Aβ accumulation, and retinal ganglion cell-subtype degeneration surrounding Aβ plaques in these patients. Our data suggest that the brain and retina follow a similar trajectory during AD progression, probably due to their common embryonic origin and anatomical proximity. However, the retina is the only CNS organ feasible for direct, repeated, and non-invasive ophthalmic examination with ultra-high spatial resolution and sensitivity. Neurovascular unit integrity is key to maintaining normal CNS function and cerebral vascular abnormalities are increasingly recognized as early and pivotal factors driving cognitive impairment in AD. Likewise, retinal vascular abnormalities such as changes in vessel density and fractal dimensions, blood flow, foveal avascular zone, curvature tortuosity, and arteriole-to-venule ratio were described in AD patients including early-stage cases. A rapidly growing number of reports have suggested that cerebral and retinal vasculopathy are tightly associated with cognitive deficits in AD patients and animal models. Importantly, we recently identified early and progressive deficiency in retinal vascular platelet-derived growth factor receptor-β (PDGFRβ) expression and pericyte loss that were associated with retinal vascular amyloidosis and cerebral amyloid angiopathy in MCI and AD patients. Other studies utilizing optical coherence tomography (OCT), retinal amyloid-fluorescence imaging and retinal hyperspectral imaging have made significant progress in visualizing and quantifying AD pathology through the retina. With new advances in OCT angiography, OCT leakage, scanning laser microscopy, fluorescein angiography and adaptive optics imaging, future studies focusing on retinal vascular AD pathologies could transform non-invasive pre-clinical AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
34
|
Yan Y, Wu X, Wang X, Geng Z, Wang L, Xiao G, Wu Y, Zhou S, Liao R, Wei L, Tian Y, Wang K. The Retinal Vessel Density Can Reflect Cognitive Function in Patients with Alzheimer's Disease: Evidence from Optical Coherence Tomography Angiography. J Alzheimers Dis 2021; 79:1307-1316. [PMID: 33427738 DOI: 10.3233/jad-200971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is increasing evidence that Alzheimer's disease (AD) patients may present decreased cerebral blood perfusion before pathological brain changes. Using the retina as a window to the brain, we can study disorders of the central nervous system through the eyes. OBJECTIVE This study aimed to investigate differences in retinal structure and vessel density (VD) between patients with mild AD and healthy controls (HCs). Furthermore, we explored the relationship between retinal VD and cognitive function. METHODS We enrolled 37 patients with AD and 29 age-matched HCs who underwent standard ophthalmic optical coherence tomography angiography (OCTA) for evaluation of the retinal layer thickness and VD parameters. Cognitive function was evaluated using a battery of neuropsychological assessments. Finally, the correlations among retinal layer thickness, VD parameters, and cognitive function were evaluated. RESULTS The retinal fiber layer thickness and retinal VD of patients with AD were significantly reduced compared with HCs. The retinal VD was significantly correlated with overall cognition, memory, executive, and visual-spatial perception functions. However, there was no significant between-group difference in the macular thickness. CONCLUSION Our findings indicate a positive correlation between retinal VD and some, but not all, cognitive function domains. Most importantly, we demonstrated the role of OCTA in detecting early capillary changes, which could be a noninvasive biomarker for early AD.
Collapse
Affiliation(s)
- Yibing Yan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Xingqi Wu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Xiaojing Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Zhi Geng
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Lu Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Guixian Xiao
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yue Wu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Shanshan Zhou
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Rongfeng Liao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.,Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Jeihouni P, Dehzangi O, Amireskandari A, Rezai A, Nasrabadi NM. MultiSDGAN: translation of OCT images to superresolved segmentation labels using multi-discriminators in multi-stages. IEEE J Biomed Health Inform 2021; 26:1614-1627. [PMID: 34516380 DOI: 10.1109/jbhi.2021.3110265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Optical coherence tomography (OCT) has been identified as a non-invasive and inexpensive imaging modality to discover potential biomarkers for Alzheimer's diagnosis and progress determination. Current hypotheses presume the thickness of the retinal layers, which are analyzable within OCT scans, as an effective biomarker for the presence of Alzheimer's. As a logical first step, this work concentrates on the accurate segmentation of retinal layers to isolate the layers for further analysis. This paper proposes a generative adversarial network (GAN) that concurrently learns to increase the image resolution for higher clarity and then segment the retinal layers. We propose a multi-stage \& multi-discriminatory generative adversarial network (MultiSDGAN) specifically for superresolution and segmentation of OCT scans of the retinal layer. The resulting generator is adversarially trained against multiple discriminator networks at multiple stages. We aim to avoid early saturation of generator model training leading to poor segmentation accuracies and enhance the process of OCT domain translation by satisfying all the discriminators in multiple scales. We also investigated incorporating the Dice loss and Structured Similarity Index Measure (SSIM) as additional loss functions to specifically target and improve our proposed GAN architecture's segmentation and superresolution performance, respectively. The ablation study results conducted on our data set suggest that the proposed MultiSDGAN with ten-fold cross-validation (10-CV) provides a reduced equal error rate with 44.24% and 34.09% relative improvements, respectively (p-values of the improvement level tests<.01). Furthermore, our experimental results also demonstrate that the addition of the new terms to the loss function improves the segmentation results significantly by relative improvements of 31.33% (p-value<.01).
Collapse
|
36
|
Santangelo R, Huang SC, Bernasconi MP, Falautano M, Comi G, Magnani G, Leocani L. Neuro-Retina Might Reflect Alzheimer's Disease Stage. J Alzheimers Dis 2021; 77:1455-1468. [PMID: 32925026 DOI: 10.3233/jad-200043] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) pathological hallmarks were found in retinas of AD patients. Several studies showed a significant reduction of neuro-retina thickness measured through optical coherence tomography (OCT) in AD patients, but possible correlations between retina morphology, cognition, and cerebrospinal fluid (CSF) AD biomarkers (Aβ42, t-tau, and p-tau) have been poorly investigated so far. OBJECTIVE In the present cross-sectional study, we measured the thickness of neuro-retinal layers through OCT searching for possible correlations with patients' cognitive performances and CSF AD biomarkers. METHODS 137 consecutive subjects [43 with AD, 37 with mild cognitive impairment (MCI), and 57 healthy controls (HC)], received an OCT scan acquisition to measure the peripapillary retinal nerve fiber layer (RNFL) thickness. In a subsample of 21 AD, 18 MCI, and 18 HC, the macular volume of ganglion cell layer (GCL), inner plexiform layer (IPL), and inner nuclear layer was computed. A comprehensive neuropsychological assessment and CSF AD biomarkers' concentrations were available in AD and MCI patients. RESULTS Peripapillary RNFL, global, and in superior quadrant was significantly thinner in AD and MCI patients when compared to HC, while macular GCL volume was significantly reduced only in AD. RNFL thickness in nasal and inferior quadrants was correlated with single CSF AD biomarker concentrations, but no differences were found in retina morphology depending on the presence of a CSF profile typical for AD. Memory performances were positively associated with GCL and IPL volume. CONCLUSION Our findings might propose OCT as a reliable and easy to handle tool able to detect neuro-retinal atrophy in AD in relation with cognitive performances.
Collapse
Affiliation(s)
- Roberto Santangelo
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neuropsychology Unit, IRCCS San Raffaele Hospital, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
37
|
Moinuddin O, Khandwala NS, Young KZ, Sathrasala SK, Barmada SJ, Albin RL, Besirli CG. Role of Optical Coherence Tomography in Identifying Retinal Biomarkers in Frontotemporal Dementia: A Review. Neurol Clin Pract 2021; 11:e516-e523. [PMID: 34484950 DOI: 10.1212/cpj.0000000000001041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
Purpose of Review Frontotemporal dementia (FTD) is often misdiagnosed or recognized late. Clinical heterogeneity and overlap with other dementias impede accurate diagnosis. FTD biomarkers are limited, expensive, and invasive. We present a narrative review of the current literature focused on optical coherence tomography (OCT) to identify retinal biomarkers of dementia, discuss OCT findings in FTD, and explore the implications of an FTD-specific ocular biomarker for research and patient care. Recent Findings Recent studies suggest that outer retinal thinning detected via OCT may function as a novel ocular biomarker of FTD. The degree and rate of inner retinal thinning may correlate with disease severity and progression. In Alzheimer disease (AD), OCT demonstrates thinning of the inner retina, which may differentiate this condition from FTD. We conducted a comprehensive search of the literature and reviewed published OCT findings in FTD, AD, and mild cognitive impairment, as well as reports on biomarkers of FTD and AD used in the research and patient care settings. Three of the authors (O.M., N.S.K., and K.Z.Y.) independently conducted literature searches using PubMed to identify studies published before May 1, 2020, using the following search terminology: "Alzheimer's disease," "Alzheimer's dementia," "frontotemporal dementia," "FTD," "mild cognitive impairment," "dementia biomarkers," and "neurodegeneration biomarkers." Search results were then refined using one or more of the following keywords: "optical coherence tomography," "optical coherence tomography angiography," "retinal imaging," and "retinal thinning." The selection of published works for inclusion in this narrative review was then limited to full-text articles written in English based on consensus agreement of the authors. Summary FTD diagnosis is imprecise, emphasizing the need for improved state and trait biomarkers. OCT imaging of the retina holds considerable potential for establishing effective ocular biomarkers for FTD.
Collapse
Affiliation(s)
- Omar Moinuddin
- Department of Ophthalmology and Visual Sciences (OM, GGB), W.K. Kellogg Eye Center, University of Michigan; University of Michigan Medical School (NSK, KZY); University of Michigan (SKS); Department of Neurology (SJB, RLA), University of Michigan, Ann Arbor; and GRECC & Neurology Service (RLA), Veterans Affairs Ann Arbor Health System, MI
| | - Nikhila S Khandwala
- Department of Ophthalmology and Visual Sciences (OM, GGB), W.K. Kellogg Eye Center, University of Michigan; University of Michigan Medical School (NSK, KZY); University of Michigan (SKS); Department of Neurology (SJB, RLA), University of Michigan, Ann Arbor; and GRECC & Neurology Service (RLA), Veterans Affairs Ann Arbor Health System, MI
| | - Kelly Z Young
- Department of Ophthalmology and Visual Sciences (OM, GGB), W.K. Kellogg Eye Center, University of Michigan; University of Michigan Medical School (NSK, KZY); University of Michigan (SKS); Department of Neurology (SJB, RLA), University of Michigan, Ann Arbor; and GRECC & Neurology Service (RLA), Veterans Affairs Ann Arbor Health System, MI
| | - Sanjana K Sathrasala
- Department of Ophthalmology and Visual Sciences (OM, GGB), W.K. Kellogg Eye Center, University of Michigan; University of Michigan Medical School (NSK, KZY); University of Michigan (SKS); Department of Neurology (SJB, RLA), University of Michigan, Ann Arbor; and GRECC & Neurology Service (RLA), Veterans Affairs Ann Arbor Health System, MI
| | - Sami J Barmada
- Department of Ophthalmology and Visual Sciences (OM, GGB), W.K. Kellogg Eye Center, University of Michigan; University of Michigan Medical School (NSK, KZY); University of Michigan (SKS); Department of Neurology (SJB, RLA), University of Michigan, Ann Arbor; and GRECC & Neurology Service (RLA), Veterans Affairs Ann Arbor Health System, MI
| | - Roger L Albin
- Department of Ophthalmology and Visual Sciences (OM, GGB), W.K. Kellogg Eye Center, University of Michigan; University of Michigan Medical School (NSK, KZY); University of Michigan (SKS); Department of Neurology (SJB, RLA), University of Michigan, Ann Arbor; and GRECC & Neurology Service (RLA), Veterans Affairs Ann Arbor Health System, MI
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences (OM, GGB), W.K. Kellogg Eye Center, University of Michigan; University of Michigan Medical School (NSK, KZY); University of Michigan (SKS); Department of Neurology (SJB, RLA), University of Michigan, Ann Arbor; and GRECC & Neurology Service (RLA), Veterans Affairs Ann Arbor Health System, MI
| |
Collapse
|
38
|
Liao C, Xu J, Chen Y, Ip NY. Retinal Dysfunction in Alzheimer's Disease and Implications for Biomarkers. Biomolecules 2021; 11:biom11081215. [PMID: 34439882 PMCID: PMC8394950 DOI: 10.3390/biom11081215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that manifests as cognitive deficits and memory decline, especially in old age. Several biomarkers have been developed to monitor AD progression. Given that the retina and brain share some similarities including features related to anatomical composition and neurological functions, the retina is closely associated with the progression of AD. Herein, we review the evidence of retinal dysfunction in AD, particularly at the early stage, together with the underlying molecular mechanisms. Furthermore, we compared the retinal pathologies of AD and other ophthalmological diseases and summarized potential retinal biomarkers measurable by existing technologies for detecting AD, providing insights for the future development of diagnostic tools.
Collapse
Affiliation(s)
- Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Division of Life Science, Molecular Neuroscience Center, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| |
Collapse
|
39
|
Zhang M, Zhong L, Han X, Xiong G, Xu D, Zhang S, Cheng H, Chiu K, Xu Y. Brain and Retinal Abnormalities in the 5xFAD Mouse Model of Alzheimer's Disease at Early Stages. Front Neurosci 2021; 15:681831. [PMID: 34366774 PMCID: PMC8343228 DOI: 10.3389/fnins.2021.681831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
One of the major challenges in treating Alzheimer's disease (AD) is its early diagnosis. Increasing data from clinical and animal research indicate that the retina may facilitate an early diagnosis of AD. However, a previous study on the 5xFAD (a fast AD model), showing retinal changes before those in the brain, has been questioned because of the involvement of the retinal degeneration allele Pde6brd1. Here, we tested in parallel, at 4 and 6 months of age, both the retinal and the brain structure and function in a 5xFAD mouse line that carries no mutation of rd1. In the three tested regions of the 5xFAD brain (hippocampus, visual cortex, and olfactory bulb), the Aβ plaques were more numerous than in wild-type (WT) littermates already at 4 months, but deterioration in the cognitive behavioral test and long-term potentiation (LTP) lagged behind, showing significant deterioration only at 6 months. Similarly in the retina, structural changes preceded functional decay. At 4 months, the retina was generally normal except for a thicker outer nuclear layer in the middle region than WT. At 6 months, the visual behavior (as seen by an optomotor test) was clearly impaired. While the full-field and pattern electroretinogram (ERG) responses were relatively normal, the light responses of the retinal ganglion cells (measured with multielectrode-array recording) were decreased. Structurally, the retina became abnormally thick with few more Aβ plaques and activated glia cells. In conclusion, the timeline of the degenerative processes in the retina and the brain is similar, supporting the use of non-invasive methods to test the retinal structure and function to reflect changes in the brain for early AD diagnosis.
Collapse
Affiliation(s)
- Mengrong Zhang
- Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| | - Liting Zhong
- Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| | - Xiu Han
- Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| | - Guoyin Xiong
- Department of Ophthalmology, LKF Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Xu
- Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| | - Sensen Zhang
- Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| | - Haiyang Cheng
- Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| | - Kin Chiu
- Department of Ophthalmology, LKF Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China.,Key Laboratory of Central Nervous System Regeneration, Jinan University, Ministry of Education, Guangzhou, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| |
Collapse
|
40
|
Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of Label-Free Optical Imaging in Alzheimer's Disease Screening and Diagnosis. Front Aging Neurosci 2021; 13:699024. [PMID: 34366828 PMCID: PMC8341907 DOI: 10.3389/fnagi.2021.699024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
As the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease. However, the high costs, low spatial resolution, and long acquisition time limit their broad clinical utilization. The gold standard of AD diagnosis routinely used in research is imaging AD biomarkers with dyes or other reagents, which are unsuitable for in vivo studies owing to their potential toxicity and prolonged and costly process of the U.S. Food and Drug Administration (FDA) approval for human use. Furthermore, these exogenous reagents might bring unwarranted interference to mechanistic studies, causing unreliable results. Several label-free optical imaging techniques, such as infrared spectroscopic imaging (IRSI), Raman spectroscopic imaging (RSI), optical coherence tomography (OCT), autofluorescence imaging (AFI), optical harmonic generation imaging (OHGI), etc., have been developed to circumvent this issue and made it possible to offer an accurate and detailed analysis of AD biomarkers. In this review, we present the emerging label-free optical imaging techniques and their applications in AD, along with their potential and challenges in AD diagnosis.
Collapse
Affiliation(s)
- Kai Liu
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiasong Li
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Raksha Raghunathan
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Hong Zhao
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
41
|
Neurocognitive Assessment and Retinal Thickness Alterations in Alzheimer Disease: Is There a Correlation? J Neuroophthalmol 2021; 40:370-377. [PMID: 31453919 DOI: 10.1097/wno.0000000000000831] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The relation of retinal thickness to neuropsychological indexes of cognitive impairment in patients with Alzheimer disease (AD) remains an area of investigation. The scope of this investigation was to compare volume and thickness changes of neuronal retinal layers in subjects with AD with those of age-matched healthy controls and to estimate the relation between cognitive functioning evaluated by neuropsychological assessment and thickness changes of the retina. METHODS This was a prospective single-site study where we evaluated 25 subjects with probable AD matched for age, sex, and education to 17 healthy control subjects (HC). All participants underwent a full medical evaluation, neuropsychological assessment, and optical coherence tomography (OCT) to evaluate the peripapillary retinal nerve fiber layer (pRNFL) thickness, ganglion cell complex (GCC) thickness, and macular volume. RESULTS The pRNFL thickness of AD patients showed a significant overall reduction compared with healthy controls (P = <0.0001). Furthermore, pRNFL was reduced in each retinal quadrant, particularly the inferior, nasal, and superior quadrants. GCC thickness and macular volume were reduced in AD patients in comparison with HC (P = 0.004; P = 0.001). Of particular interest was the correlation between OCT findings and neuropsychological assessment; we did not find a significant association of retinal thinning with worse MMSE score, but reduction of macular volume was associated with worse constructional praxis performance. Impairment of semantic-lexical and processing speed was associated with attenuation of macular GCC thickness. CONCLUSIONS OCT can show early thickness changes in AD patients with subtle memory disturbances. These results suggest that correlations between retinal thinning and cognitive performance warrant further investigation.
Collapse
|
42
|
Chalkias IN, Tegos T, Topouzis F, Tsolaki M. Ocular biomarkers and their role in the early diagnosis of neurocognitive disorders. Eur J Ophthalmol 2021; 31:2808-2817. [PMID: 34000876 DOI: 10.1177/11206721211016311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Given the fact that different types of dementia can be diagnosed only postmortem or when the disease has progressed enough to cause irreversible damage to certain brain areas, there has been an increasing need for the development of sensitive and reliable methods that can detect early preclinical forms of dementia, before the symptoms have even appeared. Ideally, such a method would have the following characteristics: to be inexpensive, sensitive and specific, Non-invasive, fast and easily accessible. The ophthalmologic examination and especially the study of the retina, has caught the attention of many researchers, as it can provide a lot of information about the CNS and it fulfills many of the aforementioned criteria. Since the introduction of the non-invasive optical coherence tomography (OCT) and the newly developed modality OCT-angiography (OCT-A) that can demonstrate the structure and the microvasculature of the retina and choroid, respectively, there have been promising results regarding the value of the ophthalmologic examination in the early diagnosis of Alzheimer's disease. In this review paper, we summarize and discuss the ocular findings in patients with cognitive impairment disorders and we highlight the importance of the ophthalmologic examination to the diagnosis of these disorders.
Collapse
Affiliation(s)
- Ioannis-Nikolaos Chalkias
- 1st Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Makedonia Thraki, Greece
| | - Thomas Tegos
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Makedonia Thraki, Greece
| | - Fotis Topouzis
- 1st Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Makedonia Thraki, Greece
| | - Magda Tsolaki
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Makedonia Thraki, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
| |
Collapse
|
43
|
Srinivasan S, Efron N. Optical coherence tomography in the investigation of systemic neurologic disease. Clin Exp Optom 2021; 102:309-319. [DOI: 10.1111/cxo.12858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/21/2018] [Accepted: 10/28/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sangeetha Srinivasan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia,
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia,
| |
Collapse
|
44
|
Sarkar S, Rajalakshmi AR, Avudaiappan S, Eswaran S. Exploring the role of macular thickness as a potential early biomarker of neurodegeneration in acute schizophrenia. Int Ophthalmol 2021; 41:2737-2746. [PMID: 33856596 DOI: 10.1007/s10792-021-01831-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The retina has been investigated as a gateway to assess the neurodegenerative changes in the brain. Schizophrenia is also conceptualized as a neurodegenerative disorder like Alzheimer's and Parkinson's disease. The current literature suggests reduced retinal nerve fibre layer (RNFL) thickness and macular thickness (MT), as a marker of neurodegeneration, in patient suffering from chronic schizophrenia. This study aims to compare RNFL thickness and MT in acute schizophrenic patients with age and sex matched healthy controls. METHODS Twenty acutely ill schizophrenic patients and 20 normal controls were included in the study after proper informed consent. RNFL thickness and MT was measured using spectral domain Optical Coherence Tomography after clinical psychological assessment and ocular examination. RESULTS The two groups were comparable in terms of socio-demographic variables. The average RNFL thickness of patients and healthy controls was 102.11 ± 29.18 µm and 105.14 ± 27.35 µm, respectively. Central macular thickness was 181.12 ± 13.63 µm in patients and 234.58 ± 10.71 µm in controls. There was a statistically significant reduction in thickness of macula (p < 0.05) but not for RNFL (p = 0.339). CONCLUSION The study concludes that macular thinning rather than reduced RNFL is an early manifestation in acute schizophrenia patients and can be considered as a potential early biomarker of neurodegeneration in schizophrenia.
Collapse
Affiliation(s)
- Sukanto Sarkar
- Department of Psychiatry, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (SBV) Deemed To Be University, Puducherry, India.,Department of Psychiatry, AIIMS, Kalyani, India
| | - A R Rajalakshmi
- Department of Ophthalmology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (SBV) Deemed To Be University, Puducherry, India.
| | - S Avudaiappan
- Department of Psychiatry, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (SBV) Deemed To Be University, Puducherry, India
| | - S Eswaran
- Department of Psychiatry, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (SBV) Deemed To Be University, Puducherry, India
| |
Collapse
|
45
|
Zhang Y, Wang Y, Shi C, Shen M, Lu F. Advances in retina imaging as potential biomarkers for early diagnosis of Alzheimer's disease. Transl Neurodegener 2021; 10:6. [PMID: 33517891 PMCID: PMC7849105 DOI: 10.1186/s40035-021-00230-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
As the most common form of dementia, Alzheimer’s disease (AD) is characterized by progressive cognitive impairments and constitutes a major social burden. Currently, the invasiveness and high costs of tests have limited the early detection and intervention of the disease. As a unique window of the brain, retinal changes can reflect the pathology of the brain. In this review, we summarize current understanding of retinal structures in AD, mild cognitive impairment (MCI) and preclinical AD, focusing on neurodegeneration and microvascular changes measured using optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) technologies. The literature suggests that the impairment of retinal microvascular network and neural microstructure exists in AD, MCI and even preclinical AD. These findings provide valuable insights into a better understanding of disease pathogenesis and demonstrate that retinal changes are potential biomarkers for early diagnosis of AD and monitoring of disease progression.
Collapse
Affiliation(s)
- Ying Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China
| | - Yanjiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ce Shi
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China.
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China.
| |
Collapse
|
46
|
Lian TH, Jin Z, Qu YZ, Guo P, Guan HY, Zhang WJ, Ding DY, Li DN, Li LX, Wang XM, Zhang W. The Relationship Between Retinal Nerve Fiber Layer Thickness and Clinical Symptoms of Alzheimer's Disease. Front Aging Neurosci 2021; 12:584244. [PMID: 33584241 PMCID: PMC7878673 DOI: 10.3389/fnagi.2020.584244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022] Open
Abstract
Background/Aim: Retinal nerve fiber layer (RNFL) thickness (RT), which can reflect the status of the retinal optic nerve cells, may be affected in patients with Alzheimer's disease (AD). There are few studies on the correlation of RT of patients with AD (AD-RT) with clinical symptoms of various cognitive domains, neuropsychiatric symptoms, and activities of daily living (ADL). This study is to investigate the relationships between RT and the abovementioned clinical symptoms of AD. Methods: A total of 96 patients with AD were included in this study. RT was measured in these patients using optical coherence tomography (OCT). Demographic variables, RT, and clinical symptoms were compared between the normal and the abnormal AD-RT groups. Clinical symptoms, including cognitive symptoms, neuropsychiatric symptoms, and ADL, were evaluated using a series of rating scales. Results: The relationships between RT and cognitive symptoms scores were analyzed in patients with AD. Reduced RT was found in 54.4% of patients with AD. The average RT, RT of the superior 1/2 quadrant, and RT of the inferior 1/2 quadrant of both eyes were all significantly decreased in the abnormal AD-RT group (p < 0.001). Overall cognitive function and performance in multiple cognitive domains, including memory, language, attention, and executive function, were also significantly impaired in the abnormal AD-RT group (p < 0.05). For lower RT value, the global cognitive function and the performance in multiple cognitive domains were worse. ADL was significantly compromised in patients with AD having lower RT values (p < 0.05). Conclusions: Lower RT value appear to be correlated with cognitive impairment, and RT may be an indicator of cognitive decline in patients with AD. Further studies are required to confirm our findings.
Collapse
Affiliation(s)
- Teng-Hong Lian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhao Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan-Zhen Qu
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital University of Medical Sciences, Beijing, China
| | - Peng Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-Ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du-Yu Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Da-Ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Xia Li
- Department of Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory on Parkinson Disease, Beijing, China
| |
Collapse
|
47
|
Song A, Johnson N, Ayala A, Thompson AC. Optical Coherence Tomography in Patients with Alzheimer's Disease: What Can It Tell Us? Eye Brain 2021; 13:1-20. [PMID: 33447120 PMCID: PMC7802785 DOI: 10.2147/eb.s235238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Although Alzheimer's disease (AD) is a leading cause of dementia worldwide, its clinical diagnosis remains a challenge. Optical coherence tomography (OCT) and OCT with angiography (OCTA) are non-invasive ophthalmic imaging tools with the potential to detect retinal structural and microvascular changes in patients with AD, which may serve as biomarkers for the disease. In this systematic review, we evaluate whether certain OCT and OCTA parameters are significantly associated with AD and mild cognitive impairment (MCI). METHODS PubMed database was searched using a combination of MeSH terms to identify studies for review. Studies were organized by participant diagnostic groups, type of imaging modality, and OCT/OCTA parameters of interest. Participant demographic data was also collected and baseline descriptive statistics were calculated for the included studies. RESULTS Seventy-one studies were included for review, representing a total of 6757 patients (2350 AD, 793 MCI, 2902 healthy controls (HC), and 841 others with a range of other neurodegenerative diagnoses). The mean baseline ages were 72.78±3.69, 71.52±2.88, 70.55±3.85 years for AD, MCI and HC groups, respectively. The majority of studies noted significant structural and functional decline in AD patients when compared to HC. Although analysis of MCI groups yielded more mixed results, a similar pattern of decline was often noted amongst patients with MCI relative to HC. OCT and OCTA measurements were also shown to correlate with established measures of AD such as neuropsychological testing or neuroimaging. CONCLUSION OCT and OCTA show great potential as non-invasive technologies for the diagnosis of AD. However, further research is needed to determine whether there are AD-specific patterns of structural or microvascular change in the retina and optic nerve that distinguish AD from other neurodegenerative diseases. Development of sensitive and specific OCT/OCTA parameters will be necessary before they can be used to detect AD in clinical settings.
Collapse
Affiliation(s)
- Ailin Song
- Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
48
|
Alber J, Arthur E, Sinoff S, DeBuc DC, Chew EY, Douquette L, Hatch WV, Hudson C, Kashani A, Lee CS, Montaquila S, Mozdbar S, Cunha LP, Tayyari F, Van Stavern G, Snyder PJ. A recommended "minimum data set" framework for SD-OCT retinal image acquisition and analysis from the Atlas of Retinal Imaging in Alzheimer's Study (ARIAS). ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12119. [PMID: 33163610 PMCID: PMC7604454 DOI: 10.1002/dad2.12119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We propose a minimum data set framework for the acquisition and analysis of retinal images for the development of retinal Alzheimer's disease (AD) biomarkers. Our goal is to describe methodology that will increase concordance across laboratories, so that the broader research community is able to cross-validate findings in parallel, accumulate large databases with normative data across the cognitive aging spectrum, and progress the application of this technology from the discovery stage to the validation stage in the search for sensitive and specific retinal biomarkers in AD. METHODS The proposed minimum data set framework is based on the Atlas of Retinal Imaging Study (ARIAS), an ongoing, longitudinal, multi-site observational cohort study. However, the ARIAS protocol has been edited and refined with the expertise of all co-authors, representing 16 institutions, and research groups from three countries, as a first step to address a pressing need identified by experts in neuroscience, neurology, optometry, and ophthalmology at the Retinal Imaging in Alzheimer's Disease (RIAD) conference, convened by the Alzheimer's Association and held in Washington, DC, in May 2019. RESULTS Our framework delineates specific imaging protocols and methods of analysis for imaging structural changes in retinal neuronal layers, with optional add-on procedures of fundus autofluorescence to examine beta-amyloid accumulation and optical coherence tomography angiography to examine AD-related changes in the retinal vasculature. DISCUSSION This minimum data set represents a first step toward the standardization of retinal imaging data acquisition and analysis in cognitive aging and AD. A standardized approach is essential to move from discovery to validation, and to examine which retinal AD biomarkers may be more sensitive and specific for the different stages of the disease severity spectrum. This approach has worked for other biomarkers in the AD field, such as magnetic resonance imaging; amyloid positron emission tomography; and, more recently, blood proteomics. Potential context of use for retinal AD biomarkers is discussed.
Collapse
Affiliation(s)
- Jessica Alber
- Department of Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
- Ryan Institute for NeuroscienceUniversity of Rhode IslandKingstonRhode IslandUSA
- Butler Hospital Memory and Aging ProgramProvidenceRhode IslandUSA
| | - Edmund Arthur
- Department of Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
- Ryan Institute for NeuroscienceUniversity of Rhode IslandKingstonRhode IslandUSA
- Butler Hospital Memory and Aging ProgramProvidenceRhode IslandUSA
| | | | - Delia Cabrera DeBuc
- Bascom Palmer Eye InstituteDepartment of OphthalmologyUniversity of MiamiMiamiFloridaUSA
| | - Emily Y. Chew
- Division of Epidemiology and Clinical ApplicationsNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Lori Douquette
- Douquette Family Eye Care, Inc.North SmithfieldRhode IslandUSA
| | - Wendy V. Hatch
- Department of OphthalmologyUniversity of TorontoTorontoOntarioCanada
| | - Chris Hudson
- Department of OphthalmologyUniversity of TorontoTorontoOntarioCanada
- University of WaterlooWaterlooOntarioCanada
| | - Amir Kashani
- USC Roski Eye Institute and USC Ginsburg Institute for Biomedical TherapeuticsKeck School of Medicine of USCLos AngelesCaliforniaUSA
| | - Cecelia S. Lee
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
| | | | - Sima Mozdbar
- North Texas Eye Research InstituteDepartment of Pharmacology & NeuroscienceUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Leonardo Provetti Cunha
- Department of OphthalmologyFederal University of Juiz de Fora Medical School, Juiz de ForaMinasGeraisBrazil
- Division of OphthalmologyUniversity of São Paulo Medical School, São PauloMinasGeraisBrazil
| | | | - Gregory Van Stavern
- Department of Ophthalmology and Visual SciencesWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Peter J. Snyder
- Department of Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
- Ryan Institute for NeuroscienceUniversity of Rhode IslandKingstonRhode IslandUSA
| |
Collapse
|
49
|
Alber J, Goldfarb D, Thompson LI, Arthur E, Hernandez K, Cheng D, DeBuc DC, Cordeiro F, Provetti-Cunha L, den Haan J, Van Stavern GP, Salloway SP, Sinoff S, Snyder PJ. Developing retinal biomarkers for the earliest stages of Alzheimer's disease: What we know, what we don't, and how to move forward. Alzheimers Dement 2020; 16:229-243. [PMID: 31914225 DOI: 10.1002/alz.12006] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The last decade has seen a substantial increase in research focused on the identification, development, and validation of diagnostic and prognostic retinal biomarkers for Alzheimer's disease (AD). Sensitive retinal biomarkers may be advantageous because they are cost and time efficient, non-invasive, and present a minimal degree of patient risk and a high degree of accessibility. Much of the work in this area thus far has focused on distinguishing between symptomatic AD and/or mild cognitive impairment (MCI) and cognitively normal older adults. Minimal work has been done on the detection of preclinical AD, the earliest stage of AD pathogenesis characterized by the accumulation of cerebral amyloid absent clinical symptoms of MCI or dementia. The following review examines retinal structural changes, proteinopathies, and vascular alterations that have been proposed as potential AD biomarkers, with a focus on studies examining the earliest stages of disease pathogenesis. In addition, we present recommendations for future research to move beyond the discovery phase and toward validation of AD risk biomarkers that could potentially be used as a first step in a multistep screening process for AD risk detection.
Collapse
Affiliation(s)
- Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Louisa I Thompson
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | - Edmund Arthur
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA
| | | | - Derrick Cheng
- Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Delia Cabrera DeBuc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Francesca Cordeiro
- Imperial College London, London, UK.,University College London, London, UK.,Western Eye Hospital, London, UK
| | - Leonardo Provetti-Cunha
- Federal University of Juiz de Fora Medical School, Juiz de Fora, Minas Gerais, Brazil.,Juiz de Fora Eye Hospital, Juiz de Fora, Minas Gerais, Brazil.,University of São Paulo Medical School, São Paulo, Brazil
| | - Jurre den Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gregory P Van Stavern
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Stephen P Salloway
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Butler Hospital Memory & Aging Program, Providence, Rhode Island, USA.,Department of Neurology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Peter J Snyder
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA.,Department of Neurology and Department of Surgery (Ophthalmology), Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
50
|
Mejia-Vergara AJ, Restrepo-Jimenez P, Pelak VS. Optical Coherence Tomography in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:578698. [PMID: 33178120 PMCID: PMC7596384 DOI: 10.3389/fneur.2020.578698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose: The use of optical coherence tomography (OCT) of the retina to detect inner retinal degeneration is being investigated as a potential biomarker for mild cognitive impairment (MCI) and Alzheimer's disease (AD), and an overwhelming body of evidence indicates that discovery of disease-modifying treatments for AD should be aimed at the pre-dementia clinical stage of AD, i.e., MCI. We aimed to perform a systematic review and meta-analysis on retinal OCT in MCI. Methods: We performed a systematic review of the English literature in three databases (PubMed, Embase, and Latindex) for studies that measured retinal thickness using OCT in people with MCI and healthy controls, age 50 or older, between 1 January 2000 and 31 July 2019. Only cohort and case-control studies were reviewed, and independent extraction of quality data and established objective data was performed. We calculated the effect size for studies in the review that met the following criteria: (1) a statistically significant difference between MCI subjects and normal controls for several OCT variables, (2) use of spectral domain OCT, and (3) use of APOSTEL recommendations for OCT reporting. Weighted Hedges' g statistic was used to calculate the pooled effect size for four variables: ganglion cell layer-inner plexiform layer (GCL-IPL) complex thickness in micrometers (μm), circumpapillary retinal nerve fiber layer (pRNFL) thickness in μm, macular thickness in μm, and macular volume in μm3. For variables with high heterogeneity, a multivariate meta-regression was performed. We followed the PRISMA guidelines for systematic reviews. Results: Fifteen articles met the inclusion criteria. A total of 58.9% of MCI patients had statistically significant thinning of the pRNFL compared with normal subjects, while 61.6% of all MCI patients who had macular volume measured had a statistically significant reduction in volume compared with controls, and 50.0% of the macular GCL-IPL complexes measured demonstrated significant thinning in MCI compared with normal controls. Meta-analysis demonstrated a large effect size for decreased macular thickness in MCI subjects compared with normal controls, but there was a substantial heterogeneity for macular thickness results. The other variables did not demonstrate a significant difference and also had substantial heterogeneity. Meta-regression analysis did not reveal an explanation for the heterogeneity. Conclusions: A better understanding of the cause of retina degeneration and longitudinal, standardized studies are needed to determine if optical coherence tomography can be used as a biomarker for mild cognitive impairment due to Alzheimer's disease.
Collapse
Affiliation(s)
- Alvaro J Mejia-Vergara
- Department of Neuro-Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, Pasadena, CA, United States.,Ophthalmology Department, San Ignacio University Hospital, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Paula Restrepo-Jimenez
- Ophthalmology Department, San Ignacio University Hospital, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Victoria S Pelak
- Departments of Neurology and Ophthalmology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|