1
|
Carretero VJ, Álvarez-Merz I, Hernández-Campano J, Kirov SA, Hernández-Guijo JM. Targeting harmful effects of non-excitatory amino acids as an alternative therapeutic strategy to reduce ischemic damage. Neural Regen Res 2025; 20:2454-2463. [PMID: 39314160 DOI: 10.4103/nrr.nrr-d-24-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The involvement of the excitatory amino acids glutamate and aspartate in cerebral ischemia and excitotoxicity is well-documented. Nevertheless, the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied. The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra. Our findings indicated that the reversible loss of field excitatory postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids (L-alanine, glycine, L-glutamine, and L-serine) at their plasma concentrations. These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia, along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors. Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia. It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels, leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation. Thus, previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury. Understanding these pathways could highlight new therapeutic targets to mitigate brain injury.
Collapse
Affiliation(s)
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Neurobiology-Research Service, Hospital Ramón y Cajal, Madrid, Spain
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jorge Hernández-Campano
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
| | - Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine & Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Neurobiology-Research Service, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
2
|
Mishra S, Stany B, Das A, Kanagavel D, Vijayan M. A Comprehensive Review of Membrane Transporters and MicroRNA Regulation in Alzheimer's Disease. Mol Neurobiol 2024; 61:8739-8758. [PMID: 38558361 DOI: 10.1007/s12035-024-04135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a distressing neurodegenerative condition characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles within the brain. The interconnectedness between membrane transporters (SLCs) and microRNAs (miRNAs) in AD pathogenesis has gained increasing attention. This review explores the localization, substrates, and functions of SLC transporters in the brain, emphasizing the roles of transporters for glutamate, glucose, nucleosides, and other essential compounds. The examination delves into the significance of SLCs in AD, their potential for drug development, and the intricate realm of miRNAs, encompassing their transcription, processing, functions, and regulation. MiRNAs have emerged as significant players in AD, including those associated with mitochondria and synapses. Furthermore, this review discusses the intriguing nexus of miRNAs targeting SLC transporters and their potential as therapeutic targets in AD. Finally, the review underscores the interaction between SLC transporters and miRNA regulation within the context of Alzheimer's disease, underscoring the need for further research in this area. This comprehensive review aims to shed light on the complex mechanisms underlying the causation of AD and provides insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Shatakshi Mishra
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - B Stany
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Anushka Das
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Deepankumar Kanagavel
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Chen AM, Gajdošík M, Ahmed W, Ahn S, Babb JS, Blessing EM, Boutajangout A, de Leon MJ, Debure L, Gaggi N, Gajdošík M, George A, Ghuman M, Glodzik L, Harvey P, Juchem C, Marsh K, Peralta R, Rusinek H, Sheriff S, Vedvyas A, Wisniewski T, Zheng H, Osorio R, Kirov II. Retrospective analysis of Braak stage- and APOE4 allele-dependent associations between MR spectroscopy and markers of tau and neurodegeneration in cognitively unimpaired elderly. Neuroimage 2024; 297:120742. [PMID: 39029606 PMCID: PMC11404707 DOI: 10.1016/j.neuroimage.2024.120742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
PURPOSE The pathological hallmarks of Alzheimer's disease (AD), amyloid, tau, and associated neurodegeneration, are present in the cortical gray matter (GM) years before symptom onset, and at significantly greater levels in carriers of the apolipoprotein E4 (APOE4) allele. Their respective biomarkers, A/T/N, have been found to correlate with aspects of brain biochemistry, measured with magnetic resonance spectroscopy (MRS), indicating a potential for MRS to augment the A/T/N framework for staging and prediction of AD. Unfortunately, the relationships between MRS and A/T/N biomarkers are unclear, largely due to a lack of studies examining them in the context of the spatial and temporal model of T/N progression. Advanced MRS acquisition and post-processing approaches have enabled us to address this knowledge gap and test the hypotheses, that glutamate-plus-glutamine (Glx) and N-acetyl-aspartate (NAA), metabolites reflecting synaptic and neuronal health, respectively, measured from regions on the Braak stage continuum, correlate with: (i) cerebrospinal fluid (CSF) p-tau181 level (T), and (ii) hippocampal volume or cortical thickness of parietal lobe GM (N). We hypothesized that these correlations will be moderated by Braak stage and APOE4 genotype. METHODS We conducted a retrospective imaging study of 34 cognitively unimpaired elderly individuals who received APOE4 genotyping and lumbar puncture from pre-existing prospective studies at the NYU Grossman School of Medicine between October 2014 and January 2019. Subjects returned for their imaging exam between April 2018 and February 2020. Metabolites were measured from the left hippocampus (Braak II) using a single-voxel semi-adiabatic localization by adiabatic selective refocusing sequence; and from the bilateral posterior cingulate cortex (PCC; Braak IV), bilateral precuneus (Braak V), and bilateral precentral gyrus (Braak VI) using a multi-voxel echo-planar spectroscopic imaging sequence. Pearson and Spearman correlations were used to examine the relationships between absolute levels of choline, creatine, myo-inositol, Glx, and NAA and CSF p-tau181, and between these metabolites and hippocampal volume or parietal cortical thicknesses. Covariates included age, sex, years of education, Fazekas score, and months between CSF collection and MRI exam. RESULTS There was a direct correlation between hippocampal Glx and CSF p-tau181 in APOE4 carriers (Pearson's r = 0.76, p = 0.02), but not after adjusting for covariates. In the entire cohort, there was a direct correlation between hippocampal NAA and hippocampal volume (Spearman's r = 0.55, p = 0.001), even after adjusting for age and Fazekas score (Spearman's r = 0.48, p = 0.006). This relationship was observed only in APOE4 carriers (Pearson's r = 0.66, p = 0.017), and was also retained after adjustment (Pearson's r = 0.76, p = 0.008; metabolite-by-carrier interaction p = 0.03). There were no findings in the PCC, nor in the negative control (late Braak stage) regions of the precuneus and precentral gyrus. CONCLUSIONS Our findings are in line with the spatially- and temporally-resolved Braak staging model of pathological severity in which the hippocampus is affected earlier than the PCC. The correlations, between MRS markers of synaptic and neuronal health and, respectively, T and N pathology, were found exclusively within APOE4 carriers, suggesting a connection with AD pathological change, rather than with normal aging. We therefore conclude that MRS has the potential to augment early A/T/N staging, with the hippocampus serving as a more sensitive MRS target compared to the PCC.
Collapse
Affiliation(s)
- Anna M Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Martin Gajdošík
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Wajiha Ahmed
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sinyeob Ahn
- Siemens Medical Solutions USA Inc., Malvern, PA, USA
| | - James S Babb
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Esther M Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Healthy Brain Aging and Sleep Center, NYU Langone Health, New York, NY, USA
| | - Allal Boutajangout
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mony J de Leon
- Retired Director, Center for Brain Health, Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ludovic Debure
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Naomi Gaggi
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Healthy Brain Aging and Sleep Center, NYU Langone Health, New York, NY, USA
| | - Mia Gajdošík
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ajax George
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mobeena Ghuman
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Patrick Harvey
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Karyn Marsh
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Rosemary Peralta
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alok Vedvyas
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Helena Zheng
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ricardo Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Healthy Brain Aging and Sleep Center, NYU Langone Health, New York, NY, USA.
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA; Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Du R, Wang P, Tian N. CD3ζ-Mediated Signaling Protects Retinal Ganglion Cells in Glutamate Excitotoxicity of the Retina. Cells 2024; 13:1006. [PMID: 38920637 PMCID: PMC11201742 DOI: 10.3390/cells13121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.
Collapse
Affiliation(s)
- Rui Du
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84132, USA
- Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| |
Collapse
|
5
|
Durán-Carabali LE, Odorcyk FK, Grun LK, Schmitz F, Ramires Junior OV, de Oliveria MR, Campos KF, Hoeper E, Carvalho AVS, Greggio S, Venturine GT, Zimmer ER, Barbé-Tuana F, Wyse ATS, Netto CA. Maternal environmental enrichment protects neonatal brains from hypoxic-ischemic challenge by mitigating brain energetic dysfunction and modulating glial cell responses. Exp Neurol 2024; 374:114713. [PMID: 38325654 DOI: 10.1016/j.expneurol.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
There is evidence that maternal milieu and changes in environmental factors during the prenatal period may exert a lasting impact on the brain health of the newborn, even in case of neonatal brain hypoxia-ischemia (HI). The present study aimed to investigate the effects of maternal environmental enrichment (EE) on HI-induced energetic and metabolic failure, along with subsequent neural cell responses in the early postnatal period. Male Wistar pups born to dams exposed to maternal EE or standard conditions (SC) were randomly divided into Sham-SC, HI-SC, Sham-EE, and HI-EE groups. Neonatal HI was induced on postnatal day (PND) 3. The Na+,K+-ATPase activity, mitochondrial function and neuroinflammatory related-proteins were assessed at 24 h and 48 h after HI. MicroPET-FDG scans were used to measure glucose uptake at three time points: 24 h post-HI, PND18, and PND24. Moreover, neuronal preservation and glial cell responses were evaluated at PND18. After HI, animals exposed to maternal EE showed an increase in Na+,K+-ATPase activity, preservation of mitochondrial potential/mass ratio, and a reduction in mitochondrial swelling. Glucose uptake was preserved in HI-EE animals from PND18 onwards. Maternal EE attenuated HI-induced cell degeneration, white matter injury, and reduced astrocyte immunofluorescence. Moreover, the HI-EE group exhibited elevated levels of IL-10 and a reduction in Iba-1 positive cells. Data suggested that the regulation of AKT/ERK1/2 signaling pathways could be involved in the effects of maternal EE. This study evidenced that antenatal environmental stimuli could promote bioenergetic and neural resilience in the offspring against early HI damage, supporting the translational value of pregnancy-focused environmental treatments.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - F K Odorcyk
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L K Grun
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - F Schmitz
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab.), Brazil
| | - O V Ramires Junior
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab.), Brazil
| | - M R de Oliveria
- Department of Morphology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - K F Campos
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E Hoeper
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A V S Carvalho
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - S Greggio
- Undergraduate Program in Biomedicine, School of Health and Life Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - G T Venturine
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - E R Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - F Barbé-Tuana
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - A T S Wyse
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab.), Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C A Netto
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
6
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Rajeev V, Chai YL, Poh L, Selvaraji S, Fann DY, Jo DG, De Silva TM, Drummond GR, Sobey CG, Arumugam TV, Chen CP, Lai MKP. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun 2023; 11:93. [PMID: 37309012 PMCID: PMC10259064 DOI: 10.1186/s40478-023-01590-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing preventive interventions instead of symptomatic treatments.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Luting Poh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Mehra A, Gomez F, Bischof H, Diedrich D, Laudanski K. Cortical Spreading Depolarization and Delayed Cerebral Ischemia; Rethinking Secondary Neurological Injury in Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:9883. [PMID: 37373029 DOI: 10.3390/ijms24129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Poor outcomes in Subarachnoid Hemorrhage (SAH) are in part due to a unique form of secondary neurological injury known as Delayed Cerebral Ischemia (DCI). DCI is characterized by new neurological insults that continue to occur beyond 72 h after the onset of the hemorrhage. Historically, it was thought to be a consequence of hypoperfusion in the setting of vasospasm. However, DCI was found to occur even in the absence of radiographic evidence of vasospasm. More recent evidence indicates that catastrophic ionic disruptions known as Cortical Spreading Depolarizations (CSD) may be the culprits of DCI. CSDs occur in otherwise healthy brain tissue even without demonstrable vasospasm. Furthermore, CSDs often trigger a complex interplay of neuroinflammation, microthrombi formation, and vasoconstriction. CSDs may therefore represent measurable and modifiable prognostic factors in the prevention and treatment of DCI. Although Ketamine and Nimodipine have shown promise in the treatment and prevention of CSDs in SAH, further research is needed to determine the therapeutic potential of these as well as other agents.
Collapse
Affiliation(s)
- Ashir Mehra
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Holly Bischof
- Penn Presbyterian Medical Center, Philadelphia, PA 19104, USA
| | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Topcu A, Saral S, Ozturk A, Saral O, Kaya AK. The effect of the calcium channel blocker nimodipine on hippocampal BDNF/Ach levels in rats with experimental cognitive impairment. Neurol Res 2023; 45:544-553. [PMID: 36598971 DOI: 10.1080/01616412.2022.2164452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) occurs in approximately 10% to 30% of individuals aged 65 or older worldwide. Novel therapeutic agents therefore need to be discovered in addition to traditional medications. Nimodipine appears to possess the potential to reverse cognitive impairment-induced dysfunction in learning and memory through its regulatory effect on the brain-derived neurotrophic factor (BDNF), acetylcholine (Ach), and acetylcholinesterase (AChE) pathway in the hippocampus and prefrontal cortex. METHODS Twenty-four male Sprague Dawley rats weighing 380 ± 10 g were used for behavioral and biochemical analyses. These were randomly and equally assigned into one of three groups. Group 1 received saline solution alone via the intraperitoneal (i.p) route, and Group 2 received 1 mg/kg/day i.p. scopolamine once a day for three weeks for induction of learning and memory impairments. In Group 3, 10 mg/kg/day nimodipine was prepared in tap water and administered orally every day for three weeks, followed after 30 min by 1 mg/kg/day scopolamine i.p. Behavior was evaluated using the Morris Water Maze test. BDNF, ACh, and AChE levels were determined using the ELISA test in line with the manufacturer's instructions. RESULTS Nimodipine treatment significantly increased the time spent in the target quadrant and the number of entries into the target quadrant compared to the scopolamine group alone. Additionally, BDNF and ACh levels in the hippocampus and prefrontal cortex decreased following 20-day scopolamine administration, while AChE activation increased. CONCLUSION Nimodipine exhibited potentially beneficial effects by ameliorating cognitive decline following scopolamine administration in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Aykut Ozturk
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ozlem Saral
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ali Koray Kaya
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| |
Collapse
|
10
|
Bencsik N, Oueslati Morales CO, Hausser A, Schlett K. Endocytosis of AMPA receptors: Role in neurological conditions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:59-97. [PMID: 36813366 DOI: 10.1016/bs.pmbts.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AMPA receptors are glutamate-gated ion channels, present in a wide range of neuron types and in glial cells. Their main role is to mediate fast excitatory synaptic transmission, and therefore, they are critical for normal brain function. In neurons, AMPA receptors undergo constitutive and activity-dependent trafficking between the synaptic, extrasynaptic and intracellular pools. The kinetics of AMPA receptor trafficking is crucial for the precise functioning of both individual neurons and neural networks involved in information processing and learning. Many of the neurological diseases evoked by neurodevelopmental and neurodegenerative malfunctions or traumatic injuries are caused by impaired synaptic function in the central nervous system. For example, attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD), tumors, seizures, ischemic strokes, and traumatic brain injury are all characterized by impaired glutamate homeostasis and associated neuronal death, typically caused by excitotoxicity. Given the important role of AMPA receptors in neuronal function, it is not surprising that perturbations in AMPA receptor trafficking are associated with these neurological disorders. In this book chapter, we will first introduce the structure, physiology and synthesis of AMPA receptors, followed by an in-depth description of the molecular mechanisms that control AMPA receptor endocytosis and surface levels under basal conditions or synaptic plasticity. Finally, we will discuss how impairments in AMPA receptor trafficking, particularly endocytosis, contribute to the pathophysiology of various neurological disorders and what efforts are being made to therapeutically target this process.
Collapse
Affiliation(s)
- Norbert Bencsik
- Neuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Carlos Omar Oueslati Morales
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Katalin Schlett
- Neuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
11
|
Duarte-Silva AT, Ximenes LGR, Guimarães-Souza M, Domith I, Paes-de-Carvalho R. Chemical signaling in the developing avian retina: Focus on cyclic AMP and AKT-dependent pathways. Front Cell Dev Biol 2022; 10:1058925. [PMID: 36568967 PMCID: PMC9780464 DOI: 10.3389/fcell.2022.1058925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Communication between developing progenitor cells as well as differentiated neurons and glial cells in the nervous system is made through direct cell contacts and chemical signaling mediated by different molecules. Several of these substances are synthesized and released by developing cells and play roles since early stages of Central Nervous System development. The chicken retina is a very suitable model for neurochemical studies, including the study of regulation of signaling pathways during development. Among advantages of the model are its very well-known histogenesis, the presence of most neurotransmitter systems found in the brain and the possibility to make cultures of neurons and/or glial cells where many neurochemical functions develop in a similar way than in the intact embryonic tissue. In the chicken retina, some neurotransmitters or neuromodulators as dopamine, adenosine, and others are coupled to cyclic AMP production or adenylyl cyclase inhibition since early stages of development. Other substances as vitamin C and nitric oxide are linked to the major neurotransmitter glutamate and AKT metabolism. All these different systems regulate signaling pathways, including PKA, PKG, SRC, AKT and ERK, and the activation of the transcription factor CREB. Dopamine and adenosine stimulate cAMP accumulation in the chick embryo retina through activation of D1 and A2a receptors, respectively, but the onset of dopamine stimulation is much earlier than that of adenosine. However, adenosine can inhibit adenylyl cyclase and modulate dopamine-dependent cAMP increase since early developmental stages through A1 receptors. Dopamine stimulates different PKA as well as EPAC downstream pathways both in intact tissue and in culture as the CSK-SRC pathway modulating glutamate NMDA receptors as well as vitamin C release and CREB phosphorylation. By the other hand, glutamate modulates nitric oxide production and AKT activation in cultured retinal cells and this pathway controls neuronal survival in retina. Glutamate and adenosine stimulate the release of vitamin C and this vitamin regulates the transport of glutamate, activation of NMDA receptors and AKT phosphorylation in cultured retinal cells. In the present review we will focus on these reciprocal interactions between neurotransmitters or neuromodulators and different signaling pathways during retinal development.
Collapse
Affiliation(s)
- A. T. Duarte-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - L. G. R. Ximenes
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - M. Guimarães-Souza
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - I. Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - R. Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil,*Correspondence: R. Paes-de-Carvalho,
| |
Collapse
|
12
|
Zhang C, He J, Wang X, Yang Y, Huang Q, Qiao F, Shi Q, Qin J, Chen L. Gamma-aminobutyric acid enhances hypoxia tolerance of juvenile Chinese mitten crab (Eriocheir sinensis) by regulating respiratory metabolism and alleviating neural excitotoxicity. Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109409. [PMID: 35830953 DOI: 10.1016/j.cbpc.2022.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
With climate change and intensive aquaculture development, environmental hypoxia in aquaculture water has become a common challenge for many aquatic species. Therefore, it is crucial to improve the hypoxic tolerance of animals through nutritional strategies. This study explored the positive role of dietary gamma-aminobutyric acid (GABA) supplementation in enhancing hypoxia tolerance of juvenile Eriocheir sinensis through respiratory regulation and alleviation of hypoxia-induced neural excitotoxicity. Acute hypoxia stress significantly up-regulated the mRNA expression level of hypoxia-inducible factor 1α, oxygen consumption rate and anaerobic respiratory metabolism-related enzyme activities. On the other hand, aerobic respiratory metabolism-related enzyme activities were significantly decreased. However, dietary GABA supplementation remodeled the respiratory metabolism pattern of juvenile crabs exposed to hypoxia stress. In addition, acute hypoxic stress significantly increased the contents of free glutamate and GABA in the nervous tissue. The expression levels of N-Methyl-d-aspartate-related receptor genes and calcium-dependent degradation enzyme-related genes were significantly up-regulated. Similarly, neuronal apoptosis rates, expression levels of apoptosis-related genes, and vesicular glutamate transporter genes were also significantly increased. The high-affinity neuronal glutamate transporter decreased significantly in the crabs exposed to hypoxia stress. However, dietary GABA supplementation could effectively prevent acute hypoxia stress-induced neural excitotoxicity. Furthermore, dietary GABA could significantly improve the redox status in vivo exposed to hypoxia stress. In conclusion, acute hypoxia stress can affect respiratory metabolism and redox state and induce neural excitotoxicity in juvenile E. sinensis. GABA supplementation could improve hypoxia tolerance through multiple physiological regulation pathways.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Jiaqi He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qincheng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qingchao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan 641100, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
13
|
Camacho-Morales A. Glycolytic metabolism supports microglia training during age-related neurodegeneration. Pharmacol Rep 2022; 74:818-831. [DOI: 10.1007/s43440-022-00363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
|
14
|
Zhang C, Wang X, He J, Huang Y, Huang Q, Qin C, Qin J, Chen L. Neural excitotoxicity and the toxic mechanism induced by acute hypoxia in Chinese mitten crab (Eriocheir sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106131. [PMID: 35255275 DOI: 10.1016/j.aquatox.2022.106131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/05/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia can induce neural excitotoxicity in mammals, but this adverse effect has not been investigated in aquatic animals to date, especially in crustaceans. This study explored the induction effect and toxic mechanism of acute hypoxia stress (1.0 ± 0.1 mg dissolved oxygen /L) for 24 h on neural excitotoxicity in juvenile Chinese mitten crab, Eriocheir sinensis. The results showed that hemolymph glucose and serum lactic acid content were significantly increased, and the mRNA expression of crustacean hyperglycemic hormone and hypoxia-inducible factor 1α were significantly up-regulated in the hypoxia group compared with control. RNA-Seq results confirmed that acute hypoxia stress had a more significant impact on carbohydrate metabolism than lipid and protein metabolism. In addition, the TUNEL assay showed that the apoptosis rate of nerve cells was significantly higher in the hypoxia group than in the control, and similar trends were observed in the expression of apoptosis-related genes. RNA-Seq results also showed that acute hypoxia stress-induced neuronal apoptosis by regulating multiple apoptosis-related pathways. Moreover, free glutamate and GABA contents in the nerve tissue of thoracic ganglia were significantly higher in the hypoxia group than in the control group. Furthermore, the mRNA expression of NMDA related receptors was significantly up-regulated in the hypoxia group compared with the control. Similar trends were observed in the expression of calcium-dependent degrading enzymes and endogenous antioxidant-related proteins or enzymes. Meanwhile, the mRNA expression level of high-affinity neuronal glutamate transporter in the hypoxia group was significantly up-regulated compared with the control, whereas the vesicular glutamate transporter was significantly down-regulated. Furthermore, NMDA-R antagonists (MK-801 and Ro25-6981) injection showed that NMDA-R served as the bridge and core position of glutamate-induced neural neurotoxicity. This study provides a new perspective and theoretical guidance for exploring the regulation of hypoxic tolerance in E. sinensis.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Jiaqi He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Qincheng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
15
|
Saleh DO, Nasr M, Hassan A, El‐Awdan SA, Abdel Jaleel GA. Curcumin nanoemulsion ameliorates brain injury in diabetic rats. J Food Biochem 2022; 46:e14104. [DOI: 10.1111/jfbc.14104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Dalia O. Saleh
- Department of Pharmacology Medical Research and Clinical Studies Institute, National Research Centre Giza Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Ain Shams University Cairo Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine Cairo University Cairo Egypt
| | - Sally A. El‐Awdan
- Department of Pharmacology Medical Research and Clinical Studies Institute, National Research Centre Giza Egypt
| | - Gehad A. Abdel Jaleel
- Department of Pharmacology Medical Research and Clinical Studies Institute, National Research Centre Giza Egypt
| |
Collapse
|
16
|
Rapid Regulation of Glutamate Transport: Where Do We Go from Here? Neurochem Res 2022; 47:61-84. [PMID: 33893911 PMCID: PMC8542062 DOI: 10.1007/s11064-021-03329-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.
Collapse
|
17
|
Shen XY, Gao ZK, Han Y, Yuan M, Guo YS, Bi X. Activation and Role of Astrocytes in Ischemic Stroke. Front Cell Neurosci 2021; 15:755955. [PMID: 34867201 PMCID: PMC8635513 DOI: 10.3389/fncel.2021.755955] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke refers to the disorder of blood supply of local brain tissue caused by various reasons. It has high morbidity and mortality worldwide. Astrocytes are the most abundant glial cells in the central nervous system (CNS). They are responsible for the homeostasis, nutrition, and protection of the CNS and play an essential role in many nervous system diseases’ physiological and pathological processes. After stroke injury, astrocytes are activated and play a protective role through the heterogeneous and gradual changes of their gene expression, morphology, proliferation, and function, that is, reactive astrocytes. However, the position of reactive astrocytes has always been a controversial topic. Many studies have shown that reactive astrocytes are a double-edged sword with both beneficial and harmful effects. It is worth noting that their different spatial and temporal expression determines astrocytes’ various functions. Here, we comprehensively review the different roles and mechanisms of astrocytes after ischemic stroke. In addition, the intracellular mechanism of astrocyte activation has also been involved. More importantly, due to the complex cascade reaction and action mechanism after ischemic stroke, the role of astrocytes is still difficult to define. Still, there is no doubt that astrocytes are one of the critical factors mediating the deterioration or improvement of ischemic stroke.
Collapse
Affiliation(s)
- Xin-Ya Shen
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
18
|
Tripathi AS, Bansod P, Swathi KP. Activation of 5-HT 1b/d receptor restores the cognitive function by reducing glutamate release, deposition of β-amyloid and TLR-4 pathway in the brain of scopolamine-induced dementia in rat. J Pharm Pharmacol 2021; 73:1592-1598. [PMID: 34244776 DOI: 10.1093/jpp/rgab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES This study evaluates the effect of 5-HT 1b/d agonist on cognitive function in scopolamine (SPN)-induced dementia in the rat. METHODS Dementia was induced by administration of SPN 2 mg/kg/day, intraperitoneally, for a duration of 21 days. The effect of zolmitriptan (ZMT) 30 mg/kg, intraperitoneally, was observed on cognitive function, and the parameters of oxidative stress like malondialdehyde (MDA) level, nitric oxide (NO), superoxide dismutase (SOD) and glutathione peroxidase (GPX) were estimated at the end. Histopathology study of brain tissue was performed for the determination of β-amyloid peptide, and qRT-PCR was used to determine the mRNA expression of Toll-like receptor 4 (TLR-4), IL-17 and β-amyloid. KEY FINDINGS Data of the study suggested that treatment with ZMT alone and in combination with DMP (dextromethorphan) significantly (P < 0.01) decreases the escape latency in conditioned avoidance response (CAR) and transfer latency in elevated plus maze (EPM) as compared with negative control group. Moreover, the result of Morris water maze (MWM) shows an increase in retention time and a decrease in escape latency in ZMT alone and in combination with DMP-treated group of SPN-induced dementia than in the negative control group. There was a significant decrease in MDA and NO and increase in SOD and GPX in the brain tissues of ZMT and ZMT + DMP-treated group than negative control group. Histopathology study also suggested that the concentration of Aβ peptide decreases in the brain tissues in ZMT and ZMT + DMP-treated group than the negative control group. Moreover, ZMT treatment ameliorates the altered mRNA expression of TLR-4 and IL-17 in the brain tissue of SPN-induced dementia rat. CONCLUSIONS In conclusion, ZMT restores the cognitive functions and impaired memory in SPN-induced dementia in the rat by decreasing oxidative stress and Aβ peptide in the brain tissue of rat.
Collapse
Affiliation(s)
- Alok Shiomurti Tripathi
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | - Prajakta Bansod
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | - K P Swathi
- Department of Pharmacology, College of Pharmacy, Kannur Medical College, Kannur, Kerala, India
| |
Collapse
|
19
|
Gunawan M, Low C, Neo K, Yeo S, Ho C, Barathi VA, Chan AS, Sharif NA, Kageyama M. The Role of Autophagy in Chemical Proteasome Inhibition Model of Retinal Degeneration. Int J Mol Sci 2021; 22:ijms22147271. [PMID: 34298888 PMCID: PMC8303873 DOI: 10.3390/ijms22147271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/27/2023] Open
Abstract
We recently demonstrated that chemical proteasome inhibition induced inner retinal degeneration, supporting the pivotal roles of the ubiquitin–proteasome system in retinal structural integrity maintenance. In this study, using beclin1-heterozygous (Becn1-Het) mice with autophagic dysfunction, we tested our hypothesis that autophagy could be a compensatory retinal protective mechanism for proteasomal impairment. Despite the reduced number of autophagosome, the ocular tissue morphology and intraocular pressure were normal. Surprisingly, Becn1-Het mice experienced the same extent of retinal degeneration as was observed in wild-type mice, following an intravitreal injection of a chemical proteasome inhibitor. Similarly, these mice equally responded to other chemical insults, including endoplasmic reticulum stress inducer, N-methyl-D-aspartate, and lipopolysaccharide. Interestingly, in cultured neuroblastoma cells, we found that the mammalian target of rapamycin-independent autophagy activators, lithium chloride and rilmenidine, rescued these cells against proteasome inhibition-induced death. These results suggest that Becn1-mediated autophagy is not an effective intrinsic protective mechanism for retinal damage induced by insults, including impaired proteasomal activity; furthermore, autophagic activation beyond normal levels is required to alleviate the cytotoxic effect of proteasomal inhibition. Further studies are underway to delineate the precise roles of different forms of autophagy, and investigate the effects of their activation in rescuing retinal neurons under various pathological conditions.
Collapse
Affiliation(s)
- Merry Gunawan
- Santen-SERI Open Innovation Centre, 20 College Road, The Academia, Singapore 169856, Singapore; (M.G.); (C.L.); (K.N.)
| | - Choonbing Low
- Santen-SERI Open Innovation Centre, 20 College Road, The Academia, Singapore 169856, Singapore; (M.G.); (C.L.); (K.N.)
| | - Kurt Neo
- Santen-SERI Open Innovation Centre, 20 College Road, The Academia, Singapore 169856, Singapore; (M.G.); (C.L.); (K.N.)
| | - Siawey Yeo
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, 20 College Road, The Academia, Singapore 169856, Singapore; (S.Y.); (V.A.B.)
| | - Candice Ho
- Singapore Eye Research Institute, 20 College Road, The Academia, Singapore 169856, Singapore; (C.H.); (A.S.C.)
| | - Veluchamy A. Barathi
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, 20 College Road, The Academia, Singapore 169856, Singapore; (S.Y.); (V.A.B.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anita Sookyee Chan
- Singapore Eye Research Institute, 20 College Road, The Academia, Singapore 169856, Singapore; (C.H.); (A.S.C.)
| | - Najam A. Sharif
- Global Alliance and External Research, Santen Inc., Emeryville, CA 94608, USA;
| | - Masaaki Kageyama
- Santen-SERI Open Innovation Centre, 20 College Road, The Academia, Singapore 169856, Singapore; (M.G.); (C.L.); (K.N.)
- Correspondence:
| |
Collapse
|
20
|
Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220:e202102136. [PMID: 34152362 PMCID: PMC8222944 DOI: 10.1083/jcb.202102136] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chi-Lun Chang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA
| | | | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Elevated dimethylarginine, ATP, cytokines, metabolic remodeling involving tryptophan metabolism and potential microglial inflammation characterize primary open angle glaucoma. Sci Rep 2021; 11:9766. [PMID: 33963197 PMCID: PMC8105335 DOI: 10.1038/s41598-021-89137-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Glaucoma of which primary open angle glaucoma (POAG) constitutes 75%, is the second leading cause of blindness. Elevated intra ocular pressure and Nitric oxide synthase (NOS) dysfunction are hallmarks of POAG. We analyzed clinical data, cytokine profile, ATP level, metabolomics and GEO datasets to identify features unique to POAG. N9 microglial cells are used to gain mechanistic insights. Our POAG cohort showed elevated ATP in aqueous humor and cytokines in plasma. Metabolomic analysis showed changes in 21 metabolites including Dimethylarginine (DMAG) and activation of tryptophan metabolism in POAG. Analysis of GEO data sets and previously published proteomic data sets bins genes into signaling and metabolic pathways. Pathways from reanalyzed metabolomic data from literature significantly overlapped with those from our POAG data. DMAG modulated purinergic signaling, ATP secretion and cytokine expression were inhibited by N-Ethylmaleimide, NO donors, BAPTA and purinergic receptor inhibitors. ATP induced elevated intracellular calcium level and cytokines expression were inhibited by BAPTA. Metabolomics of cell culture supernatant from ATP treated sets showed metabolic deregulation and activation of tryptophan metabolism. DMAG and ATP induced IDO1/2 and TDO2 were inhibited by N-Ethylmaleimide, sodium nitroprusside and BAPTA. Our data obtained from clinical samples and cell culture studies reveal a strong association of elevated DMAG, ATP, cytokines and activation of tryptophan metabolism with POAG. DMAG mediated ATP signaling, inflammation and metabolic remodeling in microglia might have implications in management of POAG.
Collapse
|
22
|
Achzet LM, Astruc-Diaz F, Beske PH, Natale NR, Denton TT, Jackson DA. Liposomal Encapsulated FSC231, a PICK1 Inhibitor, Prevents the Ischemia/Reperfusion-Induced Degradation of GluA2-Containing AMPA Receptors. Pharmaceutics 2021; 13:pharmaceutics13050636. [PMID: 33946313 PMCID: PMC8146086 DOI: 10.3390/pharmaceutics13050636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Strokes remain one of the leading causes of disability within the United States. Despite an enormous amount of research effort within the scientific community, very few therapeutics are available for stroke patients. Cytotoxic accumulation of intracellular calcium is a well-studied phenomenon that occurs following ischemic stroke. This intracellular calcium overload results from excessive release of the excitatory neurotransmitter glutamate, a process known as excitotoxicity. Calcium-permeable AMPA receptors (AMPARs), lacking the GluA2 subunit, contribute to calcium cytotoxicity and subsequent neuronal death. The internalization and subsequent degradation of GluA2 AMPAR subunits following oxygen-glucose deprivation/reperfusion (OGD/R) is, at least in part, mediated by protein-interacting with C kinase-1 (PICK1). The purpose of the present study is to evaluate whether treatment with a PICK1 inhibitor, FSC231, prevents the OGD/R-induced degradation of the GluA2 AMPAR subunit. Utilizing an acute rodent hippocampal slice model system, we determined that pretreatment with FSC231 prevented the OGD/R-induced association of PICK1-GluA2. FSC231 treatment during OGD/R rescues total GluA2 AMPAR subunit protein levels. This suggests that the interaction between GluA2 and PICK1 serves as an important step in the ischemic/reperfusion-induced reduction in total GluA2 levels.
Collapse
Affiliation(s)
- Lindsay M. Achzet
- Department of Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99202, USA; (L.M.A.); (T.T.D.)
| | - Fanny Astruc-Diaz
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA; (F.A.-D.); (P.H.B.); (N.R.N.)
| | - Phillip H. Beske
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA; (F.A.-D.); (P.H.B.); (N.R.N.)
| | - Nicholas R. Natale
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA; (F.A.-D.); (P.H.B.); (N.R.N.)
| | - Travis T. Denton
- Department of Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99202, USA; (L.M.A.); (T.T.D.)
- Department of Biomedical Sciences, Elson S. Floyd, College of Medicine, Washington State University Health Sciences, Spokane, WA 99202, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences, Spokane, WA 99202, USA
| | - Darrell A. Jackson
- Department of Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99202, USA; (L.M.A.); (T.T.D.)
- Correspondence: ; Tel.: +1-509-368-6542
| |
Collapse
|
23
|
Achzet LM, Davison CJ, Shea M, Sturgeon I, Jackson DA. Oxidative Stress Underlies the Ischemia/Reperfusion-Induced Internalization and Degradation of AMPA Receptors. Int J Mol Sci 2021; 22:E717. [PMID: 33450848 PMCID: PMC7828337 DOI: 10.3390/ijms22020717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Stroke is the fifth leading cause of death annually in the United States. Ischemic stroke occurs when a blood vessel supplying the brain is occluded. The hippocampus is particularly susceptible to AMPA receptor-mediated delayed neuronal death as a result of ischemic/reperfusion injury. AMPA receptors composed of a GluA2 subunit are impermeable to calcium due to a post-transcriptional modification in the channel pore of the GluA2 subunit. GluA2 undergoes internalization and is subsequently degraded following ischemia/reperfusion. The subsequent increase in the expression of GluA2-lacking, Ca2+-permeable AMPARs results in excitotoxicity and eventually delayed neuronal death. Following ischemia/reperfusion, there is increased production of superoxide radicals. This study describes how the internalization and degradation of GluA1 and GluA2 AMPAR subunits following ischemia/reperfusion is mediated through an oxidative stress signaling cascade. U251-MG cells were transiently transfected with fluorescently tagged GluA1 and GluA2, and different Rab proteins to observe AMPAR endocytic trafficking following oxygen glucose-deprivation/reperfusion (OGD/R), an in vitro model for ischemia/reperfusion. Pretreatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), a superoxide dismutase mimetic, ameliorated the OGD/R-induced, but not agonist-induced, internalization and degradation of GluA1 and GluA2 AMPAR subunits. Specifically, MnTMPyP prevented the increased colocalization of GluA1 and GluA2 with Rab5, an early endosomal marker, and with Rab7, a late endosomal marker, but did not affect the colocalization of GluA1 with Rab11, a marker for recycling endosomes. These data indicate that oxidative stress may play a vital role in AMPAR-mediated cell death following ischemic/reperfusion injury.
Collapse
Affiliation(s)
- Lindsay M. Achzet
- Department of Pharmaceutical Sciences and Molecular Medicine, Washington State University-Health Sciences, Spokane, WA 99201, USA;
| | - Clara J. Davison
- Department of Biomedical Sciences, University of Montana, Missoula, MT 59802, USA; (C.J.D.); (M.S.); (I.S.)
| | - Moira Shea
- Department of Biomedical Sciences, University of Montana, Missoula, MT 59802, USA; (C.J.D.); (M.S.); (I.S.)
| | - Isabella Sturgeon
- Department of Biomedical Sciences, University of Montana, Missoula, MT 59802, USA; (C.J.D.); (M.S.); (I.S.)
| | - Darrell A. Jackson
- Department of Pharmaceutical Sciences and Molecular Medicine, Washington State University-Health Sciences, Spokane, WA 99201, USA;
| |
Collapse
|
24
|
Montiel T, Montes-Ortega LA, Flores-Yáñez S, Massieu L. Treatment with the Ketone Body D-β-hydroxybutyrate Attenuates Autophagy Activated by NMDA and Reduces Excitotoxic Neuronal Damage in the Rat Striatum In Vivo. Curr Pharm Des 2020; 26:1377-1387. [PMID: 31957603 DOI: 10.2174/1381612826666200115103646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND The ketone bodies (KB), β-hydroxybutyrate (BHB) and acetoacetate, have been proposed for the treatment of acute and chronic neurological disorders, however, the molecular mechanisms involved in KB protection are not well understood. KB can substitute for glucose and support mitochondrial metabolism increasing cell survival. We have reported that the D-isomer of BHB (D-BHB) stimulates autophagic degradation during glucose deprivation in cultured neurons increasing cell viability. Autophagy is a lysosomal degradation process of damaged proteins and organelles activated during nutrient deprivation to obtain building blocks and energy. However, impaired or excessive autophagy can contribute to neuronal death. OBJECTIVE The aim of the present study was to test whether D-BHB can preserve autophagic function in an in vivo model of excitotoxic damage induced by the administration of the glutamate receptor agonist, N-methyl-Daspartate (NMDA), in the rat striatum. METHODS D-BHB was administered through an intravenous injection followed by either an intraperitoneal injection (i.v+i.p) or a continuous epidural infusion (i.v+pump), or through a continuous infusion of D-BHB alone. Changes in the autophagy proteins ATG7, ATG5, BECLIN 1 (BECN1), LC3, Sequestrosome1/p62 (SQSTM1/ p62) and the lysosomal membrane protein LAMP2, were evaluated by immunoblot. The lesion volume was measured in cresyl violet-stained brain sections. RESULTS Autophagy is activated early after NMDA injection but autophagic degradation is impaired due to the cleavage of LAMP2. Twenty-four h after NMDA intrastriatal injection, the autophagic flux is re-established, but LAMP2 cleavage is still observed. The administration of D-BHB through the i.v+pump protocol reduced the content of autophagic proteins and the cleavage of LAMP2, suggesting decreased autophagosome formation and lysosomal membrane preservation, improving autophagic degradation. D-BHB also reduced brain injury. The i.v+i.p administration protocol and the infusion of D-BHB alone showed no effect on autophagy activation or degradation.
Collapse
Affiliation(s)
- Teresa Montiel
- Departamento de Neuropatologia Molecular, Division de Neurociencias. Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, CP 04510, Ciudad de Mexico, Mexico
| | - Luis A Montes-Ortega
- Departamento de Neuropatologia Molecular, Division de Neurociencias. Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, CP 04510, Ciudad de Mexico, Mexico
| | - Susana Flores-Yáñez
- Departamento de Neuropatologia Molecular, Division de Neurociencias. Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, CP 04510, Ciudad de Mexico, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatologia Molecular, Division de Neurociencias. Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, CP 04510, Ciudad de Mexico, Mexico
| |
Collapse
|
25
|
Chegodaev D, Pavlova NV, Pavlova P, Lvova O. LPDs – «Linked to penumbra» discharges or EEG correlate of excitotoxicity: A review based hypothesis. Epilepsy Res 2020; 166:106429. [DOI: 10.1016/j.eplepsyres.2020.106429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
26
|
Zaitone SA, Alshaman R, Alattar A, Elsherbiny NM, Abogresha NM, El-Kherbetawy MK, Elaskary AA, Hashish AA, Rashed LA, Ahmed E. Retinoprotective effect of donepezil in diabetic mice involves mitigation of excitotoxicity and activation of PI3K/mTOR/BCl 2 pathway. Life Sci 2020; 262:118467. [PMID: 32961236 DOI: 10.1016/j.lfs.2020.118467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Donepezil (DNPZ) has shown neuroprotective effect in many disorders. The current study tested the putative retinoprotection provided by donepezil in mouse diabetic retinopathy. Swiss albino mice were allocated to, 1] saline control, 2] diabetic, 3&4] diabetic+DNPZ (1 or 4 mg/kg). After induction of diabetes, mice were maintained for 8 weeks then DNPZ therapy was launched for 28 days. Retinas were isolated and used for histopathology and immunohistochemistry for caspase 3 and the anti-apoptotic protein, B-cell lymphoma 2 (BCl2). Retinas were examined for glutamate, acetylcholine and oxidation markers. Western blot analysis measured inflammatory cytokines, N-methyl-d-aspartate receptors (NMDARs), phosphorylated and total phosphatidylinositol-3 kinase and mTOR, BCl2 and cleaved caspase 3. Significant histopathological changes and decreased thickness were found in diabetic retinas (125.52 ± 2.85 vs. 157.15 ± 7.55 in the saline group). In addition, retinal glutamate (2.39-fold), inflammatory cytokines and NMDARs proteins (4.9-fold) were higher in the diabetic retinas. Western blot analysis revealed low ratio of phosphorylated/total PI3K (0.21 ± 0.043 vs. 1 ± 0.005) and mTOR (0.18 ± 0.04 vs. 1 ± 0.005), low BCl2 (0.28 ± 0.06 vs. 1 ± 0.005) and upregulated cleaved caspase 3 (5.18 ± 1.27 vs. 1 ± 0.05 in the saline group) versus the saline control. DNPZ ameliorated the histopathologic manifestations and to prevent the decrease in retinal thickness. DNPZ (4 mg/kg) improved phosphorylation of PI3K (0.76 ± 0.12 vs. 0.21 ± 0.04) and mTOR (0.59 ± 0.09 vs. 0.18 ± 0.04) and increased BCl2 (0.75 ± 0.08 vs. 0.28 ± 0.06) versus the diabetic control group. This study explained the retinoprotective effect of DNPZ in mouse diabetic retinopathy and highlighted that mitigation of excitotoxicity, improving phosphorylation of PI3K/mTOR and increasing BCl2 contribute to this effect.
Collapse
Affiliation(s)
- Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, 71491 Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, 71491 Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha M Abogresha
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | | | - Abdullah A Hashish
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Laila A Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Ahmed
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
27
|
Castañeda-Cabral JL, López-Ortega JG, Fajardo-Fregoso BF, Beas-Zárate C, Ureña-Guerrero ME. Glutamate induced neonatal excitotoxicity modifies the expression level of EAAT1 (GLAST) and EAAT2 (GLT-1) proteins in various brain regions of the adult rat. Neurosci Lett 2020; 735:135237. [PMID: 32645399 DOI: 10.1016/j.neulet.2020.135237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 02/08/2023]
Abstract
Glutamate-mediated excitatory synaptic signalling is primarily controlled by excitatory amino acid transporters (EAATs), such as EAAT1 and EAAT2, which are located mostly on astrocytes and, together, uptake more than 95 % of extracellular glutamate. Alterations in the functional expression levels of EAATs can lead to excessive extracellular glutamate accumulation, potentially triggering excitotoxicity and seizures, among other neurological disorders. Excitotoxicity induced in early developmental stages can lead to lasting changes in several neurotransmission systems, including the glutamatergic system, which could make the brain more susceptible to a second insult. In this study, the expression levels of EAAT1 (GLAST) and EAAT2 (GLT-1) proteins were assessed in the cerebral motor cortex (CMC), striatum, hippocampus and entorhinal cortex (EC) of male adult rats following the neonatal excitotoxic process triggered by monosodium glutamate (MSG)-treatment (4 g/kg of body weight at postnatal days 1,3,5 and 7, subcutaneously). Western blot analysis showed that neonatal MSG-treatment decreased EAAT1 expression levels in the CMC, striatum and hippocampus, while EAAT2 levels were increased in the striatum and EC and decreased in the CMC. Immunofluorescence staining confirmed the changes in EAAT1 and EAAT2 expression induced by neonatal MSG-treatment, which were accompanied by an increase in the glial fibrillary acidic protein (GFAP) immunofluorescence signalthat was particularly significant in the hippocampus. Our results show that a neonatal excitotoxic processes can induce lasting changes in the expression levels of EAAT1 and EAAT2 proteins and suggest that although astrogliosis occurs, glutamate uptake could be deficient, particularly in the CMC and hippocampus.
Collapse
Affiliation(s)
- José Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - José Guadalupe López-Ortega
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Blanca Fabiola Fajardo-Fregoso
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Carlos Beas-Zárate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Mónica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico.
| |
Collapse
|
28
|
Yan M, Li M, Gu S, Sun Z, Ma T, Ma X. Ginkgo biloba extract protects diabetic rats against cerebral ischemia‑reperfusion injury by suppressing oxidative stress and upregulating the expression of glutamate transporter 1. Mol Med Rep 2020; 21:1809-1818. [PMID: 32319622 PMCID: PMC7057817 DOI: 10.3892/mmr.2020.10990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
The current study aimed to evaluate the neuroprotective effect of Ginkgo biloba extract (GbE) on the progression of acute cerebral ischemia-reperfusion injury in diabetic rats, and to determine the molecular mechanism associated with this effect. Streptozotocin (STZ) induced diabetic rats were pretreated with GbE (50, 100 and 200 mg/kg/day; intragastric) for 3 weeks. During this period, body weight changes and fasting blood glucose levels were assessed each week. Following pretreatment, rats were subjected to suture occlusion of the middle cerebral artery for 30 min, which was followed by 24 h of reperfusion. Neurological deficits were subsequently evaluated at 2 and 24 h following reperfusion. Rats were sacrificed after 24 h reperfusion, and infarct volume and S100B content were measured to evaluate the neuroprotective effect of GbE. The results of the present study demonstrated that GbE pretreatment improved neurological scores, and reduced cerebral infarct volume and S100B content. Oxidative stress markers, including glutathione (GSH) and superoxide dismutase (SOD) were increased, and malondialdehyde (MDA) contents were reduced following GbE treatment. The levels of p-Akt, p-mTOR and glutamate transporter 1 (GLT1) were observed to be increased in GbE-pretreated rats. These results indicated that GbE pretreatment may serve a protective role against cerebral ischemia-reperfusion injury in diabetic rats by inhibiting oxidative stress reaction, upregulating the expression of Akt/mTOR and promoting GLT1 expression. In conclusion, the current study revealed the protective role and molecular mechanisms of GbE in diabetic rats with cerebral ischemia-reperfusion injury, and may provide novel insight into the future clinical treatment of this condition.
Collapse
Affiliation(s)
- Miao Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mei Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Shuling Gu
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zheng Sun
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Tengfei Ma
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xing Ma
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
29
|
Yang N, Young BK, Wang P, Tian N. The Susceptibility of Retinal Ganglion Cells to Optic Nerve Injury is Type Specific. Cells 2020; 9:cells9030677. [PMID: 32164319 PMCID: PMC7140711 DOI: 10.3390/cells9030677] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/23/2022] Open
Abstract
Retinal ganglion cell (RGC) death occurs in many eye diseases, such as glaucoma and traumatic optic neuropathy (TON). Increasing evidence suggests that the susceptibility of RGCs varies to different diseases in an RGC type-dependent manner. We previously showed that the susceptibility of several genetically identified RGC types to N-methyl-D-aspartate (NMDA) excitotoxicity differs significantly. In this study, we characterize the susceptibility of the same RGC types to optic nerve crush (ONC). We show that the susceptibility of these RGC types to ONC varies significantly, in which BD-RGCs are the most resistant RGC type while W3-RGCs are the most sensitive cells to ONC. We also show that the survival rates of BD-RGCs and J-RGCs after ONC are significantly higher than their survival rates after NMDA excitotoxicity. These results are consistent with the conclusion that the susceptibility of RGCs to ONC varies in an RGC type-dependent manner. Further, the susceptibilities of the same types of RGCs to ONC and NMDA excitotoxicity are significantly different. These are valuable insights for understanding of the selective susceptibility of RGCs to various pathological insults and the development of a strategy to protect RGCs from death in disease conditions.
Collapse
Affiliation(s)
- Ning Yang
- VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA; (N.Y.); (B.K.Y.); (P.W.)
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Brent K Young
- VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA; (N.Y.); (B.K.Y.); (P.W.)
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84114, USA
| | - Ping Wang
- VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA; (N.Y.); (B.K.Y.); (P.W.)
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Ning Tian
- VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA; (N.Y.); (B.K.Y.); (P.W.)
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84114, USA
- Correspondence: ; Tel.: +01-801-213-2852
| |
Collapse
|
30
|
Dal-Cim T, Poluceno GG, Lanznaster D, de Oliveira KA, Nedel CB, Tasca CI. Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A 1 and A 2A adenosine receptors and PI3K, MEK, and PKC pathways. Purinergic Signal 2019; 15:465-476. [PMID: 31520282 DOI: 10.1007/s11302-019-09679-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Glial cells are involved in multiple cerebral functions that profoundly influence brain tissue viability during ischemia, and astrocytes are the main source of extracellular purines as adenosine and guanosine. The endogenous guanine-based nucleoside guanosine is a neuromodulator implicated in important processes in the brain, such as modulation of glutamatergic transmission and protection against oxidative and inflammatory damage. We evaluated if the neuroprotective effect of guanosine is also observed in cultured cortical astrocytes subjected to oxygen/glucose deprivation (OGD) and reoxygenation. We also assessed the involvement of A1 and A2A adenosine receptors and phosphatidylinositol-3 kinase (PI3K), MAPK, and protein kinase C (PKC) signaling pathways on the guanosine effects. OGD/reoxygenation decreased cell viability and glutamate uptake and increased reactive oxygen species (ROS) production in cultured astrocytes. Guanosine treatment prevented these OGD-induced damaging effects. Dipropyl-cyclopentyl-xanthine (an adenosine A1 receptor antagonist) and 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride (an adenosine A2A receptor agonist) abolished guanosine-induced protective effects on ROS production, glutamate uptake, and cell viability. The PI3K pathway inhibitor 2-morpholin-4-yl-8-phenylchromen-4-one, the extracellular-signal regulated kinase kinase (MEK) inhibitor 2'-amino-3'-methoxyflavone, or the PKC inhibitor chelerythrine abolished the guanosine effect of preventing OGD-induced cells viability reduction. PI3K inhibition partially prevented the guanosine effect of reducing ROS production, whereas MEK and PKC inhibitions prevented the guanosine effect of restoring glutamate uptake. The total immunocontent of the main astrocytic glutamate transporter glutamate transporter-1 (GLT-1) was not altered by OGD and guanosine. However, MEK and PKC inhibitions also abolished the guanosine effect of increasing cell-surface expression of GLT-1 in astrocytes subjected to OGD. Then, guanosine prevents oxidative damage and stimulates astrocytic glutamate uptake during ischemic events via adenosine A1 and A2A receptors and modulation of survival signaling pathways, contributing to microenvironment homeostasis that culminates in neuroprotection.
Collapse
Affiliation(s)
- Tharine Dal-Cim
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Gabriela G Poluceno
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Débora Lanznaster
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Karen A de Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Claudia B Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil.
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
31
|
Patel DV, Patel NR, Kanhed AM, Patel SP, Sinha A, Kansara DD, Mecwan AR, Patel SB, Upadhyay PN, Patel KB, Shah DB, Prajapati NK, Murumkar PR, Patel KV, Yadav MR. Novel Multitarget Directed Triazinoindole Derivatives as Anti-Alzheimer Agents. ACS Chem Neurosci 2019; 10:3635-3661. [PMID: 31310717 DOI: 10.1021/acschemneuro.9b00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The multifaceted nature of Alzheimer's disease (AD) demands treatment with multitarget-directed ligands (MTDLs) to confront the key pathological aberrations. A novel series of triazinoindole derivatives were designed and synthesized. In vitro studies revealed that all the compounds showed moderate to good anticholinesterase activity; the most active compound 23e showed an IC50 value of 0.56 ± 0.02 μM for AChE and an IC50 value of 1.17 ± 0.09 μM for BuChE. These derivatives are also endowed with potent antioxidant activity. To understand the plausible binding mode of the compound 23e, molecular docking studies and molecular dynamics simulation studies were performed, and the results indicated significant interactions of 23e within the active sites of AChE as well as BuChE. Compound 23e successfully diminished H2O2-induced oxidative stress in SH-SY5Y cells and displayed excellent neuroprotective activity against H2O2 as well as Aβ-induced toxicity in SH-SY5Y cells in a concentration dependent manner. Furthermore, it did not show any significant toxicity in neuronal SH-SY5Y cells in the cytotoxicity assay. Compound 23e did not show any acute toxicity in rats at doses up to 2000 mg/kg, and it significantly reversed scopolamine-induced memory deficit in mice model. Additionally, compound 23e showed notable in silico ADMET properties. Taken collectively, these findings project compound 23e as a potential balanced MTDL in the evolution process of novel anti-AD drugs.
Collapse
Affiliation(s)
- Dushyant V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Nirav R. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Ashish M. Kanhed
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Sagar P. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Anshuman Sinha
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Deep D. Kansara
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Annie R. Mecwan
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Sarvangee B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Pragnesh N. Upadhyay
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Kishan B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Dharti B. Shah
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Navnit K. Prajapati
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Prashant R. Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Kirti V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| |
Collapse
|
32
|
Smaragdi A, Chavez S, Lobaugh NJ, Meyer JH, Kolla NJ. Differential levels of prefrontal cortex glutamate+glutamine in adults with antisocial personality disorder and bipolar disorder: A proton magnetic resonance spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:250-255. [PMID: 30959086 DOI: 10.1016/j.pnpbp.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
As the main excitatory neurotransmitter in the central nervous system, glutamate, as measured in combination with glutamine (Glx), is implicated in several psychopathologies when levels are aberrant. One illness that shows heightened Glx levels is bipolar disorder (BD), an illness characterized by high impulsivity. In addition, although animal studies have reported elevated levels of Glx in aggressive and impulsive phenotypes, no study, to our knowledge, has reported Glx in the human cortex in relation to aggression. Here, we addressed the question of whether elevated levels of Glx would be present in patients with BD and antisocial personality disorder (ASPD), a condition associated with aggression and, like BD, also presents high impulsivity. We recruited individuals with ASPD (n = 18), individuals with BD (n = 16), and a healthy control group (n = 24). We used proton magnetic resonance spectroscopy to measure relative neurometabolite concentrations in the left dorsolateral prefrontal cortex (dlPFC) and supra-genual anterior cingulate cortex (ACC), two brain regions associated with impulsivity and behavior control. We found significantly elevated levels of Glx in the ASPD group relative to the BD and healthy control groups in the dlPFC (p = .014), and a positive correlation between Glx levels and aggression in the dlPFC in the ASPD group alone (r = .59, p = .026). These findings suggest a link between aggression in ASPD and Glx levels.
Collapse
Affiliation(s)
- Areti Smaragdi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, Forensic Psychiatry, CAMH, Toronto, ON, Canada; Child Development Institute, Toronto, ON, Canada
| | - Sofia Chavez
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nancy J Lobaugh
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Faculty of Medicine, Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan J Kolla
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, Forensic Psychiatry, CAMH, Toronto, ON, Canada; Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Faculty of Arts and Science, Department of Criminology and Sociological Studies, University of Toronto, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada.
| |
Collapse
|
33
|
Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE. NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. Int J Stroke 2019; 14:574-591. [PMID: 30940045 DOI: 10.1177/1747493019841242] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inflammation is a devastating pathophysiological process during stroke, a devastating disease that is the second most common cause of death worldwide. Activation of the NOD-like receptor protein (NLRP3)-infammasome has been proposed to mediate inflammatory responses during ischemic stroke. Briefly, NLRP3 inflammasome activates caspase-1, which cleaves both pro-IL-1 and pro-IL-18 into their active pro-inflammatory cytokines that are released into the extracellular environment. Several NLRP3 inflammasome inhibitors have been promoted, including small molecules, type I interferon, micro RNAs, nitric oxide, and nuclear factor erythroid-2 related factor 2 (Nrf2), some of which are potentially efficacious clinically. This review will describe the structure and cellular signaling pathways of the NLRP3 inflammasome during ischemic stroke, and current evidence for NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- 1 Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Farzaneh
- 2 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- 3 Immunology Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Nejabatdoust
- 4 Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Sarkaki
- 5 Department of Physiology, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- 5 Department of Physiology, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
34
|
Christensen I, Lu B, Yang N, Huang K, Wang P, Tian N. The Susceptibility of Retinal Ganglion Cells to Glutamatergic Excitotoxicity Is Type-Specific. Front Neurosci 2019; 13:219. [PMID: 30930737 PMCID: PMC6429039 DOI: 10.3389/fnins.2019.00219] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the only output neurons that conduct visual signals from the eyes to the brain. RGC degeneration occurs in many retinal diseases leading to blindness and increasing evidence suggests that RGCs are susceptible to various injuries in a type-specific manner. Glutamate excitotoxicity is the pathological process by which neurons are damaged and killed by excessive stimulation of glutamate receptors and it plays a central role in the death of neurons in many CNS and retinal diseases. The purpose of this study is to characterize the susceptibility of genetically identified RGC types to the excitotoxicity induced by N-methyl-D-aspartate (NMDA). We show that the susceptibility of different types of RGCs to NMDA excitotoxicity varies significantly, in which the αRGCs are the most resistant type of RGCs to NMDA excitotoxicity while the J-RGCs are the most sensitive cells to NMDA excitotoxicity. These results strongly suggest that the differences in the genetic background of RGC types might provide valuable insights for understanding the selective susceptibility of RGCs to pathological insults and the development of a strategy to protect RGCs from death in disease conditions. In addition, our results show that RGCs lose dendrites before death and the sequence of the morphological and molecular events during RGC death suggests that the initial insult of NMDA excitotoxicity might set off a cascade of events independent of the primary insults. However, the kinetics of dendritic retraction in RGCs does not directly correlate to the susceptibility of type-specific RGC death.
Collapse
Affiliation(s)
- Ian Christensen
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Bo Lu
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ning Yang
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kevin Huang
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ping Wang
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ning Tian
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States.,Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
35
|
Simultaneous Determination of Glutamate and Calcium Ion in Rat Brain during Spreading Depression and Ischemia Processes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61146-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Ganesana M, Trikantzopoulos E, Maniar Y, Lee ST, Venton BJ. Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain. Biosens Bioelectron 2019; 130:103-109. [PMID: 30731343 DOI: 10.1016/j.bios.2019.01.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Accepted: 01/20/2019] [Indexed: 11/16/2022]
Abstract
L- Glutamate is the main excitatory neurotransmitter in the central nervous system and hyperglutamatergic signaling is implicated in neurological and neurodegenerative diseases. Monitoring glutamate with a glutamate oxidase-based amperometric biosensor offers advantages such as high spatial and high temporal resolution. However, commercially-available glutamate biosensors are expensive and larger in size. Here, we report the development of 50 µm diameter biosensor for real-time monitoring of L-glutamate in vivo. A polymer, poly-o-phenylenediamine (PPD) layer was electropolymerized onto a 50 µm Pt wire to act as a permselective membrane. Then, glutamate oxidase entrapped in a biocompatible chitosan matrix was cast onto the microelectrode surface. Finally, ascorbate oxidase was coated to eliminate interferences from high levels of extracellular ascorbic acid present in brain tissue. L-glutamate measurements were performed amperometrically at an applied potential of 0.6 V vs Ag/AgCl. The biosensor exhibited a linear range from 5 to 150 μM, with a high sensitivity of 0.097 ± 0.001 nA/μM and one-week storage stability. The biosensor also showed a rapid steady state response to L-glutamate within 2 s, with a limit of detection of 0.044 μM. The biosensor was used successfully to detect stimulated glutamate in the subthalamic nucleus in brain slices and in vivo. Thus, this biosensor is appropriate for future neuroscience applications.
Collapse
Affiliation(s)
- Mallikarjunarao Ganesana
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Elefterios Trikantzopoulos
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Yash Maniar
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Scott T Lee
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - B Jill Venton
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
37
|
Corbetta C, Di Ianni N, Bruzzone MG, Patanè M, Pollo B, Cantini G, Cominelli M, Zucca I, Pisati F, Poliani PL, Finocchiaro G, Pellegatta S. Altered function of the glutamate–aspartate transporter GLAST, a potential therapeutic target in glioblastoma. Int J Cancer 2019; 144:2539-2554. [DOI: 10.1002/ijc.31985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Cristina Corbetta
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Natalia Di Ianni
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Maria Grazia Bruzzone
- Experimental Imaging and Neuro‐RadiologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Monica Patanè
- Unit of PathologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Bianca Pollo
- Unit of PathologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Gabriele Cantini
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | | | - Ileana Zucca
- Experimental Imaging and Neuro‐RadiologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Federica Pisati
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | | | - Gaetano Finocchiaro
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Serena Pellegatta
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| |
Collapse
|
38
|
Godoy-Reyes TM, Llopis-Lorente A, García-Fernández A, Gaviña P, Costero AM, Villalonga R, Sancenón F, Martínez-Máñez R. A l-glutamate-responsive delivery system based on enzyme-controlled self-immolative arylboronate-gated nanoparticles. Org Chem Front 2019. [DOI: 10.1039/c9qo00093c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Janus Au–mesoporous silica nanoparticles functionalized withl-glutamate oxidase and self-immolative arylboronate as al-glutamate-responsive delivery system.
Collapse
Affiliation(s)
- Tania M. Godoy-Reyes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València-Univeritat de València
- Spain
- CIBER de Bioingenieria
- Biomateriales y Nanomedicina (CIBER-BBN)
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València-Univeritat de València
- Spain
- CIBER de Bioingenieria
- Biomateriales y Nanomedicina (CIBER-BBN)
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València-Univeritat de València
- Spain
- CIBER de Bioingenieria
- Biomateriales y Nanomedicina (CIBER-BBN)
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València-Univeritat de València
- Spain
- CIBER de Bioingenieria
- Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ana M. Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València-Univeritat de València
- Spain
- CIBER de Bioingenieria
- Biomateriales y Nanomedicina (CIBER-BBN)
| | - Reynaldo Villalonga
- Nanosensors & Nanomachines Group
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040 Madrid
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València-Univeritat de València
- Spain
- CIBER de Bioingenieria
- Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València-Univeritat de València
- Spain
- CIBER de Bioingenieria
- Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
39
|
Gao L, Zheng QJ, Ai LQY, Chen KJ, Zhou YG, Ye J, Liu W. Exploration of the glutamate-mediated retinal excitotoxic damage: a rat model of retinal neurodegeneration. Int J Ophthalmol 2018; 11:1746-1754. [PMID: 30450303 DOI: 10.18240/ijo.2018.11.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 02/02/2023] Open
Abstract
AIM To explore the more suitable concentration of glutamate or N-methyl-D-aspartic acid (NMDA) for intravitreal injection to establish a rat model of retinal neurodegeneration. METHODS We injected different doses of glutamate (20 or 50 nmol) or NMDA (40 nmol) into the vitreous chambers of rats, then measured the concentration of glutamate and retinal thickness, quantified apoptotic cells and determined the degree of tau hyperphosphorylation at different time points. T-test was used for comparison of two groups. One-way ANOVA and Turkey's multiple comparisons test were used for comparisons of different groups, and P values below 0.05 were considered statistically significant. RESULTS The glutamate level in the rats treated with 50 nmol of glutamate was twice that of the control group and persisted two weeks. Seven days after intravitreal injection of 50 nmol of glutamate, three parameters [inner retinal thickness (IRT), retinal thickness (RT) and ganglion cell layer (GCL) cell number] were reduced significantly. Furthermore, numerous TUNEL-positive cells were observed in the GCL one day after intravitreal injection of 50 nmol of glutamate, the expression of the apoptosis-related factor cleaved casepase-3 was markedly increased compared with the expression levels in the other treatment groups, and the expression levels of tau s396 and tau s404 were significantly increased compared with those in the control group. CONCLUSION This study demonstrates that the intravitreal injection of 50 nmol of glutamate can establish the more effective retinal neurodegeneration animal model relative to other treatment groups.
Collapse
Affiliation(s)
- Ling Gao
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qi-Jun Zheng
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Li-Qian-Yu Ai
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Kai-Jian Chen
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jian Ye
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Liu
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
40
|
Zielonka M, Breuer M, Okun JG, Carl M, Hoffmann GF, Kölker S. Pharmacologic rescue of hyperammonemia-induced toxicity in zebrafish by inhibition of ornithine aminotransferase. PLoS One 2018; 13:e0203707. [PMID: 30199544 PMCID: PMC6130883 DOI: 10.1371/journal.pone.0203707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Hyperammonemia is the common biochemical hallmark of urea cycle disorders, activating neurotoxic pathways. If untreated, affected individuals have a high risk of irreversible brain damage and mortality. Here we show that acute hyperammonemia strongly enhances transamination-dependent formation of osmolytic glutamine and excitatory glutamate, thereby inducing neurotoxicity and death in ammoniotelic zebrafish larvae via synergistically acting overactivation of NMDA receptors and bioenergetic impairment induced by depletion of 2-oxoglutarate. Intriguingly, specific and irreversible inhibition of ornithine aminotransferase (OAT) by 5-fluoromethylornithine rescues zebrafish from lethal concentrations of ammonium acetate and corrects hyperammonemia-induced biochemical alterations. Thus, OAT inhibition is a promising and effective therapeutic approach for preventing neurotoxicity and mortality in acute hyperammonemia.
Collapse
Affiliation(s)
- Matthias Zielonka
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
- Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
- * E-mail:
| | - Maximilian Breuer
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Jürgen Günther Okun
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Matthias Carl
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
- University of Trento, Center for Integrative Biology (CIBIO), Laboratory of Translational Neurogenetics, Trento, Italy
| | - Georg Friedrich Hoffmann
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| |
Collapse
|
41
|
Li SJ, Zhang YF, Ma SH, Yi Y, Yu HY, Pei L, Feng D. The role of NLRP3 inflammasome in stroke and central poststroke pain. Medicine (Baltimore) 2018; 97:e11861. [PMID: 30113480 PMCID: PMC6112889 DOI: 10.1097/md.0000000000011861] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND NLRP3 inflammasome plays a prominent role in the pathogenesis and progression of many diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis, and Alzheimer's disease. However, little knowledge is known about the role of NLRP3 inflammasome in central post-stroke pain (CPSP). METHODS We selected relevant studies by searching PubMed, Embase, and Medline from inception through February, 2018. We systematically reviewed available publications according to the terms "NLRP3 inflammasome" and "stroke" or "central post-stroke pain" in the title/abstract field. RESULTS We reviewed the articles and put forward two possible ways for NLRP3 inflammasome in CPSP. One way is that NLRP3 activation causes cerebral cortex injure, decreasing descending projection fiber to thalamus. Such condition may let GABAergic releases reduce, making the ventral basal (VB) neurons excitability increased. Finally, CPSP occur. Another way is that NLRP3 inflammasome leads to thalamic lesion and strengthens inflammatory response of microglia at the same time. Persistent inflammation causes GABAergic alteration in thalamus reticular neurons (TRN) to restrain VB interneurons functions, contributing to CPSP. CONCLUSIONS These possible mechanisms will help become knowledgeable about the occurrence CPSP and provide potential therapy for CPSP.
Collapse
Affiliation(s)
- Shao-jun Li
- Department of Pain Management, Wuhan First Hospital
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-fen Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Se-hui Ma
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Yi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-yan Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Feng
- Department of Pain Management, Wuhan First Hospital
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
PKC and CaMK-II inhibitions coordinately rescue ischemia-induced GABAergic neuron dysfunction. Oncotarget 2018; 8:39309-39322. [PMID: 28445148 PMCID: PMC5503615 DOI: 10.18632/oncotarget.16947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia leads to neuronal death for stroke, in which the imbalance between glutamatergic neurons and GABAergic neurons toward neural excitotoxicity is presumably involved. GABAergic neurons are vulnerable to pathological factors and impaired in an early stage of ischemia. The rescue of GABAergic neurons is expected to be the strategy to reserve ischemic neuronal impairment. As protein kinase C (PKC) and calmodulin-dependent protein kinase II (CaMK-II) are activated during ischemia, we have investigated whether the inhibitions of these kinases rescue the ischemic impairment of cortical GABAergic neurons. The functions of GABAergic neurons were analyzed by whole-cell recording in the cortical slices during ischemia and in presence of 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (CaMK-II inhibitor) and chelerythrine chloride (PKC inhibitor). Our results indicate that PKC inhibitor or CaMK-II inhibitor partially prevents ischemia-induced functional deficits of cortical GABAergic neurons. Moreover, the combination of PKC and CaMK-II inhibitors synergistically reverses this ischemia-induced deficit of GABAergic neurons. One of potential therapeutic strategies for ischemic stroke may be to rescue the ischemia-induced deficit of cortical GABAergic neurons by inhibiting PKC and CaMK-II.
Collapse
|
43
|
Wang D, Wang X. GLT-1 mediates exercise-induced fatigue through modulation of glutamate and lactate in rats. Neuropathology 2018; 38:237-246. [DOI: 10.1111/neup.12465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Dongmei Wang
- Physical Education and Sports College; Beijing Normal University; Beijing China
- College of Sports Medicine and Rehabilitation; Taishan Medical University; Tai’an China
| | - Xingtong Wang
- College of Sports Medicine and Rehabilitation; Taishan Medical University; Tai’an China
| |
Collapse
|
44
|
Nasr B, Chatterton R, Yong JHM, Jamshidi P, D'Abaco GM, Bjorksten AR, Kavehei O, Chana G, Dottori M, Skafidas E. Self-Organized Nanostructure Modified Microelectrode for Sensitive Electrochemical Glutamate Detection in Stem Cells-Derived Brain Organoids. BIOSENSORS 2018; 8:E14. [PMID: 29401739 PMCID: PMC5872062 DOI: 10.3390/bios8010014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
Abstract
Neurons release neurotransmitters such as glutamate to communicate with each other and to coordinate brain functioning. As increased glutamate release is indicative of neuronal maturation and activity, a system that can measure glutamate levels over time within the same tissue and/or culture system is highly advantageous for neurodevelopmental investigation. To address such challenges, we develop for the first time a convenient method to realize functionalized borosilicate glass capillaries with nanostructured texture as an electrochemical biosensor to detect glutamate release from cerebral organoids generated from human embryonic stem cells (hESC) that mimic various brain regions. The biosensor shows a clear catalytic activity toward the oxidation of glutamate with a sensitivity of 93 ± 9.5 nA·µM-1·cm-2. It was found that the enzyme-modified microelectrodes can detect glutamate in a wide linear range from 5 µM to 0.5 mM with a limit of detection (LOD) down to 5.6 ± 0.2 µM. Measurements were performed within the organoids at different time points and consistent results were obtained. This data demonstrates the reliability of the biosensor as well as its usefulness in measuring glutamate levels across time within the same culture system.
Collapse
Affiliation(s)
- Babak Nasr
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- The Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
- ARC Centre of Excellence for Integrative Brain Function, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Rachael Chatterton
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
| | - Jason Hsien Ming Yong
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- The Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pegah Jamshidi
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
| | - Giovanna Marisa D'Abaco
- The Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Andrew Robin Bjorksten
- The Department of Anaesthesia & Pain Management, Royal Melbourne Hospital, Parkville, VIC 3050, Australia.
| | - Omid Kavehei
- Faculty of Engineering and Information Technology, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Gursharan Chana
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3050, Australia.
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- The Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
- Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Efstratios Skafidas
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- The Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
- ARC Centre of Excellence for Integrative Brain Function, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
45
|
Liu Z, Huang Y, Liu L, Zhang L. Inhibitions of PKC and CaMK-II synergistically rescue ischemia-induced astrocytic dysfunction. Neurosci Lett 2017; 657:199-203. [DOI: 10.1016/j.neulet.2017.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 01/29/2023]
|
46
|
Ceftriaxone-mediated upregulation of the glutamate transporter GLT-1 contrasts neurotoxicity evoked by kainate in rat organotypic spinal cord cultures. Neurotoxicology 2017; 60:34-41. [DOI: 10.1016/j.neuro.2017.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022]
|
47
|
Murrough JW, Abdallah CG, Mathew SJ. Targeting glutamate signalling in depression: progress and prospects. Nat Rev Drug Discov 2017; 16:472-486. [PMID: 28303025 DOI: 10.1038/nrd.2017.16] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) is severely disabling, and current treatments have limited efficacy. The glutamate N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine was recently repurposed as a rapidly acting antidepressant, catalysing the vigorous investigation of glutamate-signalling modulators as novel therapeutic agents for depressive disorders. In this Review, we discuss the progress made in the development of such modulators for the treatment of depression, and examine recent preclinical and translational studies that have investigated the mechanisms of action of glutamate-targeting antidepressants. Fundamental questions remain regarding the future prospects of this line of drug development, including questions concerning safety and tolerability, efficacy, dose-response relationships and therapeutic mechanisms.
Collapse
Affiliation(s)
- James W Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry; Fishberg Department of Neuroscience; and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chadi G Abdallah
- Clinical Neuroscience Division, VA National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Sanjay J Mathew
- Mental Health Care Line, Michael E. DeBakey VA Medical Center; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
48
|
Pereira EP, Braga-de-Souza S, Santos CC, Santos LO, Cerqueira MD, Ribeiro PR, Fernandez LG, Silva VD, Costa SL. Amburana cearensis seed extracts protect PC-12 cells against toxicity induced by glutamate. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Chauhan PS, Misra UK, Kalita J. A study of glutamate levels, NR1, NR2A, NR2B receptors and oxidative stress in rat model of Japanese encephalitis. Physiol Behav 2017; 171:256-267. [PMID: 28108334 DOI: 10.1016/j.physbeh.2017.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 11/15/2022]
Abstract
There is paucity of studies on the role of glutamate excitotoxicity in cell damage in Japanese encephalitis. In this study the glutamate levels and its NMDA receptors, and oxidative stress markers in different brain regions have been evaluated and correlated with neurobehavioral changes at different time points. Twelve day old Wistar rats were inoculated with 3×106pfu/ml intracerebrally. The neurobehavioral effects were evaluated by spontaneous locomotor activity (SLA), grip strength and rota rod test on 10, 33 and 48days post inoculation (dpi). Glutamate level was evaluated by enzyme linked immunosorbent assay, mRNA gene expression of ionotropic glutamate receptors N-methyl d-aspartate (NMDA) receptor 1, 2A and 2B (NR1, NR2A and NR2B) were evaluated by real time PCR. Malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase (GPx) levels were measured by spectrophotometer in different brain regions of JEV infected rats on 10, 33 and 48dpi. There was significant increase in motor deficit, grip strength and decreased locomotor activity on 10 and 33dpi. Glutamate levels were increased in thalamus, midbrain, frontal cortex, striatum and cerebellum on 10 and 33dpi and were followed by a recovery on 48dpi. Glutamate NMDR receptors NR1, NR2A and NR2B were reduced in thalamus, midbrain, frontal cortex, striatum and cerebellum on 10dpi which was followed by recovery after 33dpi. A significant increase in MDA level in thalamus, midbrain, frontal cortex, striatum and cerebellum was noted on 10 and 33dpi. The antioxidant GSH and GPx were significantly reduced in these brain regions on 10 and 33dpi. Glutamate, MDA, GSH and GPx correlated in different brain regions as the disease progress. Increased Glutamate level may be related to oxidative stress and may be responsible for behavioral alterations in rat model of Japanese encephalitis.
Collapse
Affiliation(s)
- Prashant Singh Chauhan
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Science, Raebareily Road, Lucknow, India
| | - Usha Kant Misra
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Science, Raebareily Road, Lucknow, India.
| | - Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Science, Raebareily Road, Lucknow, India
| |
Collapse
|
50
|
Haroon E, Miller AH, Sanacora G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 2017; 42:193-215. [PMID: 27629368 PMCID: PMC5143501 DOI: 10.1038/npp.2016.199] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Increasing data indicate that inflammation and alterations in glutamate neurotransmission are two novel pathways to pathophysiology in mood disorders. The primary goal of this review is to illustrate how these two pathways may converge at the level of the glia to contribute to neuropsychiatric disease. We propose that a combination of failed clearance and exaggerated release of glutamate by glial cells during immune activation leads to glutamate increases and promotes aberrant extrasynaptic signaling through ionotropic and metabotropic glutamate receptors, ultimately resulting in synaptic dysfunction and loss. Furthermore, glutamate diffusion outside the synapse can lead to the loss of synaptic fidelity and specificity of neurotransmission, contributing to circuit dysfunction and behavioral pathology. This review examines the fundamental role of glia in the regulation of glutamate, followed by a description of the impact of inflammation on glial glutamate regulation at the cellular, molecular, and metabolic level. In addition, the role of these effects of inflammation on glia and glutamate in mood disorders will be discussed along with their translational implications.
Collapse
Affiliation(s)
- Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|