1
|
Zhang J, Xia X, He S. Deciphering the causal association and underlying transcriptional mechanisms between telomere length and abdominal aortic aneurysm. Front Immunol 2024; 15:1438838. [PMID: 39234237 PMCID: PMC11371612 DOI: 10.3389/fimmu.2024.1438838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
Background The purpose of this study is to investigate the causal effect and potential mechanisms between telomere length and abdominal aortic aneurysm (AAA). Methods Summary statistics of telomere length and AAA were derived from IEU open genome-wide association studies and FinnGen R9, respectively. Bi-directional Mendelian randomization (MR) analysis was conducted to reveal the causal relationship between AAA and telomere length. Three transcriptome datasets were retrieved from the Gene Expression Omnibus database and telomere related genes was down-loaded from TelNet. The overlapping genes of AAA related differentially expressed genes (DEGs), module genes, and telomere related genes were used for further investigation. Telomere related diagnostic biomarkers of AAA were selected with machine learning algorisms and validated in datasets and murine AAA model. The correlation between biomarkers and immune infiltration landscape was established. Results Telomere length was found to have a suggestive negative associations with AAA [IVW, OR 95%CI = 0.558 (0.317-0.701), P < 0.0001], while AAA showed no suggestive effect on telomere length [IVW, OR 95%CI = 0.997 (0.990-1.004), P = 0.4061]. A total of 40 genes was considered as telomere related DEGs of AAA. PLCH2, PRKCQ, and SMG1 were selected as biomarkers after multiple algorithms and validation. Immune infiltration analysis and single cell mRNA analysis revealed that PLCH2 and PRKCQ were mainly expressed on T cells, while SMG1 predominantly expressed on T cells, B cells, and monocytes. Murine AAA model experiments further validated the elevated expression of biomarkers. Conclusion We found a suggestive effect of telomere length on AAA and revealed the potential biomarkers and immune mechanism of telomere length on AAA. This may shed new light for diagnosis and therapeutics on AAA.
Collapse
Affiliation(s)
- Jiyu Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Qiu H, Shi M, Zhong Z, Hu H, Sang H, Zhou M, Feng Z. Causal Relationship between Aging and Anorexia Nervosa: A White-Matter-Microstructure-Mediated Mendelian Randomization Analysis. Biomedicines 2024; 12:1874. [PMID: 39200338 PMCID: PMC11351342 DOI: 10.3390/biomedicines12081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
This study employed a two-step Mendelian randomization analysis to explore the causal relationship between telomere length, as a marker of aging, and anorexia nervosa and to evaluate the mediating role of changes in the white matter microstructure across different brain regions. We selected genetic variants associated with 675 diffusion magnetic resonance imaging phenotypes representing changes in brain white matter. F-statistics confirmed the validity of the instruments, ensuring robust causal inference. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy tests, and leave-one-out tests, validated the results. The results show that telomere length is significantly negatively correlated with anorexia nervosa in a unidirectional manner (p = 0.017). Additionally, changes in specific white matter structures, such as the internal capsule, corona radiata, posterior thalamic radiation, left cingulate gyrus, left longitudinal fasciculus, and left forceps minor (p < 0.05), were identified as mediators. These findings enhance our understanding of the neural mechanisms, underlying the exacerbation of anorexia nervosa with aging; emphasize the role of brain functional networks in disease progression; and provide potential biological targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Haoyuan Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Zicheng Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Haoran Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Hunini Sang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Zhao H, Zhao H, Ji S. A Mesenchymal stem cell Aging Framework, from Mechanisms to Strategies. Stem Cell Rev Rep 2024; 20:1420-1440. [PMID: 38727878 DOI: 10.1007/s12015-024-10732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 08/13/2024]
Abstract
Mesenchymal stem cells (MSCs) are extensively researched for therapeutic applications in tissue engineering and show significant potential for clinical use. Intrinsic or extrinsic factors causing senescence may lead to reduced proliferation, aberrant differentiation, weakened immunoregulation, and increased inflammation, ultimately limiting the potential of MSCs. It is crucial to comprehend the molecular pathways and internal processes responsible for the decline in MSC function due to senescence in order to devise innovative approaches for rejuvenating senescent MSCs and enhancing MSC treatment. We investigate the main molecular processes involved in senescence, aiming to provide a thorough understanding of senescence-related issues in MSCs. Additionally, we analyze the most recent advancements in cutting-edge approaches to combat MSC senescence based on current research. We are curious whether the aging process of stem cells results in a permanent "memory" and if cellular reprogramming may potentially revert the aging epigenome to a more youthful state.
Collapse
Affiliation(s)
- Hongqing Zhao
- Nanbu County People's Hospital, Nanchong City, 637300, Sichuan Province, China
- Jinzhou Medical University, No.82 Songpo Road, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Houming Zhao
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China
| | - Shuaifei Ji
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China.
| |
Collapse
|
4
|
Bao Y, Shan Q, Lu K, Yang Q, Liang Y, Kuang H, Wang L, Hao M, Peng M, Zhang S, Cao G. Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis. J Pharm Anal 2024; 14:100933. [PMID: 39247486 PMCID: PMC11377145 DOI: 10.1016/j.jpha.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 09/10/2024] Open
Abstract
Renal fibrosis is a devastating consequence of progressive chronic kidney disease, representing a major public health challenge worldwide. The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear, and effective treatments are still lacking. Renal tubular epithelial cells (RTECs) maintain kidney function, and their dysfunction has emerged as a critical contributor to renal fibrosis. Cellular quality control comprises several components, including telomere homeostasis, ubiquitin-proteasome system (UPS), autophagy, mitochondrial homeostasis (mitophagy and mitochondrial metabolism), endoplasmic reticulum (ER, unfolded protein response), and lysosomes. Failures in the cellular quality control of RTECs, including DNA, protein, and organelle damage, exert profibrotic functions by leading to senescence, defective autophagy, ER stress, mitochondrial and lysosomal dysfunction, apoptosis, fibroblast activation, and immune cell recruitment. In this review, we summarize recent advances in understanding the role of quality control components and intercellular crosstalk networks in RTECs, within the context of renal fibrosis.
Collapse
Affiliation(s)
- Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Liang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030600, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| |
Collapse
|
5
|
Chen Y, Ding X, Aierken A, Chen Y, Li Y. Related risk factors for age-dependent telomere shortening change with age from the perspective of life course. Arch Gerontol Geriatr 2024; 121:105349. [PMID: 38340585 DOI: 10.1016/j.archger.2024.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Many related factors can accelerate the age-dependent telomere shortening, but some problems remain unresolved. This study aimed to assess the risk factors of telomere attrition at different age stages. METHODS This study was a population-based nationally representative survey study. All data were collected using a standard methodology by the national surveillance system. Quantitative polymerase chain reaction was used to measure relative leukocyte telomere length. Multiple linear regression analysis with age stratification was used to estimate the association of shortened telomere length with risk factors at the different age stages. Covariance analysis was used to compare the telomere length of category variables, and the model was adjusted for potentially confounders. RESULTS A total of 7,659 eligible participants aged 20 years or older with DNA specimens participated in the study. Related risk factors for age-dependent telomere shortening included gender, race-ethnicity, education levels, family income, health insurance, marital status, physical activity, smoking status, alcohol use, and self-reported greatest weight, which were associated with change in telomere length at different age stages. CONCLUSIONS AND IMPLICATIONS Related risk factors of telomere attrition were changed with age in life course. The evaluation of related risk factors for telomere attrition in terms of age may be a more accurate evaluation comparison with the specific age.
Collapse
Affiliation(s)
- Yin Chen
- Department of Social Medicine, School of Public Health, Zhejiang University, China
| | - XiWen Ding
- Department of Social Medicine, School of Public Health, Zhejiang University, China
| | - Ayizuhere Aierken
- Department of Social Medicine, School of Public Health, Zhejiang University, China
| | - Yuan Chen
- Department of Social Medicine, School of Public Health, Zhejiang University, China; Zhejiang Provincial People's Hospital, China
| | - Ying Li
- Department of Social Medicine, School of Public Health, Zhejiang University, China; School of medicine, Zhejiang University, China.
| |
Collapse
|
6
|
Yan X, Yang P, Li Y, Liu T, Zha Y, Wang T, Zhang J, Feng Z, Li M. New insights from bidirectional Mendelian randomization: causal relationships between telomere length and mitochondrial DNA copy number in aging biomarkers. Aging (Albany NY) 2024; 16:7387-7404. [PMID: 38663933 PMCID: PMC11087129 DOI: 10.18632/aging.205765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to the aging process in organisms. However, the causal relationship between these variables remains uncertain. In this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a decrease in mtDNA copy number, providing new perspectives on their biological mechanisms.
Collapse
Affiliation(s)
- Xinyu Yan
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Peixuan Yang
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yani Li
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Ting Liu
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Yawen Zha
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Ting Wang
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Jingjing Zhang
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Zhijun Feng
- Department of Radiation Oncology, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, China
| | - Minying Li
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| |
Collapse
|
7
|
Zhong Y, Wang G, Yang S, Zhang Y, Wang X. The role of DNA damage in neural stem cells ageing. J Cell Physiol 2024; 239:e31187. [PMID: 38219047 DOI: 10.1002/jcp.31187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Neural stem cells (NSCs) are pluripotent stem cells with the potential to differentiate into a variety of nerve cells. NSCs are susceptible to both intracellular and extracellular insults, thus causing DNA damage. Extracellular insults include ultraviolet, ionizing radiation, base analogs, modifiers, alkyl agents and others, while intracellular factors include Reactive oxygen species (ROS) radicals produced by mitochondria, mismatches that occur during DNA replication, deamination of bases, loss of bases, and more. When encountered with DNA damage, cells typically employ three coping strategies: DNA repair, damage tolerance, and apoptosis. NSCs, like many other stem cells, have the ability to divide, differentiate, and repair DNA damage to prevent mutations from being passed down to the next generation. However, when DNA damage accumulates over time, it will lead to a series of alterations in the metabolism of cells, which will cause cellular ageing. The ageing and exhaustion of neural stem cell will have serious effects on the body, such as neurodegenerative diseases. The purpose of this review is to examine the processes by which DNA damage leads to NSCs ageing and the mechanisms of DNA repair in NSCs.
Collapse
Affiliation(s)
- Yiming Zhong
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangming Wang
- School of Medicine, Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Smulders L, Deelen J. Genetics of human longevity: From variants to genes to pathways. J Intern Med 2024; 295:416-435. [PMID: 37941149 DOI: 10.1111/joim.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The current increase in lifespan without an equivalent increase in healthspan poses a grave challenge to the healthcare system and a severe burden on society. However, some individuals seem to be able to live a long and healthy life without the occurrence of major debilitating chronic diseases, and part of this trait seems to be hidden in their genome. In this review, we discuss the findings from studies on the genetic component of human longevity and the main challenges accompanying these studies. We subsequently focus on results from genetic studies in model organisms and comparative genomic approaches to highlight the most important conserved longevity-associated pathways. By combining the results from studies using these different approaches, we conclude that only five main pathways have been consistently linked to longevity, namely (1) insulin/insulin-like growth factor 1 signalling, (2) DNA-damage response and repair, (3) immune function, (4) cholesterol metabolism and (5) telomere maintenance. As our current approaches to study the relevance of these pathways in humans are limited, we suggest that future studies on the genetics of human longevity should focus on the identification and functional characterization of rare genetic variants in genes involved in these pathways.
Collapse
Affiliation(s)
- Larissa Smulders
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Zhou D, Sun Y, Dong C, Wang Z, Zhao J, Li Z, Huang G, Li W. Folic acid alleviated oxidative stress-induced telomere attrition and inhibited apoptosis of neurocytes in old rats. Eur J Nutr 2024; 63:291-302. [PMID: 37870657 DOI: 10.1007/s00394-023-03266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE Oxidative stress has been reported to cause telomere attrition, which triggers cell apoptosis. Apoptosis of neurocytes may play an essential role in the pathogenesis of neurodegenerative diseases. This study hypothesized that folic acid (FA) supplementation decreased neurocyte apoptosis by alleviating oxidative stress-induced telomere attrition in 25-month-old Sprague Dawley (SD) rats. METHODS Three-month-old male SD rats were randomly divided into four diet groups by different concentrations of folic acid in equal numbers, with intervention for 22 months. Folate, homocysteine (Hcy), reactive oxygen species (ROS) levels, antioxidant activities, and telomere length in the brain tissues were tested at 11, 18, and 22 months of intervention, and 8-hydroxy-deoxyguanosine (8-OHdG) levels, neurocyte apoptosis and telomere length in the cerebral cortex and hippocampal regions were tested during the 22-month intervention. An automated chemiluminescence system, auto-chemistry analyzer, Q-FISH, qPCR, and TUNEL assay were used in this study. RESULTS The rats had lower folate concentrations and higher Hcy, ROS, and 8-OHdG concentrations in brain tissue with aging. However, FA supplementation increased folate concentrations and antioxidant activities while decreasing Hcy, ROS, and 8-OHdG levels in rat brain tissue after 11, 18, and 22 months of intervention. Furthermore, FA supplementation alleviated telomere length shortening and inhibited neurocyte apoptosis during the 22-month intervention. CONCLUSION FA supplementation alleviated oxidative stress-induced telomere attrition and inhibited apoptosis of neurocytes in 25-month-old rats.
Collapse
Affiliation(s)
- Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yue Sun
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Zehao Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Jing Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
10
|
Xue J, Liu Z, Liao Y, Zhang X, Liu Y, Mo L, Dong R, Li Q, Sun X, Xie J, Yang P. Undersized telomeres in regulatory T cells link to the pathogenesis of allergic rhinitis. iScience 2024; 27:108615. [PMID: 38205251 PMCID: PMC10777067 DOI: 10.1016/j.isci.2023.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Telomeres are an important biomarker in the cell destiny. The relationship between telomeres and regulatory T cells (Tregs) has not yet been investigated. The objective of this study is to evaluate the link between Tregs' telomere length and allergic rhinitis (AR)'s pathogenesis. Here, we report that low telomerase activity and high endoplasmic reticulum stress status were observed in Tregs from AR patients, as shown in the results. Immune regulatory molecules levels were correlated with the length of Tregs' telomeres. The immune-suppressive functions of Tregs were associated with the telomere length/Telomerase reverse transcriptase/Telomerase protein component 1 status in Tregs. The levels of telomere length/telomerase in airway Tregs were reduced by sensitization. Endoplasmic reticulum stress signaling pathway of proline-rich receptor-like protein kinase-eukaryotic translation initiation factor 2A (eIF2a) was associated with the regulation of telomerase. Inhibiting eIF2a had an effect on upregulating telomerase activity in Tregs and mitigating experimental AR.
Collapse
Affiliation(s)
- Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education of China, Shanxi Medical University, Taiyuan, China
| | - Yun Liao
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xiwen Zhang
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Lihua Mo
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Rui Dong
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qiang Li
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xizhuo Sun
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education of China, Shanxi Medical University, Taiyuan, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Canale P, Campolo J, Borghini A, Andreassi MG. Long Telomeric Repeat-Containing RNA (TERRA): Biological Functions and Challenges in Vascular Aging and Disease. Biomedicines 2023; 11:3211. [PMID: 38137431 PMCID: PMC10740775 DOI: 10.3390/biomedicines11123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Telomere dysfunction is implicated in vascular aging and shorter leucocyte telomeres are associated with an increased risk of atherosclerosis, myocardial infarction, and heart failure. Another pathophysiological mechanism that explains the causal relationship between telomere shortening and atherosclerosis development focuses on the clonal hematopoiesis of indeterminate potential (CHIP), which represents a new and independent risk factor in atherosclerotic cardiovascular diseases. Since telomere attrition has a central role in driving vascular senescence, understanding telomere biology is essential to modulate the deleterious consequences of vascular aging and its cardiovascular disease-related manifestations. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for "TElomeric Repeat-containing RNA", actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the multiple biological functions of TERRA remain to be largely elucidated. In particular, the role of TERRA in vascular biology is surprisingly unknown. In this review, we discuss the current knowledge of TERRA and its roles in telomere biology. Additionally, we outline the pieces of evidence that exist regarding the relationship between TERRA dysregulation and disease. Finally, we speculate on how a comprehensive understanding of TERRA transcription in the cardiovascular system may provide valuable insights into telomere-associated vascular aging, offering great potential for new therapeutic approaches.
Collapse
Affiliation(s)
- Paola Canale
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (P.C.); (A.B.)
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20142 Milano, Italy;
| | - Andrea Borghini
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (P.C.); (A.B.)
| | | |
Collapse
|
12
|
Coltell O, Asensio EM, Sorlí JV, Ortega-Azorín C, Fernández-Carrión R, Pascual EC, Barragán R, González JI, Estruch R, Alzate JF, Pérez-Fidalgo A, Portolés O, Ordovas JM, Corella D. Associations between the New DNA-Methylation-Based Telomere Length Estimator, the Mediterranean Diet and Genetics in a Spanish Population at High Cardiovascular Risk. Antioxidants (Basel) 2023; 12:2004. [PMID: 38001857 PMCID: PMC10669035 DOI: 10.3390/antiox12112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Biological aging is a relevant risk factor for chronic diseases, and several indicators for measuring this factor have been proposed, with telomere length (TL) among the most studied. Oxidative stress may regulate telomere shortening, which is implicated in the increased risk. Using a novel estimator for TL, we examined whether adherence to the Mediterranean diet (MedDiet), a highly antioxidant-rich dietary pattern, is associated with longer TL. We determined TL using DNA methylation algorithms (DNAmTL) in 414 subjects at high cardiovascular risk from Spain. Adherence to the MedDiet was assessed by a validated score, and genetic variants in candidate genes and at the genome-wide level were analyzed. We observed several significant associations (p < 0.05) between DNAmTL and candidate genes (TERT, TERF2, RTEL1, and DCAF4), contributing to the validity of DNAmTL as a biomarker in this population. Higher adherence to the MedDiet was associated with lower odds of having a shorter TL in the whole sample (OR = 0.93; 95% CI: 0.85-0.99; p = 0.049 after fully multivariate adjustment). Nevertheless, this association was stronger in women than in men. Likewise, in women, we observed a direct association between adherence to the MedDiet score and DNAmTL as a continuous variable (beta = 0.015; SE: 0.005; p = 0.003), indicating that a one-point increase in adherence was related to an average increase of 0.015 ± 0.005 kb in TL. Upon examination of specific dietary items within the global score, we found that fruits, fish, "sofrito", and whole grains exhibited the strongest associations in women. The novel score combining these items was significantly associated in the whole population. In the genome-wide association study (GWAS), we identified ten polymorphisms at the suggestive level of significance (p < 1 × 10-5) for DNAmTL (intergenics, in the IQSEC1, NCAPG2, and ABI3BP genes) and detected some gene-MedDiet modulations on DNAmTL. As this is the first study analyzing the DNAmTL estimator, genetics, and modulation by the MedDiet, more studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva M Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - José V Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Rebeca Fernández-Carrión
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Eva C Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Rocío Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - José I González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Juan F Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín 050010, Colombia
| | - Alejandro Pérez-Fidalgo
- Department of Medical Oncology, University Clinic Hospital of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Centre on Cancer (CIBERONC), Health Institute Carlos III, 28029 Madrid, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Olga Portolés
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Jose M Ordovas
- Department of Medical Oncology, University Clinic Hospital of Valencia, 46010 Valencia, Spain
- Nutrition and Genomics, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
13
|
Михеев РК, Андреева ЕН, Григорян ОР, Шереметьева ЕВ, Абсатарова ЮС, Одарченко АС, Оплетаева ОН. [Molecular and cellular mechanisms of ageing: modern knowledge (literature review)]. PROBLEMY ENDOKRINOLOGII 2023; 69:45-54. [PMID: 37968951 PMCID: PMC10680502 DOI: 10.14341/probl13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 11/17/2023]
Abstract
Ageing (as known as eldering, senescence) is a genetically and epigenetically programmed pathophysiological process. Velocity of biological ageing is defined as balance between alteration and reparation of body structures. According to last World Health Organization (WHO) highlights ageing still stays an extremely actual scientific, social and demographic problem: in 2020 total number of people older than 60 years and older was 1 billion people; in 2030 future number may be 1,4 billion people, in 2050 - 2,1 billion people. Absence of single universal theory of aging nowadays is reason for scientifical and clinical collaboration between biologists and doctors, including endocrinologists. Designing of potentially effective newest anti-ageing strategies (such as natural/synthetic telomerase regulators, mesenchymal stem cells etc.) is of interest to scientific community. The aim of present article is a review of modern omics (genomic, proteomic, metabolomic) ageing mechanisms, potential ways of targeted prevention and treatment of age-related disease according to conception of personalized medicine. Present review is narrative, it does not lead to systematic review, meta-analysis and does not aim to commercial advertisement. Review has been provided via PubMed article that have been published since 1979 until 2022.
Collapse
Affiliation(s)
- Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии; Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - А. С. Одарченко
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
14
|
Kalmykova A. Telomere Checkpoint in Development and Aging. Int J Mol Sci 2023; 24:15979. [PMID: 37958962 PMCID: PMC10647821 DOI: 10.3390/ijms242115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.
Collapse
Affiliation(s)
- Alla Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
15
|
Sutterlüty H, Bargl M, Holzmann K. Quantifying telomere transcripts as tool to improve risk assessment for genetic instability and genotoxicity. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503690. [PMID: 37770147 DOI: 10.1016/j.mrgentox.2023.503690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Telomere repeat-containing RNAs (TERRA) are transcribed from telomeres as long non-coding RNAs and are part of the telomere structure with protective function. The genetic stability of cells requires telomeric repeats at the ends of chromosomes. Maintenance of telomere length (TL) is essential for proliferative capacity and chromosomal integrity. In contrast, telomere shortening is a recognized risk factor for carcinogenesis and a biomarker of aging due to the cumulative effects of environmental exposures and life experiences such as trauma or stress. In this context, telomere repeats are lost due to cell proliferation, but are also susceptible to stress factors including reactive oxygen species (ROS) inducing oxidative base damage. Quantitative PCR (qPCR) of genomic DNA is an established method to analyze TL as a tool to detect genotoxic events. That same qPCR method can be applied to RNA converted into cDNA to quantify TERRA as a useful tool to perform high-throughput screenings. This short review summarizes relevant qPCR studies using both TL and TERRA quantification, provides an overall view of the molecular mechanisms of telomere protection against ROS by TERRA, and summarizes the presented studies comparing the results at DNA and RNA levels, which indicate that fluctuations at transcript level might reflect a short-term response. Therefore, we conclude that performing both of these measurements together will improve genotoxicity studies.
Collapse
Affiliation(s)
- Hedwig Sutterlüty
- Center for Cancer Research, Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Maximilian Bargl
- Center for Cancer Research, Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Klaus Holzmann
- Center for Cancer Research, Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
16
|
Zhang M, Trushina NK, Lang T, Hahn M, Pasmanik-Chor M, Sharon A. Serine peptidases and increased amounts of soluble proteins contribute to heat priming of the plant pathogenic fungus Botrytis cinerea. mBio 2023; 14:e0107723. [PMID: 37409814 PMCID: PMC10470532 DOI: 10.1128/mbio.01077-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Botrytis cinerea causes gray mold disease in leading crop plants. The disease develops only at cool temperatures, but the fungus remains viable in warm climates and can survive periods of extreme heat. We discovered a strong heat priming effect in which the exposure of B. cinerea to moderately high temperatures greatly improves its ability to cope with subsequent, potentially lethal temperature conditions. We showed that priming promotes protein solubility during heat stress and discovered a group of priming-induced serine-type peptidases. Several lines of evidence, including transcriptomics, proteomics, pharmacology, and mutagenesis data, link these peptidases to the B. cinerea priming response, highlighting their important roles in regulating priming-mediated heat adaptation. By imposing a series of sub-lethal temperature pulses that subverted the priming effect, we managed to eliminate the fungus and prevent disease development, demonstrating the potential for developing temperature-based plant protection methods by targeting the fungal heat priming response. IMPORTANCE Priming is a general and important stress adaptation mechanism. Our work highlights the importance of priming in fungal heat adaptation, reveals novel regulators and aspects of heat adaptation mechanisms, and demonstrates the potential of affecting microorganisms, including pathogens through manipulations of the heat adaptation response.
Collapse
Affiliation(s)
- Mingzhe Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Kagan Trushina
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Tabea Lang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Biology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Matthias Hahn
- Department of Biology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Rivosecchi J, Cusanelli E. TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. FRONTIERS IN AGING 2023; 4:1224225. [PMID: 37636218 PMCID: PMC10448526 DOI: 10.3389/fragi.2023.1224225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
The telomeric noncoding RNA TERRA is a key component of telomeres and it is widely expressed in normal as well as cancer cells. In the last 15 years, several publications have shed light on the role of TERRA in telomere homeostasis and cell survival in cancer cells. However, only few studies have investigated the regulation or the functions of TERRA in normal tissues. A better understanding of the biology of TERRA in non-cancer cells may provide unexpected insights into how these lncRNAs are transcribed and operate in cells, and their potential role in physiological processes, such as aging, age-related pathologies, inflammatory processes and human genetic diseases. In this review we aim to discuss the findings that have advanced our understanding of the biology of TERRA using non-cancer mammalian cells as a model system.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Trento, Italy
| | | |
Collapse
|
18
|
Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K, Adam V. Role of hypoxia in cellular senescence. Pharmacol Res 2023; 194:106841. [PMID: 37385572 DOI: 10.1016/j.phrs.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic.
| |
Collapse
|
19
|
Liu Y, Liu Q, Zhang Z, Yang Y, Zhou Y, Yan H, Wang X, Li X, Zhao J, Hu J, Yang S, Tian Y, Yao Y, Qiu Z, Song Y, Yang Y. The regulatory role of PI3K in ageing-related diseases. Ageing Res Rev 2023; 88:101963. [PMID: 37245633 DOI: 10.1016/j.arr.2023.101963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Ageing is a physiological/pathological process accompanied by the progressive damage of cell function, triggering various ageing-related disorders. Phosphatidylinositol 3-kinase (PI3K), which serves as one of the central regulators of ageing, is closely associated with cellular characteristics or molecular features, such as genome instability, telomere erosion, epigenetic alterations, and mitochondrial dysfunction. In this review, the PI3K signalling pathway was firstly thoroughly explained. The link between ageing pathogenesis and the PI3K signalling pathway was then summarized. Finally, the key regulatory roles of PI3K in ageing-related illnesses were investigated and stressed. In summary, we revealed that drug development and clinical application targeting PI3K is one of the focal points for delaying ageing and treating ageing-related diseases in the future.
Collapse
Affiliation(s)
- Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhe Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yaru Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yazhe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Huanle Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xiaoru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jing Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jingyan Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Shulin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yifan Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhenye Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yanbin Song
- Department of Cardiology, Affiliated Hospital, Yan'an University, 43 North Street, Yan'an 716000, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
20
|
Yang P, Deng LJ, Xie JY, Li XJ, Wang XN, Sun B, Meng TQ, Xiong CL, Huang YC, Wang YX, Pan A, Chen D, Yang Y. Phthalate exposure with sperm quality among healthy Chinese male adults: The role of sperm cellular function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121755. [PMID: 37142207 DOI: 10.1016/j.envpol.2023.121755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
Adverse male reproduction caused by phthalate ester (PAE) exposure has been well documented in vivo. However, existing evidence from population studies remains inadequate to demonstrate the impact of PAE exposure on spermatogenesis and underlying mechanisms. Our present study aimed to explore the potential link between PAE exposure and sperm quality and the possible mediation by sperm mitochondrial and telomere in healthy male adults recruited from the Hubei Province Human Sperm Bank, China. Nine PAEs were determined in one pooled urine sample prepared from multiple collections during the spermatogenesis period from the same participant. Sperm telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were determined in sperm samples. The sperm concentration and count per quartile increment in mixture concentrations were -4.10 million/mL (-7.12, -1.08) and -13.52% (-21.62%, -4.59%), respectively. We found one quartile increase in PAE mixture concentrations to be marginally associated with sperm mtDNAcn (β = 0.09, 95% CI: -0.01, 0.19). Mediation analysis showed that sperm mtDNAcn significantly explained 24.6% and 32.5% of the relationships of mono-2-ethylhexyl phthalate (MEHP) with sperm concentration and sperm count (β = -0.44 million/mL, 95% CI: -0.82, -0.08; β = -1.35, 95% CI: -2.54, -0.26, respectively). Our study provided a novel insight into the mixed effect of PAEs on adverse semen quality and the potential mediation role of sperm mtDNAcn.
Collapse
Affiliation(s)
- Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong Province, PR China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230032, PR China
| | - Lang-Jing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Jin-Ying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Xiao-Jie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Xiao-Na Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Bin Sun
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, PR China
| | - Tian-Qing Meng
- Hubei Province Human Sperm Bank, Wuhan, 430030, Hubei Province, PR China
| | - Cheng-Liang Xiong
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, PR China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, PR China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, PR China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang, 515200, Guangdong, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China.
| |
Collapse
|
21
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
22
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
23
|
He J, Zhao F, Chen B, Cui N, Li Z, Qin J, Luo L, Zhao C, Li L. Alterations in immune cell heterogeneities in the brain of aged zebrafish using single-cell resolution. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2223-4. [PMID: 36607494 DOI: 10.1007/s11427-021-2223-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
Immunocytes, including the microglia, are crucial in the neurodegenerative process in old people. However, the understanding of regarding microglia heterogeneity and other involved immunocytes remains elusive. We analyzed 26,456 immunocytes from 12-and 26-month-old zebrafish brains at single-cell resolution. Microglia and T lymphocytes were detected in the brain at both time points. Two types of microglia were annotated, namely, ac+ microglia and xr+ microglia, which were clustered into subsets 1, 2, 3, 4, 5, and subsets 6, 7, 8, 9, respectively. Diversified microglia predominated the adult brains and cooperated with T cells to perform the functions of immune response and neuronal nutrition. We validated the specific microglia markers. The novel transgenic lines, Tg(lgals3bpb:eGFP) and Tg(apoc1:eGFP), were created, which faithfully labeled ac+ microglia and served as valuable labeling tools. However, the microglia population reduced while T cells of six subtypes intriguingly increased to serve as the primary immune cells in aged brains. Unlike in 12-month-old brains, T cells, together with microglia, exhibited a coordinated signature of inflammation in the 26-month-old brains. Our findings revealed the immunocytes atlas in aged zebrafish brains. It implied the involvement of microglia and T cells in the progression of neurodegeneration in aging.
Collapse
Affiliation(s)
- Jiangyong He
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China.,Research Center of Stem cells and Aging, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fangying Zhao
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Bingyue Chen
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Nianfei Cui
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Zhifan Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Jie Qin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China. .,Research Center of Stem cells and Aging, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
24
|
Zhang JQ, Li YY, Zhang XY, Tian ZH, Liu C, Wang ST, Zhang FR. Cellular senescence of renal tubular epithelial cells in renal fibrosis. Front Endocrinol (Lausanne) 2023; 14:1085605. [PMID: 36926022 PMCID: PMC10011622 DOI: 10.3389/fendo.2023.1085605] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Renal fibrosis (RF) is the common pathological manifestation of virtually all chronic kidney diseases (CKD) and one of the major causes of end-stage renal disease (ESRD), but the pathogenesis of which is still unclear. Renal tubulointerstitial lesions have been identified as a key pathological hallmark of RF pathology. Renal tubular epithelial cells are the resident cells of the tubulointerstitium and play an important role in kidney recovery versus renal fibrosis following injury. Studies in recent years have shown that senescence of renal tubular epithelial cells can accelerate the progression of renal fibrosis. Oxidative stress(OS), telomere attrition and DNA damage are the major causes of renal tubular epithelial cell senescence. Current interventions and therapeutic strategies for cellular senescence include calorie restriction and routine exercise, Klotho, senolytics, senostatics, and other related drugs. This paper provides an overview of the mechanisms and the key signaling pathways including Wnt/β-catenin/RAS, Nrf2/ARE and STAT-3/NF-κB pathway involved in renal tubular epithelial cell senescence in RF and therapies targeting renal tubular epithelial cell senescence future therapeutic potential for RF patients. These findings may offer promise for the further treatment of RF and CKD.
Collapse
Affiliation(s)
- Jun-Qing Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Yan Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zeng-Hui Tian
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Tao Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fa-Rong Zhang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Fa-Rong Zhang,
| |
Collapse
|
25
|
Liu C, Chen YJ, Sun B, Chen HG, Mustieles V, Messerlian C, Sun Y, Meng TQ, Lu WQ, Pan XF, Xiong CL, Hou J, Wang YX. Blood trihalomethane concentrations in relation to sperm mitochondrial DNA copy number and telomere length among 958 healthy men. ENVIRONMENTAL RESEARCH 2023; 216:114737. [PMID: 36372149 DOI: 10.1016/j.envres.2022.114737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In animal and human studies, exposure to trihalomethanes (THMs) has been associated with reduced semen quality. However, the underlying mechanisms remain poorly understood. OBJECTIVE To investigate the associations of blood THM concentrations with sperm mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) among healthy men. METHODS We recruited 958 men who volunteered as potential sperm donors. A single blood sample was collected from each participant at recruitment and measured for chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM) concentrations. Within a 90-day follow-up, the last semen sample provided by each participant was quantified for sperm mtDNAcn and TL. We used multivariable linear regression models to assess the associations between blood THM concentrations and sperm mtDNAcn and TL. We also performed stratified analyses according to the time intervals between baseline blood THM determinations and semen collection (i.e., 0-9, 10-14, 15-69, or >69 days) to explore potential windows of susceptibility. RESULTS After adjusting for potential confounders, we found inverse associations between quartiles (or categories) of blood TBM, brominated THM (Br-THM, the sum of BDCM, DBCM, and TBM), and total THM (TTHM, the sum of all four THMs) concentrations and sperm mtDNAcn (all P for trend≤0.03). Besides, we found inverse associations between quartiles of blood TCM, Br-THM, chlorinated THM (Cl-THM, the sum of TCM, BDCM, and DBCM), and TTHM concentrations and sperm TL (all P for trend<0.10). Stratified analyses showed stronger associations between Br-THM concentrations and sperm mtDNAcn determined 15-69 days since baseline exposure determinations, and between blood TCM and TTHM concentrations and sperm TL determined >69 days since baseline exposure determinations. CONCLUSION Exposure to THMs may be associated with sperm mitochondrial and telomeric dysfunction.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Bin Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Heng-Gui Chen
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, PR China
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM); Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Carmen Messerlian
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian-Qing Meng
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Chen-Liang Xiong
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China.
| | - Jian Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, PR China.
| | - Yi-Xin Wang
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
26
|
Alternative telomere maintenance mechanism in Alligator sinensis provides insights into aging evolution. iScience 2022; 26:105850. [PMID: 36636341 PMCID: PMC9829719 DOI: 10.1016/j.isci.2022.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Lifespan is a life-history trait that undergoes natural selection. Telomeres are hallmarks of aging, and shortening rate predicts species lifespan, making telomere maintenance mechanisms throughout different lifespans a worthy topic for study. Alligators are suitable for the exploration of anti-aging molecular mechanisms, because they exhibit low or even negligible mortality in adults and no significant telomere shortening. Telomerase reverse transcriptase (TERT) expression is absent in the adult Alligator sinensis, as in humans. Selection analyses on telomere maintenance genes indicated that ATM, FANCE, SAMHD1, HMBOX1, NAT10, and MAP3K4 experienced positive selection on A. sinensis. Repressed pleiotropic ATM kinase in A. sinensis suggests their fitness optimum shift. In ATM downstream, Alternative Lengthening of Telomeres (ALT)-related genes were clustered in a higher expression pattern in A. sinensis, which covers 10-15% of human cancers showing no telomerase activities. In summary, we demonstrated how telomere shortening, telomerase activities, and ALT contributed to anti-aging strategies.
Collapse
|
27
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
28
|
Fan G, Song L, Liu Q, Wu M, Bi J, Xu L, Xiong C, Cao Z, Xu S, Wang Y. Association of maternal folic acid supplementation during pregnancy with newborn telomere length. Reprod Toxicol 2022; 114:52-56. [DOI: 10.1016/j.reprotox.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
29
|
Passos JDC, Felisbino K, Laureano HA, Guiloski IC. Occupational exposure to pesticides and its association with telomere length - A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157715. [PMID: 35914599 DOI: 10.1016/j.scitotenv.2022.157715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Telomere length is a common biomarker for the cumulative effect of environmental factors on aging-related diseases, therefore an association has been hypothesized between occupational exposure to pesticides and shorter telomere length. OBJECTIVE This study is a systematic review and meta-analysis aiming to examine the association between telomere length and occupational exposure to pesticides. METHODS We systematically searched in SciELO, PubMed, Scopus, Embase, Cochrane, Lilacs, Science Direct, and Web of Science databases for all observational studies containing measurements of telomere length on groups occupationally exposed to pesticides. Data were synthesized through qualitative synthesis and meta-analysis. We estimated the associations between exposed and non-exposed groups by using the natural log of the response ratio (lnRR). Heterogeneity was quantified using the Cochran Q test and I2 statistics. RESULTS Six studies were included in the qualitative synthesis and meta-analysis, with a total of 480 participants exposed to pesticides. The time of exposure evaluated 391 participants that had a range of 5 to >30 years of occupational exposure. Most studies presented shorter telomere length in the occupationally exposed group. From the six studies included in the meta-analysis, three presented telomere length measurement as a single copy gene (T/S), and three presented telomere length measurement as base pairs (bp). The statistical analysis pooled estimates (log ratio of means) of the telomere length in both measurements (T/S and bp) showed a shortening of telomere length in the exposed group when compared with the non-exposed (control) group. Two of six studies reported longer telomere length in the group exposed to pesticides. DISCUSSION Our findings suggest an association between occupational exposure to pesticides and shorter telomere length. However, we found a small number of studies to include in our meta-analysis, being required more high-quality studies to strengthen our findings and conclusions.
Collapse
Affiliation(s)
- Jaqueline Dal Curtivo Passos
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
| | - Karoline Felisbino
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Izonete Cristina Guiloski
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| |
Collapse
|
30
|
M’Kacher R, Miguet M, Maillard PY, Colicchio B, Scheidecker S, Najar W, Arnoux M, Oudrhiri N, Borie C, Biehler M, Plesch A, Heidingsfelder L, Bennaceur-Griscelli A, Dieterlen A, Voisin P, Junker S, Carde P, Jeandidier E. A Central Role of Telomere Dysfunction in the Formation of a Unique Translocation within the Sub-Telomere Region Resulting in Duplication and Partial Trisomy. Genes (Basel) 2022; 13:genes13101762. [PMID: 36292646 PMCID: PMC9601474 DOI: 10.3390/genes13101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Telomeres play a major role in maintaining genome stability and integrity. Putative involvement of telomere dysfunction in the formation of various types of chromosomal aberrations is an area of active research. Here, we report a case of a six-month-old boy with a chromosomal gain encompassing the 11q22.3q25 region identified by SNP array analysis. The size of the duplication is 26.7 Mb and contains 170 genes (OMIM). The duplication results in partial trisomy of the region in question with clinical consequences, including bilateral renal dysplasia, delayed development, and a heart defect. Moreover, the karyotype determined by R-banding and chromosome painting as well as by hybridization with specific sub-telomere probes revealed the presence of an unbalanced t(9;11)(p24;q22.3) translocation with a unique breakpoint involving the sub-telomere region of the short arm of chromosome 9. The karyotypes of the parents were normal. Telomere integrity in circulating lymphocytes from the child and from his parents was assessed using an automated high-throughput method based on fluorescence in situ hybridization (FISH) with telomere- and centromere-specific PNA probes followed by M-FISH multicolor karyotyping. Very short telomeres, as well as an increased frequency of telomere loss and formation of telomere doublets, were detected in the child’s cells. Interestingly, similar telomere profiles were found in the circulating lymphocytes of the father. Moreover, an assessment of clonal telomere aberrations identified chromosomes 9 and 11 with particularly high frequencies of such aberrations. These findings strongly suggest that telomere dysfunction plays a central role in the formation of this specific unbalanced chromosome rearrangement via chromosome end-to-end fusion and breakage–fusion–bridge cycles.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| | - Marguerite Miguet
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
| | - Pierre-Yves Maillard
- Service de Génétique Hôpitaux Universitaires de Strasbourg, Hôpital de Haute Pierre, 1, Rue Molière, 67000 Strasbourg, France
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Sophie Scheidecker
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Wala Najar
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Micheline Arnoux
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Noufissa Oudrhiri
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Claire Borie
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Margaux Biehler
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, 68804 Altlussheim, Germany
| | | | - Annelise Bennaceur-Griscelli
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, 8000 Aarhus, Denmark
| | - Patrice Carde
- Department of Hematology Gustave Roussy Cancer Campus, Paris Saclay, 94805 Villejuif, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| |
Collapse
|
31
|
Zhang Y, Fu F, Zhang L, Zhang W, Chen L, Zhang Y, Chen W, Du Y, Chen S, Zhan Q, Feng Z, Xu H, Nie Y. Telomere is shortened in patients with irritable bowel syndrome in the Chinese population. J Gastroenterol Hepatol 2022; 37:1749-1755. [PMID: 35706406 DOI: 10.1111/jgh.15912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Telomere shortening is an accepted indicator of aging. Many studies have investigated an association between leukocyte telomere length (LTL) and psychiatric disorders. Mental or psychological factors could be an important cause of irritable bowel syndrome (IBS). However, there are currently few research evaluating correlations between LTL and IBS. METHODS We examined associations between LTL and IBS using quantitative polymerase chain reaction in independent cohorts, including 205 patients with IBS and 189 healthy controls. Furthermore, we examined whether mental or psychological factors, types of IBS, duration of IBS and antidepressants had an association with LTL in patients with IBS. RESULTS Among total samples, patients with IBS presented shorter LTL when compared to healthy controls (P < 0.0001). Moreover, in subgroup analyses of patients with IBS, not only the LTL in patients with IBS caused by mental or psychological factors was shorter (P < 0.0001), but also in patients with IBS that were caused by other factors (P = 0.0082). Furthermore, LTL in patients with IBS who had taken antidepressants for more than 1 month was longer than that in patients with IBS who did not take antidepressants or took for less than 1 month (P < 0.0001). CONCLUSIONS This is the first study to describe the relationship between LTL and IBS. This study showed significantly shorter telomeres in patients with IBS. Our findings suggest that LTL may hold the potential to serve as a predictor of IBS diagnosis.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fengyihuan Fu
- Department of Gastroenterology, Guangzhou Medical University Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liangjie Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Weihong Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lin Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenji Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanlei Du
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuzhen Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qi Zhan
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiqiang Feng
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
32
|
Akinnibosun OA, Maier MC, Eales J, Tomaszewski M, Charchar FJ. Telomere therapy for chronic kidney disease. Epigenomics 2022; 14:1039-1054. [PMID: 36177720 DOI: 10.2217/epi-2022-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect almost 10% of individuals worldwide and is one of the leading causes of morbidity and mortality. Renal fibrosis, a central pathway in CKD progression (irrespective of etiology), is associated with shortened or dysfunctional telomeres in animal studies. Telomeres are specialized nucleoprotein structures located at the chromosome end that maintain genomic integrity. The mechanisms of associations between telomere length and CKD have not yet been fully elucidated, however, CKD patients with shorter telomere length may have decreased renal function and a higher mortality rate. A plethora of ongoing research has focused on possible therapeutic applications of telomeres with the overall goal to preserve telomere length as a therapy to treat CKD.
Collapse
Affiliation(s)
| | - Michelle C Maier
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Victoria, Australia
| | - James Eales
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Victoria, Australia.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
34
|
Sikder S, Arunkumar G, Melters DP, Dalal Y. Breaking the aging epigenetic barrier. Front Cell Dev Biol 2022; 10:943519. [PMID: 35966762 PMCID: PMC9366916 DOI: 10.3389/fcell.2022.943519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is an inexorable event occurring universally for all organisms characterized by the progressive loss of cell function. However, less is known about the key events occurring inside the nucleus in the process of aging. The advent of chromosome capture techniques and extensive modern sequencing technologies have illuminated a rather dynamic structure of chromatin inside the nucleus. As cells advance along their life cycle, chromatin condensation states alter which leads to a different epigenetic landscape, correlated with modified gene expression. The exact factors mediating these changes in the chromatin structure and function remain elusive in the context of aging cells. The accumulation of DNA damage, reactive oxygen species and loss of genomic integrity as cells cease to divide can contribute to a tumor stimulating environment. In this review, we focus on genomic and epigenomic changes occurring in an aged cell which can contribute to age-related tumor formation.
Collapse
Affiliation(s)
| | | | | | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States
| |
Collapse
|
35
|
Chen SS, Liao XM, Wei QZ, Zhou YY, Su MY, Hu Y, Song YY, Zhang ZQ, Liang JJ. Associations of the Gut Microbiota Composition and Fecal Short-Chain Fatty Acids with Leukocyte Telomere Length in Children Aged 6 to 9 Years in Guangzhou, China: A Cross-sectional Study. J Nutr 2022; 152:1549-1559. [PMID: 35278080 DOI: 10.1093/jn/nxac063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Telomere length (TL) serves as a marker of cellular senescence and appears to plateau between the age of 4 y and young adulthood, after which the gut microbiota are supposed to be established. However, scarce data are available regarding the correlation between gut microbiota composition and TL in the pediatric population. OBJECTIVES We aimed to investigate whether the gut microbiota and the concentrations of SCFAs in feces are associated with leukocyte TL in children. METHODS In total, 401 children aged 6-9 y from Guangzhou were enrolled in this cross-sectional study. qPCR was used to determine relative TL in peripheral blood leukocytes. The gut microbiota was characterized by 16S ribosomal RNA amplicon sequencing and the fecal concentrations of total SCFAs and SCFA subtypes were determined using HPLC. The multivariate methods with an unbiased variable selection (MUVR) algorithm and partial least square models were used to select predictable operational taxonomic units (OTUs). Further correlation analyses were performed based on multiple linear regression models with adjustment for covariates and false discovery rate. RESULTS With the use of MUVR, 35 relevant and minimal optimal OTUs were finally selected. Multiple linear regression analysis showed that the abundance of several OTUs, including OTU334 (belonging to the genus Family XIII AD3011 group), OTU726 (belonging to the species Lachnoclostridium phocaeense), OTU1441 (belonging to the genus Ruminococcus torques group), OTU2553 (belonging to the genus Lachnospiraceae UCG-010), and OTU3375 (belonging to the family Lachnospiraceae), was negatively associated with leukocyte TL (β: -0.187 to -0.142; false discovery rate (FDR)-corrected P value (PFDR) = 0.009-0.035]. However, neither SCFA subtype nor total SCFA content in feces exhibited significant associations with TL (β: -0.032 to 0.048; PFDR = 0.915-0.969). CONCLUSIONS The gut microbiota, but not fecal SCFA concentration, was significantly associated with TL in this pediatric population.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xue-Mei Liao
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qin-Zhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ying-Yu Zhou
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meng-Yang Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Hu
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Song
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhe-Qing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing-Jing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Aguado J, Gómez-Inclán C, Leeson HC, Lavin MF, Shiloh Y, Wolvetang EJ. The hallmarks of aging in Ataxia-Telangiectasia. Ageing Res Rev 2022; 79:101653. [PMID: 35644374 DOI: 10.1016/j.arr.2022.101653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
Abstract
Ataxia-telangiectasia (A-T) is caused by absence of the catalytic activity of ATM, a protein kinase that plays a central role in the DNA damage response, many branches of cellular metabolism, redox and mitochondrial homeostasis, and cell cycle regulation. A-T is a complex disorder characterized mainly by progressive cerebellar degeneration, immunodeficiency, radiation sensitivity, genome instability, and predisposition to cancer. It is increasingly recognized that the premature aging component of A-T is an important driver of this disease, and A-T is therefore an attractive model to study the aging process. This review outlines the current state of knowledge pertaining to the molecular and cellular signatures of aging in A-T and proposes how these new insights can guide novel therapeutic approaches for A-T.
Collapse
Affiliation(s)
- Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia.
| | - Cecilia Gómez-Inclán
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Yosef Shiloh
- The David and Inez Myers Laboratory of Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
37
|
Guintini L, Paillé A, Graf M, Luke B, Wellinger RJ, Conconi A. Transcription of ncRNAs promotes repair of UV induced DNA lesions in Saccharomyces cerevisiae subtelomeres. PLoS Genet 2022; 18:e1010167. [PMID: 35486666 PMCID: PMC9106180 DOI: 10.1371/journal.pgen.1010167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/13/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet light causes DNA lesions that are removed by nucleotide excision repair (NER). The efficiency of NER is conditional to transcription and chromatin structure. UV induced photoproducts are repaired faster in the gene transcribed strands than in the non-transcribed strands or in transcriptionally inactive regions of the genome. This specificity of NER is known as transcription-coupled repair (TCR). The discovery of pervasive non-coding RNA transcription (ncRNA) advocates for ubiquitous contribution of TCR to the repair of UV photoproducts, beyond the repair of active gene-transcribed strands. Chromatin rules transcription, and telomeres form a complex structure of proteins that silences nearby engineered ectopic genes. The essential protective function of telomeres also includes preventing unwanted repair of double-strand breaks. Thus, telomeres were thought to be transcriptionally inert, but more recently, ncRNA transcription was found to initiate in subtelomeric regions. On the other hand, induced DNA lesions like the UV photoproducts must be recognized and repaired also at the ends of chromosomes. In this study, repair of UV induced DNA lesions was analyzed in the subtelomeric regions of budding yeast. The T4-endonuclease V nicking-activity at cyclobutene pyrimidine dimer (CPD) sites was exploited to monitor CPD formation and repair. The presence of two photoproducts, CPDs and pyrimidine (6,4)-pyrimidones (6-4PPs), was verified by the effective and precise blockage of Taq DNA polymerase at these sites. The results indicate that UV photoproducts in silenced heterochromatin are slowly repaired, but that ncRNA transcription enhances NER throughout one subtelomeric element, called Y’, and in distinct short segments of the second, more conserved element, called X. Therefore, ncRNA-transcription dependent TCR assists global genome repair to remove CPDs and 6-4PPs from subtelomeric DNA. Our skin is constantly exposed to sunlight and the ultraviolet component of it can severely damage the DNA of our chromosomes. If that damage is not efficiently repaired, the cells’ physiology becomes deregulated and very often cancer ensues. The specific molecular mechanism that will remove this damage is called nucleotide excision repair or NER. NER is conserved from humans to yeast, and it is much more efficient on DNA that is transcribed into RNA. Here we report how NER acts at the very ends of the chromosomes, the telomeres. In particular, the results show that in this area of the chromosomes with very few genes and where transcription is kept very low, the remaining transcription of non-coding RNAs such as TERRAs still stimulates NER and therefore helps guarding the integrity of DNA. These findings therefore suggest that the spurious transcription of subtelomeric DNA has a very positive impact on DNA repair efficiency. Hence, in addition to the known functions of TERRA and other ncRNAs in telomere maintenance, their transcription per se can be viewed as a genome stabilizing function.
Collapse
Affiliation(s)
- Laetitia Guintini
- Department of Microbiology and Infectious Diseases at the Université de Sherbrooke, Sherbrooke, Canada
| | - Audrey Paillé
- Department of Microbiology and Infectious Diseases at the Université de Sherbrooke, Sherbrooke, Canada
| | - Marco Graf
- Institute for Developmental and Neurobiology (IDN) at the Johannes-Gutenberg-University, Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases at the Université de Sherbrooke, Sherbrooke, Canada
- * E-mail: (RJW); (AC)
| | - Antonio Conconi
- Department of Microbiology and Infectious Diseases at the Université de Sherbrooke, Sherbrooke, Canada
- * E-mail: (RJW); (AC)
| |
Collapse
|
38
|
Telomeric Repeat-Containing RNA (TERRA): A Review of the Literature and First Assessment in Cutaneous T-Cell Lymphomas. Genes (Basel) 2022; 13:genes13030539. [PMID: 35328092 PMCID: PMC8953746 DOI: 10.3390/genes13030539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
Telomeric Repeat-containing RNA (TERRA) are long non-coding RNAs transcribed from telomeric DNA sequences from multiple chromosome ends. Major research efforts have been made to understand TERRA roles and functions in several physiological and pathological processes. We summarize herein available data regarding TERRA’s roles in human cells and we report the first investigation in cutaneous T-cells lymphomas (CTCL) using real-time PCR. Among the TERRA analysed, our data suggest a particular role for TERRA 16p downregulation and TERRA 11q upregulation in CTCL lymphomagenesis.
Collapse
|
39
|
Ni YQ, Xu H, Liu YS. Roles of Long Non-coding RNAs in the Development of Aging-Related Neurodegenerative Diseases. Front Mol Neurosci 2022; 15:844193. [PMID: 35359573 PMCID: PMC8964039 DOI: 10.3389/fnmol.2022.844193] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Aging-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are gradually becoming the primary burden of society and cause significant health-care concerns. Aging is a critical independent risk factor for neurodegenerative diseases. The pathological alterations of neurodegenerative diseases are tightly associated with mitochondrial dysfunction, inflammation, and oxidative stress, which in turn stimulates the further progression of neurodegenerative diseases. Given the potential research value, lncRNAs have attracted considerable attention. LncRNAs play complex and dynamic roles in multiple signal transduction axis of neurodegeneration. Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation and development of aging-related neurodegenerative diseases. This review compiles the underlying pathological mechanisms of aging and related neurodegenerative diseases. Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network of lncRNAs in neurodegenerative diseases are also explored.
Collapse
Affiliation(s)
- Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
- *Correspondence: You-Shuo Liu,
| |
Collapse
|
40
|
Contribution of senescent and reactive astrocytes on central nervous system inflammaging. Biogerontology 2022; 23:21-33. [PMID: 35084630 DOI: 10.1007/s10522-022-09952-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Astrocytes, the most predominant cells in the central nervous system (CNS), have well-recognized neuroprotective functions. However, during the CNS aging, astrocytes can become neurotoxic and contribute to chronic inflammation in age-associated brain deterioration and disease. Astrocytes are known to become senescent or reactive due to the exposure to stressful stimuli, in both cases they contribute to an impaired cognitive function through the production of pro-inflammatory mediators. Although both scenarios (senescence and reactive gliosis) have been studied independently, there are no direct studies comparing their secretomes simultaneously in the aging-brain. In this review we discuss the most recent studies in that respect, in order to analyze their simultaneous participation in brain aging.
Collapse
|
41
|
Wu J, Liu Y, Song Y, Wang L, Ai J, Li K. Aging conundrum: A perspective for ovarian aging. Front Endocrinol (Lausanne) 2022; 13:952471. [PMID: 36060963 PMCID: PMC9437485 DOI: 10.3389/fendo.2022.952471] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive loss of physiological integrity and accumulation of degenerative changes leading to functional impairment and increased susceptibility to diseases are the main features of aging. The ovary, the key organ that maintains female reproductive and endocrine function, enters aging earlier and faster than other organs and has attracted extensive attention from society. Ovarian aging is mainly characterized by the progressive decline in the number and quality of oocytes, the regulatory mechanisms of which have yet to be systematically elucidated. This review discusses the hallmarks of aging to further highlight the main characteristics of ovarian aging and attempt to explore its clinical symptoms and underlying mechanisms. Finally, the intervention strategies related to aging are elaborated, especially the potential role of stem cells and cryopreservation of embryos, oocytes, or ovarian tissue in the delay of ovarian aging.
Collapse
Affiliation(s)
| | | | | | - Lingjuan Wang
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Jihui Ai
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Kezhen Li
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| |
Collapse
|
42
|
Endurance training alleviates MCP-1 and TERRA accumulation at old age in human skeletal muscle. Exp Gerontol 2021; 153:111510. [PMID: 34371098 DOI: 10.1016/j.exger.2021.111510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 11/22/2022]
Abstract
Both oxidative stress and telomere transcription are up-regulated by acute endurance exercise in human skeletal muscle. Whether and how life-long exercise training influences the antioxidant system response at transcriptional level and TERRA expression is unknown, especially during aging. Response to acute endurance exercise was investigated in muscle biopsies of 3 male subjects after 45 min of cycling. MCP-1 and SOD1 mRNA levels increased up to, 15-fold and 63%, respectively, after the cycling session while the mRNA levels of SOD2 were downregulated by 25%. The effects of chronic endurance exercise and aging were tested in the blood and muscle of 34 male subjects divided into four groups: young (YU) or old (OU) untrained, young (YT) or old (OT) trained cyclists. Long-term endurance training limited the age-dependent elevation in SOD1 (OT vs OU, -26%, P = 0.03) and the decline in SOD2 mRNA levels (OU vs YU, -41%, P = 0.04). A high endurance training status alleviated the age-related increase in the aging biological marker MCP-1 in plasma (OU vs YU, +48%, P = 0.005). Similar results were observed for telomeric transcription as the age-associated increase in 16p TERRA levels (OU vs YU, +39%, P = 0.001) was counteracted by a high endurance training status (OT vs OU, -63%, P = 0.0005). In conclusion, as MCP-1, we propose that the age-related TERRA accumulation might represent a novel biological marker of aging. Those aging-related increase expression might be alleviated by a high endurance training status. Whether those biological markers of aging are linked to an elevation of oxidative stress is still an open question. Therefore, whether the positive adaptations provided by endurance training indeed reduce oxidative stress, including at telomeres, and whether TERRA plays any role in this, need to be further investigated.
Collapse
|
43
|
Klotho inhibits neuronal senescence in human brain organoids. NPJ Aging Mech Dis 2021; 7:18. [PMID: 34341344 PMCID: PMC8329278 DOI: 10.1038/s41514-021-00070-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Aging is a major risk factor for many neurodegenerative diseases. Klotho (KL) is a glycosylated transmembrane protein that is expressed in the choroid plexus and neurons of the brain. KL exerts potent anti-aging effects on multiple cell types in the body but its role in human brain cells remains largely unclear. Here we show that human cortical neurons, derived from human pluripotent stem cells in 2D cultures or in cortical organoids, develop the typical hallmarks of senescent cells when maintained in vitro for prolonged periods of time, and that moderate upregulation or repression of endogenous KL expression in cortical organoids inhibits and accelerates senescence, respectively. We further demonstrate that KL expression alters the expression of senescence-associated genes including, extracellular matrix genes, and proteoglycans, and can act in a paracrine fashion to inhibit neuronal senescence. In summary, our results establish an important role for KL in the regulation of human neuronal senescence and offer new mechanistic insight into its role in human brain aging.
Collapse
|