1
|
Zhu B, Cao C, Liu W, Liu Y, Luo Y, Peng D. The predictive value of estimated glucose disposal rate for all-cause and cardiovascular mortality in the US non-diabetic population aged ≥60 years: A population-based cohort study. Diabetes Metab Syndr 2024; 19:103182. [PMID: 39721490 DOI: 10.1016/j.dsx.2024.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
AIMS This study seeks to evaluate the prognostic significance of eGDR in predicting mortality outcomes within non-diabetic older adults. METHODS 8131 non-diabetic participants aged ≥60 years from the National Health and Nutrition Examination Survey (2001-2018) was included in this study. eGDR was calculated as: eGDR (mg/kg/min) = 21.158 - [0.09 × waist circumference (cm)] - [3.407 × Hypertension (Yes = 1/No = 0)] - [0.551 × HbA1c (%)]. Weighted Cox proportional hazards models, cumulative hazard curves, restricted cubic spline (RCS), and threshold effects analyses were performed to explore the relationship between eGDR and mortality outcomes. Subgroup analyses and mediation effects analyses were conducted. RESULTS 2566 all-cause deaths and 689 cardiovascular deaths were recorded. Lower eGDR was associated with higher all-cause (HR = 0.76, 95 % CI: 0.63-0.91) and cardiovascular mortality (HR = 0.56, 95 % CI: 0.40-0.80). Inflection points were identified through RCS curve analyses, and the threshold effect was significant. The eGDR-mortality association remained consistent across subgroups. Mediation analyses showed that neutrophil to high-density lipoprotein cholesterol ratio mediated the association. CONCLUSIONS Lower eGDR levels are linked to higher risk of both all-cause and cardiovascular mortality in non-diabetic older adults, suggesting its potential utility for risk assessment among this population.
Collapse
Affiliation(s)
- Botao Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenghui Cao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenwu Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuxuan Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yonghong Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Yuan J, Wang Y, Wang D, Yan H, Wang N. Loxenatide Alleviates High Glucose-Induced Pancreatic β-Cell Senescence via Regulating the PERK/eIF2α Pathway. Horm Metab Res 2024; 56:890-899. [PMID: 39333044 DOI: 10.1055/a-2407-9360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are effective hypoglycemic agents for type 2 diabetes mellitus (T2DM). It was reported that T2DM was implicated in pancreatic β-cell senescence. Whether loxenatide regulates cellular senescence of pancreatic β-cells is to be investigated. Our results revealed that high glucose (HG)-induced cellular senescence and elevated expression of SASP factors inhibited cell proliferation and stimulated DNA damage, which were reversed by loxenatide treatment. In addition, HG induction resulted in promoted insulin secretion and insulin synthesis of pancreatic β-cells and loxenatide treatment further strengthened these influences. In addition, loxenatide could inactivate the PERK/eIF2α signaling pathway via decreasing the levels of p-PERK and p-eIF2α in HG-induced pancreatic β-cells. Furthermore, CCT020312, an activator of the PERK/eIF2α signaling pathway, abolished loxenatide-mediated inhibiting cellular senescence, elevating cell proliferation and improving DNA damage and enhancing insulin secretion of HG-induced pancreatic β-cells. In conclusion, our results indicated that loxenatide impeded cellular senescence, promoted cell proliferation, improved DNA damage, enhanced insulin secretion and insulin synthesis of HG-induced pancreatic β-cells through modulating the PERK/eIF2α signaling pathway.
Collapse
Affiliation(s)
- Junfang Yuan
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Yuzhong Wang
- Department of Urology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Defeng Wang
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Han Yan
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Ning Wang
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| |
Collapse
|
3
|
Xie Y, Tang Y, Yang J, Atta M, Wang N, Qin H. Sesamol Alleviated Lipotoxicity-Induced Dysfunction in MIN6 Cells via Facilitating Cellular Senescence Caused by Endoplasmic Reticulum Stress. J Biochem Mol Toxicol 2024; 38:e70038. [PMID: 39470143 DOI: 10.1002/jbt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Obesity is found to be a significant risk factor for type 2 diabetes mellitus (T2DM), attributed to lipotoxicity-induced β-cell dysfunction. However, the specific mechanism involved in the process remains incompletely unclarified. The current study demonstrated lipotoxicity resulted in the activation of ER stress, which increased the protein level of TXNIP, thereby inducing senescence-assiciated dysfunction in MIN6 cells under high fat environment. And we also found sesamol, a natural functional component extracted from sesame, was able to alleviate senescence-associated β-cell dysfunction induced by lipotoxicity by inhibiting ER stress and TXNIP. Our findings provided novel insights into senescence-related T2DM and propose innovative therapeutic approaches for utilizing sesamol in the treatment of T2DM in the obese elderly population.
Collapse
Affiliation(s)
- Yan Xie
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yongyan Tang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jinxin Yang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mahnoor Atta
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Nan Wang
- Department of Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
4
|
Ballesteros-Pla C, Sevillano J, Sánchez-Alonso MG, Limones M, Pita J, Zapatería B, Sanz-Cuadrado MI, Pizarro-Delgado J, Izquierdo-Lahuerta A, Medina-Gómez G, Herradón G, Ramos-Álvarez MDP. Constitutive Pleiotrophin Deletion Results in a Phenotype with an Altered Pancreatic Morphology and Function in Old Mice. Int J Mol Sci 2024; 25:10960. [PMID: 39456743 PMCID: PMC11507919 DOI: 10.3390/ijms252010960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Pleiotrophin (PTN) is crucial for embryonic development and pancreas organogenesis as it regulates metainflammation, metabolic homeostasis, thermogenesis, and glucose tolerance. Pleiotrophin deletion is associated with a lipodystrophic phenotype in which adipose tissue plasticity is altered in late life. This study explored the impact of pleiotrophin deletion on pancreatic morphology and function in later life. We analyzed glucose tolerance and circulating parameters on female wild-type (Ptn+/+) and knock-out (Ptn-/-) mice. At 9 and 15 months, we conducted morphometric analyses of pancreatic islets and evaluated the levels of insulin, glucagon, somatostatin, glucose transporter 2 (GLUT2), vesicle-associated membrane protein 2 (VAMP2), and synaptosome-associated protein 25 (SNAP25) via immunofluorescence. The effect of PTN on glucose-stimulated insulin secretion (GSIS) was evaluated in INS1E cells and isolated islets. Ptn-/- mice showed hyperinsulinemia, impaired glucose tolerance, and increased homeostatic model assessment for insulin resistance (HOMA-IR) with age. While Ptn+/+ islets enlarge with age, in Ptn-/- mice, the median size decreased, and insulin content increased. Vesicle transport and exocytosis proteins were significantly increased in 9-month-old Ptn-/- islets. Islets from Ptn-/- mice showed impaired GSIS and decreased cell membrane localization of GLUT2 whereas, PTN increased GSIS in INS1E cells. Ptn deletion accelerated age-related changes in the endocrine pancreas, affecting islet number and size, and altering VAMP2 and SNAP25 levels and GLUT2 localization leading to impaired GSIS and insulin accumulation in islets.
Collapse
Affiliation(s)
- Cristina Ballesteros-Pla
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Julio Sevillano
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - María Gracia Sánchez-Alonso
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - María Limones
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Jimena Pita
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Begoña Zapatería
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marta Inmaculada Sanz-Cuadrado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Javier Pizarro-Delgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Adriana Izquierdo-Lahuerta
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, 28922 Madrid, Spain; (A.I.-L.); (G.M.-G.)
| | - Gema Medina-Gómez
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, 28922 Madrid, Spain; (A.I.-L.); (G.M.-G.)
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte Urbanización Montepríncipe, 28660 Madrid, Spain;
| | - María del Pilar Ramos-Álvarez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| |
Collapse
|
5
|
Fluca AL, Pani B, Janjusevic M, Zwas DR, Abraham Y, Calligaris M, Beltrami AP, Campos Corgosinho F, Marketou M, D'Errico S, Sinagra G, Aleksova A. Unraveling the relationship among insulin resistance, IGF-1, and amyloid-beta 1-40: Is the definition of type 3 diabetes applicable in the cardiovascular field? Life Sci 2024; 352:122911. [PMID: 39002609 DOI: 10.1016/j.lfs.2024.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The concept of "type 3 diabetes" has emerged to define alterations in glucose metabolism that predispose individuals to the development of Alzheimer's disease (AD). Novel evidence suggests that changes in the insulin/insulin-like growth factor 1 (IGF-1)/growth hormone (GH) axis, which are characteristic of Diabetes Mellitus, are one of the major factors contributing to excessive amyloid-beta (Aβ) production and neurodegenerative processes in AD. Moreover, molecular findings suggest that insulin resistance and dysregulated IGF-1 signaling promote atherosclerosis via endothelial dysfunction and a pro-inflammatory state. As the pathophysiological role of Aβ1-40 in patients with cardiovascular disease has attracted attention due to its involvement in plaque formation and destabilization, it is of great interest to explore whether a paradigm similar to that in AD exists in the cardiovascular field. Therefore, this review aims to elucidate the intricate interplay between insulin resistance, IGF-1, and Aβ1-40 in the cardiovascular system and assess the applicability of the type 3 diabetes concept. Understanding these relationships may offer novel therapeutic targets and diagnostic strategies to mitigate cardiovascular risk in patients with insulin resistance and dysregulated IGF-1 signaling.
Collapse
Affiliation(s)
- Alessandra Lucia Fluca
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Beatrice Pani
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Milijana Janjusevic
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Donna R Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Heart Institute, Hadassah University Medical Center, Jerusalem, Israel
| | - Yosefa Abraham
- Department of Human Nutrition and Metabolism, School of Public Health Medical Faculty Jerusalem, Jerusalem, Israel
| | - Matteo Calligaris
- Department of Medicine (DMED), Università degli Studi di Udine, Udine, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine (DMED), Università degli Studi di Udine, Udine, Italy; Azienda Sanitaria Universitaria Friuli Centrale, Istituto di Patologia Clinica, Udine, Italy
| | | | - Maria Marketou
- Heraklion University General Hospital, University of Crete, School of Medicine, Cardiology Department, Crete, Greece
| | - Stefano D'Errico
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Aneta Aleksova
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
6
|
Mathisen AF, Legøy TA, Larsen U, Unger L, Abadpour S, Paulo JA, Scholz H, Ghila L, Chera S. The age-dependent regulation of pancreatic islet landscape is fueled by a HNF1a-immune signaling loop. Mech Ageing Dev 2024; 220:111951. [PMID: 38825059 DOI: 10.1016/j.mad.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Milešević M, Matić Jelić I, Rumenović V, Ivanjko N, Vukičević S, Bordukalo-Nikšić T. The Influence of BMP6 on Serotonin and Glucose Metabolism. Int J Mol Sci 2024; 25:7842. [PMID: 39063084 PMCID: PMC11276723 DOI: 10.3390/ijms25147842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies have suggested a potential role of bone morphogenetic protein 6 (BMP6) in glucose metabolism, which also seems to be regulated by serotonin (5-hydroxytryptamine, 5HT), a biogenic amine with multiple roles in the organism. In this study, we explored possible interactions between BMP6, serotonin, and glucose metabolism regulation. The effect of BMP6 or 5HT on pancreatic β-cells has been studied in vitro using the INS-1 832/13 rat insulinoma cell line. Studies in vivo have been performed on mice with the global deletion of the Bmp6 gene (BMP6-/-) and included glucose and insulin tolerance tests, gene expression studies using RT-PCR, immunohistochemistry, and ELISA analyses. We have shown that BMP6 and 5HT treatments have the opposite effect on insulin secretion from INS-1 cells. The effect of BMP6 on the 5HT system in vivo depends on the tissue studied, with no observable systemic effect on peripheral 5HT metabolism. BMP6 deficiency does not cause diabetic changes, although a mild difference in insulin tolerance test between BMP6-/- and WT mice was observed. In conclusion, BMP6 does not directly influence glucose metabolism, but there is a possibility that its deletion causes slowly developing changes in glucose and serotonin metabolism, which would become more expressed with ageing.
Collapse
Affiliation(s)
| | | | | | | | | | - Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (I.M.J.); (V.R.); (N.I.); (S.V.)
| |
Collapse
|
8
|
Xiao X, Yang L, Xiao L, Li Y, Chang X, Han X, Tang W, Zhu Y. Inhibiting arachidonic acid generation mitigates aging-induced hyperinsulinemia and insulin resistance in mice. Clin Nutr 2024; 43:1725-1735. [PMID: 38843581 DOI: 10.1016/j.clnu.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Aging-related type 2 diabetes (T2DM) is characterized by hyperinsulinemia, insulin resistance, and β-cell dysfunction. However, the underlying molecular mechanisms remain to be unclear. METHODS We conducted non-targeted metabolomics to compare human serum samples from young adults (YA), elderly adults (EA), and elderly adults with diabetes (EA + DM) of Chinese population. Adult mice and aged mice were intragastrically administered with varespladib every day for two weeks and metabolic characteristics were monitored. Serum levels of arachidonic acid, insulin, and C-peptide, as well as serum activity of secretory phospholipase A2 (sPLA2) were detected in mice. Mouse islet perfusion assays were used to assess insulin secretion ability. Phosphorylated AKT levels were measured to evaluate insulin sensitivities of peripheral tissues in mice. RESULTS Non-targeted metabolomics analysis of human serum samples revealed differential metabolic signatures among the YA, EA, and EA + DM groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed significant enhancement of arachidonic acid metabolism and glycerophospholipid metabolism in the EA group compared with the YA group. Further analysis identified two metabolic fluxes that favored the accumulation of arachidonic acid in the elderly. Increased levels of arachidonic acid were also confirmed in aged mice with hyperinsulinemia and insulin resistance, together with subsequent glucose intolerance. Conversely, inhibiting the generation of arachidonic acid with varespladib, an inhibitor of sPLA2, reduced aging-associated diabetes by improving hyperinsulinemia and hepatic insulin resistance in aged mice but not in adult mice. Islet perfusion assays also showed that varespladib treatment suppressed the enhanced insulin secretion observed in aged islets. CONCLUSIONS Collectively, our findings uncover that arachidonic acid serves as a metabolic hub in Chinese elderly population. Our results also suggest that arachidonic acid plays a fundamental role in regulating β-cell function during aging and point to a novel therapy for aging-associated diabetes.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Longxuan Yang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, China
| | - Lei Xiao
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, China.
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
9
|
Khattar G, Asmar S, Aoun L, Saliba F, Almardini S, Abu Baker S, Hong C, El Chamieh C, Haddadin F, Habib T, Mourad O, Morcos Z, Arafa F, Mina J, El Gharib K, Aldalahmeh M, Khan S, Bou Sanayeh E. Outpatient insulin use in type 2 diabetes mellitus and acute respiratory distress syndrome outcomes: A retrospective cohort study. World J Clin Cases 2024; 12:2966-2975. [PMID: 38898846 PMCID: PMC11185405 DOI: 10.12998/wjcc.v12.i17.2966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND The impact of type 2 diabetes mellitus (T2DM) on acute respiratory distress syndrome (ARDS) is debatable. T2DM was suspected to reduce the risk and complications of ARDS. However, during coronavirus disease 2019 (COVID-19), T2DM predisposed patients to ARDS, especially those who were on insulin at home. AIM To evaluate the impact of outpatient insulin use in T2DM patients on non-COVID-19 ARDS outcomes. METHODS We conducted a retrospective cohort analysis using the Nationwide Inpatient Sample database. Adult patients diagnosed with ARDS were stratified into insulin-dependent diabetes mellitus (DM) (IDDM) and non-insulin-dependent DM (NIDDM) groups. After applying exclusion criteria and matching over 20 variables, we compared cohorts for mortality, duration of mechanical ventilation, incidence of acute kidney injury (AKI), length of stay (LOS), hospitalization costs, and other clinical outcomes. RESULTS Following 1:1 propensity score matching, the analysis included 274 patients in each group. Notably, no statistically significant differences emerged between the IDDM and NIDDM groups in terms of mortality rates (32.8% vs 31.0%, P = 0.520), median hospital LOS (10 d, P = 0.537), requirement for mechanical ventilation, incidence rates of sepsis, pneumonia or AKI, median total hospitalization costs, or patient disposition upon discharge. CONCLUSION Compared to alternative anti-diabetic medications, outpatient insulin treatment does not appear to exert an independent influence on in-hospital morbidity or mortality in diabetic patients with non-COVID-19 ARDS.
Collapse
Affiliation(s)
- Georges Khattar
- Department of Medicine, Holy Spirit University of Kaslik, Jounieh 00000, Lebanon
| | - Samer Asmar
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Laurence Aoun
- Department of Medicine, Holy Spirit University of Kaslik, Jounieh 00000, Lebanon
| | - Fares Saliba
- Department of Medicine, Holy Spirit University of Kaslik, Jounieh 00000, Lebanon
| | - Shaza Almardini
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Saif Abu Baker
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Catherine Hong
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Carolla El Chamieh
- Public Heath and Biostatistics, Independent Research, Beirut 0000, Lebanon
| | - Fadi Haddadin
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Toni Habib
- Department of Medicine, Lebanese University, Beirut 00000, Lebanon
| | - Omar Mourad
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Zeina Morcos
- Department of Medicine, University of Balamand, Beirut 00000, Lebanon
| | - Fatema Arafa
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Jonathan Mina
- Department of Medicine, Lebanese American University, Beirut 00000, Lebanon
| | - Khalil El Gharib
- Department of Medicine, Northwell Health Staten Island University Hospital, New York, NY 10305, United States
| | - Mohammad Aldalahmeh
- Department of Medicine, Northwell Health Staten Island University Hospital, New York, NY 10305, United States
| | - Salman Khan
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Elie Bou Sanayeh
- Department of Medicine, Holy Spirit University of Kaslik, Jounieh 00000, Lebanon
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY 10305, United States
| |
Collapse
|
10
|
Cui D, Feng X, Lei S, Zhang H, Hu W, Yang S, Yu X, Su Z. Pancreatic β-cell failure, clinical implications, and therapeutic strategies in type 2 diabetes. Chin Med J (Engl) 2024; 137:791-805. [PMID: 38479993 PMCID: PMC10997226 DOI: 10.1097/cm9.0000000000003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT Pancreatic β-cell failure due to a reduction in function and mass has been defined as a primary contributor to the progression of type 2 diabetes (T2D). Reserving insulin-producing β-cells and hence restoring insulin production are gaining attention in translational diabetes research, and β-cell replenishment has been the main focus for diabetes treatment. Significant findings in β-cell proliferation, transdifferentiation, pluripotent stem cell differentiation, and associated small molecules have served as promising strategies to regenerate β-cells. In this review, we summarize current knowledge on the mechanisms implicated in β-cell dynamic processes under physiological and diabetic conditions, in which genetic factors, age-related alterations, metabolic stresses, and compromised identity are critical factors contributing to β-cell failure in T2D. The article also focuses on recent advances in therapeutic strategies for diabetes treatment by promoting β-cell proliferation, inducing non-β-cell transdifferentiation, and reprograming stem cell differentiation. Although a significant challenge remains for each of these strategies, the recognition of the mechanisms responsible for β-cell development and mature endocrine cell plasticity and remarkable advances in the generation of exogenous β-cells from stem cells and single-cell studies pave the way for developing potential approaches to cure diabetes.
Collapse
Affiliation(s)
- Daxin Cui
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingrong Feng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siman Lei
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wanxin Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Murai N, Saito N, Oka R, Nii S, Nishikawa H, Suzuki A, Kodama E, Iida T, Mikura K, Imai H, Hashizume M, Tadokoro R, Sugisawa C, Iizaka T, Otsuka F, Ishibashi S, Nagasaka S. Body Roundness Index Is Better Correlated with Insulin Sensitivity than Body Shape Index in Young and Middle-Aged Japanese Persons. Metab Syndr Relat Disord 2024; 22:151-159. [PMID: 38190317 PMCID: PMC10951619 DOI: 10.1089/met.2023.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Aims: The present study aimed to clarify the relationships between novel and traditional anthropometric indices and insulin sensitivity (SI) in young and middle-aged Japanese persons with normal glucose tolerance (NGT), and middle-aged Japanese persons with NGT and glucose intolerance. Methods: Plasma glucose and insulin levels were measured in 1270 young (age <40 years) and 2153 middle-aged persons with NGT (n = 1531) and glucose intolerance (n = 622) during a 75-g oral glucose tolerance test. Height (Ht), weight, and waist circumference (WC) were measured. The body mass index (BMI), WC, and the WC/Ht ratio were used as traditional anthropometric indices. A body shape index (ABSI) and the body roundness index (BRI) were calculated as novel indices. Indices of SI (Matsuda index and 1/homeostasis model assessment of insulin resistance) were calculated and compared with anthropometric indices. Results: The ABSI showed a weak correlation with SI indices in all groups. The BRI showed almost the same correlation with SI indices as the BMI, WC, and WC/Ht in all groups. The inverse correlation between each of the anthropometric indices other than ABSI and SI indices was weak in young persons, at 0.16-0.27 (Spearman's ρ values), but strong in middle-aged persons, at 0.38-1.00. On receiver-operating characteristic (ROC) curve analysis for detection of insulin resistance, the ABSI had a lower area under the ROC curve (AUC) than the other anthropometric indices, and the BRI and the WC/Ht ratio showed similar AUCs. The AUCs for the BRI and WC/Ht ratio were the highest in middle-aged men with NGT and glucose intolerance. Conclusions: The BRI, not the ABSI, was better correlated with SI in young and middle-aged Japanese persons. The BRI and WC/Ht ratio were comparable in their correlations with SI and the detection of insulin resistance in the participants of the present study.
Collapse
Affiliation(s)
- Norimitsu Murai
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Naoko Saito
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Rie Oka
- Department of Internal Medicine, Hokuriku Central Hospital, Toyama, Japan
| | - Sayuri Nii
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroto Nishikawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Asami Suzuki
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Eriko Kodama
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Tatsuya Iida
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Kentaro Mikura
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hideyuki Imai
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Mai Hashizume
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Rie Tadokoro
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Chiho Sugisawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Toru Iizaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Fumiko Otsuka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shoichiro Nagasaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
12
|
Yu M, Qian X, Wang Y, Li Q, Peng C, Chen B, Fang P, Shang W, Zhang Z. Emerging role of NEDD8-mediated neddylation in age-related metabolic diseases. Ageing Res Rev 2024; 94:102191. [PMID: 38199526 DOI: 10.1016/j.arr.2024.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Aging in humans is associated with abdominal distribution and remodeling of body fat and a parallel gradual increase in the prevalence of metabolic diseases such as obesity, type 2 diabetes mellitus and fatty liver disease, as well as the risk of developing metabolic complications. Current treatments might be improved by understanding the detailed mechanisms underlying the onset of age-related metabolic disorders. Neddylation, a post-translational modification that adds the ubiquitin-like protein NEDD8 to substrate proteins, has recently been linked to age-related metabolic diseases, opening new avenues of investigation and raising a potential target for treatment of these diseases. In this review, we will focus on the potential role of NEDD8-mediated neddylation in age-related metabolic dysregulation, insulin resistance, obesity, type 2 diabetes mellitus and fatty liver. We propose that alterations in NEDD8-mediated neddylation contribute to triggering insulin resistance and the development of age-related metabolic dysregulation, thus highlighting NEDD8 as a promising therapeutic target for preventing age-related metabolic diseases.
Collapse
Affiliation(s)
- Mei Yu
- Taizhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Xueshen Qian
- Taizhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Yajing Wang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Qiao Li
- Taizhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Chao Peng
- Taizhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Bei Chen
- Taizhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
13
|
Chaudhary R, Khanna J, Rohilla M, Gupta S, Bansal S. Investigation of Pancreatic-beta Cells Role in the Biological Process of Ageing. Endocr Metab Immune Disord Drug Targets 2024; 24:348-362. [PMID: 37608675 DOI: 10.2174/1871530323666230822095932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Cellular senescence is associated with the formation and progression of a range of illnesses, including ageing and metabolic disorders such as diabetes mellitus and pancreatic beta cell dysfunction. Ageing and reduced glucose tolerance are interconnected. Often, Diabetes is becoming more common, which is concerning since it raises the risk of a variety of age-dependent disorders such as cardiovascular disease, cancer, Parkinson's disease, stroke, and Alzheimer's disease. OBJECTIVES The objectives of this study are to find out the most recent research on how ageing affects the functions of pancreatic beta cells, beta cell mass, beta cell senescence, mitochondrial dysfunction, and hormonal imbalance. METHODS Various research and review manuscripts are gathered from various records such as Google Scholar, PubMed, Mendeley, Scopus, Science Open, the Directory of Open Access Journals, and the Education Resources Information Centre, using different terms like "Diabetes, cellular senescence, beta cells, ageing, insulin, glucose". RESULTS In this review, we research novel targets in order to discover new strategies to treat diabetes. Abnormal glucose homeostasis and type 2 diabetes mellitus in the elderly may aid in the development of novel medicines to delay or prevent diabetes onset, improve quality of life, and, finally, increase life duration. CONCLUSION Aging accelerates beta cell senescence by generating premature cell senescence, which is mostly mediated by high glucose levels. Despite higher plasma glucose levels, hepatic gluconeogenesis accelerates and adipose tissue lipolysis rises, resulting in an increase in free fatty acid levels in the blood and worsening insulin resistance throughout the body.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Janvi Khanna
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Manni Rohilla
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
14
|
Wu P, Zhang P, Chen XD. Assessing food digestion in the elderly using in vitro gastrointestinal models. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024. [DOI: 10.1016/bs.afnr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Arsh H, Ali A, Khenhrani RR, Simran F, Dino U, Tamang S, Manoj F, Bai S, Bai M, Panjwani GR, Kumar D, Rani D, Partab F, Malik J. Efficacy and Safety of Pitavastatin in Patients with Impaired Glucose Tolerance: An Updated Review. Curr Probl Cardiol 2023; 48:101981. [PMID: 37473935 DOI: 10.1016/j.cpcardiol.2023.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
This review provides an updated overview of the efficacy and safety of pitavastatin in patients with impaired glucose tolerance (IGT). IGT is a prediabetic state characterized by elevated blood glucose levels that do not meet the criteria for diabetes. The review explores the potential benefits of pitavastatin in reducing cardiovascular risk and improving lipid profiles in individuals with IGT. It also examines the glycemic effects of pitavastatin, including its impact on fasting blood glucose levels, insulin sensitivity, and beta-cell function. The review highlights the need for individualized treatment approaches, taking into account the patient's overall cardiovascular risk profile and glycemic control needs. While pitavastatin has shown modest improvements in glycemic control, it is not a substitute for lifestyle modifications or standard antidiabetic medications. Future directions for research include long-term follow-up studies, mechanistic investigations, and comparative analyses to further understand the glycemic effects of pitavastatin in IGT. Overall, this narrative review provides valuable insights for healthcare professionals involved in the management of individuals with IGT, emphasizing the importance of a comprehensive approach to reduce cardiovascular risk and optimize glycemic control.
Collapse
Affiliation(s)
- Hina Arsh
- Department of Medicine, THQ Hospital, Pasrur, Pakistan
| | - Asif Ali
- Department of Medicine, Chandka Medical College, Larkana, Pakistan
| | - Raja Ram Khenhrani
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Lyari, Pakistan
| | - Fnu Simran
- Department of Medicine, Sheikh Khalifa Bin Zayed Al Nayhan Medical and Dental College, Lahore, Pakistan
| | - Umbish Dino
- Department of Medicine, Sheikh Khalifa Bin Zayed Al Nayhan Medical and Dental College, Lahore, Pakistan
| | - Sweta Tamang
- Nepal Medical College and Teaching Hospital, Nepal
| | - Fnu Manoj
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shuaita Bai
- Department of Medicine, People's University of Medical and Health Sciences, Nawabshah, Pakistan
| | - Monika Bai
- Department of Medicine, People's University of Medical and Health Sciences, Nawabshah, Pakistan
| | | | - Deepak Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Deepa Rani
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Lyari, Pakistan
| | - Fnu Partab
- Department of Medicine, Chandka Medical College, Larkana, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan.
| |
Collapse
|
16
|
Allué-Guardia A, Torrelles JB, Sigal A. Tuberculosis and COVID-19 in the elderly: factors driving a higher burden of disease. Front Immunol 2023; 14:1250198. [PMID: 37841265 PMCID: PMC10569613 DOI: 10.3389/fimmu.2023.1250198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can lead to severe disease in the lower lung. However, these two infections are caused by very different pathogens (Mycobacterium vs. virus), they have different mechanisms of pathogenesis and immune response, and differ in how long the infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common feature, which is also frequently observed in other respiratory infections: the burden of disease in the elderly is greater. Here, we discuss possible reasons for the higher burden in older adults, including the effect of co-morbidities, deterioration of the lung environment, auto-immunity, and a reduced antibody response. While the answer is likely to be multifactorial, understanding the main drivers across different infections may allow us to design broader interventions that increase the health-span of older people.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Jarvis PRE, Cardin JL, Nisevich-Bede PM, McCarter JP. Continuous glucose monitoring in a healthy population: understanding the post-prandial glycemic response in individuals without diabetes mellitus. Metabolism 2023:155640. [PMID: 37356796 DOI: 10.1016/j.metabol.2023.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Continuous glucose monitoring has become a common adjunct in the management of Diabetes Mellitus. However, there has been a recent trend among individuals without diabetes using these devices as a means of monitoring their health. The increased visibility of glucose data has allowed users to study the effect lifestyle has upon post-prandial glucose levels. Although post-prandial hyperglycemia is well understood in the setting of diabetes, its impact in individuals without diabetes is less well defined. This article reviews the factors which contribute to post-prandial hyperglycemia in individuals without diabetes and how the data obtained from continuous glucose monitoring can be used to improve an individual's metabolic health.
Collapse
Affiliation(s)
| | | | | | - James P McCarter
- Medical and Clinical Affairs, Abbott Laboratories, Alameda, CA, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
19
|
Saruarov Y, Nuskabayeva G, Gencer MZ, Sadykova K, Zhunissova M, Tatykayeva U, Iskandirova E, Sarsenova G, Durmanova A, Gaipov A, Atageldiyeva K, Sarría-Santamera A. Associations of Clusters of Cardiovascular Risk Factors with Insulin Resistance and Β-Cell Functioning in a Working-Age Diabetic-Free Population in Kazakhstan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3918. [PMID: 36900929 PMCID: PMC10001384 DOI: 10.3390/ijerph20053918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Cardiovascular risk factors aggregate in determined individuals. Patients with Type 2 diabetes mellitus (T2DM) have higher cardiovascular This study aimed to investigate insulinresistance (IR) and β-cell function using the homeostasis model assessment (HOMA) indexes in a general Kazakh population and determine the effect he effect that cardiovascular factors may have on those indexes. We conducted a cross-sectional study among employees of the Khoja Akhmet Yassawi International Kazakh-Turkish University (Turkistan, Kazakhstan) aged between 27 and 69 years. Sociodemographic variables, anthropometric measurements (body mass, height, waist circumference, hip circumference), and blood pressure were obtained. Fasting blood samples were collected to measure insulin, glucose, total cholesterol (TC), triglycerides (TG), and high- (HDL) andlow-density lipoprotein (LDL) levels. Oral glucose tolerance tests were performed. Hierarchical and K-means cluster analyses were obtained. The final sample was composed of 427 participants. Spearmen correlation analysis showed that cardiovascular parameters were statistically associated with HOMA-β (p < 0.001) and not with HOMA IR. Participants were aggregated into the three clusters where the cluster with a higher age and cardiovascular risk revealed deficient β-cell functioning, but not IR (p < 0.000 and p = 0.982). Common and easy to obtain biochemical and anthropometric measurements capturing relevant cardiovascular risk factors have been demonstrated to be associated with significant deficiency in insulin secretion. Although further longitudinal studies of the incidence of T2DM are needed, this study highlights that cardiovascular profiling has a significant role not just for risk stratification of patients for cardiovascular prevention but also for targeted vigilant glucose monitoring.
Collapse
Affiliation(s)
- Yerbolat Saruarov
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Gulnaz Nuskabayeva
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Mehmet Ziya Gencer
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Karlygash Sadykova
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Mira Zhunissova
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Ugilzhan Tatykayeva
- Department of Human Pathology and Physiology, Faculty of Dentistry, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Elmira Iskandirova
- Department of Therapy, Shymkent Medical Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Shymkent 160019, Kazakhstan
| | - Gulmira Sarsenova
- Department of Therapy, Shymkent Medical Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Shymkent 160019, Kazakhstan
| | - Aigul Durmanova
- Academic Department of Internal Medicine, University Medical Center, Astana 020000, Kazakhstan
| | - Abduzhappar Gaipov
- Academic Department of Internal Medicine, University Medical Center, Astana 020000, Kazakhstan
- Department of Medicine, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan
| | - Kuralay Atageldiyeva
- Academic Department of Internal Medicine, University Medical Center, Astana 020000, Kazakhstan
- Department of Medicine, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan
| | | |
Collapse
|
20
|
Nagamatsu G. Oocyte aging in comparison to stem cells in mice. FRONTIERS IN AGING 2023; 4:1158510. [PMID: 37114094 PMCID: PMC10126682 DOI: 10.3389/fragi.2023.1158510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
To maintain homeostasis, many tissues contain stem cells that can self-renew and differentiate. Based on these functions, stem cells can reconstitute the tissue even after injury. In reproductive organs, testes have spermatogonial stem cells that generate sperm in men throughout their lifetime. However, in the ovary, oocytes enter meiosis at the embryonic stage and maintain sustainable oogenesis in the absence of stem cells. After birth, oocytes are maintained in a dormant state in the primordial follicle, which is the most premature follicle in the ovary, and some are activated to form mature oocytes. Thus, regulation of dormancy and activation of primordial follicles is critical for a sustainable ovulatory cycle and is directly related to the female reproductive cycle. However, oocyte storage is insufficient to maintain a lifelong ovulation cycle. Therefore, the ovary is one of the earliest organs to be involved in aging. Although stem cells are capable of proliferation, they typically exhibit slow cycling or dormancy. Therefore, there are some supposed similarities with oocytes in primordial follicles, not only in their steady state but also during aging. This review aims to summarise the sustainability of oogenesis and aging phenotypes compared to tissue stem cells. Finally, it focuses on the recent breakthroughs in vitro culture and discusses future prospects.
Collapse
Affiliation(s)
- Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu, Yamanashi, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- *Correspondence: Go Nagamatsu,
| |
Collapse
|
21
|
Furth-Lavi J, Hija A, Tornovsky-Babeay S, Mazouz A, Dahan T, Stolovich-Rain M, Klochendler A, Dor Y, Avrahami D, Glaser B. Glycemic control releases regenerative potential of pancreatic beta cells blocked by severe hyperglycemia. Cell Rep 2022; 41:111719. [PMID: 36450253 PMCID: PMC9789023 DOI: 10.1016/j.celrep.2022.111719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/16/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetogenic ablation of beta cells in mice triggers a regenerative response whereby surviving beta cells proliferate and euglycemia is regained. Here, we identify and characterize heterogeneity in response to beta cell ablation. Efficient beta cell elimination leading to severe hyperglycemia (>28 mmol/L), causes permanent diabetes with failed regeneration despite cell cycle engagement of surviving beta cells. Strikingly, correction of glycemia via insulin, SGLT2 inhibition, or a ketogenic diet for about 3 weeks allows partial regeneration of beta cell mass and recovery from diabetes, demonstrating regenerative potential masked by extreme glucotoxicity. We identify gene expression changes in beta cells exposed to extremely high glucose levels, pointing to metabolic stress and downregulation of key cell cycle genes, suggesting failure of cell cycle completion. These findings reconcile conflicting data on the impact of glucose on beta cell regeneration and identify a glucose threshold converting glycemic load from pro-regenerative to anti-regenerative.
Collapse
Affiliation(s)
- Judith Furth-Lavi
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayat Hija
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Sharona Tornovsky-Babeay
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Adi Mazouz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Tehila Dahan
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Dana Avrahami
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|