1
|
Morita H, Hoshiga M. Fibroblast Growth Factors in Cardiovascular Disease. J Atheroscler Thromb 2024; 31:1496-1511. [PMID: 39168622 PMCID: PMC11537794 DOI: 10.5551/jat.rv22025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Despite advancements in managing traditional cardiovascular risk factors, many cardiovascular diseases (CVDs) persist. Fibroblast growth factors (FGFs) have emerged as potential diagnostic markers and therapeutic targets for CVDs. FGF1, FGF2, and FGF4 are primarily used for therapeutic angiogenesis. Clinical applications are being explored based on animal studies using approaches such as recombinant protein administration and adenovirus-mediated gene delivery, targeting patients with coronary artery disease and lower extremity arterial disease. Although promising results have been observed in animal models and early-stage clinical trials, further studies are required to assess their therapeutic potential. The FGF19 subfamily, consisting of FGF19, FGF21, and FGF23, act via endocrine signaling in various organs. FGF19, primarily expressed in the small intestine, plays important roles in glucose, lipid, and bile acid metabolism and has therapeutic potential for metabolic disorders. FGF21, found in various tissues, improves glucose metabolism and insulin sensitivity, suggesting potential for treating obesity and diabetes. FGF23, primarily secreted by osteocytes, regulates vitamin D and phosphate metabolism and serves as an important biomarker for chronic kidney disease and CVDs. Thus, FGFs holds promise for both therapeutic and diagnostic applications in metabolic and cardiovascular diseases. Understanding the mechanisms of FGF may pave the way for novel strategies to prevent and manage CVDs, potentially addressing the limitations of current treatments. This review explores the roles of FGF1, FGF2, FGF4, and the FGF19 subfamily in maintaining cardiovascular health. Further research and clinical trials are crucial to fully understand the therapeutic potential of FGFs in managing cardiovascular health.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masaaki Hoshiga
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
2
|
Wang Z, Gui Z, Zhang L, Wang Z. Advances in the mechanisms of vascular calcification in chronic kidney disease. J Cell Physiol 2024:e31464. [PMID: 39392232 DOI: 10.1002/jcp.31464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Vascular calcification (VC) is common in patients with advanced chronic kidney disease (CKD).A series of factors, such as calcium and phosphorus metabolism disorders, uremic toxin accumulation, inflammation and oxidative stress and cellular senescence, cause osteoblast-like differentiation of vascular smooth muscle cells, secretion of extracellular vesicles, and imbalance of calcium regulatory factors, which together promote the development of VC in CKD. Recent advances in epigenetics have provided better tools for the investigation of VC etiology and new approaches for finding more accurate biomarkers. These advances have not only deepened our understanding of the pathophysiological mechanisms of VC in CKD, but also provided valuable clues for the optimization of clinical predictors and the exploration of potential therapeutic targets. The aim of this article is to provide a comprehensive overview of the pathogenesis of CKD VC, especially the new advances made in recent years, including the various key factors mentioned above. Through the comprehensive analysis, we expect to provide a solid theoretical foundation and research direction for future studies targeting the specific mechanisms of CKD VC, the establishment of clinical predictive indicators and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Zebin Gui
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Lirong Zhang
- Department of Radiology, Affliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Neutel CHG, Wesley CD, van Loo C, Civati C, Mertens F, Zurek M, Verhulst A, Pintelon I, De Vos WH, Spronck B, Roth L, De Meyer GRY, Martinet W, Guns PJ. Calciprotein particles induce arterial stiffening ex vivo and impair vascular cell function. Commun Biol 2024; 7:1241. [PMID: 39358413 PMCID: PMC11447031 DOI: 10.1038/s42003-024-06895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Calciprotein particles (CPPs) are an endogenous buffering system, clearing excessive amounts of Ca2+ and PO43- from the circulation and thereby preventing ectopic mineralization. CPPs circulate as primary CPPs (CPP1), which are small spherical colloidal particles, and can aggregate to form large, crystalline, secondary CPPs (CPP2). Even though it has been reported that CPPs are toxic to vascular smooth muscle cells (VSMC) in vitro, their effect(s) on the vasculature remain unclear. Here we have shown that CPP1, but not CPP2, increased arterial stiffness ex vivo. Interestingly, the effects were more pronounced in the abdominal infrarenal aorta compared to the thoracic descending aorta. Further, we demonstrated that CPP1 affected both endothelial and VSMC function, impairing vasorelaxation and contraction respectively. Concomitantly, arterial glycosaminoglycan accumulation was observed as well, which is indicative of an increased extracellular matrix stiffness. However, these effects were not observed in vivo. Hence, we concluded that CPP1 can induce vascular dysfunction.
Collapse
Affiliation(s)
- Cédric H G Neutel
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Callan D Wesley
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Cindy van Loo
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Céline Civati
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Freke Mertens
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Chiang HJ, Peng HH, Weng KF, Hsiung KC, Liang CY, Kuo SL, Ojcius DM, Young JDE, Shih SR. Mineralo-organic particles inhibit influenza A virus infection by targeting viral hemagglutinin activity. Nanomedicine (Lond) 2024; 19:2375-2390. [PMID: 39320315 PMCID: PMC11492690 DOI: 10.1080/17435889.2024.2403326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: Mineralo-organic particles, naturally present in human body fluids, participate in ectopic calcification and inflammatory diseases. These particles coexist with influenza A virus (IAV) in the same microenvironment during viral infection. Our objective was to investigate the functional consequences of the potential interactions between these particles and the virions.Materials & methods: We used in vitro models, including electron microscopy, fluorescence microscopy, hemagglutination assay and viral infection assays to examine the interactions.Results: Mineralo-organic particles bind to IAV virions through interactions involving particle-bound fetuin-A and mineral content, effectively engaging viral hemagglutinin. These interactions result in hindered viral infection.Conclusion: These findings uncover the novel interactions between mineralo-organic particles and IAV, highlighting the impact of virus microenvironment complexity.
Collapse
Affiliation(s)
- Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Chinese Medicine Obstetrics & Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA94305, USA
| | - Kuei-Ching Hsiung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chieh-Yu Liang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO63110, USA
| | - Shun-Li Kuo
- Division of Chinese Medicine Obstetrics & Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - David M. Ojcius
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan, 33302, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA94103, USA
| | | | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food & Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science & Technology, Taoyuan, 33303, Taiwan
| |
Collapse
|
5
|
Akiyama T, Iwazu Y, Usui J, Ebihara I, Ishizu T, Kobayashi M, Maeda Y, Kobayashi H, Yamagata K, Kuro-O M. Serum calciprotein particle-to-phosphate ratio as a predictor of cardiovascular events in incident hemodialysis patients. Ther Apher Dial 2024. [PMID: 39229751 DOI: 10.1111/1744-9987.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Recent studies have identified increased blood calciprotein particle (CPP) levels as risk factors for vascular calcification and cardiovascular events in patients undergoing maintenance hemodialysis. Although positively correlated with serum phosphate levels, serum CPP levels vary considerably among patients with similar serum phosphate levels. We investigated the capacity of the ratio of serum CPP levels to serum phosphate levels (CPP/Pi ratio) to predict cardiovascular events in incident hemodialysis patients compared to the serum calcification propensity test (T50). METHODS AND RESULTS The association between the CPP/Pi ratio and major adverse cardiac and cerebrovascular events (MACCE) was investigated in 174 incident hemodialysis patients. Multivariate analysis revealed that the CPP/Pi ratio was independently associated with MACCE [hazard ratio 1.60, 95% confidence interval (1.15-2.23), p = 0.006] but serum T50 levels were not. CONCLUSIONS The CPP/Pi ratio is a useful, novel biomarker for predicting the risk of cardiovascular events in patients undergoing incident hemodialysis.
Collapse
Affiliation(s)
- Tomoki Akiyama
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshitaka Iwazu
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Joichi Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Itaru Ebihara
- Department of Nephrology, Mito Saiseikai General Hospital, Mito, Japan
| | - Takashi Ishizu
- Department of Renal and Dialysis Medicine, Tsukuba Central Hospital, Ushiku, Japan
- Central Jin Clinic, Ryugasaki, Japan
| | - Masaki Kobayashi
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | - Yoshitaka Maeda
- Nephrology Division, Department of Internal Medicine, JA Toride Medical Center, Toride, Japan
| | - Hiroaki Kobayashi
- Department of Nephrology, Ibaraki Prefectural Central Hospital, Kasama, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
6
|
Matsueda S, Yamada S, Torisu K, Kitamura H, Ninomiya T, Nakano T, Kitazono T. Vascular Calcification Is Accelerated by Hyponatremia and Low Osmolality. Arterioscler Thromb Vasc Biol 2024; 44:1925-1943. [PMID: 38989577 DOI: 10.1161/atvbaha.123.320069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Hyponatremia, frequently observed in patients with chronic kidney disease, is associated with increased cardiovascular morbidity and mortality. Hyponatremia or low osmolality induces oxidative stress and cell death, both of which accelerate vascular calcification (VC), a critical phenotype in patients with chronic kidney disease. Whether hyponatremia or low osmolality plays a role in the pathogenesis of VC is unknown. METHODS Human vascular smooth muscle cells (VSMCs) and mouse aortic rings were cultured in various osmotic conditions and calcifying medium supplemented with high calcium and phosphate. The effects of low osmolality on phenotypic change and oxidative stress in the cultured VSMCs were examined. Microarray analysis was conducted to determine the main signaling pathway of osmolality-related VC. The transcellular sodium and calcium ions flux across the VSMCs were visualized by live imaging. Furthermore, the effect of osmolality on calciprotein particles (CPPs) was investigated. Associations between arterial intimal calcification and hyponatremia or low osmolality were examined by a cross-sectional study using human autopsy specimens obtained in the Hisayama Study. RESULTS Low osmolality exacerbated calcification of the ECM (extracellular matrix) of cultured VSMCs and mouse aortic rings. Oxidative stress and osteogenic differentiation of VSMCs were identified as the underlying mechanisms responsible for low osmolality-induced VC. Microarray analysis showed that low osmolality activated the Rac1 (Ras-related C3 botulinum toxin substrate 1)-Akt (protein kinase B) pathway and reduced NCX1 (Na-Ca exchanger 1) expression. Live imaging showed synchronic calcium ion efflux and sodium ion influx via NCX1 when extracellular sodium ion concentrations were increased. An NCX1 inhibitor promoted calcifying media-induced VC by reducing calcium ion efflux. Furthermore, low osmolality accelerated the generation and maturation steps of CPPs. The cross-sectional study of human autopsy specimens showed that hyponatremia and low osmolality were associated with a greater area of arterial intimal calcification. CONCLUSIONS Hyponatremia and low osmolality promote VC through multiple cellular processes, including the Rac1-Akt pathway activation.
Collapse
Affiliation(s)
- Shumei Matsueda
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Toshiharu Ninomiya
- Epidemiology and Public Health (T. Ninomiya), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kidney Care Unit, Kyushu University Hospital, Fukuoka, Japan (T. Nakano)
| | - Takanari Kitazono
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Dong H, Wang D, Deng H, Yin L, Wang X, Yang W, Cai K. Application of a calcium and phosphorus biomineralization strategy in tooth repair: a systematic review. J Mater Chem B 2024; 12:8033-8047. [PMID: 39045831 DOI: 10.1039/d4tb00867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Biomineralization is a natural process in which organisms regulate the growth of inorganic minerals to form biominerals with unique layered structures, such as bones and teeth, primarily composed of calcium and phosphorus. Tooth decay significantly impacts our daily lives, and the key to tooth regeneration lies in restoring teeth through biomimetic approaches, utilizing mineralization strategies or materials that mimic natural processes. This review delves into the types, properties, and transformations of calcium and phosphorus minerals, followed by an exploration of the mechanisms behind physiological and pathological mineralization in living organisms. It summarizes the mechanisms and commonalities of biomineralization and discusses the advancements in dental biomineralization research, guided by insights into calcium and phosphorus mineral biomineralization. This review concludes by addressing the current challenges and future directions in the field of dental biomimetic mineralization.
Collapse
Affiliation(s)
- Haide Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Danyang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Hanyue Deng
- Duke Kunshan University - Media Art - Creative Practice Kunshan, Jiangsu 215316, China
| | - Lijuan Yin
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Xiongying Wang
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
8
|
Hamano T, Fukagawa M. Results of the EPISODE trial plead for reasonable practice-based serum phosphate lowering in patients on dialysis. Kidney Int 2024; 106:191-195. [PMID: 39032965 DOI: 10.1016/j.kint.2024.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Takayuki Hamano
- Department of Nephrology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Nephrology, The University of Osaka Graduate School of Medicine, Osaka, Japan
| | - Masafumi Fukagawa
- Department of Medicine, Ikegami General Hospital, Tokyo, Japan; Division of Nephrology and Kidney Center, Kobe University School of Medicine, Kobe, Japan; Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
9
|
Mencke R, Al Ali L, de Koning MSLY, Pasch A, Minnion M, Feelisch M, van Veldhuisen DJ, van der Horst ICC, Gansevoort RT, Bakker SJL, de Borst MH, van Goor H, van der Harst P, Lipsic E, Hillebrands JL. Serum Calcification Propensity Is Increased in Myocardial Infarction and Hints at a Pathophysiological Role Independent of Classical Cardiovascular Risk Factors. Arterioscler Thromb Vasc Biol 2024; 44:1884-1894. [PMID: 38899469 DOI: 10.1161/atvbaha.124.320974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Vascular calcification is associated with increased mortality in patients with cardiovascular disease. Secondary calciprotein particles are believed to play a causal role in the pathophysiology of vascular calcification. The maturation time (T50) of calciprotein particles provides a measure of serum calcification propensity. We compared T50 between patients with ST-segment-elevated myocardial infarction and control subjects and studied the association of T50 with cardiovascular risk factors and outcome. METHODS T50 was measured by nephelometry in 347 patients from the GIPS-III trial (Metabolic Modulation With Metformin to Reduce Heart Failure After Acute Myocardial Infarction: Glycometabolic Intervention as Adjunct to Primary Coronary Intervention in ST Elevation Myocardial Infarction: a Randomized Controlled Trial) and in 254 matched general population controls from PREVEND (Prevention of Renal and Vascular End-Stage Disease). We also assessed the association between T50 and left ventricular ejection fraction, as well as infarct size, the incidence of ischemia-driven reintervention during 5 years of follow-up, and serum nitrite as a marker of endothelial dysfunction. RESULTS Patients with ST-segment-elevated myocardial infarction had a significantly lower T50 (ie, higher serum calcification propensity) compared with controls (T50: 289±63 versus 338±56 minutes; P<0.001). In patients with ST-segment-elevated myocardial infarction, lower T50 was associated with female sex, lower systolic blood pressure, lower total cholesterol, lower LDL (low-density lipoprotein) cholesterol, lower triglycerides, and higher HDL (high-density lipoprotein) cholesterol but not with circulating nitrite or nitrate. Ischemia-driven reintervention was associated with higher LDL (P=0.03) and had a significant interaction term for T50 and sex (P=0.005), indicating a correlation between ischemia-driven reintervention and T50 above the median in men and below the median in women, between 150 days and 5 years of follow-up. CONCLUSIONS Serum calcification propensity is increased in patients with ST-segment-elevated myocardial infarction compared with the general population, and its contribution is more pronounced in women than in men. Its lack of/inverse association with nitrite and blood pressure confirms T50 to be orthogonal to traditional cardiovascular disease risk factors. Lower T50 was associated with a more favorable serum lipid profile, suggesting the involvement of divergent pathways of calcification stress and lipid stress in the pathophysiology of myocardial infarction.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| | - Lawien Al Ali
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Marie-Sophie L Y de Koning
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Andreas Pasch
- Calciscon AG, Biel, Switzerland (A.P.)
- Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, Austria (A.P.)
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (M.M., M.F.)
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (M.M., M.F.)
| | - Dirk J van Veldhuisen
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | | | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, the Netherlands (P.v.d.H.)
| | - Erik Lipsic
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| |
Collapse
|
10
|
Thiem U, Lenz J, Haller MC, Pasch A, Smith ER, Cejka D. The effect of parathyroid hormone lowering by etelcalcetide therapy on calcification propensity and calciprotein particles in hemodialysis patients. Clin Kidney J 2024; 17:sfae097. [PMID: 38919277 PMCID: PMC11197474 DOI: 10.1093/ckj/sfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 06/27/2024] Open
Abstract
Background This study investigated whether parathyroid hormone (PTH) lowering with etelcalcetide, and the consequent effects on mineral and bone metabolism, could improve serum calcification propensity (T50 time) and decrease calciprotein particle (CPP) load in hemodialysis patients with secondary hyperparathyroidism. Methods In this single-arm, prospective, dose-escalation proof-of-principle study, hemodialysis patients received etelcalcetide at 2.5 mg/dialysis session with increments of 2.5 mg every 4 weeks to a maximum dose of 15 mg three times a week or until a pre-specified safety endpoint was reached, followed by an 8-week wash-out phase. Results Out of 36 patients recruited (81% male, 62 ± 13 years), 16 patients completed the study per protocol with a mean maximum tolerated dose of etelcalcetide of 9.5 ± 2.9 mg/dialysis session. With escalating doses of etelcalcetide, PTH and serum calcium levels significantly decreased (P < 0.0001). While there was no significant change in T50 times or serum phosphate levels, etelcalcetide did yield significant and consistent reductions in serum levels of endogenous calciprotein monomers [-35.4 (-44.4 to -26.5)%, P < 0.0001], primary [-22.4 (-34.5 to -10.3)%, P < 0.01] and secondary CPP [-29.1 (-45.7 to -12.4)%, P < 0.01], an effect that was reversed after therapy withdrawal. Serum levels of osteoclastic markers significantly decreased with escalating doses of etelcalcetide, while levels of the osteoblastic marker remained stable. Conclusions Lowering of PTH with etelcalcetide did not result in statistically significant changes in T50. By contrast, homogenous reductions in serum levels of calciprotein monomers, primary and secondary CPP were observed.
Collapse
Affiliation(s)
- Ursula Thiem
- Department of Medicine III - Nephrology, Hypertension, Transplantation Medicine, Rheumatology, Geriatrics, Ordensklinikum Linz - Elisabethinen Hospital, Linz, Austria
| | - Jakob Lenz
- Department of Medicine III - Nephrology, Hypertension, Transplantation Medicine, Rheumatology, Geriatrics, Ordensklinikum Linz - Elisabethinen Hospital, Linz, Austria
| | - Maria C Haller
- Department of Medicine III - Nephrology, Hypertension, Transplantation Medicine, Rheumatology, Geriatrics, Ordensklinikum Linz - Elisabethinen Hospital, Linz, Austria
- CeMSIIS - Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University Vienna, Vienna, Austria
| | - Andreas Pasch
- Calciscon AG, Biel, Switzerland
- Lindenhofspital Bern, Bern, Switzerland
- Department of Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Cejka
- Department of Medicine III - Nephrology, Hypertension, Transplantation Medicine, Rheumatology, Geriatrics, Ordensklinikum Linz - Elisabethinen Hospital, Linz, Austria
| |
Collapse
|
11
|
van der Vaart A, Eelderink C, van Goor H, Hillebrands JL, Te Velde-Keyzer CA, Bakker SJL, Pasch A, van Dijk PR, Laverman GD, de Borst MH. Serum T 50 predicts cardiovascular mortality in individuals with type 2 diabetes: A prospective cohort study. J Intern Med 2024; 295:748-758. [PMID: 38528373 DOI: 10.1111/joim.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
BACKGROUND AND AIMS Individuals with type 2 diabetes (T2D) have a higher risk of cardiovascular disease, compared with those without T2D. The serum T50 test captures the transformation time of calciprotein particles in serum. We aimed to assess whether serum T50 predicts cardiovascular mortality in T2D patients, independent of traditional risk factors. METHODS We analyzed 621 individuals with T2D in this prospective cohort study. Cox regression models were performed to test the association between serum T50 and cardiovascular and all-cause mortality. Causes of death were categorized according to ICD-10 codes. Risk prediction improvement was assessed by comparing Harrell's C for models without and with T50. RESULTS: The mean age was 64.2 ± 9.8 years, and 61% were male. The average serum T50 time was 323 ± 63 min. Higher age, alcohol use, high-sensitive C-reactive protein, and plasma phosphate were associated with lower serum T50 levels. Higher plasma triglycerides, venous bicarbonate, sodium, magnesium, and alanine aminotransferase were associated with higher serum T50 levels. After a follow-up of 7.5[5.4-10.7] years, each 60 min decrease in serum T50 was associated with an increased risk of cardiovascular (fully adjusted HR 1.32, 95% CI 1.08-1.50, and p = 0.01) and all-cause mortality (HR 1.15, 95%CI 1.00-1.38, and p = 0.04). Results were consistent in sensitivity analyses after exclusion of individuals with estimated glomerular filtration rate <45 or <60 mL/min/1.73 m2 and higher plasma phosphate levels. CONCLUSIONS Serum T50 improves prediction of cardiovascular and all-cause mortality risk in individuals with T2D. Serum T50 may be useful for risk stratification and to guide therapeutic strategies aiming to reduce cardiovascular mortality in T2D.
Collapse
Affiliation(s)
- Amarens van der Vaart
- Departments of Internal Medicine, Divisions of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Coby Eelderink
- Departments of Internal Medicine, Divisions of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Pathology & Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Pathology & Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Charlotte A Te Velde-Keyzer
- Departments of Internal Medicine, Divisions of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Departments of Internal Medicine, Divisions of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andreas Pasch
- Calciscon AG, Biel, Switzerland
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Peter R van Dijk
- Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gozewijn D Laverman
- Division of Nephrology, Department of Internal Medicine, Ziekenhuisgroep Twente, Almelo, Hengelo, the Netherlands
| | - Martin H de Borst
- Departments of Internal Medicine, Divisions of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
He M, Ren S, Lin Y, Zeng X. Correlation between serum phosphate and all-cause mortality in critically ill patients with coronary heart disease accompanied by chronic kidney disease: a retrospective study using the MIMIC-IV database. Front Cardiovasc Med 2024; 11:1371000. [PMID: 38883990 PMCID: PMC11176493 DOI: 10.3389/fcvm.2024.1371000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Background The adverse clinical endpoints of cardiovascular and kidney diseases are correlated with increased serum phosphate levels. However, in critically ill patients with coronary heart disease (CHD) accompanied by chronic kidney disease (CKD), the prognostic value of serum phosphate remains unclear. Methods Patients' medical records from the Medical Information Mart for Intensive Care IV database who had concomitant CKD and CHD were classified into four distinct groups in this large retrospective observational cohort study based on the quartiles of serum phosphate levels. Vital status and the duration of hospital and ICU stays within the short-term follow-up periods of 30 and 90 days constituted the primary outcomes. All-cause mortality in the intensive care unit (ICU) and hospital constituted the secondary outcomes. Further, the Cox proportional hazard and restricted cubic spline (RCS) regression models were employed to ascertain how serum phosphate levels correlated with the primary outcomes. In addition, the occurrence rate of the secondary outcomes across the four quartiles was determined utilizing the Kaplan-Meier method. Results Among the total 3,557 patients (67.6% male) included, the hospital and ICU all-cause mortality rates were 14.6% and 10%, separately. Higher quartiles of serum phosphate concentrations were associated with shorter short-term survival rates, as shown by the Kaplan-Meier curves. Additionally, the Cox proportional hazards analysis illustrated that serum phosphate was independently linked to a higher death risk in the hospital [HR, 1.10 (95% CI: 1.03-1.18), P = 0.007] and ICU [HR, 1.14 (95% CI: 1.07-1.22), P < 0.001]. Lastly, the RCS regression models suggested a robust non-linear correlation between serum phosphate concentrations and death risk in the ICU and hospital (both P for non-linearity <0.001). Conclusions The prognostic value of serum phosphate is significant in critically ill patients with CHD accompanied by CKD. Furthermore, serum phosphate is potentially valuable for identifying patients with this concomitant condition.
Collapse
Affiliation(s)
- Min He
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Siyu Ren
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongqi Lin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaocong Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Tang P, Geddes RF, Chang Y, Jepson RE, van den Broek DHN, Lötter N, Elliott J. Risk factors and implications associated with ultrasound-diagnosed nephrocalcinosis in cats with chronic kidney disease. J Vet Intern Med 2024; 38:1563-1576. [PMID: 38438128 PMCID: PMC11099775 DOI: 10.1111/jvim.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Microscopic nephrocalcinosis is a common pathological feature of chronic kidney disease (CKD) in cats. Detection of macroscopic nephrocalcinosis using ultrasonography and its implications remain unexplored. OBJECTIVES Identify risk factors associated with ultrasound-diagnosed nephrocalcinosis and evaluate the influence of nephrocalcinosis on CKD progression. ANIMALS Thirty-six euthyroid client-owned cats with CKD. METHODS Prospective cohort study. Cats with CKD with and without ionized hypercalcemia were enrolled for renal ultrasonography. Cats were categorized according to the presence or absence of ultrasound-diagnosed nephrocalcinosis. Binary logistic regression was performed to identify nephrocalcinosis risk factors. The influence of nephrocalcinosis on CKD progression was assessed using linear mixed models. RESULTS Ultrasound-diagnosed nephrocalcinosis was evident in 61% of CKD cats overall, with increased prevalence (81%) in those with hypercalcemia. At enrollment, higher blood ionized calcium concentration (odds ratio [OR], 1.27 per 0.1 mg/dL; P = .01), plasma phosphate concentration (OR, 1.16 per 0.1 mg/dL; P = .05), plasma creatinine concentration (OR, 1.29 per 0.1 mg/dL; P = .02) and alanine aminotransferase activity (OR, 2.08 per 10 U/L; P = .04) were independent nephrocalcinosis risk factors. The rate of change in log-transformed fibroblast growth factor-23 differed significantly between groups (P = .04). Cats with CKD and nephrocalcinosis had increasing plasma creatinine concentrations (.03 ± .01 mg/dL/month; P = .04) and phosphate concentrations (.06 ± .02 mg/dL/month; P < .001) and decreasing body weight (.02 ± .01 kg/month; P < .001) over time. CONCLUSIONS AND CLINICAL IMPORTANCE Nephrocalcinosis is prevalent in cats with CKD, especially in those with hypercalcemia. This pathological feature appears to be associated with CKD progression in cats.
Collapse
Affiliation(s)
- Pak‐Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUK
| | - Rebecca F. Geddes
- Department of Clinical Science and Services, Royal Veterinary CollegeUniversity of LondonLondonUK
| | - Yu‐Mei Chang
- Research Support Office, Royal Veterinary CollegeUniversity of LondonLondonUK
| | - Rosanne E. Jepson
- Department of Clinical Science and Services, Royal Veterinary CollegeUniversity of LondonLondonUK
| | | | - Nicola Lötter
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUK
| | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUK
| |
Collapse
|
14
|
Padoan F, Guarnaroli M, Brugnara M, Piacentini G, Pietrobelli A, Pecoraro L. Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation. Biomedicines 2024; 12:911. [PMID: 38672265 PMCID: PMC11048674 DOI: 10.3390/biomedicines12040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Nutrition management is fundamental for children with chronic kidney disease (CKD). Fluid balance and low-protein and low-sodium diets are the more stressed fields from a nutritional point of view. At the same time, the role of micronutrients is often underestimated. Starting from the causes that could lead to potential micronutrient deficiencies in these patients, this review considers all micronutrients that could be administered in CKD to improve the prognosis of this disease.
Collapse
Affiliation(s)
| | | | - Milena Brugnara
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy (A.P.)
| | | | | | | |
Collapse
|
15
|
Zeper LW, Bos C, Leermakers PA, Franssen GM, Raavé R, Hoenderop JGJ, de Baaij JHF. Liver and spleen predominantly mediate calciprotein particle clearance in a rat model of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F622-F634. [PMID: 38420675 DOI: 10.1152/ajprenal.00239.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.
Collapse
Affiliation(s)
- Lara W Zeper
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter A Leermakers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René Raavé
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Turner ME, Beck L, Hill Gallant KM, Chen Y, Moe OW, Kuro-o M, Moe S, Aikawa E. Phosphate in Cardiovascular Disease: From New Insights Into Molecular Mechanisms to Clinical Implications. Arterioscler Thromb Vasc Biol 2024; 44:584-602. [PMID: 38205639 PMCID: PMC10922848 DOI: 10.1161/atvbaha.123.319198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Hyperphosphatemia is a common feature in patients with impaired kidney function and is associated with increased risk of cardiovascular disease. This phenomenon extends to the general population, whereby elevations of serum phosphate within the normal range increase risk; however, the mechanism by which this occurs is multifaceted, and many aspects are poorly understood. Less than 1% of total body phosphate is found in the circulation and extracellular space, and its regulation involves multiple organ cross talk and hormones to coordinate absorption from the small intestine and excretion by the kidneys. For phosphate to be regulated, it must be sensed. While mostly enigmatic, various phosphate sensors have been elucidated in recent years. Phosphate in the circulation can be buffered, either through regulated exchange between extracellular and cellular spaces or through chelation by circulating proteins (ie, fetuin-A) to form calciprotein particles, which in themselves serve a function for bulk mineral transport and signaling. Either through direct signaling or through mediators like hormones, calciprotein particles, or calcifying extracellular vesicles, phosphate can induce various cardiovascular disease pathologies: most notably, ectopic cardiovascular calcification but also left ventricular hypertrophy, as well as bone and kidney diseases, which then propagate phosphate dysregulation further. Therapies targeting phosphate have mostly focused on intestinal binding, of which appreciation and understanding of paracellular transport has greatly advanced the field. However, pharmacotherapies that target cardiovascular consequences of phosphate directly, such as vascular calcification, are still an area of great unmet medical need.
Collapse
Affiliation(s)
- Mandy E. Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l’institut du thorax, F-44000 Nantes, France
| | - Kathleen M Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Sharon Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Zaslow SJ, Oliveira-Paula GH, Chen W. Magnesium and Vascular Calcification in Chronic Kidney Disease: Current Insights. Int J Mol Sci 2024; 25:1155. [PMID: 38256228 PMCID: PMC10816532 DOI: 10.3390/ijms25021155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Magnesium (Mg) plays crucial roles in multiple essential biological processes. As the kidneys are the primary organ responsible for maintaining the blood concentration of Mg, people with chronic kidney disease (CKD) may develop disturbances in Mg. While both hyper- and hypomagnesemia may lead to adverse effects, the consequences associated with hypomagnesemia are often more severe and lasting. Importantly, observational studies have shown that CKD patients with hypomagnesemia have greater vascular calcification. Vascular calcification is accelerated and contributes to a high mortality rate in the CKD population. Both in vitro and animal studies have demonstrated that Mg protects against vascular calcification via several potential mechanisms, such as inhibiting the formation of both hydroxyapatite and pathogenic calciprotein particles as well as limiting osteogenic differentiation, a process in which vascular smooth muscle cells in the media layer of the arteries transform into bone-like cells. These preclinical findings have led to several important clinical trials that have investigated the effects of Mg supplementation on vascular calcification in people with CKD. Interestingly, two major clinical studies produced contradictory findings, resulting in a state of equipoise. This narrative review provides an overview of our current knowledge in the renal handling of Mg in health and CKD and the underlying mechanisms by which Mg may protect against vascular calcification. Lastly, we evaluate the strength of evidence from clinical studies on the efficacy of Mg supplementation and discuss future research directions.
Collapse
Affiliation(s)
- Shari J. Zaslow
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gustavo H. Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Chen
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
19
|
Ogata H, Sugawara H, Yamamoto M, Ito H. Phosphate and Coronary Artery Disease in Patients with Chronic Kidney Disease. J Atheroscler Thromb 2024; 31:1-14. [PMID: 37766573 PMCID: PMC10776333 DOI: 10.5551/jat.rv22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Both traditional and CKD-related factors are associated with CVD in CKD patients. Traditional factors that play an important role in the atherosclerotic process directly contribute to a higher risk of coronary artery disease in patients with early-stage CKD. Among CKD-related factors, CKD-mineral and bone disorder plays a critical role in the pathomechanism of nonatherosclerotic diseases, which increases the risk of cardiovascular morbidity and mortality in patients with advanced CKD. Higher serum phosphate levels were significantly associated with cardiovascular events and all-cause mortality in patients with or without CKD. An increased phosphate load, directly and indirectly, promotes arterial medial calcification and left ventricular hypertrophy, both of which predispose patients to coronary artery disease. Calciprotein particles that form in a hyperphosphatemic state promote the transformation of vascular smooth muscle cells (VSMCs) into osteoblastic cells, thereby providing a scaffold for medial calcification in the artery. Increases in fibroblast growth factor-23 and disturbed vitamin D metabolism induced by an excessive phosphate load play a significant role in the development of cardiomyocyte hypertrophy and cardiac fibrosis. Recently, hyperphosphatemia was reported to promote de novo cholesterol synthesis in VSMCs and macrophages, which is likely to contribute to statin resistance in patients with end-stage kidney disease. This review outlines the association between increased phosphate load and coronary artery disease in patients with CKD.
Collapse
Affiliation(s)
- Hiroaki Ogata
- Division of Nephrology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
- Department of Medical Education, Showa University School of Medicine, Tokyo, Japan
| | - Hirohito Sugawara
- Division of Nephrology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Masahiro Yamamoto
- Division of Nephrology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Hidetoshi Ito
- Division of Nephrology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| |
Collapse
|
20
|
Shishkova D, Lobov A, Repkin E, Markova V, Markova Y, Sinitskaya A, Sinitsky M, Kondratiev E, Torgunakova E, Kutikhin A. Calciprotein Particles Induce Cellular Compartment-Specific Proteome Alterations in Human Arterial Endothelial Cells. J Cardiovasc Dev Dis 2023; 11:5. [PMID: 38248875 PMCID: PMC10816121 DOI: 10.3390/jcdd11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Calciprotein particles (CPPs) are indispensable scavengers of excessive Ca2+ and PO43- ions in blood, being internalised and recycled by liver and spleen macrophages, monocytes, and endothelial cells (ECs). Here, we performed a pathway enrichment analysis of cellular compartment-specific proteomes in primary human coronary artery ECs (HCAEC) and human internal thoracic artery ECs (HITAEC) treated with primary (amorphous) or secondary (crystalline) CPPs (CPP-P and CPPs, respectively). Exposure to CPP-P and CPP-S induced notable upregulation of: (1) cytokine- and chemokine-mediated signaling, Ca2+-dependent events, and apoptosis in cytosolic and nuclear proteomes; (2) H+ and Ca2+ transmembrane transport, generation of reactive oxygen species, mitochondrial outer membrane permeabilisation, and intrinsic apoptosis in the mitochondrial proteome; (3) oxidative, calcium, and endoplasmic reticulum (ER) stress, unfolded protein binding, and apoptosis in the ER proteome. In contrast, transcription, post-transcriptional regulation, translation, cell cycle, and cell-cell adhesion pathways were underrepresented in cytosol and nuclear compartments, whilst biosynthesis of amino acids, mitochondrial translation, fatty acid oxidation, pyruvate dehydrogenase activity, and energy generation were downregulated in the mitochondrial proteome of CPP-treated ECs. Differentially expressed organelle-specific pathways were coherent in HCAEC and HITAEC and between ECs treated with CPP-P or CPP-S. Proteomic analysis of mitochondrial and nuclear lysates from CPP-treated ECs confirmed bioinformatic filtration findings.
Collapse
Affiliation(s)
- Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Arseniy Lobov
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia;
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, 199034 St. Petersburg, Russia;
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Anna Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Maxim Sinitsky
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Egor Kondratiev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Evgenia Torgunakova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| |
Collapse
|
21
|
Evenepoel P, Stenvinkel P, Shanahan C, Pacifici R. Inflammation and gut dysbiosis as drivers of CKD-MBD. Nat Rev Nephrol 2023; 19:646-657. [PMID: 37488276 DOI: 10.1038/s41581-023-00736-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Herestraat, Leuven, Belgium.
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital, Stockholm, Sweden
| | - Catherine Shanahan
- British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory Microbiome Research Center, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
22
|
Miura M, Miura Y, Iwazu Y, Mukai H, Sugiura T, Suzuki Y, Kato M, Kano M, Nagata D, Shiizaki K, Kurosu H, Kuro-O M. Removal of calciprotein particles from the blood using an adsorption column improves prognosis of hemodialysis miniature pigs. Sci Rep 2023; 13:15026. [PMID: 37700060 PMCID: PMC10497634 DOI: 10.1038/s41598-023-42273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023] Open
Abstract
Hyperphosphatemia is a major risk for poor prognosis in patients with end-stage renal disease. However, the molecular mechanism behind this link remains elusive. We and others have demonstrated that serum phosphorus levels correlate positively with circulating levels of calciprotein particles (CPPs). CPPs are colloidal mineral-protein complexes containing insoluble calcium-phosphate precipitates and have been reported to induce calcification in cultured vascular smooth muscle cells and inflammatory responses in cultured macrophages. Hence, we hypothesize that CPPs may be responsible for disorders associated with hyperphosphatemia. Using hyperphosphatemic miniature pigs receiving hemodialysis, here we show that removal of CPPs from the blood with a newly developed CPP adsorption column improves survival and alleviates complications including coronary artery calcification, vascular endothelial dysfunction, metastatic pulmonary calcification, left ventricular hypertrophy, and chronic inflammation. The present study identifies CPPs as an effective therapeutic target and justifies clinical trials to determine whether the CPP adsorption column may be useful as a medical device for improving clinical outcomes of hemodialysis patients.
Collapse
Affiliation(s)
- Marina Miura
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yutaka Miura
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yoshitaka Iwazu
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
- Department of Clinical Laboratory Medicine, Jichi Medical University, Tochigi, Japan
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Hideyuki Mukai
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | | | | | | | | | - Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuhiro Shiizaki
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroshi Kurosu
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
23
|
Yamada S, Nakano T. Role of Chronic Kidney Disease (CKD)-Mineral and Bone Disorder (MBD) in the Pathogenesis of Cardiovascular Disease in CKD. J Atheroscler Thromb 2023; 30:835-850. [PMID: 37258233 PMCID: PMC10406631 DOI: 10.5551/jat.rv22006] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Multiple factors account for the increased incidence of cardiovascular morbidity and mortality in patients with CKD. Traditional risk factors for atherosclerosis and arteriosclerosis, including age, hypertension, dyslipidemia, diabetes mellitus, and smoking, are also risk factors for CKD. Non-traditional risk factors specific for CKD are also involved in CVD pathogenesis in patients with CKD. Recently, CKD-mineral and bone disorder (CKD-MBD) has emerged as a key player in CVD pathogenesis in the context of CKD. CKD-MBD manifests as hypocalcemia and hyperphosphatemia in the later stages of CKD; however, it initially develops much earlier in disease course. The initial step in CKD-MBD involves decreased phosphate excretion in the urine, followed by increased circulating concentrations of fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH), which increase urinary phosphate excretion. Simultaneously, the serum calcitriol concentration decreases as a result of FGF23 elevation. Importantly, FGF23 and PTH cause left ventricular hypertrophy, arrhythmia, and cardiovascular calcification. More recently, calciprotein particles, which are nanoparticles composed of calcium, phosphate, and fetuin-A, among other components, have been reported to cause inflammation, cardiovascular calcification, and other clinically relevant outcomes. CKD-MBD has become one of the critical therapeutic targets for the prevention of cardiovascular events and is another link between cardiology and nephrology. In this review, we describe the role of CKD-MBD in the pathogenesis of cardiovascular disorders and present the current treatment strategies for CKD-MBD.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Centers for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Gu W, Wei Y, Tang Y, Zhang S, Li S, Shi Y, Tang F, Awad AM, Zhang X, Tang F. Supplement of exogenous inorganic pyrophosphate inhibits atheromatous calcification in Apolipoprotein E knockout mice. Heliyon 2023; 9:e19214. [PMID: 37654451 PMCID: PMC10465865 DOI: 10.1016/j.heliyon.2023.e19214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Inorganic pyrophosphate (PPi) is the endogenous inhibitor for vascular calcification (VC). The present study was to investigate the effects of adenosine disodium triphosphate (ADTP) and alendronate sodium (AL), two exogenous PPi sources, on the atheromatous calcification (AC) in Apolipoprotein E knockout (ApoE KO) mice. ApoE KO mice were randomly divided into five groups: ApoE KO group, ApoE KO + ADTP (Low) group, ApoE KO + ADTP (High) group, ApoE KO + AL (Low) group and ApoE KO + AL (High) group. The mice in ApoE KO + ADTP (Low) group and ApoE KO + ADTP (High) group were intraperitoneally injected with ADTP with dose of 0.5 and 1.0 mg/kg/day for 2 months respectively. The mice in ApoE KO + AL (Low) group and ApoE KO + AL (High) group were intraperitoneally injected with AL with dose of 0.6 and 1.2 mg/kg/day for 2 months respectively. The age matched C57 mice were used as control group. All ApoE KO and C57 mice were fed with normal chow throughout the experiment. The calcification was evaluated using von Kossa method. The contents of PPi, triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) and low density lipoprotein (LDL), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ) and interleukin-10 (IL-10) as well as the activity of alkaline phosphatase (ALP) in serum were measured. The results showed that compared with C57 mice, ApoE KO mice developed severe AC accompanied with high levels of TC, TG, LDL, IL-6, TNF-α and IFN-γ in serum and with low levels of PPi and IL-10 in serum. Both ADTP and AL dose-dependently reduced the AC in ApoE KO mice compared with that of ApoE mice, without affecting the contents of lipid profiles. In addition, ADTP and AL increased the contents of PPi and IL-10 while decreased the contents of TNF-α, IL-6 and IFN-γ in serum of ApoE KO mice, having no affection on ALP activity. The results suggested that ADTP and AL reduced AC in ApoE KO mice by increasing the PPi level and regulating the inflammation.
Collapse
Affiliation(s)
- Wenjiao Gu
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yujie Wei
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yu Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shining Zhang
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Shuangyi Li
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youming Shi
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fenxia Tang
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Ali Mohamed Awad
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaowei Zhang
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Futian Tang
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
25
|
Kuro-O M. Calcium phosphate microcrystallopathy as a paradigm of chronic kidney disease progression. Curr Opin Nephrol Hypertens 2023; 32:344-351. [PMID: 37074676 PMCID: PMC10242516 DOI: 10.1097/mnh.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
PURPOSE OF REVIEW Calciprotein particles (CPP) are colloidal mineral-protein complexes mainly composed of solid-phase calcium phosphate and serum protein fetuin-A. CPP appear in the blood and renal tubular fluid after phosphate intake, playing critical roles in (patho)physiology of mineral metabolism and chronic kidney disease (CKD). This review aims at providing an update of current knowledge on CPP. RECENT FINDINGS CPP formation is regarded as a defense mechanism against unwanted growth of calcium phosphate crystals in the blood and urine. CPP are polydisperse colloids and classified based on the density and crystallinity of calcium phosphate. Low-density CPP containing amorphous (noncrystalline) calcium phosphate function as an inducer of FGF23 expression in osteoblasts and a carrier of calcium phosphate to the bone. However, once transformed to high-density CPP containing crystalline calcium phosphate, CPP become cytotoxic and inflammogenic, inducing cell death in renal tubular cells, calcification in vascular smooth muscle cells, and innate immune responses in macrophages. SUMMARY CPP potentially behave like a pathogen that causes renal tubular damage, chronic inflammation, and vascular calcification. CPP have emerged as a promising therapeutic target for CKD and cardiovascular complications.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Division of Antiaging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
26
|
Bressendorff I, Hansen D, Schou M, Kragelund C, Svensson M, Hashemi B, Kristensen T, Vrist MH, Borg R, Tougaard B, Borg K, Hjortkjær HØ, Kristiansen CH, Carlson N, Nasiri M, Ashraf H, Pasch A, Brandi L. The Effect of Magnesium Supplementation on Vascular Calcification in CKD: A Randomized Clinical Trial (MAGiCAL-CKD). J Am Soc Nephrol 2023; 34:886-894. [PMID: 36749131 PMCID: PMC10125639 DOI: 10.1681/asn.0000000000000092] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/17/2022] [Indexed: 02/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Magnesium prevents vascular calcification in animals with CKD. In addition, lower serum magnesium is associated with higher risk of cardiovascular events in CKD. In a randomized, double-blinded, placebo-controlled trial, the authors investigated the effects of magnesium supplementation versus placebo on vascular calcification in patients with predialysis CKD. Despite significant increases in plasma magnesium among study participants who received magnesium compared with those who received placebo, magnesium supplementation did not slow the progression of vascular calcification in study participants. In addition, the findings showed a higher incidence of serious adverse events in the group treated with magnesium. Magnesium supplementation alone was not sufficient to delay progression of vascular calcification, and other therapeutic strategies might be necessary to reduce the risk of cardiovascular disease in CKD. BACKGROUND Elevated levels of serum magnesium are associated with lower risk of cardiovascular events in patients with CKD. Magnesium also prevents vascular calcification in animal models of CKD. METHODS To investigate whether oral magnesium supplementation would slow the progression of vascular calcification in CKD, we conducted a randomized, double-blinded, placebo-controlled, parallel-group, clinical trial. We enrolled 148 subjects with an eGFR between 15 and 45 ml/min and randomly assigned them to receive oral magnesium hydroxide 15 mmol twice daily or matching placebo for 12 months. The primary end point was the between-groups difference in coronary artery calcification (CAC) score after 12 months adjusted for baseline CAC score, age, and diabetes mellitus. RESULTS A total of 75 subjects received magnesium and 73 received placebo. Median eGFR was 25 ml/min at baseline, and median baseline CAC scores were 413 and 274 in the magnesium and placebo groups, respectively. Despite plasma magnesium increasing significantly during the trial in the magnesium group, the baseline-adjusted CAC scores did not differ significantly between the two groups after 12 months. Prespecified subgroup analyses according to CAC>0 at baseline, diabetes mellitus, or tertiles of serum calcification propensity did not significantly alter the main results. Among subjects who experienced gastrointestinal adverse effects, 35 were in the group receiving magnesium treatment versus nine in the placebo group. Five deaths and six cardiovascular events occurred in the magnesium group compared with two deaths and no cardiovascular events in the placebo group. CONCLUSIONS Magnesium supplementation for 12 months did not slow the progression of vascular calcification in CKD, despite a significant increase in plasma magnesium. CLINICAL TRIALS REGISTRATION www.clinicaltrials.gov ( NCT02542319 ).
Collapse
Affiliation(s)
- Iain Bressendorff
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Nephrology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Ditte Hansen
- Department of Nephrology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte Hospital, Herlev, Denmark
| | | | - My Svensson
- Department of Nephrology, Akershus University Hospital, Lørenskog, Norway
| | - Bahram Hashemi
- Department of Nephrology, Aalborg University Hospital, Aalborg, Denmark
| | - Tilde Kristensen
- Division of Nephrology, Department of Medicine, Hospitalsenheden Midt, Viborg, Denmark
| | | | - Rikke Borg
- Department of Medicine, Division of Nephrology, Zealand University Hospital, Roskilde, Denmark
| | - Birgitte Tougaard
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Borg
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | | | | | | | | | - Haseem Ashraf
- Department of Imaging, Akershus University Hospital, Lørenskog, Norway
- Department of Pulmonary Medicine, Herlev and Gentofte Hospital, Gentofte, Denmark
| | - Andreas Pasch
- Calciscon AG, Bern Nidau, Switzerland
- Department of Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Lisbet Brandi
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
| |
Collapse
|
27
|
Kawakami K, Ohya M, Yashiro M, Sonou T, Yamamoto S, Nakashima Y, Yano T, Tanaka Y, Ishida K, Kobashi S, Shigematsu T, Araki SI. Bisphosphonate FYB-931 Prevents High Phosphate-Induced Vascular Calcification in Rat Aortic Rings by Altering the Dynamics of the Transformation of Calciprotein Particles. Calcif Tissue Int 2023:10.1007/s00223-023-01086-z. [PMID: 37099142 DOI: 10.1007/s00223-023-01086-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/15/2023] [Indexed: 04/27/2023]
Abstract
Patients with chronic kidney disease develop vascular calcification, owing to impaired calcium and phosphate metabolism. The prevention of vascular calcification is important to improve the prognosis of such patients. In this study, we investigated whether treatment with FYB-931, a novel bisphosphonate compound, prevents vascular calcification in rat aortic rings cultured in high-phosphate medium for 9 days, assessed by measurement of the calcium content and the degree of calcium deposition, visualized using von Kossa staining. The effect on the transformation of calciprotein particles (CPPs) from primary to secondary CPPs was assessed using a fluorescent probe-based flow cytometric assay. FYB-931 dose-dependently prevented high phosphate-induced aortic calcification, but failed to rapidly cause the regression of high phosphate-induced vascular calcification once it had developed. Furthermore, the treatment dose-dependently inhibited the high phosphate-induced transformation from primary to secondary CPPs. In addition, the treatment with FYB-931 prevented the transformation from primary to secondary CPPs in vitamin D3-treated rats as a model of ectopic calcification, consistent with the results from rat aortic rings. In conclusion, treatment with FYB-931 prevents high phosphate-induced rat aortic vascular calcification by altering the dynamics of CPP transformation. This finding suggests that inhibition of the transformation from primary to secondary CPPs is an important target for the prevention of vascular calcification in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Kazuki Kawakami
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Masaki Ohya
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan.
| | - Mitsuru Yashiro
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Tomohiro Sonou
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Shuto Yamamoto
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Yuri Nakashima
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Takuro Yano
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Yusuke Tanaka
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Koichi Ishida
- Medical R&D Division, Fuji Yakuhin Co. Ltd, Laboratory 2, Iidashinden, Nishi-ku, Saitama, Saitama, 331-0068, Japan
| | - Seiichi Kobashi
- Medical R&D Division, Fuji Yakuhin Co. Ltd, Laboratory 1, Nishiomiya, Nishi-ku, Saitama, Saitama, 331-0078, Japan
| | - Takashi Shigematsu
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
- Department of Nephrology, Rinku General Medical Center, Izumisano, Osaka, 598-8577, Japan
| | - Shin-Ichi Araki
- Department of Nephrology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| |
Collapse
|
28
|
Smith ER, Champion de Crespigny PJ, Vally F, Hewitson TD, Toussaint ND, Cade TJ, Holt SG. Cord blood effectively resists mineralization through mechanisms that stabilize calciprotein particles. Kidney Int 2023; 103:782-786. [PMID: 36516910 DOI: 10.1016/j.kint.2022.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, Australia.
| | - Paul J Champion de Crespigny
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, Australia; Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville, Melbourne, Victoria, Australia
| | - Fatima Vally
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville, Melbourne, Victoria, Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Thomas J Cade
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville, Melbourne, Victoria, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Jahan N, Ohsaki H, Kaneko K, Rahman A, Nishiyama T, Koizumi M, Yamanaka S, Kitada K, Sugiura Y, Matsui K, Yokoo T, Hamano T, Kuro-O M, Itou T, Suzuki M, Ueda K, Nishiyama A. Possible contribution of phosphate to the pathogenesis of chronic kidney disease in dolphins. Sci Rep 2023; 13:5161. [PMID: 36991108 PMCID: PMC10060237 DOI: 10.1038/s41598-023-32399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
This study aimed to investigate whether phosphate contributes to the pathogenesis of chronic kidney disease (CKD) in dolphins. Renal necropsy tissue of an aged captive dolphin was analyzed and in vitro experiments using cultured immortalized dolphin proximal tubular (DolKT-1) cells were performed. An older dolphin in captivity died of myocarditis, but its renal function was within the normal range until shortly before death. In renal necropsy tissue, obvious glomerular and tubulointerstitial changes were not observed except for renal infarction resulting from myocarditis. However, a computed tomography scan showed medullary calcification in reniculi. Micro area X-ray diffractometry and infrared absorption spectrometry showed that the calcified areas were primarily composed of hydroxyapatite. In vitro experiments showed that treatment with both phosphate and calciprotein particles (CPPs) resulted in cell viability loss and lactate dehydrogenase release in DolKT-1 cells. However, treatment with magnesium markedly attenuated this cellular injury induced by phosphate, but not by CPPs. Magnesium dose-dependently decreased CPP formation. These data support the hypothesis that continuous exposure to high phosphate contributes to the progression of CKD in captive-aged dolphins. Our data also suggest that phosphate-induced renal injury is mediated by CPP formation in dolphins, and it is attenuated by magnesium administration.
Collapse
Affiliation(s)
- Nourin Jahan
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hiroyuki Ohsaki
- Department of Medical Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Kiyoko Kaneko
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | | | - Makoto Koizumi
- Laboratory Animal Facility, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Matsui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Hamano
- Department of Nephrology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Takuya Itou
- Nihon University Veterinary Research Center, Nihon University, Fujisawa, Japan
| | - Miwa Suzuki
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Keiichi Ueda
- Okinawa Churashima Foundation, Kunigami-gun, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| |
Collapse
|
30
|
Rodkin S, Nwosu C, Sannikov A, Tyurin A, Chulkov VS, Raevskaya M, Ermakov A, Kirichenko E, Gasanov M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int J Mol Sci 2023; 24:ijms24076014. [PMID: 37046987 PMCID: PMC10094524 DOI: 10.3390/ijms24076014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney, and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia, bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more involved in cytoprotective processes.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Chizaram Nwosu
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa 450008, Russia
| | | | - Margarita Raevskaya
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, Rostov-on-Don 344022, Russia
| |
Collapse
|
31
|
Feenstra L, Kutikhin AG, Shishkova DK, Buikema H, Zeper LW, Bourgonje AR, Krenning G, Hillebrands JL. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler Thromb Vasc Biol 2023; 43:443-455. [PMID: 36727521 PMCID: PMC9944758 DOI: 10.1161/atvbaha.122.318420] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Calciprotein particles (CPPs) are associated with the development of vascular calcifications in chronic kidney disease. The role of endothelial cells (ECs) in this process is unknown. Here, we investigated the interaction of CPPs and ECs, thereby focusing on endothelial nitric oxide metabolism and oxidative stress. METHODS CPPs were generated in calcium- and phosphate-enriched medium. Human umbilical vein endothelial cells were exposed to different concentrations of CPPs (0-100 µg/mL) for 24 or 72 hours. Ex vivo porcine coronary artery rings were used to measure endothelial cell-dependent vascular smooth muscle cell relaxation after CPP exposure. Serum samples from an early chronic kidney disease cohort (n=245) were analyzed for calcification propensity (measure for CPP formation) and nitrate and nitrite levels (NOx). RESULTS CPP exposure for 24 hours reduced eNOS (endothelial nitric oxide synthase) mRNA expression and decreased nitrite production, indicating reduced nitric oxide bioavailability. Also, 24-hour CPP exposure caused increased mitochondria-derived superoxide generation, together with nitrotyrosine protein residue formation. Long-term (72 hours) exposure of human umbilical vein endothelial cells to CPPs induced eNOS uncoupling and decreased eNOS protein expression, indicating further impairment of the nitric oxide pathway. The ex vivo porcine coronary artery model showed a significant reduction in endothelial-dependent vascular smooth muscle cell relaxation after CPP exposure. A negative association was observed between NOx levels and calcification propensity (r=-0.136; P=0.049) in sera of (early) chronic kidney disease patients. CONCLUSIONS CPPs cause endothelial cell dysfunction by impairing nitric oxide metabolism and generating oxidative stress. Our findings provide new evidence for direct effects of CPPs on ECs and pathways involved.
Collapse
Affiliation(s)
- Lian Feenstra
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anton G. Kutikhin
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., D.K.S.)
| | - Daria K. Shishkova
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., D.K.S.)
| | - Hendrik Buikema
- Department of Clinical Pharmacy and Pharmacology (H.B., G.K.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Lara W. Zeper
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (L.W.Z.)
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology (A.R.B.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Guido Krenning
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology (H.B., G.K.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
32
|
Bojic M, Cejka D, Bielesz B, Schernthaner GH, Höbaus C. Secondary calciprotein particle size is associated with patient mortality in peripheral artery disease. Atherosclerosis 2023; 370:12-17. [PMID: 36898866 DOI: 10.1016/j.atherosclerosis.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND AND AIMS Secondary calciprotein particles (CPP-II) induce inflammation and contribute to vascular calcification. CPP-II size is associated with vascular calcification in patients with chronic kidney disease (CKD) and all-cause mortality in hemodialysis patients. Here, we investigate for the first time a possible role of CPP-II size in patients with peripheral artery disease (PAD) without severe CKD. METHODS We measured the hydrodynamic radius (Rh) of CPP-II by using dynamic light scattering in a cohort of 281 PAD patients. Mortality was evaluated over a period of ten years by central death registry queries. 35% of patients died during the observation period (median of 8.8 (6.2-9.0) years). Cox-regression analyses were performed to estimate hazard ratios (HR) and 95% confidence intervals (CI) and to allow for multivariable adjustment. RESULTS The mean CPP-II size was 188 (162-218) nm. Older patients, patients with reduced kidney function, and those with media sclerosis had larger CPP-II (p < 0.001, p = 0.008, and p = 0.043, retrospectively). There was no association between CPP-II size and overall atherosclerotic disease burden (p = 0.551). CPP-II size was independently significantly associated with all-cause (HR 1.33 (CI 1.01-1.74), p = 0.039) and cardiovascular mortality (HR 1.52 (CI 1.05-2.20), p = 0.026) in multivariable regression analyses. CONCLUSIONS Large CPP-II size is associated with mortality in PAD patients and might be a new feasible biomarker for the presence of media sclerosis in this patient population.
Collapse
Affiliation(s)
- Marija Bojic
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Daniel Cejka
- Internal Medicine III - Nephrology, Transplantation Medicine, Rheumatology, Ordensklinikum Linz, Fadingerstraße 1, 4020, Linz, Austria
| | - Bernhard Bielesz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gerit-Holger Schernthaner
- Division of Angiology, Department of Medicine II, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Clemens Höbaus
- Division of Angiology, Department of Medicine II, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
33
|
Zawada AM, Wolf M, Rincon Bello A, Ramos-Sanchez R, Hurtado Munoz S, Ribera Tello L, Mora-Macia J, Fernández-Robres MA, Soler-Garcia J, Aguilera Jover J, Moreso F, Stuard S, Stauss-Grabo M, Winter A, Canaud B. Assessment of a serum calcification propensity test for the prediction of all-cause mortality among hemodialysis patients. BMC Nephrol 2023; 24:35. [PMID: 36792998 PMCID: PMC9933331 DOI: 10.1186/s12882-023-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Vascular calcification is a major contributor to the high cardiac burden among hemodialysis patients. A novel in vitro T50-test, which determines calcification propensity of human serum, may identify patients at high risk for cardiovascular (CV) disease and mortality. We evaluated whether T50 predicts mortality and hospitalizations among an unselected cohort of hemodialysis patients. METHODS This prospective clinical study included 776 incident and prevalent hemodialysis patients from 8 dialysis centers in Spain. T50 and fetuin-A were determined at Calciscon AG, all other clinical data were retrieved from the European Clinical Database. After their baseline T50 measurement, patients were followed for two years for the occurrence of all-cause mortality, CV-related mortality, all-cause and CV-related hospitalizations. Outcome assessment was performed with proportional subdistribution hazards regression modelling. RESULTS Patients who died during follow-up had a significantly lower T50 at baseline as compared to those who survived (269.6 vs. 287.7 min, p = 0.001). A cross-validated model (mean c statistic: 0.5767) identified T50 as a linear predictor of all-cause-mortality (subdistribution hazard ratio (per min): 0.9957, 95% CI [0.9933;0.9981]). T50 remained significant after inclusion of known predictors. There was no evidence for prediction of CV-related outcomes, but for all-cause hospitalizations (mean c statistic: 0.5284). CONCLUSION T50 was identified as an independent predictor of all-cause mortality among an unselected cohort of hemodialysis patients. However, the additional predictive value of T50 added to known mortality predictors was limited. Future studies are needed to assess the predictive value of T50 for CV-related events in unselected hemodialysis patients.
Collapse
Affiliation(s)
- Adam M Zawada
- Fresenius Medical Care Deutschland GmbH, Else-Kroener-Str. 1, 61352, Bad Homburg, Germany
| | - Melanie Wolf
- Fresenius Medical Care Deutschland GmbH, Else-Kroener-Str. 1, 61352, Bad Homburg, Germany.
| | | | | | | | | | | | | | | | | | - Francesc Moreso
- Fresenius Medical Care Services Cataluña, S.L, Barcelona, Spain
| | - Stefano Stuard
- Fresenius Medical Care Deutschland GmbH, Else-Kroener-Str. 1, 61352, Bad Homburg, Germany
| | - Manuela Stauss-Grabo
- Fresenius Medical Care Deutschland GmbH, Else-Kroener-Str. 1, 61352, Bad Homburg, Germany
| | - Anke Winter
- Fresenius Medical Care Deutschland GmbH, Else-Kroener-Str. 1, 61352, Bad Homburg, Germany
| | - Bernard Canaud
- Fresenius Medical Care Deutschland GmbH, Else-Kroener-Str. 1, 61352, Bad Homburg, Germany
- School of Medicine, University of Montpellier, Montpellier, France
| |
Collapse
|
34
|
The context-dependent role of transforming growth factor-β/miR-378a-3p/connective tissue growth factor in vascular calcification: a translational study. Aging (Albany NY) 2023; 15:830-845. [PMID: 36787443 PMCID: PMC9970315 DOI: 10.18632/aging.204518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Vascular calcification (VC) constitutes an important vascular pathology with prognostic importance. The pathogenic role of transforming growth factor-β (TGF-β) in VC remains unclear, with heterogeneous findings that we aimed to evaluate using experimental models and clinical specimens. METHODS Two approaches, exogenous administration and endogenous expression upon osteogenic media (OM) exposure, were adopted. Aortic smooth muscle cells (ASMCs) were subjected to TGF-β1 alone, OM alone, or both, with calcification severity determined. We evaluated miR-378a-3p and TGF-β1 effectors (connective tissue growth factor; CTGF) at different periods of calcification. Results were validated in an ex vivo model and further in sera from older adults without or with severe aortic arch calcification. RESULTS TGF-β1 treatment induced a significant dose-responsive increase in ASMC calcification without or with OM at the mature but not early or mid-term VC period. On the other hand, OM alone induced VC accompanied by suppressed TGF-β1 expressions over time; this phenomenon paralleled the declining miR-378a-3p and CTGF expressions since early VC. TGF-β1 treatment led to an upregulation of CTGF since early VC but not miR-378a-3p until mid-term VC, while miR-378a-3p overexpression suppressed CTGF expressions without altering TGF-β1 levels. The OM-induced down-regulation of TGF-β1 and CTGF was also observed in the ex vivo models, with compatible results identified from human sera. CONCLUSIONS We showed that TGF-β1 played a context-dependent role in VC, involving a time-dependent self-regulatory loop of TGF-β1/miR-378a-3p/CTGF signaling. Our findings may assist subsequent studies in devising potential therapeutics against VC.
Collapse
|
35
|
Morikane S, Ishida K, Taniguchi T, Ashizawa N, Matsubayashi M, Kurita N, Kobashi S, Iwanaga T. Identification of a DBA/2 Mouse Sub-strain as a Model for Pseudoxanthoma Elasticum-Like Tissue Calcification. Biol Pharm Bull 2023; 46:1737-1744. [PMID: 38044132 DOI: 10.1248/bpb.b23-00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.
Collapse
|
36
|
Miura Y, Kurosu H, Kuro-O M. Quantification of Calciprotein Particles (CPPs) in Serum/Plasma Samples Using a Fluorescent Bisphosphonate. Methods Mol Biol 2023; 2664:333-341. [PMID: 37423998 DOI: 10.1007/978-1-0716-3179-9_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Calciprotein particles (CPPs) are mineral-protein complexes containing solid-phase calcium-phosphate and the serum protein fetuin-A. CPPs are dispersed in the blood as colloids. Previous clinical studies revealed that circulating levels of CPPs were correlated with inflammation and vascular calcification/stiffness in patients with chronic kidney disease (CKD). Measurement of blood CPP levels is challenging because CPPs are unstable and change their physical and chemical properties spontaneously over time in vitro. Several different methods have been developed for quantification of blood CPP levels with different advantages and limitations. We have developed a simple and sensitive assay using a fluorescent probe that bound to calcium-phosphate crystals. This assay may be useful as a clinical test to evaluate the cardiovascular risk and prognosis in CKD patients.
Collapse
Affiliation(s)
- Yutaka Miura
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroshi Kurosu
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
37
|
Zeper LW, Smith ER, Ter Braake AD, Tinnemans PT, de Baaij JHF, Hoenderop JGJ. Calciprotein Particle Synthesis Strategy Determines In Vitro Calcification Potential. Calcif Tissue Int 2023; 112:103-117. [PMID: 36326853 PMCID: PMC9813048 DOI: 10.1007/s00223-022-01036-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Circulating calciprotein particles (CPP), colloids of calcium, phosphate and proteins, were identified as potential drivers of the calcification process in chronic kidney disease. The present study compared CPP produced using different protocols with respect to particle morphology, composition, particle number and in vitro calcification potency. CPP were synthesized with 4.4 mM (CPP-A and B) or 6 mM (CPP-C and D) phosphate and 2.8 mM (CPP-A and B) or 10 mM (CPP-C and D) calcium, with either bovine fetuin-A (CPP-C) or fetal bovine serum (CPP-A, B and D) as a source of protein, and incubated for 7 (CPP-A2) or 14 days (CPP-B2), 12 h (CPP-C2, D2 and B1) or 30 min (CPP-D1). Particle number was determined with nanoparticle tracking and calcium content was measured in CPP preparations and to determine human vascular smooth muscle cell (hVSMC) calcification. Morphologically, CPP-C2 were the largest. Particle number did not correspond to the calcium content of CPP. Both methods of quantification resulted in variable potencies of CPP2 to calcify VSMC, with CPP-B2 as most stable inducer of hVSMC calcification. In contrast, CPP-B1 and D1 were unable to induce calcification of hVSMC, and endogenous CPP derived from pooled serum of dialysis patients were only able to calcify hVSMC to a small extent compared to CPP2.CPP synthesized using different protocols appear morphologically similar, but in vitro calcification potency is dependent on composition and how the CPP are quantified. Synthetic CPP are not comparable to endogenous CPP in terms of the calcification propensity.
Collapse
Affiliation(s)
- Lara W Zeper
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Nephrology, University of Melbourne, Parkville, VIC, Australia
| | - Anique D Ter Braake
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands
| | - Paul T Tinnemans
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands.
| |
Collapse
|
38
|
The effects for inflammatory responses by CPP with different colloidal properties in hemodialysis patients. Sci Rep 2022; 12:21856. [PMID: 36528732 PMCID: PMC9759584 DOI: 10.1038/s41598-022-26166-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Calciprotein particles (CPPs) are colloids composed of solid-phase calcium-phosphate and serum protein fetuin-A. CPPs form a polydispersed system with different particle size and density. CPPs with specific physical properties can induce calcification and innate immune responses in cultured cells. In hemodialysis patients, blood CPP levels were reported to correlate with vascular calcification and inflammation. However, little is known about relation between these disorders and physical properties of CPPs. Here, we show that the association between physical properties of plasma CPPs and serum levels of inflammatory cytokines/chemokines in 78 hemodialysis out-patients by cross-sectional study. Patients with cardiovascular disease (CVD) had significantly higher high density CPP (H-CPP) levels than patients without CVD but not low density CPP (L-CPP). Seven cytokines/chemokines (EGF, eotaxin, IL-8, IP-10, MCP-1, MIP-1, MIP-1β and TNFα) were detectable in the serum samples from > 95% of the patients. In multivariate regression analysis, H-CPP was positively associated with eotaxin after adjusting for age, gender, smoking, serum phosphate and FGF23. L-CPP was negatively associated with IL-8 after adjusting for age, gender, serum albumin, phosphate and FGF23. High H-CPP levels were associated with pro-inflammatory response, whereas L-CPPs were associated with anti-inflammatory response. CPPs with different physical properties may impact differently on pathophysiology in HD patients.
Collapse
|
39
|
Marreiros C, Viegas C, Simes D. Targeting a Silent Disease: Vascular Calcification in Chronic Kidney Disease. Int J Mol Sci 2022; 23:16114. [PMID: 36555758 PMCID: PMC9781141 DOI: 10.3390/ijms232416114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic kidney disease (CKD) patients have a higher risk of developing early cardiovascular disease (CVD). Although vascular calcification (VC) is one of the strongest predictors of CVD risk, its diagnosis among the CKD population remains a serious clinical challenge. This is mainly due to the complexity of VC, which results from various interconnected pathological mechanisms occurring at early stages and at multiples sites, affecting the medial and intimal layers of the vascular tree. Here, we review the most used and recently developed imaging techniques, here referred to as imaging biomarkers, for VC detection and monitoring, while discussing their strengths and limitations considering the specificities of VC in a CKD context. Although imaging biomarkers have a crucial role in the diagnosis of VC, with important insights into CVD risk, circulating biomarkers represent an added value by reflecting the molecular dynamics and mechanisms involved in VC pathophysiological pathways, opening new avenues into the early detection and targeted interventions. We propose that a combined strategy using imaging and circulating biomarkers with a role in multiple VC molecular mechanisms, such as Fetuin-A, Matrix Gla protein, Gla-rich protein and calciprotein particles, should represent high prognostic value for management of CVD risk in the CKD population.
Collapse
Affiliation(s)
- Catarina Marreiros
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Carla Viegas
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
40
|
Shishkova D, Lobov A, Zainullina B, Matveeva V, Markova V, Sinitskaya A, Velikanova E, Sinitsky M, Kanonykina A, Dyleva Y, Kutikhin A. Calciprotein Particles Cause Physiologically Significant Pro-Inflammatory Response in Endothelial Cells and Systemic Circulation. Int J Mol Sci 2022; 23:ijms232314941. [PMID: 36499266 PMCID: PMC9738209 DOI: 10.3390/ijms232314941] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Calciprotein particles (CPPs) represent an inherent mineral buffering system responsible for the scavenging of excessive Ca2+ and PO43- ions in order to prevent extraskeletal calcification, although contributing to the development of endothelial dysfunction during the circulation in the bloodstream. Here, we performed label-free proteomic profiling to identify the functional consequences of CPP internalisation by endothelial cells (ECs) and found molecular signatures of significant disturbances in mitochondrial and lysosomal physiology, including oxidative stress, vacuolar acidification, accelerated proteolysis, Ca2+ cytosolic elevation, and mitochondrial outer membrane permeabilisation. Incubation of intact ECs with conditioned medium from CPP-treated ECs caused their pro-inflammatory activation manifested by vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1) upregulation and elevated release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1/ C-C motif ligand 2 (MCP-1/CCL2). Among the blood cells, monocytes were exclusively responsible for CPP internalisation. As compared to the co-incubation of donor blood with CPPs in the flow culture system, intravenous administration of CPPs to Wistar rats caused a considerably higher production of chemokines, indicating the major role of monocytes in CPP-triggered inflammation. Upregulation of sICAM-1 and IL-8 also suggested a notable contribution of endothelial dysfunction to systemic inflammatory response after CPP injections. Collectively, our results demonstrate the pathophysiological significance of CPPs and highlight the need for the development of anti-CPP therapies.
Collapse
Affiliation(s)
- Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia
| | - Arseniy Lobov
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, 199034 St. Petersburg, Russia
| | - Vera Matveeva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia
| | - Anna Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia
| | - Elena Velikanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia
| | - Maxim Sinitsky
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia
| | - Anastasia Kanonykina
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia
| | - Yulia Dyleva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia
- Correspondence: ; Tel.: +7-960-907-7067
| |
Collapse
|
41
|
Enax J, Meyer F, Schulze zur Wiesche E, Epple M. On the Application of Calcium Phosphate Micro- and Nanoparticles as Food Additive. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4075. [PMID: 36432359 PMCID: PMC9693044 DOI: 10.3390/nano12224075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The human body needs calcium and phosphate as essential nutrients to grow bones and teeth, but they are also necessary for many other biochemical purposes (e.g., the biosynthesis of phospholipids, adenosine triphosphate, ATP, or DNA). The use of solid calcium phosphate in particle form as a food additive is reviewed and discussed in terms of bioavailability and its safety after ingestion. The fact that all calcium phosphates, such as hydroxyapatite and tricalcium phosphate, are soluble in the acidic environment of the stomach, regardless of the particle size or phase, means that they are present as dissolved ions after passing through the stomach. These dissolved ions cannot be distinguished from a mixture of calcium and phosphate ions that were ingested separately, e.g., from cheese or milk together with soft drinks or meat. Milk, including human breast milk, is a natural source of calcium and phosphate in which calcium phosphate is present as nanoscopic clusters (nanoparticles) inside casein (protein) micelles. It is concluded that calcium phosphates are generally safe as food additives, also in baby formula.
Collapse
Affiliation(s)
- Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Erik Schulze zur Wiesche
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
42
|
Ceccherini E, Cecchettini A, Gisone I, Persiani E, Morales MA, Vozzi F. Vascular Calcification: In Vitro Models under the Magnifying Glass. Biomedicines 2022; 10:biomedicines10102491. [PMID: 36289753 DOI: 10.3390/biomedicines10102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular calcification is a systemic disease contributing to cardiovascular morbidity and mortality. The pathophysiology of vascular calcification involves calcium salt deposition by vascular smooth muscle cells that exhibit an osteoblast-like phenotype. Multiple conditions drive the phenotypic switch and calcium deposition in the vascular wall; however, the exact molecular mechanisms and the connection between vascular smooth muscle cells and other cell types are not fully elucidated. In this hazy landscape, effective treatment options are lacking. Due to the pathophysiological complexity, several research models are available to evaluate different aspects of the calcification process. This review gives an overview of the in vitro cell models used so far to study the molecular processes underlying vascular calcification. In addition, relevant natural and synthetic compounds that exerted anticalcifying properties in in vitro systems are discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Ilaria Gisone
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Elisa Persiani
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Maria Aurora Morales
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
43
|
Turner ME, Bartoli‐Leonard F, Aikawa E. Small particles with large impact: Insights into the unresolved roles of innate immunity in extracellular vesicle‐mediated cardiovascular calcification. Immunol Rev 2022; 312:20-37. [DOI: 10.1111/imr.13134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mandy E Turner
- Division of Cardiovascular Medicine Department of Medicine Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Francesca Bartoli‐Leonard
- Division of Cardiovascular Medicine Department of Medicine Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine Department of Medicine Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
- Division of Cardiovascular Medicine Department of Medicine Center for Excellence in Vascular Biology Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
44
|
Gelli R, Pucci V, Ridi F, Baglioni P. A study on biorelevant calciprotein particles: Effect of stabilizing agents on the formation and crystallization mechanisms. J Colloid Interface Sci 2022; 620:431-441. [DOI: 10.1016/j.jcis.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
|
45
|
Bruell S, Nicholls KM, Hewitson TD, Talbot AS, Holt SG, Smith ER, Ruderman I. Reduced hip bone mineral density is associated with high levels of calciprotein particles in patients with Fabry disease. Osteoporos Int 2022; 33:1783-1794. [PMID: 35575807 PMCID: PMC9499881 DOI: 10.1007/s00198-022-06420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/03/2022] [Indexed: 12/01/2022]
Abstract
UNLABELLED Calciprotein particles (CPP) are nanoscale mineralo-protein aggregates that help stabilize excess mineral in the circulation. We examined the relationship between CPP and bone mineral density in Fabry disease patients. We found an inverse correlation with total hip and femoral neck density, but none with lumbar spine. PURPOSE Calciprotein particles (CPP) are colloidal mineral-protein complexes made up primarily of the circulating glycoprotein fetuin-A, calcium, and phosphate. They form in extracellular fluid and facilitate the stabilization, transport, and clearance of excess minerals from the circulation. While most are monomers, they also exist in larger primary (CPP-I) and secondary (CPP-II) form, both of which are reported to be raised in pathological states. This study sought to investigate CPP levels in the serum of patients with Fabry disease, an X-linked systemic lysosomal storage disorder that is associated with generalized inflammation and low bone mineral density (BMD). METHODS We compared serum CPP-I and CPP-II levels in 59 patients with Fabry disease (37 female) with levels in an age-matched healthy adult cohort (n=28) and evaluated their association with BMD and biochemical data obtained from routine clinical review. RESULTS CPP-I and CPP-II levels were higher in male Fabry disease patients than female sufferers as well as their corresponding sex- and age-matched controls. CPP-II levels were inversely correlated with BMD at the total hip and femoral neck, but not the lumbar spine. Regression analyses revealed that these associations were independent of common determinants of BMD, but at the femoral neck, a significant association was only found in female patients. CONCLUSION Low hip BMD was associated with high CPP-II in patients with Fabry disease, but further work is needed to investigate the relevance of sex-related differences and to establish whether CPP measurement may aid assessment of bone disease in this setting.
Collapse
Affiliation(s)
- S Bruell
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
| | - K M Nicholls
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - T D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - A S Talbot
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
| | - S G Holt
- Department of Medicine (RMH), University of Melbourne, Parkville, Australia
- SEHA Kidney Care, Abu Dhabi Health Services Company, Abu Dhabi, United Arab Emirates
- Khalifa University, Abu Dhabi, United Arab Emirates
| | - E R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia.
- Department of Medicine (RMH), University of Melbourne, Parkville, Australia.
- Kincaid-Smith Renal Laboratories, Department of Nephrology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, 3052, Australia.
| | - I Ruderman
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
46
|
Nakamura K, Isoyama N, Nakayama Y, Hiroyoshi T, Fujikawa K, Miura Y, Kurosu H, Matsuyama H, Kuro-O M. Association between amorphous calcium-phosphate ratios in circulating calciprotein particles and prognostic biomarkers in hemodialysis patients. Sci Rep 2022; 12:13030. [PMID: 35906396 PMCID: PMC9338083 DOI: 10.1038/s41598-022-17405-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Calciprotein particles (CPPs) are circulating colloidal mineral-protein complexes containing crystalline and/or non-crystalline (amorphous) calcium-phosphate (CaPi). Serum CPP levels correlate with vascular stiffness and calcification in patients with chronic kidney disease (CKD). In vitro studies showed that CPPs containing crystalline CaPi were more arteriosclerogenic and inflammogenic than CPPs without containing crystalline CaPi. Thus, we hypothesized that not only the quantity but also the quality of CPPs (the phase of CaPi) might affect clinical outcomes. To test this hypothesis, we quantified amorphous CaPi ratio defined as the ratio of the amorphous CaPi amount to the total CaPi amount in serum CPPs from 183 hemodialysis patients and explored its possible correlation with serum parameters associated with prognosis of hemodialysis patients. Multivariate analysis revealed that the amorphous CaPi ratio correlated positively with hemoglobin and negatively with fibroblast growth factor-21 (FGF21), which remained significant after adjusting for the total CaPi amount. Because low hemoglobin and high FGF21 are associated with increased mortality, the present study warrants further studies to determine whether low amorphous CaPi ratio in circulating CPPs may be associated with poor prognosis in hemodialysis patients.
Collapse
Affiliation(s)
- Kimihiko Nakamura
- Department of Urology, Graduate School of Medicine, Yamaguchi University, 1‑1‑1, Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Naohito Isoyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, 1‑1‑1, Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuki Nakayama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, 1‑1‑1, Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshiya Hiroyoshi
- Department of Urology, Graduate School of Medicine, Yamaguchi University, 1‑1‑1, Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koki Fujikawa
- Department of Urology, Graduate School of Medicine, Yamaguchi University, 1‑1‑1, Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yutaka Miura
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroshi Kurosu
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, 1‑1‑1, Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
47
|
Vascular Calcification Is Associated with Fetuin-A and Cortical Bone Porosity in Stone Formers. J Pers Med 2022; 12:jpm12071120. [PMID: 35887617 PMCID: PMC9319706 DOI: 10.3390/jpm12071120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Nephrolithiasis has been associated with bone loss and vascular calcification (VC), reflecting abnormal extraosseous calcium deposition. Fetuin-A (Fet-A) acts as a potent inhibitor of ectopic mineralization. The aim of the present study was to evaluate the prevalence of VC in stone formers (SF) and non-stone formers (NSF) and to investigate potential determinants of VC among SF, including circulating levels of Fet-A and bone microarchitecture parameters. Methods: Abdominal aortic calcification (AAC) was assessed using available computed tomography in SF and in age-, sex-, and BMI-matched NSF (potential living kidney donors). Serum Fet-A was measured in stored blood samples from SF. Bone microarchitecture parameters were obtained as a post hoc analysis of a cross-sectional cohort from young SF evaluated by high-resolution peripheral quantitative computed tomography (HR-pQCT). Results: A total of 62 SF (38.0 [28.0−45.3] years old) and 80 NSF (40.0 [37.0−45.8] years old) were included. There was no significant difference in AAC scores between SF and NSF. However, when dividing SF according to mean AAC score, below <5.8% (n = 33) or above ≥5.8% (n = 29), SF with higher AAC presented significantly higher BMI and tibial cortical porosity (Ct.Po) and significantly lower serum HDL, klotho, Fet-A, and eGFR. Urinary calcium did not differ between groups, but fractional excretion of phosphate was higher in the former. Upon multivariate regression, BMI, serum Fet-A, and tibial Ct.Po remained independently associated with AAC. Conclusions: This study suggests an association between reduced circulating Fet-A levels and increased bone Ct.Po with VC in SF.
Collapse
|
48
|
Hügle T, Nasi S, Ehirchiou D, Omoumi P, So A, Busso N. Fibrin deposition associates with cartilage degeneration in arthritis. EBioMedicine 2022; 81:104081. [PMID: 35660787 PMCID: PMC9163430 DOI: 10.1016/j.ebiom.2022.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background Cartilage damage in inflammatory arthritis is attributed to inflammatory cytokines and pannus infiltration. Activation of the coagulation system is a well known feature of arthritis, especially in rheumatoid arthritis (RA). Here we describe mechanisms by which fibrin directly mediates cartilage degeneration. Methods Fibrin deposits were stained on cartilage and synovial tissue of RA and osteoarthritis (OA) patients and in murine adjuvant-induced arthritis (AIA) in wild-type or fibrinogen deficient mice. Fibrinogen expression and procoagulant activity in chondrocytes were evaluated using qRT-PCR analysis and turbidimetry. Chondro-synovial adhesion was studied in co-cultures of human RA cartilage and synoviocytes, and in the AIA model. Calcific deposits were stained in human RA and OA cartilage and in vitro in fibrinogen-stimulated chondrocytes. Findings Fibrin deposits on cartilage correlated with the severity of cartilage damage in human RA explants and in AIA in wild-type mice, whilst fibrinogen deficient mice were protected. Fibrin upregulated Adamts5 and Mmp13 in chondrocytes. Chondro-synovial adhesion only occurred in fibrin-rich cartilage areas and correlated with cartilage damage. In vitro, autologous human synoviocytes, cultured on RA cartilage explants, adhered exclusively to fibrin-rich areas. Fibrin co-localized with calcification in human RA cartilage and triggered chondrocyte mineralization by inducing pro-calcification genes (Anx5, Pit1, Pc1) and the IL-6 cytokine. Similar fibrin-mediated mechanisms were observed in OA models, but to a lesser extent and without pseudo-membranes formation. Interpretation In arthritis, fibrin plaques directly impair cartilage integrity via a triad of catabolism, adhesion, and calcification. Funding None.
Collapse
|
49
|
Serum Calcification Propensity T50 Associates with Disease Severity in Patients with Pseudoxanthoma Elasticum. J Clin Med 2022; 11:jcm11133727. [PMID: 35807012 PMCID: PMC9267205 DOI: 10.3390/jcm11133727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a currently intractable genetic disorder characterized by progressive ectopic calcification in the skin, eyes and arteries. Therapeutic trials in PXE are severely hampered by the lack of reliable biomarkers. Serum calcification propensity T50 is a blood test measuring the functional anticalcifying buffer capacity of serum. Here, we evaluated T50 in PXE patients aiming to investigate its determinants and suitability as a potential biomarker for disease severity. Fifty-seven PXE patients were included in this cross-sectional study, and demographic, clinical, imaging and biochemical data were collected from medical health records. PXE severity was assessed using Phenodex scores. T50 was measured using a validated, nephelometry-based assay. Multivariate models were then created to investigate T50 determinants and associations with disease severity. In short, the mean age of patients was 45.2 years, 68.4% was female and mean serum T50 was 347 min. Multivariate regression analysis identified serum fetuin-A (p < 0.001), phosphorus (p = 0.007) and magnesium levels (p = 0.034) as significant determinants of T50, while no correlations were identified with serum calcium, eGFR, plasma PPi levels or the ABCC6 genotype. After correction for covariates, T50 was found to be an independent determinant of ocular (p = 0.013), vascular (p = 0.013) and overall disease severity (p = 0.016) in PXE. To conclude, shorter serum T50—indicative of a higher calcification propensity—was associated with a more severe phenotype in PXE patients. This study indicates, for the first time, that serum T50 might be a clinically relevant biomarker in PXE and may thus be of importance to future therapeutic trials.
Collapse
|
50
|
Hashimoto Y, Kato S, Kuro-O M, Miura Y, Itano Y, Ando M, Kuwatsuka Y, Maruyama S. Impact of etelcalcetide on fibroblast growth factor-23 and calciprotein particles in patients with secondary hyperparathyroidism undergoing hemodialysis. Nephrology (Carlton) 2022; 27:763-770. [PMID: 35749253 DOI: 10.1111/nep.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recently, we demonstrated the efficacy of etelcalcetide in the control of secondary hyperparathyroidism (SHPT). This post hoc analysis aimed to evaluate changes in fibroblast growth factor-23 (FGF23) and calciprotein particles (CPPs) after treatment with calcimimetics. METHODS The DUET trial was a 12-week multicenter, open-label, parallel-group, randomized (1:1:1) study with patients treated with etelcalcetide plus active vitamin D (E+D group; n = 41), etelcalcetide plus oral calcium (E+Ca group; n = 41), or control (C group; n = 42) under maintenance hemodialysis. Serum levels of FGF23 and CPPs were measured at baseline, and 6 and 12 weeks after the start. RESULTS In the linear mixed model, serum levels of FGF23 in etelcalcetide users were significantly lower than those in non-users at week 6 (p < 0.001) and week 12 (p < 0.001). When compared the difference between the E+Ca group and the E+D group, serum levels of FGF23 in the E+Ca group were significantly lower than those in the E+D group at week 12 (p = 0.017). There were no significant differences in the serum levels of CPPs between etelcalcetide users and non-users at week 6 (p = 0.10) and week 12 (p = 0.18), while CPPs in the E+Ca group were significantly lower than those in the E+D group (p < 0.001) at week 12. CONCLUSION Etelcalcetide may be useful through suppression of FGF23 levels among hemodialysis patients with SHPT. When correcting hypocalcemia, loading oral calcium preparations could be more advantageous than active vitamin D for the suppression of both FGF23 and CPPs.
Collapse
Affiliation(s)
- Yusaku Hashimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Sawako Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yutaka Miura
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuya Itano
- Department of Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Masahiko Ando
- Department of Advanced Medicine, Nagoya University Hospital, Aichi, Japan
| | - Yachiyo Kuwatsuka
- Department of Advanced Medicine, Nagoya University Hospital, Aichi, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|