1
|
Bilgin AG, Ekici B, Ozuynuk-Ertugrul AS, Erkan AF, Coban N. The minor allele of ANGPTL8 rs2278426 has a protective effect against CAD in T2DM patients. Gene 2024; 914:148418. [PMID: 38552749 DOI: 10.1016/j.gene.2024.148418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) is the leading cause of death worldwide despite advanced treatment and diagnosis strategies. Angiopoietin-like protein 8 (ANGPTL8) mainly functions in the lipid mechanism, which is a dysregulated mechanism during CAD pathogenesis. In this study, we aimed to determine the associations between an ANGPTL8 polymorphism rs2278426 and the severity, presence, and risk factors of CAD. METHODS A total of 1367 unrelated Turkish individuals who underwent coronary angiography were recruited for the study and grouped as CAD (n = 736, ≥50 stenosis) and non-CAD (n = 549, ≤30 stenosis). Also, subjects were further divided into groups regarding type 2 diabetes mellitus (T2DM) status. Subjects were genotyped for rs2278426 (C/T) by quantitative real-time PCR. Secondary structure analyses of protein interactions were revealed using I-TASSER and PyMOL. RESULTS Among CAD patients, T allele carriage frequency was lower in the T2DM group (p = 0.046). Moreover, in male non-CAD group, T allele carriage was more prevalent among T2DM patients than non-T2DM (p = 0.033). In logistic regression analysis adjusted for obesity, T allele carrier males had an increased risk for T2DM in non-CAD group (OR = 2.244, 95 % CI: 1.057-4.761, p = 0.035). Also, in T2DM group, stenosis (p = 0.002) and SYNTAX score (p = 0.040) were lower in T allele carrier males than in non-carriers. Analyzes of secondary structure showed that ANGPTL8 could not directly form complexes with ANGPTL3 or ANGPTL4. CONCLUSION In conclusion, T allele carriage of ANGPTL8 rs2278426 has a protective effect on CAD in T2DM patients. Further research should be conducted to explore the association between ANGPTL8 polymorphism (rs2778426) and CAD.
Collapse
Affiliation(s)
- Aslihan Gizem Bilgin
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Berkay Ekici
- Department of Cardiology, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Aybike Sena Ozuynuk-Ertugrul
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Aycan Fahri Erkan
- Department of Cardiology, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Neslihan Coban
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey.
| |
Collapse
|
2
|
Wen Y, Chen YQ, Konrad RJ. Angiopoietin-like protein 8: a multifaceted protein instrumental in regulating triglyceride metabolism. Curr Opin Lipidol 2024; 35:58-65. [PMID: 37962908 DOI: 10.1097/mol.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
PURPOSE OF REVIEW The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities. RECENT FINDINGS After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5). SUMMARY ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
3
|
Momiyama Y, Kishimoto Y, Saita E, Ohmori R, Kondo K. High plasma levels of angiopoietin-like protein 8 and cardiovascular events in patients undergoing coronary angiography. Atherosclerosis 2023; 386:117309. [PMID: 37813750 DOI: 10.1016/j.atherosclerosis.2023.117309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Affiliation(s)
| | - Yoshimi Kishimoto
- Department of Food Science and Human Nutrition, Setsunan University, Osaka, Japan
| | - Emi Saita
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University, Tochigi, Japan
| | | |
Collapse
|
4
|
Ye H, Zong Q, Zou H, Zhang R. Emerging insights into the roles of ANGPTL8 beyond glucose and lipid metabolism. Front Physiol 2023; 14:1275485. [PMID: 38107478 PMCID: PMC10722441 DOI: 10.3389/fphys.2023.1275485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) is a secreted protein predominantly expressed in liver and adipose tissue. ANGPTL8 modulates the clearance of triglycerides (TGs) by suppressing the activity of lipoprotein lipase (LPL) within the plasma. Previous studies found that circulating ANGPTL8 levels were significantly increased in metabolic disorder-related diseases, such as type 2 diabetes mellitus (T2DM), obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). Whether ANGPTL8 has a direct pathogenic role in these diseases remains to be determined. In this review, we summarize the emerging roles of ANGPTL8 in the regulation of inflammation, tumours, circulatory system-related diseases, and ectopic lipid deposition, which may provide new insights into the diverse functions of ANGPTL8 in various diseases beyond its well-established functions in glucose and lipid metabolism.
Collapse
Affiliation(s)
- Huimin Ye
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qinghai University, Xining, China
| | - Qunchuan Zong
- Department of Traumatology and Orthopaedics, The Affiliated Hospital of Qinghai University, Xining, China
| | - Huajie Zou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qinghai University, Xining, China
| | - Ruixia Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
5
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
6
|
Xu F, Shen L, Yang Y, Kong L, Zu W, Tian D, Cao X, Huang G. Association Between Plasma Levels of ANGPTL3, 4, 8 and the Most Common Additional Cardiovascular Risk Factors in Patients with Hypertension. Diabetes Metab Syndr Obes 2023; 16:1647-1655. [PMID: 37309506 PMCID: PMC10257919 DOI: 10.2147/dmso.s411483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Background ANGPTL3, 4 and 8 have been reported to be involved in the regulation of lipid and glucose metabolism. The aim of this study was to investigate the expression of ANGPTL3, 4, 8 in hypertensive patients with or without overweight/obesity, T2D, and hyperlipidemia, and the possible association between their expression and the status of the aforementioned comorbidities. Methods Plasma levels of ANGPTL3, 4, and 8 in 87 hospitalized patients with hypertension were measured using ELISA kits. Associations between circulating ANGPTLs levels and the most common additional cardiovascular risk factors were assessed using multivariate linear regression analyses. Pearson's correlation analysis was used to examine the association between ANGPTLs and clinical parameters. Results In the context of hypertension, (1) although not statistically significant, circulating ANGPTL3 levels were higher in the overweight/obese group than in the normal weight group; (2) circulating levels of ANGPTL3 and ANGPTL8 were significantly lower in patients with T2D than in non-diabetic patients; (3) circulating ANGPTL3 levels were significantly higher in the hyperlipidemic group than in the non-hyperlipidemic group. ANGPTL3 was associated with T2D and hyperlipidemia status, whereas ANGPTL8 was independently associated with T2D status. In addition, circulating ANGPTL3 levels were positively correlated with TC, TG, LDL-C, HCY, and ANGPTL8, and circulating ANGPTL4 levels were positively correlated with UACR and BNP. Conclusion Changes in circulating ANGPTL3 and ANGPTL8 levels have been observed in hypertensive patients with the most common additional cardiovascular risk factors, suggesting a role in the common comorbidities of hypertension and cardiovascular disease. Hypertensive patients with overweight/obesity or hyperlipidemia may benefit from therapies targeting ANGPTL3.
Collapse
Affiliation(s)
- Fangfang Xu
- Key Laboratory of Geriatrics, Institute of Geriatrics, Department of Geriatric Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Lijun Shen
- Department of Clinical Medical Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yongguang Yang
- Department of Clinical Medical Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Limin Kong
- Department of General Medicine, Xinxiang Medical University, the Sixth People’s Hospital of Zhengzhou, Zhengzhou, People’s Republic of China
| | - Wufan Zu
- Department of Immunology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xuanchao Cao
- Key Laboratory of Geriatrics, Institute of Geriatrics, Department of Geriatric Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Gairong Huang
- Key Laboratory of Geriatrics, Institute of Geriatrics, Department of Geriatric Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
7
|
ANGPTL8 is a negative regulator in pathological cardiac hypertrophy. Cell Death Dis 2022; 13:621. [PMID: 35851270 PMCID: PMC9293964 DOI: 10.1038/s41419-022-05029-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023]
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the role of angiopoietin-like protein 8 (ANGPTL8) in pathological cardiac hypertrophy. We found that serum ANGPTL8 levels were significantly increased in hypertensive patients with cardiac hypertrophy and in mice with cardiac hypertrophy induced by Ang II or TAC. Furthermore, the secretion of ANGPTL8 from the liver was increased during hypertrophic processes, which were triggered by Ang II. In the Ang II- and transverse aortic constriction (TAC)-induced mouse cardiac hypertrophy model, ANGPTL8 deficiency remarkably accelerated cardiac hypertrophy and fibrosis with deteriorating cardiac dysfunction. Accordingly, both recombinant human full-length ANGPTL8 (rANGPTL8) protein and ANGPTL8 overexpression significantly mitigated Ang II-induced cell enlargement in primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cells. Mechanistically, the antihypertrophic effects of ANGPTL8 depended on inhibiting Akt and GSK-3β activation, and the Akt activator SC-79 abolished the antihypertrophic effects of rANGPTL8 in vitro. Moreover, we demonstrated that ANGPTL8 directly bound to the paired Ig-like receptor PIRB (LILRB3) by RNA-seq and immunoprecipitation-mass screening. Remarkably, the antihypertrophic effects of ANGPTL8 were largely blocked by anti-LILRB3 and siRNA-LILRB3. Our study indicated that ANGPTL8 served as a novel negative regulator of pathological cardiac hypertrophy by binding to LILRB3 (PIRB) and inhibiting Akt/GSK3β activation, suggesting that ANGPTL8 may provide synergistic effects in combination with AT1 blockers and become a therapeutic target for cardiac hypertrophy and heart failure.
Collapse
|
8
|
Qin L, Rehemuding R, Ainiwaer A, Ma X. Correlation between betatrophin/angiogenin-likeprotein3/lipoprotein lipase pathway and severity of coronary artery disease in Kazakh patients with coronary heart disease. World J Clin Cases 2022; 10:2095-2105. [PMID: 35321188 PMCID: PMC8895170 DOI: 10.12998/wjcc.v10.i7.2095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/01/2021] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The results of previous animal experiments and clinical studies have shown that there is a correlation between expression of betatrophin and blood lipid levels. However, there are still differences studies on the correlation and interaction mechanism between betatrophin, angiogenin-likeprotein3 (ANGPTL3) and lipoprotein lipase (LPL). In our previous studies, we found an increase in serum ANGPTL3 Levels in Chinese patients with coronary heart disease (CHD). Therefore, we retrospectively studied Kazakh CHD patients.
AIM To explore the correlation between the betatrophin/ANGPTL3/LPL pathway and severity of coronary artery disease (CAD) in patients with CHD.
METHODS Nondiabetic patients diagnosed with CHD were selected as the case group; 79 were of Kazakh descent and 72 were of Han descent. The control groups comprised of 61 Kazakh and 65 Han individuals. The serum levels of betatrophin and LPL were detected by enzyme-linked immunosorbent assay (ELISA), and the double antibody sandwich ELISA was used to detect serum level of ANGPTL3. The levels of triglycerides, total cholesterol, and fasting blood glucose in each group were determined by an automatic biochemical analyzer. At the same time, the clinical baseline data of patients in each group were included.
RESULTS Betatrophin, ANGPTL3 and LPL levels of Kazakh patients were significantly higher than those of Han patients (P = 0.031, 0.038, 0.021 respectively). There was a positive correlation between the Gensini score and total cholesterol (TC), triglycerides (TG), low- density lipoprotein cholesterol (LDL-C), betatrophin, and LPL in Kazakh patients (r = 0.204, 0.453, 0.352, 0.471, and 0.382 respectively), (P = 0.043, 0.009, 0.048, 0.001, and P < 0.001 respectively). A positive correlation was found between the Gensini score and body mass index (BMI), TC, TG, LDL-C, LPL, betatrophin in Han patients (r = 0.438, 0.195, 0.296, 0.357, 0.328, and 0.446 respectively), (P = 0.044, 0.026, 0.003, 0.20, 0.004, and P < 0.001). TG and betatrophin were the risk factors of coronary artery disease in Kazakh patients, while BMI and betatrophin were the risk factors in Han patients.
CONCLUSION There was a correlation between the betatrophin/ANGPTL3/LPL pathway and severity of CAD in patients with CHD.
Collapse
Affiliation(s)
- Lian Qin
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi 830054, Xinjiang Uygur Autonomous region, China
| | - Rena Rehemuding
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi 830054, Xinjiang Uygur Autonomous region, China
| | - Aikeliyaer Ainiwaer
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi 830054, Xinjiang Uygur Autonomous region, China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi 830054, Xinjiang Uygur Autonomous region, China
| |
Collapse
|
9
|
El Hini SH, Mahmoud YZ, Saedii AA, Mahmoud SS, Amin MA, Mahmoud SR, Matta RA. Angiopoietin-like proteins 3, 4 and 8 are linked to cardiovascular function in naïve sub-clinical and overt hypothyroid patients receiving levothyroxine therapy. Endocr Connect 2021; 10:1570-1583. [PMID: 34739390 PMCID: PMC8679937 DOI: 10.1530/ec-21-0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Angiopoietin-like proteins (ANGPTL) 3, 4 and 8 are upcoming cardiovascular biomarkers. Experimental studies showed that thyroid hormones altered their levels. We assessed ANGPTL3, 4 and 8 as predictors of cardiovascular functions among naïve subclinical and naïve overt hypothyroidism (SCH and OH) and altered ANGPTL levels with levothyroxine replacement (LT4) and their association with improved cardiovascular risk factors and cardiovascular function. DESIGN AND METHODS The study was a prospective follow-up study that assessed ANGPTL3, 4 and 8 levels, vascular status (flow-mediated dilation% of brachial artery (FMD%), carotid intima-media thickness (CIMT), aortic stiffness index (ASI)), left ventricle (LV) parameters (ejection fraction (EF), myocardial performance index (MPI), and LV mass), well-known cardiovascular risk factors and homeostatic model for the assessment of insulin resistance, at two time points, that is, among naïve SCH, naïve OH, and healthy subjects groups; and at 6 months after achieving the euthyroid state with LT4 by calculating their increased or decreased delta changes (∆↑ or ∆↓) in longitudinal arm among LT4-hypothyroid groups. RESULTS Significantly elevated levels of ANGPTL3, 4 and 8 among hypothyroid groups than the healthy subjects were reduced with LT4. Multivariate analysis revealed ANGPTLs as independent predictors of cardiovascular functions and the contributors for ANGPTL level included ANGPTL3 and 4 for impaired FMD%, and ANGPTL8 for LV mass among naïve SCH; ANGPTL3 for EF% and ANGPTL8 for CIMT in naïve OH; ∆↓ANGPTL3 for ∆↓ASI meanwhile ∆↑freeT4 for ∆↓ANGPTL3, ∆↓fasting glucose, ∆↓triglyceride, and ∆↓thyroid peroxidase antibody for ∆↓ANGPTL4 among LT4-SCH. ∆↓ANGPTL4 for ∆↓MPI and ∆↓LV mass, meanwhile ∆↓TSH and ∆↓triglyceride for ∆↓ANGPTL3, ∆↑free T3 and ∆↓HOMA-IR for ∆↓ANGPTL4, and systolic blood pressure and waist circumference for ∆↓ANGPTL8 among LT4-OH. CONCLUSION Elevated ANGPTL3, 4 and 8 levels are differentially independent predictors of endothelial and cardiac function and are reduced with LT4 in SCH and OH.
Collapse
Affiliation(s)
- Sahar Hossam El Hini
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Yehia Zakaria Mahmoud
- Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | | | | | - Mohamed Ahmed Amin
- Department of Radiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shereen Riad Mahmoud
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ragaa Abdelshaheed Matta
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
- Correspondence should be addressed to R A Matta:
| |
Collapse
|
10
|
Abstract
ANGPTL8 is an important cytokine, which is significantly increased in type 2 diabetes mellitus (T2DM), obesity and metabolic syndrome. Many studies have shown that ANGPTL8 can be used as a bio-marker of these metabolic disorders related diseases, and the baseline ANGPTL8 level has also been found to be positively correlated with retinopathy and all-cause mortality in patients with T2DM. This may be related to the inhibition of lipoprotein lipase activity and the reduction of circulating triglyceride (TG) clearance by ANGPTL8. Consistently, inhibition of ANGPTL8 seems to prevent or improve atherosclerosis. However, it is puzzling that ANGPTL8 seems to have a directing function for TG uptake in peripheral tissues; that is, ANGPTL8 specifically enhances the reserve and buffering function of white adipose tissue, which may alleviate the ectopic lipid accumulation to a certain extent. Furthermore, ANGPTL8 can improve insulin sensitivity and inhibit hepatic glucose production. These contradictory results lead to different opinions on the role of ANGPTL8 in metabolic disorders. In this paper, the correlation between ANGPTL8 and metabolic diseases, the regulation of ANGPTL8 and the physiological role of ANGPTL8 in the process of glucose and lipid metabolism were summarized, and the physiological/pathological significance of ANGPTL8 in the process of metabolic disorder was discussed.
Collapse
Affiliation(s)
- Chang Guo
- Department of Nephrology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Chenxi Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Oldoni F, Bass K, Kozlitina J, Hudson H, Shihanian LM, Gusarova V, Cohen JC, Hobbs HH. Genetic and Metabolic Determinants of Plasma Levels of ANGPTL8. J Clin Endocrinol Metab 2021; 106:1649-1667. [PMID: 33619548 PMCID: PMC8118582 DOI: 10.1210/clinem/dgab120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT ANGPTL8 (A8) plays a key role in determining the tissue fate of circulating triglycerides (TGs). Plasma A8 levels are associated with several parameters of glucose and TG metabolism, but the causality of these relationships and the contribution of genetic variants to differences in A8 levels have not been explored. OBJECTIVE To characterize the frequency distribution of plasma A8 levels in a diverse population using a newly-developed enzyme-linked immunosorbent assay (ELISA) and to identify genetic factors contributing to differences in plasma A8 levels. METHODS We studied a population-based sample of Dallas County, comprising individuals in the Dallas Heart Study (DHS-1, n = 3538; DHS-2, n = 3283), including 2131 individuals with repeated measurements 7 to 9 years apart (age 18-85 years; >55% female; 52% Black; 29% White; 17% Hispanic; and 2% other). The main outcome measures were associations of A8 levels with body mass index (BMI), plasma levels of glucose, insulin, lipids, and hepatic TGs, as well as DNA variants identified by exome-wide sequencing. RESULTS A8 levels varied over a 150-fold range (2.1-318 ng/mL; median, 13.3 ng/mL) and differed between racial/ethnic groups (Blacks > Hispanics > Whites). A8 levels correlated with BMI, fasting glucose, insulin, and TG levels. A variant in A8, R59W, accounted for 17% of the interindividual variation in A8 levels but was not associated with the metabolic parameters correlated with plasma A8 concentrations. CONCLUSIONS A8 levels were strongly associated with indices of glucose and TG metabolism, but the lack of association of genetic variants at the A8 locus that impact A8 levels with these parameters indicates that differences in A8 levels are not causally related to the associated metabolic phenotypes.
Collapse
Affiliation(s)
- Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Bass
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julia Kozlitina
- The Eugene McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hannah Hudson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Jonathan C Cohen
- The Eugene McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- The Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Helen H Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- The Eugene McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Gunn KH, Gutgsell AR, Xu Y, Johnson CV, Liu J, Neher SB. Comparison of angiopoietin-like protein 3 and 4 reveals structural and mechanistic similarities. J Biol Chem 2021; 296:100312. [PMID: 33482195 PMCID: PMC7949051 DOI: 10.1016/j.jbc.2021.100312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Elevated plasma triglycerides are a risk factor for coronary artery disease, which is the leading cause of death worldwide. Lipoprotein lipase (LPL) reduces triglycerides in the blood by hydrolyzing them from triglyceride-rich lipoproteins to release free fatty acids. LPL activity is regulated in a nutritionally responsive manner by macromolecular inhibitors including angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4). However, the mechanism by which ANGPTL3 inhibits LPL is unclear, in part due to challenges in obtaining pure protein for study. We used a new purification protocol for the N-terminal domain of ANGPTL3, removing a DNA contaminant, and found DNA-free ANGPTL3 showed enhanced inhibition of LPL. Structural analysis showed that ANGPTL3 formed elongated, flexible trimers and hexamers that did not interconvert. ANGPTL4 formed only elongated flexible trimers. We compared the inhibition of ANGPTL3 and ANGPTL4 using human very-low-density lipoproteins as a substrate and found both were noncompetitive inhibitors. The inhibition constants for the trimeric ANGPTL3 (7.5 ± 0.7 nM) and ANGPTL4 (3.6 ± 1.0 nM) were only 2-fold different. Heparin has previously been reported to interfere with ANGPTL3 binding to LPL, so we questioned if the negatively charged heparin was acting in a similar fashion to the DNA contaminant. We found that ANGPTL3 inhibition is abolished by binding to low-molecular-weight heparin, whereas ANGPTL4 inhibition is not. Our data show new similarities and differences in how ANGPTL3 and ANGPTL4 regulate LPL and opens new avenues of investigating the effect of heparin on LPL inhibition by ANGPTL3.
Collapse
Affiliation(s)
- Kathryn H Gunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aspen R Gutgsell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caitlin V Johnson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
13
|
Wang D, Feng D, Wang Y, Dong P, Wang Y, Zhong L, Li B, Fu J, Xiao X, Speakman JR, Li M, Gao S. Angiopoietin-Like Protein 8/Leptin Crosstalk Influences Cardiac Mass in Youths With Cardiometabolic Risk: The BCAMS Study. Front Endocrinol (Lausanne) 2021; 12:788549. [PMID: 35145478 PMCID: PMC8821093 DOI: 10.3389/fendo.2021.788549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES The link between excess adiposity and left ventricular hypertrophy is multifaceted with sparse data among youths. Given that adipokines/hepatokines may influence lipid metabolism in myocardium, we aimed to investigate the relation of the novel hepatokine angiopoietin-like protein 8 (ANGPTL8) and other adipokines with cardiac structure in a cohort of youths and explore to what extent these adipokines/hepatokines affect cardiac structure through lipids. METHODS A total of 551 participants (aged 15-28 years) from the Beijing Child and Adolescent Metabolic Syndrome Study (BCAMS) cohort underwent echocardiographic measurements plus a blood draw assayed for five adipokines/hepatokines including adiponectin, leptin, retinol binding protein 4, fibroblast growth protein 21 and ANGPTL8. RESULTS Both ANGPTL8 (β = -0.68 g/m2.7 per z-score, P= 0.015) and leptin (β = -1.04 g/m2.7 per z-score, P= 0.036) were significantly inversely associated with left ventricular mass index (LVMI) independent of classical risk factors. Total cholesterol and low-density lipoprotein cholesterol significantly mediated the ANGPTL8-LVMI association (proportion: 19.0% and 17.1%, respectively), while the mediation effect of triglyceride on the ANGPTL8-LVMI relationship was strongly moderated by leptin levels, significantly accounting for 20% of the total effect among participants with higher leptin levels. Other adipokines/hepatokines showed no significant association with LVMI after adjustment for body mass index. CONCLUSIONS Our findings suggest ANGPTL8, particularly interacting with leptin, might have a protective role in cardiac remodeling among youths with risk for metabolic syndrome. Our results offer insights into the pathogenesis of the cardiomyopathy and the potential importance of tissue-tissue crosstalk in these effects.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Feng
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuhan Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peiyu Dong
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yonghui Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ling Zhong
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Junling Fu
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - John R. Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Ming Li, ; Shan Gao,
| | - Shan Gao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ming Li, ; Shan Gao,
| |
Collapse
|
14
|
Abu-Farha M, Ghosh A, Al-Khairi I, Madiraju SRM, Abubaker J, Prentki M. The multi-faces of Angptl8 in health and disease: Novel functions beyond lipoprotein lipase modulation. Prog Lipid Res 2020; 80:101067. [PMID: 33011191 DOI: 10.1016/j.plipres.2020.101067] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Angiopoietin-like protein (ANGPTL) family members, mainly ANGPTL3, ANGPTL4 and ANGPTL8, are physiological inhibitors of lipoprotein lipase (LPL), and play a critical role in lipoprotein and triglyceride metabolism in response to nutritional cues. ANGPTL8 has been described by different names in various studies and has been ascribed various functions at the systemic and cellular levels. Circulating ANGPTL8 originates mainly from the liver and to a smaller extent from adipose tissues. In the blood, ANGPTL8 forms a complex with ANGPTL3 or ANGPTL4 to inhibit LPL in fed or fasted conditions, respectively. Evidence is emerging for additional intracellular and receptor-mediated functions of ANGPTL8, with implications in NFκB mediated inflammation, autophagy, adipogenesis, intra-cellular lipolysis and regulation of circadian clock. Elevated levels of plasma ANGPTL8 are associated with metabolic syndrome, type 2 diabetes, atherosclerosis, hypertension and NAFLD/NASH, even though the precise relationship is not known. Whether ANGPTL8 has direct pathogenic role in these diseases, remains to be explored. In this review, we develop a balanced view on the proposed association of this protein in the regulation of several pathophysiological processes. We also discuss the well-established functions of ANGPTL8 in lipoprotein metabolism in conjunction with the emerging novel extracellular and intracellular roles of ANGPTL8 and the implicated metabolic and signalling pathways. Understanding the diverse functions of ANGPTL8 in various tissues and metabolic states should unveil new opportunities of therapeutic intervention for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait..
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
15
|
Zou H, Xu Y, Chen X, Yin P, Li D, Li W, Xie J, Shao S, Liu L, Yu X. Predictive values of ANGPTL8 on risk of all-cause mortality in diabetic patients: results from the REACTION Study. Cardiovasc Diabetol 2020; 19:121. [PMID: 32746907 PMCID: PMC7398345 DOI: 10.1186/s12933-020-01103-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Angiopoietin-like protein 8 (ANGPTL8), an important regulator of lipid metabolism, is increased in diabetes and is associated with insulin resistance. However, the role of ANGPTL8 in the outcomes of diabetic patients remains unclear. This study aimed to investigate circulating levels of ANGPTL8 in participants with and without diabetes and its potential associations with clinical outcomes in a 5 year cohort study. Methods Propensity-matched cohorts of subjects with and without diabetes from the Risk Evaluation of Cancers in Chinese Diabetic Individuals: A longitudinal (REACTION) study were generated on the basis of age, sex and body mass index at baseline. The primary outcome was all-cause mortality. The secondary outcomes were a composite of new-onset major adverse cardiovascular events, hospitalization for heart failure, and renal dysfunction (eGFR < 60/min/1.73 m2). Results We identified 769 matched pairs of diabetic patients and control subjects. Serum ANGPTL8 levels were elevated in patients with diabetes compared to control subjects (618.82 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm$$\end{document}± 318.08 vs 581.20 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm$$\end{document}± 299.54 pg/mL, p = 0.03). Binary logistic regression analysis showed that elevated ANGPTL8 levels were associated with greater risk ratios (RRs) of death (RR in quartile 4 vs. quartile 1, 3.54; 95% CI 1.32–9.50) and renal dysfunction (RR in quartile 4 vs. quartile 1, 12.43; 95% CI 1.48–104.81) only in diabetic patients. Multivariable-adjusted restricted cubic spline analyses revealed a significant, linear relationship between ANGPTL8 and all-cause mortality in diabetic patients (p for nonlinear trend = 0.99, p for linear trend = 0.01) but not in control subjects (p for nonlinear trend = 0.26, p for linear trend = 0.80). According to ROC curve analysis, the inclusion of ANGPTL8 in QFrailty score significantly improved its predictive performance for mortality in patients with diabetes. Conclusion Serum ANGPTL8 levels were associated with an increased risk of all-cause mortality and could be used as a potential biomarker for the prediction of death in patients with diabetes.
Collapse
Affiliation(s)
- Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yongping Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xi Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danpei Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wenjun Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhui Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Shiying Shao
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Liegang Liu
- Hubei Key Laboratory of Food Nutrition and Safety, Department of Nutrition and Food Hygiene, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
16
|
Leiherer A, Ebner J, Muendlein A, Brandtner EM, Zach C, Geiger K, Fraunberger P, Drexel H. Data on the power of high betatrophin to predict cardiovascular deaths in coronary patients. Data Brief 2020; 28:104989. [PMID: 31890821 PMCID: PMC6931085 DOI: 10.1016/j.dib.2019.104989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022] Open
Abstract
Betatrophin is a protein which is produced by the liver and by adipose tissue. There are no clear data about serum betatrophin's cardiovascular role and it is unknown, whether betatrophin is associated with the risk of cardiovascular death. This article provides additional data on the association of betatrophin with its power to predict cardiovascular death in coronary patients. In addition, this data article demonstrates the performance of betatrophin as a biomarker using c-statistics. Analyzed data was derived from 553 coronary patients. Betatrophin was measured in serum samples and cardiovascular deaths were recorded for a median of 7.1 years. This data article is related to a research article titled “High betatrophin in coronary patients protects from cardiovascular events” [1].
Collapse
Affiliation(s)
- Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria.,Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.,Medical Central Laboratories, Feldkirch, Austria
| | - Janine Ebner
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria.,Medical Central Laboratories, Feldkirch, Austria
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria.,Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Eva M Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Christina Zach
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria.,Medical Central Laboratories, Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Peter Fraunberger
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.,Medical Central Laboratories, Feldkirch, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria.,Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.,Drexel University College of Medicine, Philadelphia, PA, USA.,Division of Angiology, Swiss Cardiovascular Center, University Hospital of Bern, Switzerland
| |
Collapse
|