1
|
Boyajian JL, Islam P, Abosalha A, Schaly S, Thareja R, Kassab A, Arora K, Santos M, Shum-Tim C, Prakash S. Probiotics, prebiotics, synbiotics and other microbiome-based innovative therapeutics to mitigate obesity and enhance longevity via the gut-brain axis. MICROBIOME RESEARCH REPORTS 2024; 3:29. [PMID: 39421246 PMCID: PMC11480732 DOI: 10.20517/mrr.2024.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 10/19/2024]
Abstract
The global prevalence of obesity currently exceeds 1 billion people and is accompanied by an increase in the aging population. Obesity and aging share many hallmarks and are leading risk factors for cardiometabolic disease and premature death. Current anti-obesity and pro-longevity pharmacotherapies are limited by side effects, warranting the development of novel therapies. The gut microbiota plays a major role in human health and disease, with a dysbiotic composition evident in obese and aged individuals. The bidirectional communication system between the gut and the central nervous system, known as the gut-brain axis, may link obesity to unhealthy aging. Modulating the gut with microbiome-targeted therapies, such as biotics, is a novel strategy to treat and/or manage obesity and promote longevity. Biotics represent material derived from living or once-living organisms, many of which have therapeutic effects. Pre-, pro-, syn- and post-biotics may beneficially modulate gut microbial composition and function to improve obesity and the aging process. However, the investigation of biotics as next-generation therapeutics has only just begun. Further research is needed to identify therapeutic biotics and understand their mechanisms of action. Investigating the function of the gut-brain axis in obesity and aging may lead to novel therapeutic strategies for obese, aged and comorbid (e.g., sarcopenic obese) patient populations. This review discusses the interrelationship between obesity and aging, with a particular emphasis on the gut microbiome, and presents biotics as novel therapeutic agents for obesity, aging and related disease states.
Collapse
Affiliation(s)
- Jacqueline L. Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Ahmed Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Madison Santos
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Cedrique Shum-Tim
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| |
Collapse
|
2
|
McVey Neufeld KA, Mao YK, West CL, Ahn M, Hameed H, Iwashita E, Stanisz AM, Forsythe P, Barbut D, Zasloff M, Kunze WA. Squalamine reverses age-associated changes of firing patterns of myenteric sensory neurons and vagal fibres. Commun Biol 2024; 7:80. [PMID: 38200107 PMCID: PMC10781697 DOI: 10.1038/s42003-023-05623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024] Open
Abstract
Vagus nerve signaling is a key component of the gut-brain axis and regulates diverse physiological processes that decline with age. Gut to brain vagus firing patterns are regulated by myenteric intrinsic primary afferent neuron (IPAN) to vagus neurotransmission. It remains unclear how IPANs or the afferent vagus age functionally. Here we identified a distinct ageing code in gut to brain neurotransmission defined by consistent differences in firing rates, burst durations, interburst and intraburst firing intervals of IPANs and the vagus, when comparing young and aged neurons. The aminosterol squalamine changed aged neurons firing patterns to a young phenotype. In contrast to young neurons, sertraline failed to increase firing rates in the aged vagus whereas squalamine was effective. These results may have implications for improved treatments involving pharmacological and electrical stimulation of the vagus for age-related mood and other disorders. For example, oral squalamine might be substituted for or added to sertraline for the aged.
Collapse
Affiliation(s)
| | - Yu-Kang Mao
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Christine L West
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Matthew Ahn
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Hashim Hameed
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Eiko Iwashita
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | | | - Paul Forsythe
- Department of Medicine, 569 Heritage Medical Research Center, University of Alberta, Edmonton, AB, Canada
| | | | - Michael Zasloff
- Enterin, Inc., Philadelphia, PA, USA.
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA.
| | - Wolfgang A Kunze
- Brain-Body Institute, McMaster University, Hamilton, ON, Canada.
- Department of Biology, McMaster University, Hamilton, ON, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Wu P, Zhang P, Chen XD. Assessing food digestion in the elderly using in vitro gastrointestinal models. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024. [DOI: 10.1016/bs.afnr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Trifilio E, Shortell D, Olshan S, O’Neal A, Coyne J, Lamb D, Porges E, Williamson J. Impact of transcutaneous vagus nerve stimulation on healthy cognitive and brain aging. Front Neurosci 2023; 17:1184051. [PMID: 37575296 PMCID: PMC10416636 DOI: 10.3389/fnins.2023.1184051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 08/15/2023] Open
Abstract
Evidence for clinically meaningful benefits of transcutaneous vagus nerve stimulation (VNS) has been rapidly accumulating over the past 15 years. This relatively novel non-invasive brain stimulation technique has been applied to a wide range of neuropsychiatric disorders including schizophrenia, obsessive compulsive disorder, panic disorder, post-traumatic stress disorder, bipolar disorder, and Alzheimer's disease. More recently, non-invasive forms of VNS have allowed for investigations within healthy aging populations. These results offer insight into protocol considerations specific to older adults and how to translate those results into effective clinical trials and, ultimately, effective clinical care. In this review, we characterize the possible mechanisms by which non-invasive VNS may promote healthy aging (e.g., neurotransmitter effects, inflammation regulation, functional connectivity changes), special considerations for applying non-invasive VNS in an older adult population (e.g., vagus nerve changes with age), and how non-invasive VNS may be used in conjunction with existing behavioral interventions (e.g., cognitive behavioral therapy, cognitive training) to promote healthy emotional and cognitive aging.
Collapse
Affiliation(s)
- Erin Trifilio
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Destin Shortell
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah Olshan
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alexandria O’Neal
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jozee Coyne
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
| | - Damon Lamb
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eric Porges
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - John Williamson
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Ma J, Mistareehi A, Madas J, Kwiat AM, Bendowski K, Nguyen D, Chen J, Li DP, Furness JB, Powley TL, Cheng Z(J. Topographical organization and morphology of substance P (SP)-immunoreactive axons in the whole stomach of mice. J Comp Neurol 2023; 531:188-216. [PMID: 36385363 PMCID: PMC10499116 DOI: 10.1002/cne.25386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Nociceptive afferents innervate the stomach and send signals centrally to the brain and locally to stomach tissues. Nociceptive afferents can be detected with a variety of different markers. In particular, substance P (SP) is a neuropeptide and is one of the most commonly used markers for nociceptive nerves in the somatic and visceral organs. However, the topographical distribution and morphological structure of SP-immunoreactive (SP-IR) axons and terminals in the whole stomach have not yet been fully determined. In this study, we labeled SP-IR axons and terminals in flat mounts of the ventral and dorsal halves of the stomach of mice. Flat-mount stomachs, including the longitudinal and circular muscular layers and the myenteric ganglionic plexus, were processed with SP primary antibody followed by fluorescent secondary antibody and then scanned using confocal microscopy. We found that (1) SP-IR axons and terminals formed an extensive network of fibers in the muscular layers and within the ganglia of the myenteric plexus of the whole stomach. (2) Many axons that ran in parallel with the long axes of the longitudinal and circular muscles were also immunoreactive for the vesicular acetylcholine transporter (VAChT). (3) SP-IR axons formed very dense terminal varicosities encircling individual neurons in the myenteric plexus; many of these were VAChT immunoreactive. (4) The regional density of SP-IR axons and terminals in the muscle and myenteric plexus varied in the following order from high to low: antrum-pylorus, corpus, fundus, and cardia. (5) In only the longitudinal and circular muscles, the regional density of SP-IR axon innervation from high to low were: antrum-pylorus, corpus, cardia, and fundus. (6) The innervation patterns of SP-IR axons and terminals in the ventral and dorsal stomach were comparable. Collectively, our data provide for the first time a map of the distribution and morphology of SP-IR axons and terminals in the whole stomach with single-cell/axon/synapse resolution. This work will establish an anatomical foundation for functional mapping of the SP-IR axon innervation of the stomach and its pathological remodeling in gastrointestinal diseases.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Andrew M. Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri
| | - John B Furness
- Department of Anatomy & Physiology, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47906
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| |
Collapse
|
6
|
Ye H, Hendee J, Ruan J, Zhirova A, Ye J, Dima M. Neuron matters: neuromodulation with electromagnetic stimulation must consider neurons as dynamic identities. J Neuroeng Rehabil 2022; 19:116. [PMID: 36329492 PMCID: PMC9632094 DOI: 10.1186/s12984-022-01094-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Neuromodulation with electromagnetic stimulation is widely used for the control of abnormal neural activity, and has been proven to be a valuable alternative to pharmacological tools for the treatment of many neurological diseases. Tremendous efforts have been focused on the design of the stimulation apparatus (i.e., electrodes and magnetic coils) that delivers the electric current to the neural tissue, and the optimization of the stimulation parameters. Less attention has been given to the complicated, dynamic properties of the neurons, and their context-dependent impact on the stimulation effects. This review focuses on the neuronal factors that influence the outcomes of electromagnetic stimulation in neuromodulation. Evidence from multiple levels (tissue, cellular, and single ion channel) are reviewed. Properties of the neural elements and their dynamic changes play a significant role in the outcome of electromagnetic stimulation. This angle of understanding yields a comprehensive perspective of neural activity during electrical neuromodulation, and provides insights in the design and development of novel stimulation technology.
Collapse
Affiliation(s)
- Hui Ye
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Jenna Hendee
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Joyce Ruan
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Alena Zhirova
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Jayden Ye
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Maria Dima
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| |
Collapse
|
7
|
Functional and anatomical deficits in visceral nociception with age: a mechanism of silent appendicitis in the elderly? Pain 2021; 161:773-786. [PMID: 31790010 DOI: 10.1097/j.pain.0000000000001764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ability to sense visceral pain during appendicitis is diminished with age leading to delay in seeking health care and poorer clinical outcomes. To understand the mechanistic basis of this phenomenon, we examined visceral nociception in aged mouse and human tissue. Inflamed and noninflamed appendixes were collected from consenting patients undergoing surgery for the treatment of appendicitis or bowel cancer. Supernatants were generated by incubating samples in buffer and used to stimulate multiunit activity in intestinal preparations, or single-unit activity from teased fibres in colonic preparations, of young and old mice. Changes in afferent innervation with age were determined by measuring the density of calcitonin gene-related peptide-positive afferent fibres and by counting dorsal root ganglia back-labelled by injection of tracer dye into the wall of the colon. Finally, the effect of age on nociceptor function was studied in mouse and human colon. Afferent responses to appendicitis supernatants were greatly impaired in old mice. Further investigation revealed this was due to a marked reduction in the afferent innervation of the bowel and a substantial impairment in the ability of the remaining afferent fibres to transduce noxious stimuli. Translational studies in human tissue demonstrated a significant reduction in the multiunit but not the single-unit colonic mesenteric nerve response to capsaicin with age, indicative of a loss of nociceptor innervation. Our data demonstrate that anatomical and functional deficits in nociception occur with age, underpinning the atypical or silent presentation of appendicitis in the elderly.
Collapse
|
8
|
Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021; 138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
9
|
Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R, Gyengesi E. Cholinergic Modulation of Glial Function During Aging and Chronic Neuroinflammation. Front Cell Neurosci 2020; 14:577912. [PMID: 33192323 PMCID: PMC7594524 DOI: 10.3389/fncel.2020.577912] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex biological process that increases the risk of age-related cognitive degenerative diseases such as dementia, including Alzheimer’s disease (AD), Lewy Body Dementia (LBD), and mild cognitive impairment (MCI). Even non-pathological aging of the brain can involve chronic oxidative and inflammatory stress, which disrupts the communication and balance between the brain and the immune system. There has been an increasingly strong connection found between chronic neuroinflammation and impaired memory, especially in AD. While microglia and astrocytes, the resident immune cells of the central nervous system (CNS), exerting beneficial effects during the acute inflammatory phase, during chronic neuroinflammation they can become more detrimental. Central cholinergic circuits are involved in maintaining normal cognitive function and regulating signaling within the entire cerebral cortex. While neuronal-glial cholinergic signaling is anti-inflammatory and anti-oxidative, central cholinergic neuronal degeneration is implicated in impaired learning, memory sleep regulation, and attention. Although there is evidence of cholinergic involvement in memory, fewer studies have linked the cholinergic anti-inflammatory and anti-oxidant pathways to memory processes during development, normal aging, and disease states. This review will summarize the current knowledge of cholinergic effects on microglia and astroglia, and their role in both anti-inflammatory and anti-oxidant mechanisms, concerning normal aging and chronic neuroinflammation. We provided details on how stimulation of α7 nicotinic acetylcholine (α7nACh) receptors can be neuroprotective by increasing amyloid-β phagocytosis, decreasing inflammation and reducing oxidative stress by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and decreasing the release of pro-inflammatory cytokines. There is also evidence for astroglial α7nACh receptor stimulation mediating anti-inflammatory and antioxidant effects by inhibiting the nuclear factor-κB (NF-κB) pathway and activating the Nrf2 pathway respectively. We conclude that targeting cholinergic glial interactions between neurons and glial cells via α7nACh receptors could regulate neuroinflammation and oxidative stress, relevant to the treatment of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Rashmi Gamage
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ingrid Wagnon
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ilaria Rossetti
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ryan Childs
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
10
|
Holmes GM, Hubscher CH, Krassioukov A, Jakeman LB, Kleitman N. Recommendations for evaluation of bladder and bowel function in pre-clinical spinal cord injury research. J Spinal Cord Med 2019; 43:165-176. [PMID: 31556844 PMCID: PMC7054945 DOI: 10.1080/10790268.2019.1661697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: In order to encourage the inclusion of bladder and bowel outcome measures in preclinical spinal cord injury (SCI) research, this paper identifies and categorizes 1) fundamental, 2) recommended, 3) supplemental and 4) exploratory sets of outcome measures for pre-clinical assessment of bladder and bowel function with broad applicability to animal models of SCI.Methods: Drawing upon the collective research experience of autonomic physiologists and informed in consultation with clinical experts, a critical assessment of currently available bladder and bowel outcome measures (histological, biochemical, in vivo functional, ex vivo physiological and electrophysiological tests) was made to identify the strengths, deficiencies and ease of inclusion for future studies of experimental SCI.Results: Based upon pre-established criteria generated by the Neurogenic Bladder and Bowel Working Group that included history of use in experimental settings, citations in the literature by multiple independent groups, ease of general use, reproducibility and sensitivity to change, three fundamental measures each for bladder and bowel assessments were identified. Briefly defined, these assessments centered upon tissue morphology, voiding efficiency/volume and smooth muscle-mediated pressure studies. Additional assessment measures were categorized as recommended, supplemental or exploratory based upon the balance between technical requirements and potential mechanistic insights to be gained by the study.Conclusion: Several fundamental assessments share reasonable levels of technical and material investment, including some that could assess bladder and bowel function non-invasively and simultaneously. Such measures used more inclusively across SCI studies would advance progress in this high priority area. When complemented with a few additional investigator-selected study-relevant supplemental measures, they are highly recommended for research programs investigating the efficacy of therapeutic interventions in preclinical animal models of SCI that have a bladder and/or bowel focus.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA,Correspondence to: Gregory M. Holmes, Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17036, USA. ;
| | - Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Andrei Krassioukov
- ICORD, University of British Columbia, GF Strong Rehabilitation Centre, Vancouver, Canada
| | - Lyn B. Jakeman
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | |
Collapse
|
11
|
West CL, Amin JY, Farhin S, Stanisz AM, Mao YK, Kunze WA. Colonic Motility and Jejunal Vagal Afferent Firing Rates Are Decreased in Aged Adult Male Mice and Can Be Restored by an Aminosterol. Front Neurosci 2019; 13:955. [PMID: 31551703 PMCID: PMC6746984 DOI: 10.3389/fnins.2019.00955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
There is a general decline in gastrointestinal function in old age including decreased intestinal motility, sensory signaling, and afferent sensitivity. There is also increased prevalence of significant constipation in aged populations. We hypothesized this may be linked to reduced colonic motility and alterations in vagal-gut-brain sensory signaling. Using in vitro preparations from young (3 months) and old (18–24 months) male CD1 mice we report functional age-related differences in colonic motility and jejunal mesenteric afferent firing. Furthermore, we tested the effect of the aminosterol squalamine on colonic motility and jejunal vagal firing rate. Old mice had significantly reduced velocity of colonic migrating motor complexes (MMC) by 27% compared to young mice (p = 0.0161). Intraluminal squalamine increased colonic MMC velocity by 31% in old mice (p = 0.0150), which also had significantly reduced mesenteric afferent single-unit firing rates from the jejunum by 51% (p < 0.0001). The jejunal vagal afferent firing rate was reduced in aged mice by 62% (p = 0.0004). While the time to peak response to squalamine was longer in old mice compared to young mice (18.82 ± 1.37 min vs. 12.95 ± 0.99 min; p = 0.0182), it significantly increased vagal afferent firing rate by 36 and 56% in young and old mice, respectively (p = 0.0006, p = 0.0013). Our results show for the first time that the jejunal vagal afferent firing rate is reduced in aged-mice. They also suggest that there is translational potential for the therapeutic use of squalamine in the treatment of age-related constipation and dysmotility.
Collapse
Affiliation(s)
- Christine L West
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jessica Y Amin
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Sohana Farhin
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Andrew M Stanisz
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Yu-Kang Mao
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Wolfgang A Kunze
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Di YZ, Han BS, Di JM, Liu WY, Tang Q. Role of the brain-gut axis in gastrointestinal cancer. World J Clin Cases 2019; 7:1554-1570. [PMID: 31367615 PMCID: PMC6658366 DOI: 10.12998/wjcc.v7.i13.1554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Several studies have largely focused on the significant role of the nervous and immune systems in the process of tumorigenesis, including tumor growth, proliferation, apoptosis, and metastasis. The brain-gut-axis is a new paradigm in neuroscience, which describes the biochemical signaling between the gastrointestinal (GI) tract and the central nervous system. This axis may play a critical role in the tumorigenesis and development of GI cancers. Mechanistically, the bidirectional signal transmission of the brain-gut-axis is complex and remains to be elucidated. In this article, we review the current findings concerning the relationship between the brain-gut axis and GI cancer cells, focusing on the significant role of the brain-gut axis in the processes of tumor proliferation, invasion, apoptosis, autophagy, and metastasis. It appears that the brain might modulate GI cancer by two pathways: the anatomical nerve pathway and the neuroendocrine route. The simulation and inactivation of the central nervous, sympathetic, and parasympathetic nervous systems, or changes in the innervation of the GI tract might contribute to a higher incidence of GI cancers. In addition, neurotransmitters and neurotrophic factors can produce stimulatory or inhibitory effects in the progression of GI cancers. Insights into these mechanisms may lead to the discovery of potential prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zi Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Bo-Sheng Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 443000, Hubei Province, China
| | - Jun-Mao Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Wei-Yan Liu
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Qiang Tang
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
13
|
Patel YA, Butera RJ. Challenges associated with nerve conduction block using kilohertz electrical stimulation. J Neural Eng 2018; 15:031002. [DOI: 10.1088/1741-2552/aaadc0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Yu Y, Daly DM, Adam IJ, Kitsanta P, Hill CJ, Wild J, Shorthouse A, Grundy D, Jiang W. Interplay between mast cells, enterochromaffin cells, and sensory signaling in the aging human bowel. Neurogastroenterol Motil 2016; 28:1465-79. [PMID: 27206689 PMCID: PMC5053273 DOI: 10.1111/nmo.12842] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. METHODS Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. KEY RESULTS Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. CONCLUSIONS & INFERENCES Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration.
Collapse
Affiliation(s)
- Y. Yu
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - D. M. Daly
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - I. J. Adam
- Department of Colorectal Surgical UnitNorthern General HospitalSheffield Teaching HospitalSheffieldUK
| | - P. Kitsanta
- Department of HistopathologyNorthern General HospitalSheffield Teaching HospitalSheffieldUK
| | - C. J. Hill
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - J. Wild
- Department of Colorectal Surgical UnitNorthern General HospitalSheffield Teaching HospitalSheffieldUK
| | - A. Shorthouse
- Department of Colorectal Surgical UnitNorthern General HospitalSheffield Teaching HospitalSheffieldUK
| | - D. Grundy
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - W. Jiang
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| |
Collapse
|
15
|
Keating C, Nocchi L, Yu Y, Donovan J, Grundy D. Ageing and gastrointestinal sensory function: altered colonic mechanosensory and chemosensory function in the aged mouse. J Physiol 2016; 594:4549-64. [PMID: 26592729 PMCID: PMC4983623 DOI: 10.1113/jp271403] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/13/2015] [Indexed: 01/13/2023] Open
Abstract
Key points Remarkably little is known about how age affects the sensory signalling pathways in the gastrointestinal tract despite age‐related gastrointestinal dysfunction being a prime cause of morbidity amongst the elderly population High‐threshold gastrointestinal sensory nerves play a key role in signalling distressing information from the gut to the brain. We found that ageing is associated with attenuated high‐threshold afferent mechanosensitivity in the murine colon, and associated loss of TRPV1 channel function. These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease.
Abstract Ageing has a profound effect upon gastrointestinal function through mechanisms that are poorly understood. Here we investigated the effect of age upon gastrointestinal sensory signalling pathways in order to address the mechanisms underlying these changes. In vitro mouse colonic and jejunal preparations with attached splanchnic and mesenteric nerves were used to study mechanosensory and chemosensory afferent function in 3‐, 12‐ and 24‐month‐old C57BL/6 animals. Quantitative RT‐PCR was used to investigate mRNA expression in colonic tissue and dorsal root ganglion (DRG) cells isolated from 3‐ and 24‐month animals, and immunohistochemistry was used to quantify the number of 5‐HT‐expressing enterochromaffin (EC) cells. Colonic and jejunal afferent mechanosensory function was attenuated with age and these effects appeared earlier in the colon compared to the jejunum. Colonic age‐related loss of mechanosensory function was more pronounced in high‐threshold afferents compared to low‐threshold afferents. Chemosensory function was attenuated in the 24‐month colon, affecting TRPV1 and serotonergic signalling pathways. High‐threshold mechanosensory afferent fibres and small‐diameter DRG neurons possessed lower functional TRPV1 receptor responses, which occurred without a change in TRPV1 mRNA expression. Serotonergic signalling was attenuated at 24 months, but TPH1 and TPH2 mRNA expression was elevated in colonic tissue. In conclusion, we saw an age‐associated decrease in afferent mechanosensitivity in the mouse colon affecting HT units. These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease. Remarkably little is known about how age affects the sensory signalling pathways in the gastrointestinal tract despite age‐related gastrointestinal dysfunction being a prime cause of morbidity amongst the elderly population High‐threshold gastrointestinal sensory nerves play a key role in signalling distressing information from the gut to the brain. We found that ageing is associated with attenuated high‐threshold afferent mechanosensitivity in the murine colon, and associated loss of TRPV1 channel function. These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease.
Collapse
Affiliation(s)
- Christopher Keating
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK.,Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Linda Nocchi
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - Yang Yu
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - Jemma Donovan
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - David Grundy
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Abstract
Aging is characterized by a diminished homeostatic regulation of physiologic functions, including slowing of gastric emptying. Gastric and small intestinal motor and humoral mechanisms in humans are complex and highly variable: ingested food is stored, mixed with digestive enzymes, ground into small particles, and delivered as a liquefied form into the duodenum at a rate allowing efficient digestion and absorption. In healthy aging, motor function is well preserved whereas deficits in sensory function are more apparent. The effects of aging on gastric emptying are relevant to the absorption of oral medications and the regulation of appetite, postprandial glycemia, and blood pressure.
Collapse
Affiliation(s)
- Stijn Soenen
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Royal Adelaide Hospital, The University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia.
| | - Chris K Rayner
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Royal Adelaide Hospital, The University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia
| | - Michael Horowitz
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Royal Adelaide Hospital, The University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia
| | - Karen L Jones
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Royal Adelaide Hospital, The University of Adelaide, Frome Road, Adelaide, South Australia 5000, Australia
| |
Collapse
|
17
|
Spiller RC. Changing views on diverticular disease: impact of aging, obesity, diet, and microbiota. Neurogastroenterol Motil 2015; 27:305-12. [PMID: 25703217 DOI: 10.1111/nmo.12526] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
The development of colonic diverticulosis is a common aging change in industrialized nations. While most patients have asymptomatic diverticulosis, around one in five develops symptomatic diverticular disease. This is characterized by recurrent abdominal pain and disturbed bowel habit. Some of the pain episodes are prolonged and are due to acute diverticulitis, which itself may be complicated by abscess, perforation, fistulation, or stricture formation. Risk factors favouring the development of symptomatic diverticular disease include obesity, smoking and diets low in fiber but high in red meat and animal fat. What determines the transition from asymptomatic diverticulosis to symptomatic diverticular disease is unclear but neuromuscular changes following acute diverticulitis may be responsible in some cases. The severity of symptoms generated depends on cerebral pain processing which is influenced by psychosocial factors. These are important considerations in deciding optimal patient management. Prior theories of the cause of diverticulosis suggested that constipation was an important cause, but new data challenge this and has provoked new ideas. Underlying mechanisms causing diverticulosis include weakening of the colonic wall and/or degenerative changes in the enteric nerves. Dietary induced changes in microbiota and the host inflammatory response may underlie the subsequent development of acute/chronic diverticulitis and its sequela.
Collapse
Affiliation(s)
- R C Spiller
- Nottingham Digestive Diseases Centre, University of Nottingham, Queens Medical Centre, Nottingham, UK
| |
Collapse
|
18
|
Ranson RN, Saffrey MJ. Neurogenic mechanisms in bladder and bowel ageing. Biogerontology 2015; 16:265-84. [PMID: 25666896 PMCID: PMC4361768 DOI: 10.1007/s10522-015-9554-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/28/2015] [Indexed: 01/18/2023]
Abstract
The prevalence of both urinary and faecal incontinence, and also chronic constipation, increases with ageing and these conditions have a major impact on the quality of life of the elderly. Management of bladder and bowel dysfunction in the elderly is currently far from ideal and also carries a significant financial burden. Understanding how these changes occur is thus a major priority in biogerontology. The functions of the bladder and terminal bowel are regulated by complex neuronal networks. In particular neurons of the spinal cord and peripheral ganglia play a key role in regulating micturition and defaecation reflexes as well as promoting continence. In this review we discuss the evidence for ageing-induced neuronal dysfunction that might predispose to neurogenic forms of incontinence in the elderly.
Collapse
Affiliation(s)
- Richard N Ranson
- Department of Applied Sciences (Biomedical Sciences), Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK,
| | | |
Collapse
|
19
|
Swartz EM, Holmes GM. Gastric vagal motoneuron function is maintained following experimental spinal cord injury. Neurogastroenterol Motil 2014; 26:1717-29. [PMID: 25316513 PMCID: PMC4245370 DOI: 10.1111/nmo.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/13/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Clinical reports indicate that spinal cord injury (SCI) initiates profound gastric dysfunction. Gastric reflexes involve stimulation of sensory vagal fibers, which engage brainstem circuits that modulate efferent output back to the stomach, thereby completing the vago-vagal reflex. Our recent studies in a rodent model of experimental high thoracic (T3-) SCI suggest that reduced vagal afferent sensitivity to gastrointestinal (GI) stimuli may be responsible for diminished gastric function. Nevertheless, derangements in efferent signals from the dorsal motor nucleus of the vagus (DMV) to the stomach may also account for reduced motility. METHODS We assessed the anatomical, neurophysiological, and functional integrity of gastric-projecting DMV neurons in T3-SCI rats using: (i) retrograde labeling of gastric-projecting DMV neurons; (ii) whole cell recordings from gastric-projecting neurons of the DMV; and, (iii) in vivo measurements of gastric contractions following unilateral microinjection of thyrotropin-releasing hormone (TRH) into the DMV. KEY RESULTS Immunohistochemical analysis of gastric-projecting DMV neurons demonstrated no difference between control and T3-SCI rats. Whole cell in vitro recordings showed no alteration in DMV membrane properties and the neuronal morphology of these same, neurobiotin-labeled, DMV neurons were unchanged after T3-SCI with regard to cell size and dendritic arborization. Central microinjection of TRH induced a significant facilitation of gastric contractions in both control and T3-SCI rats and there were no significant dose-dependent differences between groups. CONCLUSIONS & INFERENCES Our data suggest that the acute, 3 day to 1 week post-SCI, dysfunction of vagally mediated gastric reflexes do not include derangements in the efferent DMV motoneurons.
Collapse
Affiliation(s)
| | - Gregory M. Holmes
- Corresponding author: Dr. Gregory M. Holmes, Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033,
| |
Collapse
|
20
|
de Theije CGM, van den Elsen LWJ, Willemsen LEM, Milosevic V, Korte-Bouws GAH, Lopes da Silva S, Broersen LM, Korte SM, Olivier B, Garssen J, Kraneveld AD. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice. Neuropharmacology 2014; 90:15-22. [PMID: 25445491 DOI: 10.1016/j.neuropharm.2014.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation.
Collapse
Affiliation(s)
- Caroline G M de Theije
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Lieke W J van den Elsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Vanja Milosevic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Gerdien A H Korte-Bouws
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sofia Lopes da Silva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
21
|
Edwards IJ. HIGHLIGHTS IN BASIC AUTONOMIC NEUROSCIENCES: CHANGES TO THE AUTONOMIC NERVOUS SYSTEM ASSOCIATED WITH HEALTHY AGEING. Auton Neurosci 2014; 183:1-3. [DOI: 10.1016/j.autneu.2014.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse". FASEB J 2014; 28:3064-74. [PMID: 24719355 DOI: 10.1096/fj.13-245282] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse."
Collapse
Affiliation(s)
- Azucena Perez-Burgos
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and
| | - Yu-Kang Mao
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and
| | - John Bienenstock
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and Department of Medicine, Department of Pathology and Molecular Medicine, and
| | - Wolfgang A Kunze
- McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada; and Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
de Theije CG, Wu J, Koelink PJ, Korte-Bouws GA, Borre Y, Kas MJ, Lopes da Silva S, Korte SM, Olivier B, Garssen J, Kraneveld AD. Autistic-like behavioural and neurochemical changes in a mouse model of food allergy. Behav Brain Res 2014; 261:265-74. [DOI: 10.1016/j.bbr.2013.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 01/01/2023]
|
24
|
Phillips RJ, Hudson CN, Powley TL. Sympathetic axonopathies and hyperinnervation in the small intestine smooth muscle of aged Fischer 344 rats. Auton Neurosci 2013; 179:108-21. [PMID: 24104187 DOI: 10.1016/j.autneu.2013.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 01/13/2023]
Abstract
It is well documented that the intrinsic enteric nervous system of the gastrointestinal (GI) tract sustains neuronal losses and reorganizes as it ages. In contrast, age-related remodeling of the extrinsic sympathetic projections to the wall of the gut is poorly characterized. The present experiment, therefore, surveyed the sympathetic projections to the aged small intestine for axonopathies. Furthermore, the experiment evaluated the specific prediction that catecholaminergic inputs undergo hyperplastic changes. Jejunal tissue was collected from 3-, 8-, 16-, and 24-month-old male Fischer 344 rats, prepared as whole mounts consisting of the muscularis, and processed immunohistochemically for tyrosine hydroxylase, the enzymatic marker for norepinephrine, and either the protein CD163 or the protein MHCII, both phenotypical markers for macrophages. Four distinctive sympathetic axonopathy profiles occurred in the small intestine of the aged rat: (1) swollen and dystrophic terminals, (2) tangled axons, (3) discrete hyperinnervated loci in the smooth muscle wall, including at the bases of Peyer's patches, and (4) ectopic hyperplastic or hyperinnervating axons in the serosa/subserosal layers. In many cases, the axonopathies occurred at localized and limited foci, involving only a few axon terminals, in a pattern consistent with incidences of focal ischemic, vascular, or traumatic insult. The present observations underscore the complexity of the processes of aging on the neural circuitry of the gut, with age-related GI functional impairments likely reflecting a constellation of adjustments that range from selective neuronal losses, through accumulation of cellular debris, to hyperplasias and hyperinnervation of sympathetic inputs.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States.
| | | | | |
Collapse
|
25
|
Smith TH, Ngwainmbi J, Grider JR, Dewey WL, Akbarali HI. An in-vitro preparation of isolated enteric neurons and glia from the myenteric plexus of the adult mouse. J Vis Exp 2013:50688. [PMID: 23962959 PMCID: PMC3846983 DOI: 10.3791/50688] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The enteric nervous system is a vast network of neurons and glia running the length of the gastrointestinal tract that functionally controls gastrointestinal motility. A procedure for the isolation and culture of a mixed population of neurons and glia from the myenteric plexus is described. The primary cultures can be maintained for over 7 days, with connections developing among the neurons and glia. The longitudinal muscle strip with the attached myenteric plexus is stripped from the underlying circular muscle of the mouse ileum or colon and subjected to enzymatic digestion. In sterile conditions, the isolated neuronal and glia population are preserved within the pellet following centrifugation and plated on coverslips. Within 24-48 hr, neurite outgrowth occurs and neurons can be identified by pan-neuronal markers. After two days in culture, isolated neurons fire action potentials as observed by patch clamp studies. Furthermore, enteric glia can also be identified by GFAP staining. A network of neurons and glia in close apposition forms within 5-7 days. Enteric neurons can be individually and directly studied using methods such as immunohistochemistry, electrophysiology, calcium imaging, and single-cell PCR. Furthermore, this procedure can be performed in genetically modified animals. This methodology is simple to perform and inexpensive. Overall, this protocol exposes the components of the enteric nervous system in an easily manipulated manner so that we may better discover the functionality of the ENS in normal and disease states.
Collapse
Affiliation(s)
- Tricia H Smith
- Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | | | | | | | | |
Collapse
|
26
|
Phillips RJ, Billingsley CN, Powley TL. Macrophages are unsuccessful in clearing aggregated alpha-synuclein from the gastrointestinal tract of healthy aged Fischer 344 rats. Anat Rec (Hoboken) 2013; 296:654-69. [PMID: 23441091 DOI: 10.1002/ar.22675] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/16/2012] [Indexed: 12/20/2022]
Abstract
With age, alpha-synuclein (α-SYNC) misfolds and forms insoluble deposits of protein in the myenteric plexus, leading presumably to dystrophy and degeneration in the circuitry controlling gastrointestinal (GI) function. The present experiment examined aggregates of α-SYNC in the aging small intestine and investigated how macrophages in the wall of the GI tract respond to these aberrant deposits. Groups of adult and aged Fisher 344 rats were studied. Whole mounts of duodenal, jejunal, and ileal smooth muscle wall, including the myenteric plexus, were prepared. Double labeling immunohistochemistry was used to stain α-SYNC protein and the phenotypic macrophage antigens CD163 and MHCII. Alpha-synuclein accumulated in dense aggregates in axons of both postganglionic and preganglionic neurons throughout the small intestine. Staining patterns suggested that deposits of protein occur initially in axonal terminals and then spread retrogradely toward the somata. Macrophages that were adjacent to dystrophic terminal processes were swollen and contained vacuoles filled with insoluble α-SYNC, and these macrophages commonly had the phenotype of alternatively activated phagocytes. The present results suggest that macrophages play an active phagocytotic role in removing α-SYNC aggregates that accumulate with age in the neural circuitry of the gut. Our observations further indicate that this housekeeping response does not clear the protein sufficiently to eliminate all synucleinopathies or their precursor aggregates from the healthy aging GI tract. Thus, accumulating deposits of insoluble α-SYNC in the wall of the GI tract may contribute, especially when compounded by disease or inflammation, to the age-associated neuropathies in the gut that compromise GI function.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907-2081, USA.
| | | | | |
Collapse
|
27
|
Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci 2013; 70:55-69. [PMID: 22638926 PMCID: PMC11113561 DOI: 10.1007/s00018-012-1028-z] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023]
Abstract
Recent advances in research have greatly increased our understanding of the importance of the gut microbiota. Bacterial colonization of the intestine is critical to the normal development of many aspects of physiology such as the immune and endocrine systems. It is emerging that the influence of the gut microbiota also extends to modulation of host neural development. Furthermore, the overall balance in composition of the microbiota, together with the influence of pivotal species that induce specific responses, can modulate adult neural function, peripherally and centrally. Effects of commensal gut bacteria in adult animals include protection from the central effects of infection and inflammation as well as modulation of normal behavioral responses. There is now robust evidence that gut bacteria influence the enteric nervous system, an effect that may contribute to afferent signaling to the brain. The vagus nerve has also emerged as an important means of communicating signals from gut bacteria to the CNS. Further understanding of the mechanisms underlying microbiome-gut-brain communication will provide us with new insight into the symbiotic relationship between gut microbiota and their mammalian hosts and help us identify the potential for microbial-based therapeutic strategies to aid in the treatment of mood disorders.
Collapse
Affiliation(s)
- Paul Forsythe
- The Brain-Body Institute, St. Joseph's Healthcare, McMaster University, 50 Charlton Avenue East, T3302, Hamilton, ON, L8N 4A6, Canada.
| | | |
Collapse
|
28
|
Tang YR, Yang WW, Liang ML, Xu XY, Wang MF, Lin L. Age-related symptom and life quality changes in women with irritable bowel syndrome. World J Gastroenterol 2012; 18:7175-83. [PMID: 23326122 PMCID: PMC3544019 DOI: 10.3748/wjg.v18.i48.7175] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/23/2012] [Accepted: 10/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To explore age-related changes in symptoms and quality of life (QoL) of women with irritable bowel syndrome (IBS). METHODS Two-hundred and fifty-four female adult outpatients with IBS attending the Department of Gastroenterology at the First Affiliated Hospital of Nanjing Medical University between January, 2008 and October, 2008 were approached. Patients with a history of abdominal surgery, mental illness or those who had recently taken psychotropic drugs were excluded. A physician obtained demographic and abdominal symptom data. All patients were asked to complete the Zung Self-Rated Anxiety and Depression Scale (SDS/SAS) and the IBS-specific QoL questionnaire. The patients were divided into six groups according to age, in 10-year increments: 18-27 years, 28-37 years, 38-47 years, 48-57 years, 58-67 years and 68-75 years (maximum 75 years). Age-related differences of abdominal pain or discomfort were analyzed using rank-sum tests. Differences in SDS/SAS and IBS-QoL scores between age groups were analyzed using one-way analysis of variance. Pearson's correlations evaluated potential associations between IBS symptoms, psychological factors and QoL in each age group. RESULTS There were no differences in the distribution of IBS subtypes between age groups (χ(2) = 20.516, P = 0.153). Differences in the severity of abdominal pain/discomfort with age were statistically significant (χ(2) = 25.638, P < 0.001); patients aged 48-57 years, 58-67 years or 68-75 years had milder abdominal pain/discomfort than those in the younger age groups. The severity of anxiety or depressive symptoms did not differ between age groups (SDS, χ(2) = 390.845, P = 0.110; SAS, χ(2) = 360.071, P = 0.220). Differences of IBS-QoL scores were statistically significant between age groups (χ(2) = 1098.458, P = 0.011). The scores of patients in the 48-57-year group were lower than those in the 18-27-year and 28-37-year groups (48-57-year group vs 18-27-year group, 74.88 ± 8.76 vs 79.76 ± 8.63, P = 0.021; 48-57-year group vs 28-37-year group, 74.88 ± 8.76 vs 79.04 ± 8.32, P = 0.014). The scores in the 68-75-year group were lower than those in the 18-27-year, 28-37-year and 38-47-year groups (68-75-year group vs 18-27-year group, 71.98 ± 9.83 vs 79.76 ± 8.63, P = 0.003; 68-75-year group vs 28-37-year group, 71.98 ± 9.83 vs 79.04 ± 8.32, P = 0.002; 68-75-year group vs 38-47-year group,71.98 ± 9.83 vs 76.44 ± 8.15, P = 0.039). Anxiety and depression were negatively correlated with QoL in all age groups (SDS and QoL: 18-27-year group, r = -0.562, P = 0.005; 28-37-year group, r = -0.540, P < 0.001; 38-47-year group, r = -0.775, P < 0.001; 48-57-year group, r = -0.445, P = 0.001; 58-67-year group, r = -0.692, P < 0.001; 68-75-year group, r = -0.732, P < 0.001. SAS and QoL: 18-27-year group, r = -0.600, P = 0.002; 28-37-year group, r = -0.511, P < 0.001; 38-47-year group, r = -0.675, P < 0.001; 48-57-year group, r = -0.558, 58-67-year group, P = 0.001; r = -0.588, P < 0.001; 68-75-year group, r = -0.811, P < 0.001). A negative correlation between abdominal pain severity and QoL was found in patients aged more than 58 years (58-67-year group, r = -0.366, P = 0.017; 68-75-year group, r = -0.448, P = 0.048 ), but not in younger patients (18-27-year group, r = 0.080, P = 0.716; 28-37-year group, r = -0.063, P = 0.679; 38-47-year group, r = -0.029, P = 0.812; 48-57-year group, r = -0.022, P = 0.876). CONCLUSION Factors affecting QoL should always be treated in IBS, especially emotional problems in young adults. Even mild abdominal pain should be controlled in elderly patients.
Collapse
|
29
|
Phillips RJ, Powley TL. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. Auton Neurosci 2012; 169:12-27. [PMID: 22436622 DOI: 10.1016/j.autneu.2012.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/28/2022]
Abstract
Interactions between macrophages and the autonomic innervation of gastrointestinal (GI) tract smooth muscle have received little experimental attention. To better understand this relationship, immunohistochemistry was performed on GI whole mounts from rats at three ages. The phenotypes, morphologies, and distributions of gut macrophages are consistent with the cells performing extensive housekeeping functions in the smooth muscle layers. Specifically, a dense population of macrophages was located throughout the muscle wall where they were distributed among the muscle fibers and along the vasculature. Macrophages were also associated with ganglia and connectives of the myenteric plexus and with the sympathetic innervation. Additionally, these cells were in tight registration with the dendrites and axons of the myenteric neurons as well as the varicosities along the length of the sympathetic axons, suggestive of a contribution by the macrophages to the homeostasis of both synapses and contacts between the various elements of the enteric circuitry. Similarly, macrophages were involved in the presumed elimination of neuropathies as indicated by their association with dystrophic neurons and neurites which are located throughout the myenteric plexus and smooth muscle wall of aged rats. Importantly, the patterns of macrophage-neuron interactions in the gut paralleled the much more extensively characterized interactions of macrophages (i.e., microglia) and neurons in the CNS. The present observations in the PNS as well as extrapolations from homologous microglia in the CNS suggest that GI macrophages play significant roles in maintaining the nervous system of the gut in the face of wear and tear, disease, and aging.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907-2081, USA
| | | |
Collapse
|
30
|
Gallaher ZR, Ryu V, Larios RM, Sprunger LK, Czaja K. Neural proliferation and restoration of neurochemical phenotypes and compromised functions following capsaicin-induced neuronal damage in the nodose ganglion of the adult rat. Front Neurosci 2011; 5:12. [PMID: 21344007 PMCID: PMC3034227 DOI: 10.3389/fnins.2011.00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/20/2011] [Indexed: 11/23/2022] Open
Abstract
We previously reported that neuronal numbers within adult nodose ganglia (NG) were restored to normal levels 60 days following the capsaicin-induced destruction of nearly half of the neuronal population. However, the nature of this neuronal replacement is not known. Therefore, we aimed to characterize neural proliferation, neurochemical phenotypes, and functional recovery within adult rat NG neurons following capsaicin-induced damage. Sprague-Dawley rats received intraperitoneal injections of capsaicin or vehicle solution, followed by 5-bromo-2-deoxyuridine (BrdU) injections to reveal cellular proliferation. NG were collected at multiple times post-treatment (up to 300 days) and processed for immunofluorescence, RT-PCR, and dispersed cell cultures. Capsaicin-induced cellular proliferation, indicated by BrdU/Ki-67-labeled cells, suggests that lost neurons were replaced through cell division. NG cells expressed the stem cell marker, nestin, indicating that these ganglia have the capacity to generate new neurons. BrdU-incorporation within β-III tubulin-positive neuronal profiles following capsaicin suggests that proliferating cells matured to become neurons. NG neurons displayed decreased NMDAR expression up to 180-days post-capsaicin. However, both NMDAR expression within the NG and synaptophysin expression within the central target of NG neurons, the NTS, were restored to pre-injury levels by 300 days. NG cultures from capsaicin-treated rats contained bipolar neurons, normally found only during development. To test the functional recovery of NG neurons, we injected the satiety molecule, CCK. The effect of CCK on food intake was restored by 300-days post-capsaicin. This restoration may be due to the regeneration of damaged NG neurons or generation of functional neurons that replaced lost connections.
Collapse
Affiliation(s)
- Zachary Rex Gallaher
- Programs in Neuroscience, Department of Veterinary Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University Pullman, WA, USA
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Phillips RJ, Walter GC, Ringer BE, Higgs KM, Powley TL. Alpha-synuclein immunopositive aggregates in the myenteric plexus of the aging Fischer 344 rat. Exp Neurol 2009; 220:109-19. [PMID: 19664623 DOI: 10.1016/j.expneurol.2009.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/12/2009] [Accepted: 07/26/2009] [Indexed: 12/12/2022]
Abstract
Dystrophic axons and terminals are common in the myenteric plexus and smooth muscle of the gastrointestinal (GI) tract of aged rats. In young adult rats, alpha-synuclein in its normal state is abundant throughout the myenteric plexus, making this protein-which is prone to fibrillization-a candidate marker for axonopathies in the aged rat. To determine if aggregation of alpha-synuclein is involved in the formation of age-related enteric neuropathies, we sampled the stomach, small intestine and large intestine of adult, middle-aged, and aged virgin male Fischer 344 rats stained for alpha-synuclein in both its normal and pathological states. Alpha-synuclein-positive dystrophic axons and terminals were present throughout the GI tract of middle-aged and aged rats, with immunohistochemical double labeling demonstrating co-localization within nitric oxide synthase-, calretinin-, calbindin-, or tyrosine hydroxylase-positive markedly swollen neurites. However, other dystrophic neurites positive for each of these four markers were not co-reactive for alpha-synuclein. Similarly, a subpopulation of alpha-synuclein inclusions contained deposits immunostained with an anti-tau phospho-specific Ser(262) antibody, but not all of these hyperphosphorylated tau-positive aggregates were co-localized with alpha-synuclein. The presence of heteroplastic and potentially degenerating neural elements and protein aggregates both positive and negative for alpha-synuclein suggests a complex chronological relationship between the onset of degenerative changes and the accumulation of misfolded proteins. Additionally, proteins other than alpha-synuclein appear to be involved in age-related axonopathies. Finally, this study establishes the utility of the aging Fischer 344 rat for the study of synucleopathies and tauopathies in the GI tract.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Department of Psychological Sciences, 703 Third Street, West Lafayette, IN 47907-2081, USA.
| | | | | | | | | |
Collapse
|