1
|
Nisha, Paramanik V. Neuroprotective Roles of Daidzein Through Extracellular Signal-Regulated Kinases Dependent Pathway In Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2024:10.1007/s12035-024-04567-w. [PMID: 39495229 DOI: 10.1007/s12035-024-04567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Depression is a stress-related neuropsychiatric disorder causing behavioural, biochemical, molecular dysfunctions and cognitive impairments. Previous studies suggested connection between neuropsychiatric diseases like depression with estrogen and estrogen receptors (ER). Daidzein is a phytoestrogen that functions as mammalian estrogen and regulates gene expressions through extracellular signal-regulated kinases (ERKs) dependent pathway by activating ERβ. ERβ modulates stress responses, physiological processes by activating protein kinases and plays a significant role in various neurological diseases like depression. However, significant roles of daidzein in depression involving ERK1/2, pERK1/2, and mTOR still unknown. Herein, we examined neuroprotective role of daidzein in chronic unpredictable mild stress (CUMS) mouse model. CUMS model was prepared, and placed in six groups namely, control, CUMS, CUMS vehicle, CUMS DZ (Daidzein 1 mg/kgbw, orally), CUMS PHTPP (ERβ blocker, 0.3 mg/kgbw, i..p.) and CUMS Untreated. Supplementation of daidzein to CUMS mice exhibits decrease depressive and anxiety-like behaviour, improved motor coordination and memory. Further, immunofluorescence results showed daidzein improved ERK1/2, pERK1/2 and mTOR expressions in the cortex, hippocampus and medulla of stressed mice. SOD, catalase and acetylcholinesterase levels were also improved. Blocking of ERβ with PHTPP stressed mice showed deficits in behaviour, low expression of ERK1/2, pERK1/2 and mTOR, and no significant changes in SOD, catalase and acetylcholinesterase level. Collectively, this study suggests that daidzein may ameliorate depressive and anxiety-like behaviour through ERK downregulating pathway by activating ERβ through ERK1/2, pERK1/2 and mTOR. Such study may be useful to understand daidzein dependent neuroprotection through ERβ in depression.
Collapse
Affiliation(s)
- Nisha
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India.
| |
Collapse
|
2
|
Landen JG, Vandendoren M, Killmer S, Bedford NL, Nelson AC. Huddling substates in mice facilitate dynamic changes in body temperature and are modulated by Shank3b and Trpm8 mutation. Commun Biol 2024; 7:1186. [PMID: 39304735 PMCID: PMC11415358 DOI: 10.1038/s42003-024-06781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Social thermoregulation is a means of maintaining homeostatic body temperature. While adult mice are a model organism for studying both social behavior and energy regulation, the relationship between huddling and core body temperature (Tb) is poorly understood. Here, we develop a behavioral paradigm and computational tools to identify active-huddling and quiescent-huddling as distinct thermal substates. We find that huddling is an effective thermoregulatory strategy in female but not male groups. At 23 °C (room temperature), but not 30 °C (near thermoneutrality), huddling facilitates large reductions in Tb and Tb-variance. Notably, active-huddling is associated with bidirectional changes in Tb, depending on its proximity to bouts of quiescent-huddling. Further, group-housed animals lacking the synaptic scaffolding gene Shank3b have hyperthermic Tb and spend less time huddling. In contrast, individuals lacking the cold-sensing gene Trpm8 have hypothermic Tb - a deficit that is rescued by increased huddling time. These results reveal how huddling behavior facilitates acute adjustments of Tb in a state-dependent manner.
Collapse
Affiliation(s)
- Jason G Landen
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Morgane Vandendoren
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Samantha Killmer
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Nicole L Bedford
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.
- University of Wyoming Sensory Biology Center, Laramie, WY, USA.
| |
Collapse
|
3
|
Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161:105667. [PMID: 38599356 PMCID: PMC11163828 DOI: 10.1016/j.neubiorev.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.
Collapse
Affiliation(s)
- Joseph F Rogers
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Morgane Vandendoren
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Jonathan F Prather
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Jason G Landen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Nicole L Bedford
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA.
| |
Collapse
|
4
|
Botterill JJ, Khlaifia A, Appings R, Wilkin J, Violi F, Premachandran H, Cruz-Sanchez A, Canella AE, Patel A, Zaidi SD, Arruda-Carvalho M. Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice. Neuropsychopharmacology 2024; 49:993-1006. [PMID: 38233571 PMCID: PMC11039686 DOI: 10.1038/s41386-024-01795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.
Collapse
Affiliation(s)
- Justin J Botterill
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ryan Appings
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Francesca Violi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Arely Cruz-Sanchez
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Anna Elisabete Canella
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ashutosh Patel
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - S Danyal Zaidi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
5
|
Campos-Cardoso R, Desa ZR, Fitzgerald BL, Moore AG, Duhon JL, Landar VA, Clem RL, Cummings KA. The mouse dorsal peduncular cortex encodes fear memory. Cell Rep 2024; 43:114097. [PMID: 38613783 PMCID: PMC11135038 DOI: 10.1016/j.celrep.2024.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
The rodent medial prefrontal cortex (mPFC) is functionally organized across the dorsoventral axis, where dorsal and ventral subregions promote and suppress fear, respectively. As the ventral-most subregion, the dorsal peduncular cortex (DP) is hypothesized to function in fear suppression. However, this role has not been explicitly tested. Here, we demonstrate that the DP paradoxically functions as a fear-encoding brain region and plays a minimal role in fear suppression. By using multimodal analyses, we demonstrate that DP neurons exhibit fear-learning-related plasticity and acquire cue-associated activity across learning and memory retrieval and that DP neurons activated by fear memory acquisition are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of DP fear-related neural ensembles drive the promotion and suppression of freezing, respectively. Overall, our results suggest that the DP plays a role in fear memory encoding. Moreover, our findings redefine our understanding of the functional organization of the rodent mPFC.
Collapse
Affiliation(s)
- Rodrigo Campos-Cardoso
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zephyr R Desa
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Brianna L Fitzgerald
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alana G Moore
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jace L Duhon
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Victoria A Landar
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Roger L Clem
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirstie A Cummings
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
6
|
Cardoso RC, Desa ZR, Fitzgerald BL, Moore A, Duhon J, Landar VA, Clem RL, Cummings KA. The mouse dorsal peduncular cortex encodes fear memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550408. [PMID: 37546717 PMCID: PMC10402043 DOI: 10.1101/2023.07.24.550408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The rodent medial prefrontal cortex (mPFC) is a locus for both the promotion and suppression (e.g. extinction) of fear and is composed of four anatomically distinct subregions, including anterior cingulate 1 (Cg1), prelimbic (PL), infralimbic (IL), and the dorsal peduncular (DP) cortex. A vast majority of studies have focused on Cg1, PL, and IL. The Cg1 and PL have been implicated in the promotion of fear, while the IL has been linked to a role in the suppression, or extinction, of fear. Due to its anatomical location ventral to IL, the DP has been hypothesized to function as a fear-suppressing brain region however, no studies have explicitly tested its role in this function or in the regulation of memory generally. Moreover, some studies have pointed towards a dichotomous role for ventral mPFC in the dual suppression and promotion of fear, but the mechanisms underlying these opposing observations remains unclear. Here, we provide evidence that the DP paradoxically functions as a cued fear-encoding brain region and plays little to no role in fear memory extinction. By using a combination of cFos immunohistochemistry, whole-cell brain slice electrophysiology, fiber photometry, and activity-dependent neural tagging, we demonstrate that DP neurons exhibit learning-related plasticity, acquire cue-associated activity across learning and memory retrieval, and that DP neurons activated by learning are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of fear learning-related DP neural ensembles drives the promotion and suppression of freezing, respectively. Overall, these data suggest that the DP plays an unexpected role in fear memory encoding. More broadly, our results reveal new principles of organization across the dorsoventral axis of the mPFC.
Collapse
|
7
|
Pang P, Zhou X, Hu Y, Zhang Y, He B, Xu G. Time-series analysis of meteorological factors and emergency department visits due to dog/cat bites in Jinshan area, China. PeerJ 2024; 12:e16758. [PMID: 38250715 PMCID: PMC10800098 DOI: 10.7717/peerj.16758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Background Meteorological factors play an important role in human health. Clarifying the occurrence of dog and cat bites (DCBs) under different meteorological conditions can provide key insights into the prevention of DCBs. Therefore, the objective of the study was to explore the relationship between meteorological factors and DCBs and to provide caution to avoid the incidents that may occur by DCBs. Methods In this study, data on meteorological factors and cases of DCBs were retrospectively collected at the Shanghai Climate Center and Jinshan Hospital of Fudan University, respectively, in 2016-2020. The distributed lag non-linear and time series model (DLNM) were used to examine the effect of meteorological elements on daily hospital visits due to DCBs. Results A total of 26,857 DCBs were collected ranging from 1 to 39 cases per day. The relationship between ambient temperature and DCBs was J-shaped. DCBs were positively correlated with daily mean temperature (rs = 0.588, P < 0.01). The relative risk (RR) of DCBs was associated with high temperature (RR = 1.450; 95% CI [1.220-1.722]). Female was more susceptible to high temperature than male. High temperature increased the risk of DCBs. Conclusions The extremely high temperature increased the risk of injuries caused by DCBs, particularly for females. These data may help to develop public health strategies for potentially avoiding the occurrence of DCBs.
Collapse
Affiliation(s)
- Pei Pang
- Department of Medical Affairs, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyong Zhou
- Department of Medical Affairs, Jinshan Hospital, Fudan University, Shanghai, China
- Emergency Department, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yabin Hu
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Yin Zhang
- Shanghai Meteorological Service Center, Shanghai, China
| | - Baoshi He
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Ginier-Gillet M. 'Functional hyperthermia': a historical overview. Biopsychosoc Med 2023; 17:38. [PMID: 37957752 PMCID: PMC10641980 DOI: 10.1186/s13030-023-00292-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
The management of low-grade fever in adults has not been codified. This gap is related not only to the numerous possible aetiologies but also to the difficulty of escaping the monocausal model of diseases. This article explores the complex issue of positive signs in 'psychogenic fever' through Reimann's 1930s series. The discussion emphasises Canguilhem's positions regarding vital signs and proposes (1) a semantic clarification of 'habitual hyperthermia' and (2) an amendment of the Belgian diagnostic criteria based on the concept of functional disorder. This paper also suggests following Peirce's pragmatism in the face of an uncommon clinical picture.
Collapse
|
9
|
Grobe CC, Reho JJ, Brown-Williams D, Ziegler AA, Mathieu NM, Lawton SB, Fekete EM, Brozoski DT, Wackman KK, Burnett CM, Nakagawa P, Sigmund CD, Segar JL, Grobe JL. Cardiometabolic Effects of DOCA-Salt in Mice Depend on Ambient Temperature. Hypertension 2023; 80:1871-1880. [PMID: 37470185 PMCID: PMC10528934 DOI: 10.1161/hypertensionaha.122.20415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Mice prefer warmer environments than humans. For this reason, behavioral and physiological thermoregulatory responses are engaged by mice in response to a standard room temperature of 22 to 24 °C. Autonomic mechanisms mediating thermoregulatory responses overlap with mechanisms activated in hypertension, and, therefore, we hypothesized that housing at thermoneutral temperatures (TNs; 30 °C) would modify the cardiometabolic effects of deoxycorticosterone acetate (DOCA)-salt in mice. METHODS The effects of DOCA-salt treatment upon ingestive behaviors, energy expenditure, blood pressure, heart rate (HR), and core temperature were assessed in C57BL/6J mice housed at room temperature or TN. RESULTS Housing at TN reduced food intake, energy expenditure, blood pressure, and HR and attenuated HR responses to acute autonomic blockade by chlorisondamine. At room temperature, DOCA-salt caused expected increases in fluid intake, sodium retention in osmotically inactive pools, blood pressure, core temperature, and also caused expected decreases in fat-free mass, total body water, and HR. At TN, the effects of DOCA-salt upon fluid intake, fat gains, hydration, and core temperature were exaggerated, but effects on energy expenditure and HR were blunted. Effects of DOCA-salt upon blood pressure were similar for 3 weeks and exaggerated by TN housing in the fourth week. CONCLUSIONS Ambient temperature robustly influences behavioral and physiological functions in mice, including metabolic and cardiovascular phenotype development in response to DOCA-salt treatment. Studying cardiometabolic responses of mice at optimal ambient temperatures promises to improve the translational relevance of rodent models.
Collapse
Affiliation(s)
- Connie C. Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Alisha A. Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Natalia M. Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Samuel B.R. Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Eva M. Fekete
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Daniel T. Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kelsey K. Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Colin M.L. Burnett
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jeffrey L. Segar
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
10
|
Passaglia P, Silva HB, de Jesus AA, Filho MAM, Trajano IP, Batalhão ME, Navegantes LCC, Branco LGS, Cárnio EC. Angiotensin-(1-7) improves tail skin heat loss and increases the survival of rats with polymicrobial sepsis. Peptides 2023; 167:171042. [PMID: 37315714 DOI: 10.1016/j.peptides.2023.171042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Sepsis is a serious syndrome, characterized by the excessive release of inflammatory mediators and thermoregulatory changes, being fever the most common sign. However, despite the importance of Angiotensin (Ang)-(1-7) in controlling the inflammation, the role of the peptide in the febrile response and mortality in animals submitted to experimental model of sepsis is still not clear. In this way, we evaluate the effect of continuous infusion of Ang-(1-7) in inflammatory response, thermoregulation and in mortality of Wistar male rats submitted to colonic ligation puncture (CLP). Before CLP surgery, the infusion pumps (Ang-(1-7), 1.5mg/mL or saline) were inserted into the abdominal cavity and maintained for 24hours. CLP rats showed a febrile response starting from 3h after and persisted until the 24th hour of experiment. Continuous treatment with Ang-(1-7) attenuated the febrile response and reestablished the euthermia 11h after CLP, until the end of experiment, which coincided with an increased heat loss index (HLI). This effect was associated with a decrease in production of pro-inflammatory mediators in liver, white adipose tissue (WAT) and hypothalamus. Moreover, an increase in norepinephrine (NE) content in interscapular brown adipose tissue (iBAT) was observed in CLP animals, which was attenuated with treatment with Ang-(1-7), and decreased mortality in CLP animals treated with Ang-(1-7). Taken together, the present study demonstrates that continuous infusion treatment with Ang-(1-7) can promote a global anti-inflammatory effect, reestablishing the tail skin heat loss as a key thermo-effector function, resulting in an increased survival of animals submitted to experimental sepsis.
Collapse
Affiliation(s)
- Patrícia Passaglia
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hadder Batista Silva
- Department of General Nursing, School of Nursing of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Alves de Jesus
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marco Antonio Marangão Filho
- Department of General Nursing, School of Nursing of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isis Paiva Trajano
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Eduardo Batalhão
- Department of General Nursing, School of Nursing of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Luiz Guilherme Siqueira Branco
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin Capellari Cárnio
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil; Department of General Nursing, School of Nursing of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Sarlon J, Partonen T, Lang UE. Potential links between brown adipose tissue, circadian dysregulation, and suicide risk. Front Neurosci 2023; 17:1196029. [PMID: 37360180 PMCID: PMC10288144 DOI: 10.3389/fnins.2023.1196029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Circadian desynchronizations are associated with psychiatric disorders as well as with higher suicidal risk. Brown adipose tissue (BAT) is important in the regulation of body temperature and contributes to the homeostasis of the metabolic, cardiovascular, skeletal muscle or central nervous system. BAT is under neuronal, hormonal and immune control and secrets batokines: i.e., autocrine, paracrine and endocrine active substances. Moreover, BAT is involved in circadian system. Light, ambient temperature as well as exogen substances interact with BAT. Thus, a dysregulation of BAT can indirectly worsen psychiatric conditions and the risk of suicide, as one of previously suggested explanations for the seasonality of suicide rate. Furthermore, overactivation of BAT is associated with lower body weight and lower level of blood lipids. Reduced body mass index (BMI) or decrease in BMI respectively, as well as lower triglyceride concentrations were found to correlate with higher risk of suicide, however the findings are inconclusive. Hyperactivation or dysregulation of BAT in relation to the circadian system as a possible common factor is discussed. Interestingly, substances with proven efficacy in reducing suicidal risk, like clozapine or lithium, interact with BAT. The effects of clozapine on fat tissue are stronger and might differ qualitatively from other antipsychotics; however, the significance remains unclear. We suggest that BAT is involved in the brain/environment homeostasis and deserves attention from a psychiatric point of view. Better understanding of circadian disruptions and its mechanisms can contribute to personalized diagnostic and therapy as well as better assessment of suicide risk.
Collapse
Affiliation(s)
- Jan Sarlon
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| | - Timo Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Undine E. Lang
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Liu T, Wang L, Chen G, Tong L, Ye X, Yang H, Liu H, Zhang H, Lu W, Zhang S, Du D. PDZD8-mediated endoplasmic reticulum-mitochondria associations regulate sympathetic drive and blood pressure through the intervention of neuronal mitochondrial homeostasis in stress-induced hypertension. Neurobiol Dis 2023:106173. [PMID: 37247681 DOI: 10.1016/j.nbd.2023.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
Neuronal hyperexcitation in the rostral ventrolateral medulla (RVLM) drives heightened sympathetic nerve activity and contributes to the etiology of stress-induced hypertension (SIH). Maintenance of mitochondrial functions is central to neuronal homeostasis. PDZD8, an endoplasmic reticulum (ER) transmembrane protein, tethers ER to mitochondria. However, the mechanisms of PDZD8-mediated ER-mitochondria associations regulating neuronal mitochondrial functions and thereby mediating blood pressure (BP) in the RVLM of SIH were largely unknown. SIH rats were subjected to intermittent electric foot shocks plus noise for 2 h twice daily for 15 consecutive days. The underlying mechanisms of PDZD8 were investigated through in vitro experiments by using small interfering RNA and through in vivo experiments, such as intra-RVLM microinjection and Western blot analysis. The function of PDZD8 on BP regulation in the RVLM was determined in vivo via the intra-RVLM microinjection of adeno-associated virus (AAV)2-r-Pdzd8. We found that the c-Fos-positive RVLM tyrosine hydroxylase (TH) neurons, renal sympathetic nerve activity (RSNA), plasma norepinephrine (NE) level, BP, and heart rate (HR) were elevated in SIH rats. ER-mitochondria associations in RVLM neurons were significantly reduced in SIH rats. PDZD8 was mainly expressed in RVLM neurons, and mRNA and protein levels were markedly decreased in SIH rats. In N2a cells, PDZD8 knockdown disrupted ER-mitochondria associations and mitochondrial structure, decreased mitochondrial membrane potential (MMP) and respiratory metabolism, enhanced ROS levels, and reduced catalase (CAT) activity. These effects suggested that PDZD8 dysregulation induced mitochondrial malfunction. By contrast, PDZD8 upregulation in the RVLM of SIH rats could rescue neuronal mitochondrial function, thereby suppressing c-Fos expression in TH neurons and decreasing RSNA, plasma NE, BP, and HR. Our results indicated that the dysregulation of PDZD8-mediated ER-mitochondria associations led to the loss of the activity homeostasis of RVLM neurons by disrupting mitochondrial functions, thereby participating in the regulation of SIH pathology.
Collapse
Affiliation(s)
- Tianfeng Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Linping Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Gaojun Chen
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Tong
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xuanxuan Ye
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Yang
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haisheng Liu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Wen Lu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Dongshu Du
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Life Sciences, Shanghai University, Shanghai 200444, China; Shaoxing Institute of Shanghai University, Shaoxing, Zhejiang 312000, China; College of Agriculture and Bioengineering, Heze University, Heze 274000, China.
| |
Collapse
|
13
|
Candia-Rivera D, Norouzi K, Ramsøy TZ, Valenza G. Dynamic fluctuations in ascending heart-to-brain communication under mental stress. Am J Physiol Regul Integr Comp Physiol 2023; 324:R513-R525. [PMID: 36802949 PMCID: PMC10026986 DOI: 10.1152/ajpregu.00251.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Dynamical information exchange between central and autonomic nervous systems, as referred to functional brain-heart interplay, occurs during emotional and physical arousal. It is well documented that physical and mental stress lead to sympathetic activation. Nevertheless, the role of autonomic inputs in nervous system-wise communication under mental stress is yet unknown. In this study, we estimated the causal and bidirectional neural modulations between electroencephalogram (EEG) oscillations and peripheral sympathetic and parasympathetic activities using a recently proposed computational framework for a functional brain-heart interplay assessment, namely the sympathovagal synthetic data generation model. Mental stress was elicited in 37 healthy volunteers by increasing their cognitive demands throughout three tasks associated with increased stress levels. Stress elicitation induced an increased variability in sympathovagal markers, as well as increased variability in the directional brain-heart interplay. The observed heart-to-brain interplay was primarily from sympathetic activity targeting a wide range of EEG oscillations, whereas variability in the efferent direction seemed mainly related to EEG oscillations in the γ band. These findings extend current knowledge on stress physiology, which mainly referred to top-down neural dynamics. Our results suggest that mental stress may not cause an increase in sympathetic activity exclusively as it initiates a dynamic fluctuation within brain-body networks including bidirectional interactions at a brain-heart level. We conclude that directional brain-heart interplay measurements may provide suitable biomarkers for a quantitative stress assessment and bodily feedback may modulate the perceived stress caused by increased cognitive demand.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| | - Kian Norouzi
- Department of Applied Neuroscience, Neurons, Inc., Taastrup, Denmark
- Faculty of Management, University of Tehran, Tehran, Iran
| | - Thomas Zoëga Ramsøy
- Department of Applied Neuroscience, Neurons, Inc., Taastrup, Denmark
- Faculty of Neuroscience, Singularity University, Santa Clara, California, United States
| | - Gaetano Valenza
- Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Tranter MH, Redfors B, Wright PT, Couch LS, Lyon AR, Omerovic E, Harding SE. Hyperthermia as a trigger for Takotsubo syndrome in a rat model. Front Cardiovasc Med 2022; 9:869585. [PMID: 35958426 PMCID: PMC9360576 DOI: 10.3389/fcvm.2022.869585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022] Open
Abstract
Takotsubo syndrome is a well-characterized cause of acute yet reversible heart failure associated with periods of intense emotional stress, often mimicking on presentation an acute coronary syndrome. Animal models of Takotsubo syndrome have been developed, either through the application of a stressor, or administration of exogenous catecholamine. We found that in a model of isoproterenol-induced Takotsubo syndrome in anesthetized rats hyperthermia (40-41°C) would occur after the administration of isoproterenol. Maintenance of this hyperthermia would result in an apical hypocontractility typical of the syndrome, whereas prevention of hyperthermia with active cooling to maintain a euthermic core body temperature prevented (but did not subsequently reverse) apical hypocontractility. In vitro experimentation with isolated cardiomyocytes showed no effect of hyperthermia on either baseline contractility or contractility change after beta-adrenoceptor stimulation. We suggest that the rise in body temperature that is characteristic of catecholamine storm may be a component in the development of Takotsubo syndrome.
Collapse
Affiliation(s)
- Matthew H. Tranter
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
- Oriel College, University of Oxford, Oxford, United Kingdom
| | - Bjorn Redfors
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter T. Wright
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Liam S. Couch
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
| | - Alexander R. Lyon
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sian E. Harding
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
| |
Collapse
|
15
|
Mota CM, Madden CJ. Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2 production. Brain Behav Immun 2022; 103:109-121. [PMID: 35429606 PMCID: PMC9524517 DOI: 10.1016/j.bbi.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Infectious diseases and inflammatory conditions recruit the immune system to mount an appropriate acute response that includes the production of cytokines. Cytokines evoke neurally-mediated responses to fight pathogens, such as the recruitment of thermoeffectors, thereby increasing body temperature and leading to fever. Studies suggest that the cytokine interleukin-1β (IL-1β) depends upon cyclooxygenase (COX)-mediated prostaglandin E2 production for the induction of neural mechanisms to elicit fever. However, COX inhibitors do not eliminate IL-1β-induced fever, thus suggesting that COX-dependent and COX-independent mechanisms are recruited for increasing body temperature after peripheral administration of IL-1β. In the present study, we aimed to build a foundation for the neural circuit(s) controlling COX-independent, inflammatory fever by determining the involvement of brain areas that are critical for controlling the sympathetic outflow to brown adipose tissue (BAT) and the cutaneous vasculature. In anesthetized rats, pretreatment with indomethacin, a non-selective COX inhibitor, did not prevent BAT thermogenesis or cutaneous vasoconstriction (CVC) induced by intravenous IL-1β (2 µg/kg). BAT and cutaneous vasculature sympathetic premotor neurons in the rostral raphe pallidus area (rRPa) are required for IL-1β-evoked BAT thermogenesis and CVC, with or without pretreatment with indomethacin. Additionally, activation of glutamate receptors in the dorsomedial hypothalamus (DMH) is required for COX-independent, IL-1β-induced BAT thermogenesis. Therefore, our data suggests that COX-independent mechanisms elicit activation of neurons within the DMH and rRPa, which is sufficient to trigger and mount inflammatory fever. These data provide a foundation for elucidating the brain circuits responsible for COX-independent, IL-1β-elicited fevers.
Collapse
Affiliation(s)
| | - Christopher J. Madden
- Corresponding author at: Dept. of Neurological Surgery, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, United States. (C.J. Madden)
| |
Collapse
|
16
|
Mori K, Sakano H. Neural Circuitry for Stress Information of Environmental and Internal Odor Worlds. Front Behav Neurosci 2022; 16:943647. [PMID: 35783233 PMCID: PMC9245520 DOI: 10.3389/fnbeh.2022.943647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
In mammals, odor information detected in the olfactory epithelium is converted to a topographic map of activated glomeruli in the olfactory bulb. Odor signals are then conveyed by projection neurons to the olfactory cortex for decision making. Odor information is processed by two distinct pathways, one is innate and the other is learned, which are separately activated during exhalation and inhalation, respectively. There are two types of odor signals, exteroceptive and interoceptive, which are also processed in different phases of respiration. Exteroceptive sensory information whether attractive/pleasant or aversive/stressful, is evaluated by the valence regions in the amygdala. Stress is an alert signal telling the body to take an action so that the normal condition can be recovered. When the odor quality is negative, the brain sets up a behavioral strategy to avoid the danger or to improve the situation. In this review article, we will describe the recent progress in the study of olfactory perception focusing on stress responses to external and internal odors.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Japan
- *Correspondence: Kensaku Mori,
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Fukui, Japan
- Hitoshi Sakano,
| |
Collapse
|