1
|
Olanipon D, Boeraeve M, Jacquemyn H. Arbuscular mycorrhizal fungal diversity and potential association networks among African tropical forest trees. MYCORRHIZA 2024; 34:271-282. [PMID: 38850289 DOI: 10.1007/s00572-024-01156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Tropical forests represent one of the most diverse and productive ecosystems on Earth. High productivity is sustained by efficient and rapid cycling of nutrients, which is in large part made possible by symbiotic associations between plants and mycorrhizal fungi. In these associations, an individual plant typically associates simultaneously with multiple fungi and the fungi associate with multiple plants, creating complex networks among fungi and plants. However, there are few studies that have investigated mycorrhizal fungal composition and diversity in tropical forest trees, particularly in Africa, or that assessed the structure of the network of associations among fungi and trees. In this study, we collected root and soil samples from Ise Forest Reserve (Southwest Nigeria) and used a metabarcoding approach to identify the dominant arbuscular mycorrhizal (AM) fungal taxa in the soil and associating with ten co-occurring tree species to assess variation in AM communities. Network analysis was used to elucidate the architecture of the network of associations between fungi and tree species. A total of 194 Operational Taxonomic Units (OTUs) belonging to six AM fungal families were identified, with 68% of all OTUs belonging to Glomeraceae. While AM fungal diversity did not differ among tree species, AM fungal community composition did. Network analyses showed that the network of associations was not significantly nested and showed a relatively low level of specialization (H2 = 0.43) and modularity (M = 0.44). We conclude that, although there were some differences in AM fungal community composition, the studied tree species associate with a large number of AM fungi. Similarly, most AM fungi had great host breadth and were detected in most tree species, thereby potentially working as interaction network hubs.
Collapse
Affiliation(s)
- Damilola Olanipon
- Department of Biological Sciences, Afe Babalola University, Ado Ekiti, Nigeria.
| | - Margaux Boeraeve
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, UAntwerpen, Antwerpen, Belgium
| | - Hans Jacquemyn
- Biology Department, KU Leuven, Kasteelpark Arenberg 31, Heverlee, B-3001, Belgium
| |
Collapse
|
2
|
Mujica MI, Herrera H, Cisternas M, Zuniga-Feest A, Sagredo-Saez C, Selosse MA. Mycorrhizas in South American Ericaceae. MYCORRHIZA 2024; 34:1-18. [PMID: 38512497 DOI: 10.1007/s00572-024-01141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Mycorrhizal symbioses (mycorrhizas) of Ericaceae, including ericoid mycorrhiza (ErM), have been mainly studied in the Northern Hemisphere, although the highest diversity of ericaceous plants is located in the Southern Hemisphere, where several regions remain largely unexplored. One of them is South America, which harbors a remarkably high diversity of Ericaceae (691 species and 33 genera) in a wide range of environmental conditions, and a specific mycorrhizal type called cavendishioid. In this review, we compile all available information on mycorrhizas of Ericaceae in South America. We report data on the mycorrhizal type and fungal diversity in 17 and 11 ericaceous genera, respectively. We show that South American Ericaceae exhibit a high diversity of habitats and life forms and that some species from typical ErM subfamilies may also host arbuscular mycorrhiza. Also, a possible geographical pattern in South American ErM fungal communities is suggested, with Sebacinales being the dominant mycorrhizal partners of the Andean clade species from tropical mountains, while archetypal ErM fungi are common partners in southern South America species. The gathered information challenges some common assumptions about ErM and suggests that focusing on understudied regions would improve our understanding of the evolution of mycorrhizal associations in this intriguing family.
Collapse
Affiliation(s)
- María Isabel Mujica
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Mauricio Cisternas
- Instituto de Investigaciones Agropecuarias, INIA-La Cruz, La Cruz, Chile
| | - Alejandra Zuniga-Feest
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Cristiane Sagredo-Saez
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205-CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
3
|
Arifin AR, Reiter NH, May TW, Linde CC. New species of Tulasnella associated with Australian terrestrial orchids in the subtribes Megastylidinae and Thelymitrinae. Mycologia 2022; 114:388-412. [PMID: 35316155 DOI: 10.1080/00275514.2021.2019547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tulasnella (Tulasnellaceae) is a genus of fungus that can form mycorrhizal associations with orchids (Orchidaceae). Here we used molecular phylogenetic analyses and morphological characteristics of pure cultures across four different media to support the description of five new Tulasnella species associated with commonly occurring and endangered Australian orchids. Tulasnella nerrigaensis associates with Calochilus; T. subasymmetrica and T. kiataensis with Thelymitra; and T. korungensis and T. multinucleata with Pyrorchis and Rimacola respectively. The newly described species were primarily delimited by analyses of five loci: nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS), C14436 (adenosine triphosphate [ATP] synthase), C4102 (glutamate synthase), C3304 (ATP helicase), and mt large subunit 16S rDNA (mtLSU). Tulasnella subasymmetrica is introduced for some isolates previously identified as T. asymmetrica, and this latter species is characterized from multilocus sequencing of a new isolate that matches ITS sequences from the ex-type culture. Morphological differences between the new species are slight. Tulasnella multinucleata has 6-12 nuclei per hyphal compartment which is the first instance of multinucleate rather than binucleate or trinucleate hyphal compartments in Tulasnella. The formal description of these species of Tulasnella will aid in future evolutionary and ecological studies of orchid-fungal interactions.
Collapse
Affiliation(s)
- Arild R Arifin
- Ecology and Evolution, Research School of Biology, the Australian National University, ACT 2601, Canberra, Australia
| | - Noushka H Reiter
- Ecology and Evolution, Research School of Biology, the Australian National University, ACT 2601, Canberra, Australia.,Science Division, Royal Botanic Gardens Victoria, cnr Ballarto Road and Botanic Drive, Cranbourne, 3977, Australia
| | - Tom W May
- Science Division, Royal Botanic Gardens Victoria, Melbourne, 3004, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, the Australian National University, ACT 2601, Canberra, Australia
| |
Collapse
|
4
|
Global AM fungi are dominating mycorrhizal communities in a tropical premontane dry forest in Laipuna, South Ecuador. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01699-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractTropical dry forests are an intricate ecosystem with special adaptations to periods of drought. Arbuscular mycorrhizal fungi (AMF) are essential for plant survival in all terrestrial ecosystems but might be of even greater importance in dry forests as plant growth is limited due to nutrient and water deficiency during the dry season. Tropical dry forests in Ecuador are highly endangered, but studies about AMF communities are scarce. We investigated the AMF community of a premontane semi-deciduous dry forest in South Ecuador during the dry season. We estimated AMF diversity, distribution, and composition of the study site based on operational taxonomic units (OTUs) and compared the results to those from the tropical montane rainforest and páramo in South Ecuador. OTU delimitation was based on part of the small ribosomal subunit obtained by cloning and Sanger sequencing. Nearly all OTUs were Glomeraceae. The four frequent OTUs were Glomus, and comparison with the MaarjAM database revealed these to be globally distributed with a wide range of ecological adaptations. Several OTUs are shared with virtual taxa from dry forests in Africa. Ordination analysis of AMF communities from the tropical dry and montane rainforests in South Ecuador revealed a unique AMF community in the dry forest with only few overlapping OTUs. Most OTUs that were found in both dry and rainforests and on the two continents were globally distributed Glomus.
Collapse
|
5
|
Li W, Shen S, Chen H, Zhang Y, Deng L, Liu Y, Shangguan Z. Effects of Flurochloridone Application on Rhizosphere Soil Fungal Community and Composition in Potato Growing Areas of the Qinghai-Tibet Plateau. J Fungi (Basel) 2021; 7:jof7060420. [PMID: 34072149 PMCID: PMC8228986 DOI: 10.3390/jof7060420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
The application of herbicides to arable land is still the most effective and accepted method to protect plants from weeds. Extensive use of chemicals in conventional agricultural practices has resulted in continuous and serious environmental pollution. Flurochloridone (FLC) is a monophenyl pyrrolidinone selective herbicide that is commonly used to inhibit weeds that occur during the growth of potatoes. In recent years, research on the toxicity of FLC has gradually increased. However, it is relatively rare to analyze the role of FLC by studying the composition of soil microorganisms. Therefore, we used NGS methods to identify the fungal community structure of the low content soil (LS) and high content soil (HS) samples in this study. Subsequently, we identified the fungal community and composition differences of these two group samples using the statistical analysis. Despite the variances of fungal community and composition across the different samples within the group, the fungal composition of the LS samples and the HS samples. LS samples were predominated by Ascomycota, while the HS samples were predominated by Mortierellomycota and Basidiomycota. The major species in the LS samples were Plectosphaerellacucumerina and Trichocladiumasperum, whereas the dominant species in the HS samples were Epicoccum nigrum and Cladosporium chasmanthicola. These results suggested that the LS samples and the HS samples had different rhizosphere soil fungal community and composition changes resulting from implementation of FLC in potato growing areas.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xiangyang 712100, China; (W.L.); (L.D.)
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.S.); (H.C.); (Y.Z.); (Y.L.)
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai University, Xining 810016, China
- College of Forestry, Northwest A&F University, Xiangyang 712100, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.S.); (H.C.); (Y.Z.); (Y.L.)
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai University, Xining 810016, China
| | - Hongyu Chen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.S.); (H.C.); (Y.Z.); (Y.L.)
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai University, Xining 810016, China
| | - Yang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.S.); (H.C.); (Y.Z.); (Y.L.)
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xiangyang 712100, China; (W.L.); (L.D.)
| | - Yujiao Liu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.S.); (H.C.); (Y.Z.); (Y.L.)
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xiangyang 712100, China; (W.L.); (L.D.)
- Correspondence:
| |
Collapse
|
6
|
Wang Y, Cheng H, Chang F, Zhao L, Wang B, Wan Y, Yue M. Endosphere Microbiome and Metabolic Differences Between the Spots and Green Parts of Tricyrtis macropoda Leaves. Front Microbiol 2021; 11:599829. [PMID: 33505373 PMCID: PMC7829350 DOI: 10.3389/fmicb.2020.599829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Background Plant leaves are important organs for photosynthesis and biological energy production. The leaves of Tricyrtis macropoda have an unusual spotted pattern. However, whether the spots of T. macropoda affect the plant microbiome and metabolites is unclear. In this study, we compared differences in the endosphere microbiome and plant metabolites in green parts and spots and the effects of spots on the photosynthesis of leaves. Methods 16S/ITS sequences and metabolite spectra were obtained by high-throughput amplicon sequencing and ultra-high-performance liquid chromatography–high-resolution mass spectrometry, respectively. Changes in the diversity of the endophytic microbial community and metabolites were studied, and the effect of T. macropoda leaf spots on photosynthesis was examined by chlorophyll fluorescence. Results The results showed that the relative abundance of Cercospora fungi in the leaf spots of T. macropoda was significantly higher than that in the green parts (P < 0.05) while Colletotrichum fungi showed low abundance in the spots. Alkaloid and ketone metabolites were decreased in the green parts compared with the spots, and amino acids, organic acids, lipids, and other compounds were increased in the green parts compared with the spots. A combined analysis of microbial communities and metabolites showed a significant correlation between the endophytic fungal communities and metabolite production. The changes in these metabolites may cause changes in local leaf color. In addition, we found that the spot areas of T. macropoda can be photosynthetically normal. Conclusion This research showed the relationship between endophytic microorganisms and metabolites, and the findings advance our understanding of endophyte–plant interactions and provide a new direction for investigating the relationship between endophytes and phenotypes.
Collapse
Affiliation(s)
- Yan Wang
- Microbiology Institute of Shaanxi, Xi'an, China
| | - Huyin Cheng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fan Chang
- Microbiology Institute of Shaanxi, Xi'an, China
| | - Le Zhao
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Bin Wang
- College of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, China
| | - Yi Wan
- Microbiology Institute of Shaanxi, Xi'an, China
| | - Ming Yue
- School of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
7
|
Arifin AR, May TW, Linde CC. New species of Tulasnella associated with Australian terrestrial orchids in the Cryptostylidinae and Drakaeinae. Mycologia 2020; 113:212-230. [PMID: 33146586 DOI: 10.1080/00275514.2020.1813473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many orchids have an obligate relationship with Tulasnella mycorrhizal fungi for seed germination and support into adulthood. Despite the importance of Tulasnella as mycorrhizal partners, many species remain undescribed. Here, we use multiple sequence locus phylogenetic analyses to delimit and describe six new Tulasnella species associated with Australian terrestrial orchids from the subtribes Cryptostylidinae and Drakaeinae. Five of the new species, Tulasnella australiensis, T. occidentalis, T. punctata, T. densa, and T. concentrica, all associate with Cryptostylis (Cryptostylidinae), whereas T. rosea associates with Spiculaea ciliata (Drakaeinae). Isolates representing T. australiensis were previously also reported in association with Arthrochilus (Drakaeinae). All newly described Tulasnella species were delimited by phylogenetic analyses of four loci (nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 [ITS], C14436 [ATP synthase], C4102 [glutamate synthase], and mt 16S rDNA [mtLSU]). The pairwise sequence divergence between species for the ITS region ranged from 5.6% to 25.2%, and the maximum sequence divergence within the newly described species ranged from 1.64% to 4.97%. There was a gap in the distribution of within- and between-species pairwise divergences in the region of 4-6%, with only one within-species value of 4.97% (for two T. australiensis isolates) and one between-species value of 5.6% (involving an isolate of T. occidentalis) falling within this region. Based on fluorescence staining, all six new Tulasnella species are binucleate and have septate, cylindrical hyphae. There was some subtle variation in culture morphology, but colony diameter as measured on 3MN+vitamin medium after 6 wk of growth did not differ among species. However, T. australiensis grew significantly (P < 0.02) slower than others on ½ FIM and ¼ potato dextrose agar (PDA) media. Formal description of these Tulasnella species contributes significantly to documentation of Tulasnella diversity and provides names and delimitations to underpin further research on the fungi and their relationships with orchids.
Collapse
Affiliation(s)
- Arild R Arifin
- Ecology and Evolution, Research School of Biology, The Australian National University , Canberra, ACT 2601, Australia
| | - Tom W May
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne , VIC 3004, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Dueñas JF, Camenzind T, Roy J, Hempel S, Homeier J, Suárez JP, Rillig MC. Moderate phosphorus additions consistently affect community composition of arbuscular mycorrhizal fungi in tropical montane forests in southern Ecuador. THE NEW PHYTOLOGIST 2020; 227:1505-1518. [PMID: 32368801 DOI: 10.1111/nph.16641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic atmospheric deposition can increase nutrient supply in the most remote ecosystems, potentially affecting soil biodiversity. Arbuscular mycorrhizal fungal (AMF) communities rapidly respond to simulated soil eutrophication in tropical forests. Yet the limited spatio-temporal extent of such manipulations, together with the often unrealistically high fertilization rates employed, impedes generalization of such responses. We sequenced mixed root AMF communities within a seven year-long fully factorial nitrogen (N) and phosphorus (P) addition experiment, replicated at three tropical montane forests in southern Ecuador with differing environmental characteristics. We hypothesized: strong shifts in community composition and species richness after long-term fertilization, site- and clade-specific responses to N vs P additions depending on local soil fertility and clade life history traits respectively. Fertilization consistently shifted AMF community composition across sites, but only reduced richness of Glomeraceae. Compositional changes were mainly driven by increases in P supply while richness reductions were observed only after combined N and P additions. We conclude that moderate increases of N and P exert a mild but consistent effect on tropical AMF communities. To predict the consequences of these shifts, current results need to be supplemented with experiments that characterize local species-specific AMF functionality.
Collapse
Affiliation(s)
- Juan F Dueñas
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Julien Roy
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Stefan Hempel
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Jürgen Homeier
- Plant Ecology, University of Göttingen, Göttingen, 37073, Germany
| | - Juan Pablo Suárez
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja, Ecuador
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| |
Collapse
|
9
|
Wang Y, Wang H, Cheng H, Chang F, Wan Y, She X. Niche differentiation in the rhizosphere and endosphere fungal microbiome of wild Paris polyphylla Sm. PeerJ 2020; 8:e8510. [PMID: 32071817 PMCID: PMC7007733 DOI: 10.7717/peerj.8510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The plant microbiome is one of the key determinants of plant health and metabolite production. The plant microbiome affects the plant's absorption of nutrient elements, improves plant tolerance to negative environmental factors, increases the accumulation of active components, and alters tissue texture. The microbial community is also important for the accumulation of secondary metabolites by plants. However, there are few studies on the niche differentiation of endophytic microorganisms of plants, especially at different elevations. METHODS We investigated the effects of altitude on the community composition of endophytic fungal communities and the differentiation of endophytic microorganisms among different niches in Paris polyphylla Sm. The rhizosphere soil, roots, rhizomes and leaves of wild-type P. polyphylla Sm. at different altitudes were sampled, and the fungal communities of all samples were analyzed by internal transcribed spacer one amplification sequencing. RESULTS The results showed that in rhizosphere soil, the number of operational taxonomic units (OTUs) that could be classified or identified decreased significantly with increasing altitude, whereas in the endosphere of plants, the total number of OTUs was higher at intermediate altitudes than other altitudes. Furthermore, the structural variability in the rhizosphere fungal community was significantly lower than that in the endophytic communities. In addition, our results confirmed the presence of niche differentiation among members of the endophytic microbial community. Finally, we also determined that the predominant genus of mycobiota in the rhizome was Cadophora. This study provides insight into the relationships between the endosphere microbiome and plants and can guide the artificial cultivation of this plant.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Shaanxi Microbiology Institute, Xi’an, China
- Shaanxi Academy of Sciences, Engineering Center of QinLing Mountains Natural Products, Xi’an, Shaanxi, China
| | - Hanping Wang
- College of Medical, Xi’an International University, Xi’an, China
| | - HuYin Cheng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi, China
| | - Fan Chang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Shaanxi Microbiology Institute, Xi’an, China
| | - Yi Wan
- Shaanxi Microbiology Institute, Xi’an, China
- Shaanxi Academy of Sciences, Engineering Center of QinLing Mountains Natural Products, Xi’an, Shaanxi, China
| | - Xiaoping She
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
10
|
Haug I, Setaro S, Suárez JP. Species composition of arbuscular mycorrhizal communities changes with elevation in the Andes of South Ecuador. PLoS One 2019; 14:e0221091. [PMID: 31419262 PMCID: PMC6697372 DOI: 10.1371/journal.pone.0221091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are the most prominent mycobionts of plants in the tropics, yet little is known about their diversity, species compositions and factors driving AMF distribution patterns. To investigate whether elevation and associated vegetation type affect species composition, we sampled 646 mycorrhizal samples in locations between 1000 and 4000 m above sea level (masl) in the South of Ecuador. We estimated diversity, distribution and species compositions of AMF by cloning and Sanger sequencing the 18S rDNA (the section between AML1 and AML2) and subsequent derivation of fungal OTUs based on 99% sequence similarity. In addition, we analyzed the phylogenetic structure of the sites by computing the mean pairwise distance (MPD) and the mean nearest taxon difference (MNTD) for each elevation level. It revealed that AMF species compositions at 1000 and 2000 masl differ from 3000 and 4000 masl. Lower elevations (1000 and 2000 masl) were dominated by members of Glomeraceae, whereas Acaulosporaceae were more abundant in higher elevations (3000 and 4000 masl). Ordination of OTUs with respect to study sites revealed a correlation to elevation with a continuous turnover of species from lower to higher elevations. Most of the abundant OTUs are not endemic to South Ecuador. We also found a high proportion of rare OTUs at all elevations: 79-85% of OTUs occurred in less than 5% of the samples. Phylogenetic community analysis indicated clustering and evenness for most elevation levels indicating that both, stochastic processes and habitat filtering are driving factors of AMF community compositions.
Collapse
Affiliation(s)
- Ingeborg Haug
- Evolutionary Ecology of Plants, Eberhard-Karls-University, Tübingen, Germany
| | - Sabrina Setaro
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Juan Pablo Suárez
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| |
Collapse
|
11
|
Alguacil M, Díaz G, Torres P, Rodríguez-Caballero G, Roldán A. Host identity and functional traits determine the community composition of the arbuscular mycorrhizal fungi in facultative epiphytic plant species. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Herrera P, Kottke I, Molina MC, Méndez M, Suárez JP. Generalism in the interaction of Tulasnellaceae mycobionts with orchids characterizes a biodiversity hotspot in the tropical Andes of Southern Ecuador. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Ruibal MP, Triponez Y, Smith LM, Peakall R, Linde CC. Population structure of an orchid mycorrhizal fungus with genus-wide specificity. Sci Rep 2017; 7:5613. [PMID: 28717170 PMCID: PMC5514033 DOI: 10.1038/s41598-017-05855-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/02/2017] [Indexed: 12/02/2022] Open
Abstract
Fundamental life history processes of mycorrhizal fungi with inconspicuous fruiting bodies can be difficult to elucidate. In this study we investigated the species identities and life history of the orchid mycorrhizal Tulasnella fungi, which associate with the south eastern Australia orchid genus Chiloglottis. Tulasnella prima was the primary partner and was found to be associated with all 17 Chiloglottis species across a range of >1000 km, and to occur in the two edaphic conditions investigated (soil and sphagnum hammocks). Another Tulasnella species (T. sphagneti) appears to be restricted to moist conditions of alpine sphagnum hammocks. The population genetic structure of the widespread species T. prima, was investigated at 10 simple sequence repeat (SSR) markers and at four cross-amplified SSR loci for T. sphagneti. For both taxa, no sharing of multilocus genotypes was found between sites, but clones were found within sites. Evidence for inbreeding within T. prima was found at 3 of 5 sites. Significant genetic differentiation was found within and between taxa. Significant local positive spatial genetic autocorrelation was detected among non-clonal isolates at the scale of two metres. Overall, the population genetic patterns indicated that in Tulasnella mating occurs by inbreeding and dispersal is typically restricted to short-distances.
Collapse
Affiliation(s)
- M P Ruibal
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Y Triponez
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - L M Smith
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - R Peakall
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - C C Linde
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Bruzone MC, Fehrer J, Fontenla SB, Vohník M. First record of Rhizoscyphus ericae in Southern Hemisphere's Ericaceae. MYCORRHIZA 2017; 27:147-163. [PMID: 27778093 DOI: 10.1007/s00572-016-0738-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Ericoid mycorrhiza is arguably the least investigated mycorrhizal type, particularly when related to the number of potential hosts and the ecosystems they inhabit. Little is known about the global distribution of ericoid mycorrhizal (ErM) fungi, and this holds true even for the prominent ErM mycobiont Rhizoscyphus ericae. Earlier studies suggested R. ericae might be low in abundance or absent in the roots of Southern Hemisphere's Ericaceae, and our previous investigations in two Argentine Patagonian forests supported this view. Here, we revisited the formerly investigated area, albeit at a higher altitude, and screened fungi inhabiting hair roots of Gaultheria caespitosa and Gaultheria pumila at a treeless alpine site using the same methods as previously. We obtained 234 isolates, most of them belonging to Ascomycota. In contrast to previous findings, however, among 37 detected operational taxonomic units (OTUs), OTU 1 (=R. ericae s. str.) comprised the highest number of isolates (87, ∼37 %). Most of the OTUs and isolates belonged to the Helotiales, and 82.5 % of isolates belonged to OTUs shared between both Gaultheria species. At the alpine site, ericoid mycorrhizal fungi dominated, followed by dark septate endophytes and aquatic hyphomycetes probably acting as root endophytes. Our results suggest that the distribution of R. ericae is influenced, among others, by factors related to altitude such as soil type and presence/absence and type of the neighboring vegetation. Our study is the first report on R. ericae colonizing Ericaceae roots in the Southern Hemisphere and extends the known range of this prominent ErM species to NW Patagonia.
Collapse
Affiliation(s)
- M Clara Bruzone
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, INIBIOMA (Universidad Nacional del Comahue-CONICET), Bariloche, Río Negro, Argentina
| | - Judith Fehrer
- DNA Laboratory, Institute of Botany, Czech Academy of Sciences (CAS), Průhonice, CZ-252 43, Czech Republic
| | - Sonia B Fontenla
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, INIBIOMA (Universidad Nacional del Comahue-CONICET), Bariloche, Río Negro, Argentina
| | - Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany CAS, Průhonice, CZ-252 43, Czech Republic.
- Department of Plant Experimental Biology, Faculty of Science, Charles University in Prague, Prague, CZ-128 44, Czech Republic.
| |
Collapse
|
15
|
|
16
|
|
17
|
|
18
|
Vohník M, Pánek M, Fehrer J, Selosse MA. Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales). MYCORRHIZA 2016; 26:831-846. [PMID: 27323713 DOI: 10.1007/s00572-016-0717-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/14/2016] [Indexed: 05/21/2023]
Abstract
The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany ASCR, Průhonice, 25243, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, 12844, Czech Republic.
| | - Matěj Pánek
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry in Brno, Zemědělská 3, Brno, 61300, Czech Republic
- Crop Research Institute, Drnovská 507, Praha, 16106, Czech Republic
| | - Judith Fehrer
- DNA Laboratory, Institute of Botany ASCR, Průhonice, 25243, Czech Republic
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP50, Paris, 75005, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, Gdansk, 80308, Poland
| |
Collapse
|
19
|
Gilbert GS, Parker IM. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:549-78. [PMID: 27359365 DOI: 10.1146/annurev-phyto-102313-045959] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.
Collapse
Affiliation(s)
- Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, California 95064;
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá 0843-03092
| | - Ingrid M Parker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064;
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá 0843-03092
| |
Collapse
|
20
|
Weiß M, Waller F, Zuccaro A, Selosse MA. Sebacinales - one thousand and one interactions with land plants. THE NEW PHYTOLOGIST 2016; 211:20-40. [PMID: 27193559 DOI: 10.1111/nph.13977] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/05/2016] [Indexed: 05/20/2023]
Abstract
20 I 21 II 21 III 23 IV 29 V 33 VI 35 36 36 References 36 SUMMARY: Root endophytism and mycorrhizal associations are complex derived traits in fungi that shape plant physiology. Sebacinales (Agaricomycetes, Basidiomycota) display highly diverse interactions with plants. Although early-diverging Sebacinales lineages are root endophytes and/or have saprotrophic abilities, several more derived clades harbour obligate biotrophs forming mycorrhizal associations. Sebacinales thus display transitions from saprotrophy to endophytism and to mycorrhizal nutrition within one fungal order. This review discusses the genomic traits possibly associated with these transitions. We also show how molecular ecology revealed the hyperdiversity of Sebacinales and their evolutionary diversification into two sister families: Sebacinaceae encompasses mainly ectomycorrhizal and early-diverging saprotrophic species; the second family includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal abilities. We propose the name Serendipitaceae for this family and, within it, we transfer to the genus Serendipita the endophytic cultivable species Piriformospora indica and P. williamsii. Such cultivable Serendipitaceae species provide excellent models for root endophytism, especially because of available genomes, genetic tractability, and broad host plant range including important crop plants and the model plant Arabidopsis thaliana. We review insights gained with endophytic Serendipitaceae species into the molecular mechanisms of endophytism and of beneficial effects on host plants, including enhanced resistance to abiotic and pathogen stress.
Collapse
Affiliation(s)
- Michael Weiß
- Steinbeis-Innovationszentrum Organismische Mykologie und Mikrobiologie, Vor dem Kreuzberg 17, 72070, Tübingen, Germany
- Department of Biology, University of Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Frank Waller
- Pharmaceutical Biology, Julius von Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Alga Zuccaro
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), BioCenter, University of Cologne, 50674, Cologne, Germany
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution (UMR 7205 ISYEB), Muséum national d'Histoire naturelle, CP 50, 45 rue Buffon, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Gdansk, Poland
| |
Collapse
|
21
|
Schüßler A, Krüger C, Urgiles N. Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. MYCORRHIZA 2016; 26:199-207. [PMID: 26260945 DOI: 10.1007/s00572-015-0659-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
In many deforested regions of the tropics, afforestation with native tree species could valorize a growing reservoir of degraded, previously overused and abandoned land. The inoculation of tropical tree seedlings with arbuscular mycorrhizal fungi (AM fungi) can improve tree growth and viability, but efficiency may depend on plant and AM fungal genotype. To study such effects, seven phylogenetically diverse AM fungi, native to Ecuador, from seven genera and a non-native AM fungus (Rhizophagus irregularis DAOM197198) were used to inoculate the tropical potential crop tree (PCT) species Handroanthus chrysanthus (synonym Tabebuia chrysantha), Cedrela montana, and Heliocarpus americanus. Twenty-four plant-fungus combinations were studied in five different fertilization and AMF inoculation treatments. Numerous plant growth parameters and mycorrhizal root colonization were assessed. The inoculation with any of the tested AM fungi improved seedling growth significantly and in most cases reduced plant mortality. Plants produced up to threefold higher biomass, when compared to the standard nursery practice. AM fungal inoculation alone or in combination with low fertilization both outperformed full fertilization in terms of plant growth promotion. Interestingly, root colonization levels for individual fungi strongly depended on the host tree species, but surprisingly the colonization strength did not correlate with plant growth promotion. The combination of AM fungal inoculation with a low dosage of slow release fertilizer improved PCT seedling performance strongest, but also AM fungal treatments without any fertilization were highly efficient. The AM fungi tested are promising candidates to improve management practices in tropical tree seedling production.
Collapse
Affiliation(s)
- Arthur Schüßler
- Genetics Institute, Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 4, 82152, Planegg-Martinsried, Germany.
| | - Claudia Krüger
- Genetics Institute, Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 4, 82152, Planegg-Martinsried, Germany
| | - Narcisa Urgiles
- Genetics Institute, Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 4, 82152, Planegg-Martinsried, Germany
- Forestry School, Universidad Nacional de Loja (UNL), Ciudad Universitaria Guillermo Falconí Espinosa, La Argelia, Loja, Ecuador
| |
Collapse
|
22
|
Garnica S, Riess K, Schön ME, Oberwinkler F, Setaro SD. Divergence Times and Phylogenetic Patterns of Sebacinales, a Highly Diverse and Widespread Fungal Lineage. PLoS One 2016; 11:e0149531. [PMID: 26938104 PMCID: PMC4795679 DOI: 10.1371/journal.pone.0149531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/02/2016] [Indexed: 01/03/2023] Open
Abstract
Patterns of geographic distribution and composition of fungal communities are still poorly understood. Widespread occurrence in terrestrial ecosystems and the unique richness of interactions of Sebacinales with plants make them a target group to study evolutionary events in the light of nutritional lifestyle. We inferred diversity patterns, phylogenetic structures and divergence times of Sebacinales with respect to their nutritional lifestyles by integrating data from fossil-calibrated phylogenetic analyses. Relaxed molecular clock analyses indicated that Sebacinales originated late Permian within Basidiomycota, and their split into Sebacinaceae and Serendipitaceae nom. prov. likely occurred during the late Jurassic and the early Cretaceous, coinciding with major diversifications of land plants. In Sebacinaceae, diversification of species with ectomycorrhizal lifestyle presumably started during the Paleocene. Lineage radiations of the core group of ericoid and cavendishioid mycorrhizal Sebacinales started probably in the Eocene, coinciding with diversification events of their hosts. The diversification of Sebacinales with jungermannioid interactions started during the Oligocene, and occurred much later than the diversification of their hosts. Sebacinales communities associated either with ectomycorrhizal plants, achlorophyllous orchids, ericoid and cavendishioid Ericaceae or liverworts were phylogenetically clustered and globally distributed. Major Sebacinales lineage diversifications started after the continents had drifted apart. We also briefly discuss dispersal patterns of extant Sebacinales.
Collapse
Affiliation(s)
- Sigisfredo Garnica
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Kai Riess
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Max E. Schön
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Franz Oberwinkler
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Sabrina D. Setaro
- Wake Forest University, Department of Biology, 205 Winston Hall, 1834 Wake Forest Road, Winston-Salem, North Carolina, 27106, United States of America
| |
Collapse
|
23
|
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. THE NEW PHYTOLOGIST 2015; 205:1406-1423. [PMID: 25639293 DOI: 10.1111/nph.13288] [Citation(s) in RCA: 749] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/30/2014] [Indexed: 05/04/2023]
Abstract
Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Marcel G A van der Heijden
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046, Zürich, Switzerland
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057, Zürich, Switzerland
- Plant-microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Francis M Martin
- INRA, Lab of Excellence ARBRE, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, 54280, Champenoux, France
| | - Marc-André Selosse
- Département Systématique et Evolution (UMR 7205 ISYEB), Muséum national d'Histoire naturelle, CP 50, 45 rue Buffon, 75005, Paris, France
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
24
|
Riofrío ML, Cruz D, Torres E, de la Cruz M, Iriondo JM, Suárez JP. Mycorrhizal preferences and fine spatial structure of the epiphytic orchid Epidendrum rhopalostele. AMERICAN JOURNAL OF BOTANY 2013; 100:2339-2348. [PMID: 24252216 DOI: 10.3732/ajb.1300069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY The presence of compatible fungi is necessary for epiphytic orchid recruitment. Thus, identifying associated mycorrhizal fungi at the population level is essential for orchid conservation. Recruitment patterns may also be conditioned by factors such as seed dispersal range and specific environmental characteristics. METHODS In a forest plot, all trees with a diameter at breast height >1 cm and all individuals of the epiphytic orchid Epidendrum rhopalostele were identified and mapped. Additionally, one flowering individual of E. rhopalostele per each host tree was randomly selected for root sampling and DNA extraction. KEY RESULTS A total of 239 E. rhopalostele individuals were located in 25 of the 714 potential host trees. Light microscopy of sampled roots showed mycorrhizal fungi in 22 of the 25 sampled orchids. Phylogenetic analysis of ITS1-5.8S-ITS2 sequences yielded two Tulasnella clades. In four cases, plants were found to be associated with both clades. The difference between univariate and bivariate K functions was consistent with the random labeling null model at all spatial scales, indicating that trees hosting clades A and B of Tulasnella are not spatially segregated. The analysis of the inhomogenous K function showed that host trees are not clustered, suggesting no limitations to population-scale dispersal. χ(2) analysis of contingency tables showed that E. rhopalostele is more frequent on dead trees than expected. CONCLUSIONS EPIDENDRUM RHOPALOSTELE establishes mycorrhizal associations with at least two different Tulasnella species. The analysis of the distribution patterns of this orchid suggests a microsite preference for dead trees and no seed dispersal limitation.
Collapse
Affiliation(s)
- María L Riofrío
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano alto s/n, Loja, Ecuador
| | | | | | | | | | | |
Collapse
|
25
|
Velmurugan S, Prasannakumar C, Manokaran S, Ajith Kumar T, Samkamaleson A, Palavesam A. DNA barcodes for marine fungal identification and discovery. FUNGAL ECOL 2013. [DOI: 10.1016/j.funeco.2013.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Haug I, Setaro S, Suárez JP. Reforestation sites show similar and nested AMF communities to an adjacent pristine forest in a tropical mountain area of South Ecuador. PLoS One 2013; 8:e63524. [PMID: 23671682 PMCID: PMC3646028 DOI: 10.1371/journal.pone.0063524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 04/06/2013] [Indexed: 11/23/2022] Open
Abstract
Arbuscular mycorrhizae are important for growth and survival of tropical trees. We studied the community of arbuscular mycorrhizal fungi in a tropical mountain rain forest and in neighbouring reforestation plots in the area of Reserva Biológica San Francisco (South Ecuador). The arbuscular mycorrhizal fungi were analysed with molecular methods sequencing part of the 18 S rDNA. The sequences were classified as Operational Taxonomic Units (OTUs). We found high fungal species richness with OTUs belonging to Glomerales, Diversisporales and Archaeosporales. Despite intensive sampling, the rarefaction curves are still unsaturated for the pristine forest and the reforestation plots. The communities consisted of few frequent and many rare species. No specific interactions are recognizable. The plant individuals are associated with one to ten arbuscular mycorrhizal fungi and mostly with one to four. The fungal compositions associated with single plant individuals show a great variability and variety within one plant species. Planted and naturally occurring plants show high similarities in their fungal communities. Pristine forest and reforestation plots showed similar richness, similar diversity and a significantly nested structure of plant-AMF community. The results indicate that small-scale fragmentation presently found in this area has not destroyed the natural AMF community, at least yet. Thus, the regeneration potential of natural forest vegetation at the tested sites is not inhibited by a lack of appropriate mycobionts.
Collapse
Affiliation(s)
- Ingeborg Haug
- Institute of Evolution and Ecology, Plant Evolutionary Ecology, University of Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
27
|
|
28
|
Setaro S, Suárez JP, Herrera P, Cruz D, Kottke I. Distinct but Closely Related Sebacinales form Mycorrhizae with Coexisting Ericaceae and Orchidaceae in a Neotropical Mountain Area. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-33802-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
|
30
|
Mosquera-Espinosa AT, Bayman P, Prado GA, Gómez-Carabalí A, Otero JT. The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia 2012; 105:141-50. [PMID: 22962357 DOI: 10.3852/12-079] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ceratobasidium includes orchid mycorrhizal symbionts, plant pathogens and biocontrol agents of soilborne plant pathogens. It is not known to what extent members of the first guild also can participate in the others. Ceratobasidium spp. were isolated from roots of Colombian orchids and identified by phylogeny based on nrITS sequences. Phylogenetic grouping of Ceratobasidium spp. isolates corresponded to orchid host substrate (epiphytic vs. terrestrial). Isolates were tested for virulence on rice and for biocontrol of Rhizoctonia solani, causal agent of sheath blight of rice. All Ceratobasidium spp. isolates caused some signs of sheath blight but significantly less than a pathogenic R. solani used as a positive control. When Ceratobasidium spp. isolates were inoculated on rice seedlings 3 d before R. solani, they significantly reduced disease expression compared to controls inoculated with R. solani alone. The use of Ceratobasidium spp. from orchids for biological control is novel, and biodiverse countries such as Colombia are promising places to look for new biocontrol agents.
Collapse
|
31
|
Qiang X, Weiss M, Kogel KH, Schäfer P. Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range. MOLECULAR PLANT PATHOLOGY 2012; 13:508-18. [PMID: 22111580 PMCID: PMC6638644 DOI: 10.1111/j.1364-3703.2011.00764.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Piriformospora indica is a basidiomycete of the order Sebacinales, representing a model for the study of mutualistic symbiosis and, beyond that, the plant immune system. The fungus colonizes the roots of a wide range of vascular plants, increasing their growth, seed yield and adaptation to abiotic and biotic stresses. The fungal colonization of roots begins with a biotrophic growth phase, in which living cells are colonized, and continues with a cell death-dependent phase, in which root cells are actively killed by the fungus. The complexity of sebacinalean symbiosis is further enhanced by the presence of endocellular bacteria which may represent significant determinants for a successful outcome of the symbioses. Molecular ecological analyses have revealed an exceptional relevance of sebacinoid fungi in natural ecosystems worldwide. This natural competence could be rooted in their phenotypic adaptability, which, for instance, allows P. indica to grow readily on various synthetic media and to colonize distinct hosts. In molecular and genetic studies, P. indica's mutualistic colonization strategy has been partly unravelled, showing that the jasmonate pathway is exploited for immune suppression and successful development in roots. Research on P. indica supports efforts to make the bioprotective potential of the fungus accessible for agricultural plant production. The decoding of P. indica's genome has revealed its potential for application as bioagent and for targeted improvement of crop plants in biotechnology-based approaches.
Collapse
Affiliation(s)
- Xiaoyu Qiang
- Research Centre for Biosystems, Land Use, and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, D-35392 Gießen, Germany
| | | | | | | |
Collapse
|
32
|
Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M. The network structure of plant-arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2012; 194:536-547. [PMID: 22269207 DOI: 10.1111/j.1469-8137.2011.04045.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ecological network theory predicts that in mutualistic systems specialists tend to interact with a subset of species with which generalists interact (i.e. nestedness). Approaching plant-arbuscular mycorrhizal fungi (AMF) association using network analyses will allow the generality of this pattern to be expanded to the ubiquitous plant-AMF mutualism. Based on certain plant-AMF specificity recently suggested, networks are expected to be nested as a result of their mutualistic nature, and modular, with certain species interacting more tightly than others. Network analyses were used to test for nestedness and modularity and to compare the different contribution of plant and AMF to the overall nestedness. Plant-AMF networks share general network properties with other mutualisms. Plant species with few AMFs in their roots tend to associate with those AMFs recorded in most plant species. AMFs present in a few plant species occur in plant species sheltering most AMF (i.e. nestedness). This plant-AMF network presents weakly interlinked subsets of species, strongly connected internally (i.e. modularity). Both plants and AMF show a nested structure, although AMFs have lower nestedness than plants. The plant-AMF interaction pattern is interpreted in the context of how plant-AMF associations can be underlying mechanisms shaping plant community assemblages.
Collapse
Affiliation(s)
- A Montesinos-Navarro
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5 46113 Moncada, Valencia, Spain
| | - J G Segarra-Moragues
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5 46113 Moncada, Valencia, Spain
| | - A Valiente-Banuet
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, A. P. 70-275, C. P. 04510, México, D. F., México
- Centro de Ciencias de la Complejidad, Ciudad Universitaria, Universidad Nacional Autónoma de México, México 04510, D. F., México
| | - M Verdú
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5 46113 Moncada, Valencia, Spain
| |
Collapse
|
33
|
Krause C, Garnica S, Bauer R, Nebel M. Aneuraceae (Metzgeriales) and tulasnelloid fungi (Basidiomycota) – a model for early steps in fungal symbiosis. Fungal Biol 2011; 115:839-51. [DOI: 10.1016/j.funbio.2011.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
|
34
|
The rare Australian epiphytic orchid Sarcochilus weinthalii associates with a single species of Ceratobasidium. FUNGAL DIVERS 2011. [DOI: 10.1007/s13225-011-0106-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Powell JR, Monaghan MT, Opik M, Rillig MC. Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories. Mol Ecol 2010; 20:655-66. [PMID: 21199026 DOI: 10.1111/j.1365-294x.2010.04964.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analyses of the structure and function of microbial communities are highly constrained by the diversity of organisms present within most environmental samples. A common approach is to rely almost entirely on DNA sequence data for estimates of microbial diversity, but to date there is no objective method of clustering sequences into groups that is grounded in evolutionary theory of what constitutes a biological lineage. The general mixed Yule-coalescent (GMYC) model uses a likelihood-based approach to distinguish population-level processes within lineages from processes associated with speciation and extinction, thus identifying a distinct point where extant lineages became independent. Using two independent surveys of DNA sequences associated with a group of ubiquitous plant-symbiotic fungi, we compared estimates of species richness derived using the GMYC model to those based on operational taxonomic units (OTUs) defined by fixed levels of sequence similarity. The model predicted lower species richness in these surveys than did traditional methods of sequence similarity. Here, we show for the first time that groups delineated by the GMYC model better explained variation in the distribution of fungi in relation to putative niche-based variables associated with host species identity, edaphic factors, and aspects of how the sampled ecosystems were managed. Our results suggest the coalescent-based GMYC model successfully groups environmental sequences of fungi into clusters that are ecologically more meaningful than more arbitrary approaches for estimating species richness.
Collapse
Affiliation(s)
- Jeff R Powell
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstrasse 6, Berlin, Germany.
| | | | | | | |
Collapse
|
36
|
Opik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). THE NEW PHYTOLOGIST 2010; 188:223-41. [PMID: 20561207 DOI: 10.1111/j.1469-8137.2010.03334.x] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Here, we describe a new database, MaarjAM, that summarizes publicly available Glomeromycota DNA sequence data and associated metadata. The goal of the database is to facilitate the description of distribution and richness patterns in this group of fungi. • Small subunit (SSU) rRNA gene sequences and available metadata were collated from all suitable taxonomic and ecological publications. These data have been made accessible in an open-access database (http://maarjam.botany.ut.ee). • Two hundred and eighty-two SSU rRNA gene virtual taxa (VT) were described based on a comprehensive phylogenetic analysis of all collated Glomeromycota sequences. Two-thirds of VT showed limited distribution ranges, occurring in single current or historic continents or climatic zones. Those VT that associated with a taxonomically wide range of host plants also tended to have a wide geographical distribution, and vice versa. No relationships were detected between VT richness and latitude, elevation or vascular plant richness. • The collated Glomeromycota molecular diversity data suggest limited distribution ranges in most Glomeromycota taxa and a positive relationship between the width of a taxon's geographical range and its host taxonomic range. Inconsistencies between molecular and traditional taxonomy of Glomeromycota, and shortage of data from major continents and ecosystems, are highlighted.
Collapse
Affiliation(s)
- M Opik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005 Tartu, Estonia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Preussing M, Nebel M, Oberwinkler F, Weiss M. Diverging diversity patterns in the Tulasnella (Basidiomycota, Tulasnellales) mycobionts of Aneura pinguis (Marchantiophyta, Metzgeriales) from Europe and Ecuador. MYCORRHIZA 2010; 20:147-159. [PMID: 19730896 DOI: 10.1007/s00572-009-0275-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/16/2009] [Indexed: 05/28/2023]
Abstract
Aneura pinguis (Aneuraceae) is a cosmopolitan thalloid liverwort that shows a specific mycorrhiza-like interaction with basidiomycetes. To date, tropical specimens have not been studied in great depth. Samples of A. pinguis were collected from 48 individuals in one plot in South Ecuador and 54 individuals in five European countries. Light and transmission electron microscopy and molecular analyses based on nuclear rDNA coding for the ribosomal large subunit (nucLSU) and from the 5.8s-ITS2 regions were carried out to identify the associated mycobionts and to study their phylogenetic relationships. Microscopic and ultrastructural investigations of the fungal colonisation showed a high congruence between the European and the Ecuadorian sites and confirmed previous results. Tulasnellales are the only mycobionts that could be detected from ultrastructural characters with certainty. Molecular phylogenetic analysis indicated the presence of tulasnelloid fungi from at least 13 distinct clades. The composition of the communities of tulasnelloid fungi in A. pinguis differs between Ecuador and Europe. The diversity of tulasnelloid fungal partners was much higher at the Ecuadorian site.
Collapse
MESH Headings
- Basidiomycota/classification
- Basidiomycota/cytology
- Basidiomycota/genetics
- Basidiomycota/isolation & purification
- Biodiversity
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Ecuador
- Europe
- Hepatophyta/microbiology
- Microscopy
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Mycorrhizae/growth & development
- RNA, Ribosomal, 5.8S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Markus Preussing
- State Museum of Natural History, Rosenstein 1, Stuttgart, Germany.
| | | | | | | |
Collapse
|
38
|
Bidartondo MI, Duckett JG. Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc Biol Sci 2010; 277:485-92. [PMID: 19812075 PMCID: PMC2842645 DOI: 10.1098/rspb.2009.1458] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/10/2009] [Indexed: 11/12/2022] Open
Abstract
Liverworts, the most ancient group of land plants, form a range of intimate associations with fungi that may be analogous to the mycorrhizas of vascular plants. Most thalloid liverworts contain arbuscular mycorrhizal glomeromycete fungi similar to most vascular plants. In contrast, a range of leafy liverwort genera and one simple thalloid liverwort family (the Aneuraceae) have switched to basidiomycete fungi. These liverwort switches away from glomeromycete fungi may be expected to parallel switches undergone by vascular plants that target diverse lineages of basidiomycete fungi to form ectomycorrhizas. To test this hypothesis, we used a cultivation-independent approach to examine the basidiomycete fungi associated with liverworts in varied worldwide locations by generating fungal DNA sequence data from over 200 field collections of over 30 species. Here we show that eight leafy liverwort genera predominantly and consistently associate with members of the Sebacina vermifera species complex and that Aneuraceae thalloid liverworts associate nearly exclusively with Tulasnella species. Furthermore, within sites where multiple liverwort species co-occur, they almost never share the same fungi. Our analyses reveal a strikingly conservative ecological and evolutionary pattern of liverwort symbioses with basidiomycete fungi that is unlike that of vascular plant mycorrhizas.
Collapse
|
39
|
Curlevski NJA, Xu ZH, Anderson IC, Cairney JWG. Diversity of soil and rhizosphere fungi under Araucaria bidwillii (Bunya pine) at an Australian tropical montane rainforest site. FUNGAL DIVERS 2009. [DOI: 10.1007/s13225-009-0001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Arbuscular mycorrhizal fungal community structures differ between co-occurring tree species of dry Afromontane tropical forest, and their seedlings exhibit potential to trap isolates suited for reforestation. Mycol Prog 2009. [DOI: 10.1007/s11557-009-0602-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Krüger M, Stockinger H, Krüger C, Schüßler A. DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2009; 183:212-223. [PMID: 19368665 DOI: 10.1111/j.1469-8137.2009.02835.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
* At present, molecular ecological studies of arbuscular mycorrhizal fungi (AMF) are only possible above species level when targeting entire communities. To improve molecular species characterization and to allow species level community analyses in the field, a set of newly designed AMF specific PCR primers was successfully tested. * Nuclear rDNA fragments from diverse phylogenetic AMF lineages were sequenced and analysed to design four primer mixtures, each targeting one binding site in the small subunit (SSU) or large subunit (LSU) rDNA. To allow species resolution, they span a fragment covering the partial SSU, whole internal transcribed spacer (ITS) rDNA region and partial LSU. * The new primers are suitable for specifically amplifying AMF rDNA from material that may be contaminated by other organisms (e.g., samples from pot cultures or the field), characterizing the diversity of AMF species from field samples, and amplifying a SSU-ITS-LSU fragment that allows phylogenetic analyses with species level resolution. * The PCR primers can be used to monitor entire AMF field communities, based on a single rDNA marker region. Their application will improve the base for deep sequencing approaches; moreover, they can be efficiently used as DNA barcoding primers.
Collapse
Affiliation(s)
- Manuela Krüger
- Ludwig-Maximilians-University Munich, Dept Biology I, Genetics, Großhaderner Strasse 4, D-82152 Planegg-Martinsried, Germany
| | - Herbert Stockinger
- Ludwig-Maximilians-University Munich, Dept Biology I, Genetics, Großhaderner Strasse 4, D-82152 Planegg-Martinsried, Germany
| | - Claudia Krüger
- Ludwig-Maximilians-University Munich, Dept Biology I, Genetics, Großhaderner Strasse 4, D-82152 Planegg-Martinsried, Germany
| | - Arthur Schüßler
- Ludwig-Maximilians-University Munich, Dept Biology I, Genetics, Großhaderner Strasse 4, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
42
|
Gamper HA, Walker C, Schüßler A. Diversispora celata sp. nov: molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. THE NEW PHYTOLOGIST 2009; 182:495-506. [PMID: 19338635 DOI: 10.1111/j.1469-8137.2008.02750.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The increasing numbers of taxonomically unassigned phylotypes reported in molecular ecological studies contrast with the few formally described arbuscular mycorrhizal fungi (AMF; Glomeromycota). Here, a species new to science with Glomus-like spores is phylogenetically, morphologically and ecologically characterized. From single spore isolates of a previously recognized member of the Diversisporaceae from Swiss agricultural grassland, 17 new nuclear internal transcribed spacer (ITS), large subunit (LSU) and small subunit (SSU) ribosomal RNA (rRNA) gene sequences were determined and compared with 14 newly generated sequences of two close relatives and public database sequences, including environmental sequences, of known geographic origin. SSU ribosomal DNA (rDNA) sequence signatures and phylogenies based on ITS, LSU and SSU rDNA sequences show that the fungus belongs to the genus Diversispora. It is described as Diversispora celata sp. nov. Comparison with environmental sequences in the public domain confirmed its molecular genetic distinctiveness and revealed a cross-continental distribution of close relatives. The value of combining morphology and phylogeny to characterize AMF was reinforced by the morphological similarity to other species and the inconspicuous nature of D. celata spores and mycorrhizas. Inclusion of all three nuclear rDNA regions in species descriptions will facilitate species determination from environmental phylotypes.
Collapse
Affiliation(s)
- Hannes A Gamper
- Netherlands Institute of Ecology (NIOO-KNAW) - Centre for Terrestrial Ecology, Department of Terrestrial Microbial Ecology, Boterhoeksestraat 48, PO Box 40, 6666 ZG Heteren, The Netherlands
| | - Christopher Walker
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Arthur Schüßler
- Genetics, Department of Biology I, Ludwig-Maximilian-University Munich, Großhadernerstrasse 4, 82152 Planegg-Martinsried, Munich, Germany
| |
Collapse
|
43
|
Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest. Mycol Prog 2008. [DOI: 10.1007/s11557-008-0554-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
|
45
|
Wolff D, Meve U, Liede-Schumann S. Pollination ecology of Ecuadorian Asclepiadoideae (Apocynaceae): How generalized are morphologically specialized flowers? Basic Appl Ecol 2008. [DOI: 10.1016/j.baae.2007.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Beck A, Haug I, Oberwinkler F, Kottke I. Structural characterization and molecular identification of arbuscular mycorrhiza morphotypes of Alzatea verticillata (Alzateaceae), a prominent tree in the tropical mountain rain forest of South Ecuador. MYCORRHIZA 2007; 17:607-625. [PMID: 17653774 DOI: 10.1007/s00572-007-0139-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 05/21/2007] [Indexed: 05/16/2023]
Abstract
The vast majority of the highly diverse trees in the tropical mountain rain forest of South Ecuador form arbuscular mycorrhizas, and previous molecular investigations revealed a high diversity of fungi. In this study, we present a first trial to link fungal DNA-sequences with defined morphotypes characterized on the basis of partly new mycelial features obtained from field material of one tree species, Alzatea verticillata. Fine roots were halved lengthwise to study the mycelium anatomy on one half and to obtain fungal nuclear rDNA coding for the small subunit rRNA of Glomeromycota from the other half. Light microscopy revealed conspicuously large amounts of mycelium attaching to the surface of the rootlets. The mycelium formed fine- or large-branched appressoria-like plates, vesicles of regular or irregular shape, and very fine, multibranched structures ensheathed by septate hyphae. These previously undescribed features of the supraradical mycelia combined with intraradical mycelium structures were used for distinguishing of four main morphogroups and subordinate 14 morphotypes. DNA sequences of Glomus group A, Acaulospora and Gigaspora, were obtained and linked to three morphogroups. Two sequence types within Glomus group A could be tentatively associated to subordinate morphotypes.
Collapse
Affiliation(s)
- Adela Beck
- Systematic Botany, Mycology and Botanical Garden, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany.
| | - Ingeborg Haug
- Systematic Botany, Mycology and Botanical Garden, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Franz Oberwinkler
- Systematic Botany, Mycology and Botanical Garden, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Ingrid Kottke
- Systematic Botany, Mycology and Botanical Garden, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| |
Collapse
|
47
|
Suárez JP, Weiss M, Abele A, Garnica S, Oberwinkler F, Kottke I. Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. ACTA ACUST UNITED AC 2006; 110:1257-70. [PMID: 17081740 DOI: 10.1016/j.mycres.2006.08.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 08/07/2006] [Accepted: 08/12/2006] [Indexed: 11/24/2022]
Abstract
The mycorrhizal state of epiphytic orchids has been controversially discussed, and the state and mycobionts of the pleurothallid orchids, occurring abundantly and with a high number of species on stems of trees in the Andean cloud forest, were unknown. Root samples of 77 adult individuals of the epiphytic orchids Stelis hallii, S. superbiens, S. concinna and Pleurothallis lilijae were collected in a tropical mountain rainforest of southern Ecuador. Ultrastructural evidence of symbiotic interaction was combined with molecular sequencing of fungi directly from the mycorrhizas and isolation of mycobionts. Ultrastructural analyses displayed vital orchid mycorrhizas formed by fungi with an imperforate parenthesome and cell wall slime bodies typical for the genus Tulasnella. Three different Tulasnella isolates were obtained in pure culture. Phylogenetic analysis of nuclear rDNA sequences from coding regions of the ribosomal large subunit (nucLSU) and the 5.8S subunit, including parts of the internal transcribed spacers, obtained directly from the roots and from the fungal isolates, yielded seven distinct Tulasnella clades. Tulasnella mycobionts in Stelis concinna were restricted to two Tulasnella sequence types while the other orchids were associated with up to six Tulasnella sequence types. All Tulasnella sequences are new to science and distinct from known sequences of mycobionts of terrestrial orchids. The results indicate that tulasnelloid fungi, adapted to the conditions on tree stems, might be important for orchid growth and maintenance in the Andean cloud forest.
Collapse
Affiliation(s)
- Juan Pablo Suárez
- Centro de Biología Celular y Molecular, Universidad Técnica Particular de Loja, San Cayetano Alto s/n C.P. 11 01 608, Loja, Ecuador.
| | | | | | | | | | | |
Collapse
|