1
|
Novello MA, Bustamante CA, Svetaz LA, Goldy C, Valentini GH, Drincovich MF, Brotman Y, Fernie AR, Lara MV. Integrated Metabolomic, Lipidomic and Proteomic Analysis Define the Metabolic Changes Occurring in Curled Areas in Leaves With Leaf Peach Curl Disease. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420723 DOI: 10.1111/pce.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Peach Leaf Curl Disease, caused by Taphrina deformans, is characterized by reddish hypertrophic and hyperplasic leaf areas. To comprehend the biochemical imbalances caused by the fungus, dissected symptomatic (C) and asymptomatic areas (N) from leaves with increasing disease extension were analyzed by an integrated approach including metabolomics, lipidomics, proteomics, and complementary biochemical techniques. Drastic metabolic differences were identified in C areas with respect to either N areas or healthy leaves, including altered chloroplastic functioning and composition, which differs from the typical senescence process. In C areas, alteration in redox-homoeostasis proteins and in triacylglycerols content, peroxidation and double bond index were observed. Proteomic data revealed induction of host enzymes involved in auxin and jasmonate biosynthesis and an upregulation of phenylpropanoid and mevalonate pathways and downregulation of the plastidic methylerythritol phosphate route. Amino acid pools were affected, with upregulation of proteins involved in asparagine synthesis. Curled areas exhibited a metabolic shift towards functioning as a sink tissue importing sugars, probably from N areas, and producing energy through fermentation and respiration and reductive power via the pentose phosphate route. Identifying the metabolic disturbances leading to disease symptoms is a key step in designing strategies to prevent or delay the progression of the disease.
Collapse
Affiliation(s)
- María Angelina Novello
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Anabel Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura Andrea Svetaz
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Camila Goldy
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriel Hugo Valentini
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), San Pedro, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yariv Brotman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
2
|
Graça AT, Lihavainen J, Hussein R, Schröder WP. Obscurity of chlorophyll tails - Is chlorophyll with farnesyl tail incorporated into PSII complexes? PHYSIOLOGIA PLANTARUM 2024; 176:e14428. [PMID: 38981693 DOI: 10.1111/ppl.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Chlorophyll is essential in photosynthesis, converting sunlight into chemical energy in plants, algae, and certain bacteria. Its structure, featuring a porphyrin ring enclosing a central magnesium ion, varies in forms like chlorophyll a, b, c, d, and f, allowing light absorption at a broader spectrum. With a 20-carbon phytyl tail (except for chlorophyll c), chlorophyll is anchored to proteins. Previous findings suggested the presence of chlorophyll with a modified farnesyl tail in thermophilic cyanobacteria Thermosynechoccocus vestitus. In our Arabidopsis thaliana PSII cryo-EM map, specific chlorophylls showed incomplete phytyl tails, suggesting potential farnesyl modifications. However, further high-resolution mass spectrometry (HRMS) analysis in A. thaliana and T. vestitus did not confirm the presence of any farnesyl tails. Instead, we propose the truncated tails in PSII models may result from binding pocket flexibility rather than actual modifications.
Collapse
Affiliation(s)
- André T Graça
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jenna Lihavainen
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| | - Rana Hussein
- Humboldt-Universität zu Berlin, Department of Biology, Berlin, Germany
| | - Wolfgang P Schröder
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Li S, Hui L, Li J, Xi Y, Xu J, Wang L, Yin L. OsMGD1-Mediated Membrane Lipid Remodeling Improves Salt Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1474. [PMID: 38891283 PMCID: PMC11174947 DOI: 10.3390/plants13111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Salt stress severely reduces photosynthetic efficiency, resulting in adverse effects on crop growth and yield production. Two key thylakoid membrane lipid components, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), were perturbed under salt stress. MGDG synthase 1 (MGD1) is one of the key enzymes for the synthesis of these galactolipids. To investigate the function of OsMGD1 in response to salt stress, the OsMGD1 overexpression (OE) and RNA interference (Ri) rice lines, and a wild type (WT), were used. Compared with WT, the OE lines showed higher chlorophyll content and biomass under salt stress. Besides this, the OE plants showed improved photosynthetic performance, including light absorption, energy transfer, and carbon fixation. Notably, the net photosynthetic rate and effective quantum yield of photosystem II in the OE lines increased by 27.5% and 25.8%, respectively, compared to the WT. Further analysis showed that the overexpression of OsMGD1 alleviated the negative effects of salt stress on photosynthetic membranes and oxidative defense by adjusting membrane lipid composition and fatty acid levels. In summary, OsMGD1-mediated membrane lipid remodeling enhanced salt tolerance in rice by maintaining membrane stability and optimizing photosynthetic efficiency.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lei Hui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jingchong Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Xianyang 712100, China;
| | - Yuan Xi
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jili Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Linglong Wang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Xianyang 712100, China;
| |
Collapse
|
4
|
Wang B, Li X, Wang G. Responses of the desert green algae, Chlorella sp. to drought stress. JOURNAL OF PHYCOLOGY 2023; 59:1299-1309. [PMID: 37864776 DOI: 10.1111/jpy.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 10/23/2023]
Abstract
Desert algae are important components of the desert soil crust and play an essential role in desert soil ecosystem development. Owing to their special habitat, desert algae are often exposed to harsh environments, among which drought represents the most common stress. Green algae are considered to have drought tolerance potential; however, only a few studies have investigated this. In this study, we selected the green alga Chlorella sp., which was isolated from desert soil, and studied its physiological response to polyethylene glycol (PEG) 6000-induced drought stress. The results showed that drought stress can affect the photosynthetic efficiency of Chlorella sp., reduce its water retention ability, and destroy its ultrastructure. However, Chlorella sp. can cope with drought stress through a series of physiological regulatory strategies. Protective strategies include quick recovery of photosynthetic efficiency and increased chlorophyll content. In addition, induced synthesis of soluble proteins, lipids, and extracellular polysaccharide (EPS), and accumulation of osmotic regulatory substances, such as sucrose and trehalose, also contribute to improving drought tolerance in Chlorella sp. This study provides insights into the physiological responses of Chlorella sp. to drought stress, which may be valuable for understanding the underlying drought adaptation mechanisms of desert green algae.
Collapse
Affiliation(s)
- Bo Wang
- Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang, China
- College of Resource & Environment, Jiujiang University, Jiujiang, China
| | - Xiaoyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Ranner JL, Schalk S, Martyniak C, Parniske M, Gutjahr C, Stark TD, Dawid C. Primary and Secondary Metabolites in Lotus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466334 DOI: 10.1021/acs.jafc.3c02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lotus japonicus is a leguminous model plant used to gain insight into plant physiology, stress response, and especially symbiotic plant-microbe interactions, such as root nodule symbiosis or arbuscular mycorrhiza. Responses to changing environmental conditions, stress, microbes, or insect pests are generally accompanied by changes in primary and secondary metabolism to account for physiological needs or to produce defensive or signaling compounds. Here we provide an overview of the primary and secondary metabolites identified in L. japonicus to date. Identification of the metabolites is mainly based on mass spectral tags (MSTs) obtained by gas chromatography linked with tandem mass spectrometry (GC-MS/MS) or liquid chromatography-MS/MS (LC-MS/MS). These MSTs contain retention index and mass spectral information, which are compared to databases with MSTs of authentic standards. More than 600 metabolites are grouped into compound classes such as polyphenols, carbohydrates, organic acids and phosphates, lipids, amino acids, nitrogenous compounds, phytohormones, and additional defense compounds. Their physiological effects are briefly discussed, and the detection methods are explained. This review of the exisiting literature on L. japonicus metabolites provides a valuable basis for future metabolomics studies.
Collapse
Affiliation(s)
- Josef L Ranner
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sabrina Schalk
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Cindy Martyniak
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich (LMU), Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Professorship of Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
6
|
Braasch-Turi MM, Koehn JT, Crans DC. Chemistry of Lipoquinones: Properties, Synthesis, and Membrane Location of Ubiquinones, Plastoquinones, and Menaquinones. Int J Mol Sci 2022; 23:12856. [PMID: 36361645 PMCID: PMC9656164 DOI: 10.3390/ijms232112856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, properties, and biological functions, including the shuttling of electrons between membrane-bound protein complexes within the electron transport chain. Lipoquinones are highly hydrophobic molecules that are soluble in organic solvents and insoluble in aqueous solution, causing obstacles in water-based assays that measure their chemical properties, enzyme activities and effects on cell growth. Little is known about the location and ultimately movement of lipoquinones in the membrane, and these properties are topics described in this review. Computational studies are particularly abundant in the recent years in this area, and there is far less experimental evidence to verify the often conflicting interpretations and conclusions that result from computational studies of very different membrane model systems. Some recent experimental studies have described using truncated lipoquinone derivatives, such as ubiquinone-2 (UQ-2) and menaquinone-2 (MK-2), to investigate their conformation, their location in the membrane, and their biological function. Truncated lipoquinone derivatives are soluble in water-based assays, and hence can serve as excellent analogs for study even though they are more mobile in the membrane than the longer chain counterparts. In this review, we will discuss the properties, location in the membrane, and syntheses of three main classes of lipoquinones including truncated derivatives. Our goal is to highlight the importance of bridging the gap between experimental and computational methods and to incorporate properties-focused considerations when proposing future studies relating to the function of lipoquinones in membranes.
Collapse
Affiliation(s)
| | - Jordan T. Koehn
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
- Cell & Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Giardi MT, Antonacci A, Touloupakis E, Mattoo AK. Investigation of Photosystem II Functional Size in Higher Plants under Physiological and Stress Conditions Using Radiation Target Analysis and Sucrose Gradient Ultracentrifugation. Molecules 2022; 27:5708. [PMID: 36080475 PMCID: PMC9457868 DOI: 10.3390/molecules27175708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
The photosystem II (PSII) reaction centre is the critical supramolecular pigment-protein complex in the chloroplast which catalyses the light-induced transfer of electrons from water to plastoquinone. Structural studies have demonstrated the existence of an oligomeric PSII. We carried out radiation inactivation target analysis (RTA), together with sucrose gradient ultracentrifugation (SGU) of PSII, to study the functional size of PSII in diverse plant species under physiological and stress conditions. Two PSII populations, made of dimeric and monomeric core particles, were revealed in Pisum sativum, Spinacea oleracea, Phaseulus vulgaris, Medicago sativa, Zea mais and Triticum durum. However, this core pattern was not ubiquitous in the higher plants since we found one monomeric core population in Vicia faba and a dimeric core in the Triticum durum yellow-green strain, respectively. The PSII functional sizes measured in the plant seedlings in vivo, as a decay of the maximum quantum yield of PSII for primary photochemistry, were in the range of 75-101 ± 18 kDa, 2 to 3 times lower than those determined in vitro. Two abiotic stresses, heat and drought, imposed individually on Pisum sativum, increased the content of the dimeric core in SGU and the minimum functional size determined by RTA in vivo. These data suggest that PSII can also function as a monomer in vivo, while under heat and drought stress conditions, the dimeric PSII structure is predominant.
Collapse
Affiliation(s)
- Maria Teresa Giardi
- Institute of Crystallography, CNR, Via Salaria Km 29.3, 00016 Monterotondo, Italy
- Biosensor Srl, Via Olmetti 44, 00060 Formello, Italy
| | - Amina Antonacci
- Institute of Crystallography, CNR, Via Salaria Km 29.3, 00016 Monterotondo, Italy
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Autar K. Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
8
|
Lei J, Teng X, Wang Y, Jiang X, Zhao H, Zheng X, Ren Y, Dong H, Wang Y, Duan E, Zhang Y, Zhang W, Yang H, Chen X, Chen R, Zhang Y, Yu M, Xu S, Bao X, Zhang P, Liu S, Liu X, Tian Y, Jiang L, Wang Y, Wan J. Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:437-453. [PMID: 34655511 PMCID: PMC8882802 DOI: 10.1111/pbi.13727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/02/2021] [Indexed: 05/13/2023]
Abstract
Starch accounts for over 80% of the total dry weight in cereal endosperm and determines the kernel texture and nutritional quality. Amyloplasts, terminally differentiated plastids, are responsible for starch biosynthesis and storage. We screened a series of rice mutants with floury endosperm to clarify the mechanism underlying amyloplast development and starch synthesis. We identified the floury endosperm19 (flo19) mutant which shows opaque of the interior endosperm. Abnormal compound starch grains (SGs) were present in the endosperm cells of the mutant. Molecular cloning revealed that the FLO19 allele encodes a plastid-localized pyruvate dehydrogenase complex E1 component subunit α1 (ptPDC-E1-α1) that is expressed in all rice tissues. In vivo enzyme assays demonstrated that the flo19 mutant showed decreased activity of the plastidic pyruvate dehydrogenase complex. In addition, the amounts of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were much lower in the developing flo19 mutant endosperm, suggesting that FLO19 participates in fatty acid supply for galactolipid biosynthesis in amyloplasts. FLO19 overexpression significantly increased seed size and weight, but did not affect other important agronomic traits, such as panicle length, tiller number and seed setting rate. An analysis of single nucleotide polymorphism data from a panel of rice accessions identified that the pFLO19L haplotype was positively associated with grain length, implying a potential application in rice breeding. In summary, our study demonstrates that FLO19 is involved in galactolipid biosynthesis which is essential for amyloplast development and starch biosynthesis in rice.
Collapse
Affiliation(s)
- Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaokang Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Huanhuan Zhao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui Dong
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Erchao Duan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hang Yang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yu Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Mingzhou Yu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Shanbin Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiuhao Bao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Pengcheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Shijia Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xi Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
9
|
Jin P, Liang Z, Lu H, Pan J, Li P, Huang Q, Guo Y, Zhong J, Li F, Wan J, Overmans S, Xia J. Lipid Remodeling Reveals the Adaptations of a Marine Diatom to Ocean Acidification. Front Microbiol 2021; 12:748445. [PMID: 34721350 PMCID: PMC8551959 DOI: 10.3389/fmicb.2021.748445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Ocean acidification is recognized as a major anthropogenic perturbation of the modern ocean. While extensive studies have been carried out to explore the short-term physiological responses of phytoplankton to ocean acidification, little is known about their lipidomic responses after a long-term ocean acidification adaptation. Here we perform the lipidomic analysis of a marine diatom Phaeodactylum tricornutum following long-term (∼400 days) selection to ocean acidification conditions. We identified a total of 476 lipid metabolites in long-term high CO2 (i.e., ocean acidification condition) and low CO2 (i.e., ambient condition) selected P. tricornutum cells. Our results further show that long-term high CO2 selection triggered substantial changes in lipid metabolites by down- and up-regulating 33 and 42 lipid metabolites. While monogalactosyldiacylglycerol (MGDG) was significantly down-regulated in the long-term high CO2 selected conditions, the majority (∼80%) of phosphatidylglycerol (PG) was up-regulated. The tightly coupled regulations (positively or negatively correlated) of significantly regulated lipid metabolites suggest that the lipid remodeling is an organismal adaptation strategy of marine diatoms to ongoing ocean acidification. Since the composition and content of lipids are crucial for marine food quality, and these changes can be transferred to high trophic levels, our results highlight the importance of determining the long-term adaptation of lipids in marine producers in predicting the ecological consequences of climate change.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhe Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Hua Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jinmei Pan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Peiyuan Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Quanting Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yingyan Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jiahui Zhong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Futian Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
10
|
Sun Y, Song K, Liu L, Sun L, Qin Q, Jiang T, Zhou B, Zhu C, Xu G, Sun S, Xue Y. Sulfoquinovosyl diacylglycerol synthase 1 impairs glycolipid accumulation and photosynthesis in phosphate-deprived rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6510-6523. [PMID: 34165534 DOI: 10.1093/jxb/erab300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Phosphate (Pi)-starved crops utilize phospholipids as a source for internal Pi supply by replacing non-phosphorus glycolipids. In rice, sulfoquinovosyl diacylglycerol synthase 1 (OsSQD1) functions as a key enzyme in the first step to catalyze sulfoquinovosyldiacylglycerol (SQDG) formation. Here we study differential expression of OsSQD1 in response to Pi, nitrogen, potassium, and iron-deficiencies in rice. Electrophoretic mobility shift assay suggested that OsSQD1 is regulated by OsPHR2 (Phosphate Starvation Response2), a MYB (v-myb avian myeloblastosis viral oncogene homolog) domain-containing transcription factor. The concentrations of different lipid species in ossqd1 knockout mutant demonstrated that OsSQD1 silencing increased the phospholipid content and altered fatty acid composition under Pi-deficiency. Moreover, OsSQD1 silencing reduces glycolipid accumulation under Pi-deficiency, and triggered the saturation of fatty acids in phospholipids and glycolipids treated with different Pi regimes. Relative amounts of transcripts related to phospholipid degradation and glycolipid synthesis were assessed to explore the mechanism by which OsSQD1 exerts an effect on lipid homeostasis under P-deficiency. Furthermore, OsSQD1 silencing inhibited photosynthesis, especially under Pi-deficient conditions, by down-regulating glycolipids in rice shoots. Taken together, our study reveals that OsSQD1 plays a key role in lipid homeostasis, especially glycolipid accumulation under Pi-deficiency, which results in the inhibition of photosynthesis.
Collapse
Affiliation(s)
- Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095,China
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| | - Lu Liu
- Huaiyin Institute of Agricultural Sciences, Huai'an, Jiangsu, 223001,China
| | - Lijuan Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| | - Qin Qin
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| | - Tingting Jiang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095,China
| | - Bin Zhou
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| | - Caihua Zhu
- Shanghai Applied Protein Technology Co., Ltd., 201100,China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095,China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095,China
| | - Yong Xue
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403,China
| |
Collapse
|
11
|
Karlický V, Kmecová Materová Z, Kurasová I, Nezval J, Štroch M, Garab G, Špunda V. Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: effects on the organization of light-harvesting complex II and photosystem II functions. PHOTOSYNTHESIS RESEARCH 2021; 149:233-252. [PMID: 33948813 PMCID: PMC8382614 DOI: 10.1007/s11120-021-00827-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
Collapse
Affiliation(s)
- Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| | - Zuzana Kmecová Materová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Irena Kurasová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Michal Štroch
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Győző Garab
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Biological Research Center, Institute of Plant Biology, Temesvári körút 62, 6726, Szeged, Hungary.
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| |
Collapse
|
12
|
Graça AT, Hall M, Persson K, Schröder WP. High-resolution model of Arabidopsis Photosystem II reveals the structural consequences of digitonin-extraction. Sci Rep 2021; 11:15534. [PMID: 34330992 PMCID: PMC8324835 DOI: 10.1038/s41598-021-94914-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
In higher plants, the photosynthetic process is performed and regulated by Photosystem II (PSII). Arabidopsis thaliana was the first higher plant with a fully sequenced genome, conferring it the status of a model organism; nonetheless, a high-resolution structure of its Photosystem II is missing. We present the first Cryo-EM high-resolution structure of Arabidopsis PSII supercomplex with average resolution of 2.79 Å, an important model for future PSII studies. The digitonin extracted PSII complexes demonstrate the importance of: the LHG2630-lipid-headgroup in the trimerization of the light-harvesting complex II; the stabilization of the PsbJ subunit and the CP43-loop E by DGD520-lipid; the choice of detergent for the integrity of membrane protein complexes. Furthermore, our data shows at the anticipated Mn4CaO5-site a single metal ion density as a reminiscent early stage of Photosystem II photoactivation.
Collapse
Affiliation(s)
- André T Graça
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Michael Hall
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | | |
Collapse
|
13
|
Influence of Extremely Low Temperatures of the Pole of Cold on the Lipid and Fatty-Acid Composition of Aerial Parts of the Horsetail Family (Equisetaceae). PLANTS 2021; 10:plants10050996. [PMID: 34067613 PMCID: PMC8156520 DOI: 10.3390/plants10050996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
The lipid composition of two species of vascular plants, Equisetum variegatum Schleich. ex. Web. and E. scirpoides Michx., growing in the permafrost zone (Northeastern Yakutia, the Pole of Cold of the Northern Hemisphere), with average daily air temperatures in summer of +17.8 °C, in autumn of +0.6 °C, and in winter of −46.7 °C, was comparatively studied. The most significant seasonal trend of lipid composition was an accumulation of PA in both horsetail species in the autumn–winter period. Cold acclimation in autumn was accompanied by a decrease in the proportion of bilayer-forming lipids (phosphatidylcholine in the non-photosynthetic membranes and MGDG in photosynthetic membranes), an increase in the desaturation degree due to the accumulation of triene fatty acids (E. scirpoides), and an accumulation of betaine lipids O-(1,2-diacylglycero)-N,N,N-trimethylhomoserine (DGTS). The inverse changes in some parameters were registered in the winter period, including an increase in the proportion of “bilayer” lipids and decrease in the unsaturation degree. According to the data obtained, it can be concluded that high levels of accumulation of membrane lipids and polyunsaturated FAs (PUFAs), as well as the presence of Δ5 FAs in lipids, are apparently features of cold hardening of perennial herbaceous plants in the cryolithozone.
Collapse
|
14
|
Nami F, Tian L, Huber M, Croce R, Pandit A. Lipid and protein dynamics of stacked and cation-depletion induced unstacked thylakoid membranes. BBA ADVANCES 2021; 1:100015. [PMID: 37082020 PMCID: PMC10074959 DOI: 10.1016/j.bbadva.2021.100015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chloroplast thylakoid membranes in plants and green algae form 3D architectures of stacked granal membranes interconnected by unstacked stroma lamellae. They undergo dynamic structural changes as a response to changing light conditions that involve grana unstacking and lateral supramolecular reorganization of the integral membrane protein complexes. We assessed the dynamics of thylakoid membrane components and addressed how they are affected by thylakoid unstacking, which has consequences for protein mobility and the diffusion of small electron carriers. By a combined nuclear and electron paramagnetic-resonance approach the dynamics of thylakoid lipids was assessed in stacked and cation-depletion induced unstacked thylakoids of Chlamydomonas (C.) reinhardtii. We could distinguish between structural, bulk and annular lipids and determine membrane fluidity at two membrane depths: close to the lipid headgroups and in the lipid bilayer center. Thylakoid unstacking significantly increased the dynamics of bulk and annular lipids in both areas and increased the dynamics of protein helices. The unstacking process was associated with membrane reorganization and loss of long-range ordered Photosystem II- Light-Harvesting Complex II (PSII-LHCII) complexes. The fluorescence lifetime characteristics associated with membrane unstacking are similar to those associated with state transitions in intact C. reinhardtii cells. Our findings could be relevant for understanding the structural and functional implications of thylakoid unstacking that is suggested to take place during several light-induced processes, such as state transitions, photoacclimation, photoinhibition and PSII repair.
Collapse
Affiliation(s)
- Faezeh Nami
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Lijin Tian
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Anjali Pandit
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
- Corresponding author:
| |
Collapse
|
15
|
Transcriptome analysis identified the mechanism of synergy between sethoxydim herbicide and a mycoherbicide on green foxtail. Sci Rep 2020; 10:21690. [PMID: 33303778 PMCID: PMC7730142 DOI: 10.1038/s41598-020-78290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022] Open
Abstract
Certain synthetic herbicides can act synergistically with specific bioherbicides. In this study, a sethoxydim herbicide at 0.1× label rate improved biocontrol of herbicide-sensitive green foxtail (Setaria viridis, GFT) by Pyricularia setariae (a fungal bioherbicide agent), but did not change the efficacy on a herbicide-resistant GFT biotype. Reference transcriptomes were constructed for both GFT biotypes via de novo assembly of RNA-seq data. GFT plants treated with herbicide alone, fungus alone and herbicide + fungus were compared for weed-control efficacy and differences in transcriptomes. On herbicide-sensitive GFT, sethoxydim at the reduced rate induced ABA-activated signaling pathways and a bZIP transcription factor 60 (TF bZIP60), while improved the efficacy of biocontrol. The herbicide treatment did not increase these activities or improve biocontrol efficacy on herbicide-resistant plants. An exogenous application of ABA to herbicide-sensitive plants also enhanced bZIP60 expression and improved biocontrol efficacy, which supported the results of transcriptome analysis that identified the involvement of ABA and bZIP60 in impaired plant defense against P. setariae. It is novel to use transcriptome analysis to decipher the molecular basis for synergy between a synthetic herbicide and a bioherbicide agent. A better understanding of the mechanism underlining the synergy may facilitate the development of weed biocontrol.
Collapse
|
16
|
Yu C, Lin Y, Li H. Increased ratio of galactolipid MGDG : DGDG induces jasmonic acid overproduction and changes chloroplast shape. THE NEW PHYTOLOGIST 2020; 228:1327-1335. [PMID: 32585752 PMCID: PMC7689733 DOI: 10.1111/nph.16766] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 05/11/2023]
Abstract
Galactolipids monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) constitute c. 50% and c. 30% of chloroplast membrane lipids, respectively. They are important for photosynthesis and stress tolerance. Mutations in DGD1, the major DGDG-synthesizing enzyme, severely reduce DGDG content and induce jasmonic acid (JA) overproduction, resulting in stunted growth. However, how DGDG reduction leads to JA overproduction is unknown. We introduced an inducible microRNA (ami-MGD1) into an Arabidopsis dgd1 mutant to reduce MGDG synthesis, thereby further diminishing galactolipid content, but partially restoring the MGDG : DGDG ratio. Galactolipid and Chl contents, expression of JA-biosynthesis and JA-responsive genes, photosystem II (PSII) maximum quantum efficiency, and chloroplast shape were investigated. Expression of JA-biosynthesis and JA-responsive genes were reduced in amiR-MGD1-transformed dgd1 plants. Stunted growth caused by JA overproduction was also partially rescued, but Chl reduction and PSII impairment remained similar to the original dgd1 mutant. Altered chloroplast shape, which is another defect observed in dgd1 but is not caused by JA overproduction, was also partially rescued. Our results reveal that an increased MGDG : DGDG ratio is the primary cause of JA overproduction. The ratio is also important for determining chloroplast shapes, whereas reduced Chl and photosynthesis are most likely a direct consequence of insufficient DGDG.
Collapse
Affiliation(s)
- Chun‐Wei Yu
- Institute of Molecular BiologyAcademia SinicaTaipei11529Taiwan
| | - Yang‐Tsung Lin
- Institute of Molecular BiologyAcademia SinicaTaipei11529Taiwan
| | - Hsou‐min Li
- Institute of Molecular BiologyAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
17
|
Wilhelm C, Goss R, Garab G. The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153246. [PMID: 32777580 DOI: 10.1016/j.jplph.2020.153246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Since the publication of the fluid-mosaic membrane theory by Singer and Nicolson in 1972 generations of scientists have adopted this fascinating concept for all biological membranes. Assuming the membrane as a fluid implies that the components embedded in the lipid bilayer can freely diffuse like swimmers in a water body. During the detailed biochemical analysis of the thylakoid protein components of chloroplasts from higher plants and algae, in the '80 s and '90 s it became clear that photosynthetic membranes are not homogeneous either in the vertical or the lateral directions. The lateral heterogeneity became obvious by the differentiation of grana and stroma thylakoids, but also the margins have been identified with a highly specific protein pattern. Further refinement of the fluid mosaic model was needed to take into account the presence of non-bilayer lipids, which are the most abundant lipids in all energy-converting membranes, and the polymorphism of lipid phases, which has also been documented in thylakoid membranes. These observations lead to the question, how mobile the components are in the lipid phase and how this ordering is made and maintained and how these features might be correlated with the non-bilayer propensity of the membrane lipids. Assuming instead of free diffusion, a "controlled neighborhood" replaced the model of fluidity by the model of a "mixed crystal structure". In this review we describe why basic photosynthetic regulation mechanisms depend on arrays of crystal-like lipid-protein macro-assemblies. The mechanisms which define the ordering in macrodomains are still not completely clear, but some recent experiments give an idea how this fascinating order is produced, adopted and maintained. We use the operation of the xanthophyll cycle as a rather well understood model challenging and complementing the standard Singer-Nicolson model via assigning special roles to non-bilayer lipids and non-lamellar lipid phases in the structure and function of thylakoid membranes.
Collapse
Affiliation(s)
- Christian Wilhelm
- Leipzig University, Institute of Biology, SenProf Algal Biotechnology, Permoserstr. 15, 04315, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
| | - Reimund Goss
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103, Leipzig, Germany
| | - Gyözö Garab
- Biological Research Centre, Institute of Plant Biology, Temesvári körút 62, H-6726, Szeged, Hungary; University of Ostrava, Department of Physics, Faculty of Science, Chittussiho 10, CZ-710 00, Ostrava, Slezská Ostrava, Czech Republic
| |
Collapse
|
18
|
Vajravel S, Laczkó-Dobos H, Petrova N, Herman É, Kovács T, Zakar T, Todinova S, Taneva S, Kovács L, Gombos Z, Tóth T, Krumova S. Phycobilisome integrity and functionality in lipid unsaturation and xanthophyll mutants in Synechocystis. PHOTOSYNTHESIS RESEARCH 2020; 145:179-188. [PMID: 32720110 DOI: 10.1007/s11120-020-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The major light-harvesting system in cyanobacteria, the phycobilisome, is an essential component of the photosynthetic apparatus that regulates the utilization of the natural light source-the Sun. Earlier works revealed that the thylakoid membrane composition and its physical properties might have an important role in antennas docking. Polyunsaturated lipids and xanthophylls are among the most significant modulators of the physical properties of thylakoid membranes. In the nature, the action of these molecules is orchestrated in response to environmental stimuli among which the growth temperature is the most influential. In order to further clarify the significance of thylakoid membrane physical properties for the phycobilisomes assembly (i.e. structural integrity) and their ability to efficiently direct the excitation energy towards the photosynthetic complexes, in this work, we utilize cyanobacterial Synechocystis sp. PCC 6803 mutants deficient in polyunsaturated lipids (AD mutant) and xanthophylls (RO mutant), as well as a strain depleted of both xanthophylls and polyunsaturated lipids (ROAD multiple mutant). For the first time, we discuss the effect of those mutations on the phycobilisomes assembly, integrity and functionality at optimal (30 °C) and moderate low (25 °C) and high (35 °C) temperatures. Our results show that xanthophyll depletion exerts a much stronger effect on both phycobilisome's integrity and the response of cells to growth at suboptimal temperatures than lipid unsaturation level. The strongest effects were observed for the combined ROAD mutant, which exhibited thermally destabilized phycobilisomes and a population of energetically uncoupled phycocyanin units.
Collapse
Affiliation(s)
- Sindhujaa Vajravel
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | | | - Nia Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Éva Herman
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Terézia Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Tomas Zakar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague, Czech Republic
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefka Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lászlo Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Zoltan Gombos
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Tünde Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
19
|
The study of conformational changes in photosystem II during a charge separation. J Mol Model 2020; 26:75. [PMID: 32152736 DOI: 10.1007/s00894-020-4332-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/23/2020] [Indexed: 12/14/2022]
Abstract
Photosystem II (PSII) is a multi-subunit pigment-protein complex and is one of several protein assemblies that function cooperatively in photosynthesis in plants and cyanobacteria. As more structural data on PSII become available, new questions arise concerning the nature of the charge separation in PSII reaction center (RC). The crystal structure of PSII RC from cyanobacteria Thermosynechococcus vulcanus was selected for the computational study of conformational changes in photosystem II associated to the charge separation process. The parameterization of cofactors and lipids for classical MD simulation with Amber force field was performed. The parametrized complex of PSII was embedded in the lipid membrane for MD simulation with Amber in Gromacs. The conformational behavior of protein and the cofactors directly involved in the charge separation were studied by MD simulations and QM/MM calculations. This study identified the most likely mechanism of the proton-coupled reduction of plastoquinone QB. After the charge separation and the first electron transfer to QB, the system undergoes conformational change allowing the first proton transfer to QB- mediated via Ser264. After the second electron transfer to QBH, the system again adopts conformation allowing the second proton transfer to QBH-. The reduced QBH2 would then leave the binding pocket.
Collapse
|
20
|
Herritt MT, Fritschi FB. Characterization of Photosynthetic Phenotypes and Chloroplast Ultrastructural Changes of Soybean ( Glycine max) in Response to Elevated Air Temperatures. FRONTIERS IN PLANT SCIENCE 2020; 11:153. [PMID: 32210985 PMCID: PMC7069378 DOI: 10.3389/fpls.2020.00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/31/2020] [Indexed: 05/28/2023]
Abstract
Heat stress negatively affects photosynthesis in crop plants. Chlorophyll fluorescence provides information about the efficiency of the light-dependent reactions of photosynthesis and can be measured non-destructively and rapidly. Four soybean (Glycine max) genotypes were grown in controlled environments at 28/20°C (control), followed by imposition of control, 38/28°C, and 45/28°C day/night temperature regimes for 7 days. Coordinated chlorophyll fluorescence, gas exchange, and chloroplast ultrastructure measurements were conducted over the course of the 7-day temperature treatments and revealed contrasting responses among the different genotypes. Although generally similar, the extent of the impact of elevated temperatures on net photosynthesis differed among genotypes. Despite dramatic effects on photosynthetic light reactions, net photosynthetic rates were not reduced by exposure to 45°C on the 1st day of treatment imposition. Temporal dynamics of light reaction characteristics over the course of the 7-day heat-wave simulation revealed distinct responses among the genotypes. Similarly, chloroplast ultrastructure examination identified contrasting responses of DT97-4290 and PI603166, particularly with respect to starch characteristics. These changes were positively associated with differences in the percent area of chloroplasts that were occupied by starch grains. Elevated temperature increased number and size of starch grains on the 1st day of DT97-4290 which was coordinated with increased minimum chlorophyll fluorescence (F0) and reduced leaf net CO2 assimilation (A). Whereas on the 7th day the elevated temperature treatment showed reduced numbers and sizes of starch grains in chloroplasts and was coordinated with similar levels of F0 and A to the control treatment. Unlike starch dynamics of PI603166 which elevated temperature had little effect on. The genotypic differences in photosynthetic and chloroplast ultrastructure responses to elevated temperatures identified here are of interest for the development of more tolerant soybean cultivars and to facilitate the dissection of molecular mechanisms underpinning heat stress tolerance of soybean photosynthesis.
Collapse
Affiliation(s)
- Matthew T. Herritt
- US Arid Land Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Maricopa, AZ, United States
| | - Felix B. Fritschi
- Division of Plant Science, University of Missouri, Columbia, MO, United States
| |
Collapse
|
21
|
Khorobrykh A. Hydrogen Peroxide and Superoxide Anion Radical Photoproduction in PSII Preparations at Various Modifications of the Water-Oxidizing Complex. PLANTS 2019; 8:plants8090329. [PMID: 31491946 PMCID: PMC6784185 DOI: 10.3390/plants8090329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 11/24/2022]
Abstract
The photoproduction of superoxide anion radical (O2−•) and hydrogen peroxide (H2O2) in photosystem II (PSII) preparations depending on the damage to the water-oxidizing complex (WOC) was investigated. The light-induced formation of O2−• and H2O2 in the PSII preparations rose with the increased destruction of the WOC. The photoproduction of superoxide both in the PSII preparations holding intact WOC and the samples with damage to the WOC was approximately two times higher than H2O2. The rise of O2−• and H2O2 photoproduction in the PSII preparations in the course of the disassembly of the WOC correlated with the increase in the fraction of the low-potential (LP) Cyt b559. The restoration of electron flow in the Mn-depleted PSII preparations by exogenous electron donors (diphenylcarbazide, Mn2+) suppressed the light-induced formation of O2−• and H2O2. The decrease of O2−• and H2O2 photoproduction upon the restoration of electron transport in the Mn-depleted PSII preparations could be due to the re-conversion of the LP Cyt b559 into higher potential forms. It is supposed that the conversion of the high potential Cyt b559 into its LP form upon damage to the WOC leads to the increase of photoproduction of O2−• and H2O2 in PSII.
Collapse
Affiliation(s)
- Andrey Khorobrykh
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino 142290, Moscow Region, Russia.
| |
Collapse
|
22
|
Pollastri S, Jorba I, Hawkins TJ, Llusià J, Michelozzi M, Navajas D, Peñuelas J, Hussey PJ, Knight MR, Loreto F. Leaves of isoprene-emitting tobacco plants maintain PSII stability at high temperatures. THE NEW PHYTOLOGIST 2019; 223:1307-1318. [PMID: 30980545 DOI: 10.1111/nph.15847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/07/2019] [Indexed: 05/13/2023]
Abstract
At high temperatures, isoprene-emitting plants display a higher photosynthetic rate and a lower nonphotochemical quenching (NPQ) compared with nonemitting plants. The mechanism of this phenomenon, which may be very important under current climate warming, is still elusive. NPQ was dissected into its components, and chlorophyll fluorescence lifetime imaging microscopy (FLIM) was used to analyse the dynamics of excited chlorophyll relaxation in isoprene-emitting and nonemitting plants. Thylakoid membrane stiffness was also measured using atomic force microscope (AFM) to identify a possible mode of action of isoprene in improving photochemical efficiency and photosynthetic stability. We show that, when compared with nonemitters, isoprene-emitting tobacco plants exposed at high temperatures display a reduced increase of the NPQ energy-dependent component (qE) and stable (1) chlorophyll fluorescence lifetime; (2) amplitude of the fluorescence decay components; and (3) thylakoid membrane stiffness. Our study shows for the first time that isoprene maintains PSII stability at high temperatures by preventing the modifications of the surrounding environment, namely providing a more steady and homogeneous distribution of the light-absorbing centres and a stable thylakoid membrane stiffness. Isoprene photoprotects leaves with a mechanism alternative to NPQ, enabling plants to maintain a high photosynthetic rate at rising temperatures.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Ignasi Jorba
- University of Barcelona and Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Timothy J Hawkins
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Daniel Navajas
- University of Barcelona and Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy
- Department of Biology, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| |
Collapse
|
23
|
Mirzaei S, Mansouri M, Mohammadi-Nejad G, Sablok G. Comparative assessment of chloroplast transcriptional responses highlights conserved and unique patterns across Triticeae members under salt stress. PHOTOSYNTHESIS RESEARCH 2018; 136:357-369. [PMID: 29230609 DOI: 10.1007/s11120-017-0469-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Chloroplast functional genomics, in particular understanding the chloroplast transcriptional response is of immense importance mainly due to its role in oxygenic photosynthesis. As a photosynthetic unit, its efficiency and transcriptional activity is directly regulated by reactive oxygen species during abiotic and biotic stress and subsequently affects carbon assimilation, and plant biomass. In crops, understanding photosynthesis is crucial for crop domestication by identifying the traits that could be exploited for crop improvement. Transcriptionally and translationally active chloroplast plays a key role by regulating the PSI and PSII photo-reaction centres, which ubiquitously affects the light harvesting. Using a comparative transcriptomics mapping approach, we identified differential regulation of key chloroplast genes during salt stress across Triticeae members with potential genes involved in photosynthesis and electron transport system such as CytB6f. Apart from differentially regulated genes involved in PSI and PSII, we found widespread evidence of intron splicing events, specifically uniquely spliced petB and petD in Triticum aestivum and high proportion of RNA editing in ndh genes across the Triticeae members during salt stress. We also highlight the role and differential regulation of ATP synthase as member of CF0CF1 and also revealed the effect of salt stress on the water-splitting complex under salt stress. It is worthwhile to mention that the observed conserved down-regulation of psbJ across the Triticeae is limiting the assembly of water-splitting complexes and thus making the BEP clade Triticeae members more vulnerable to high light during the salt stress. Comparative understanding of the chloroplast transcriptional dynamics and photosynthetic regulation will improve the approaches for improved crop domestication.
Collapse
Affiliation(s)
- Saeid Mirzaei
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghasem Mohammadi-Nejad
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gaurav Sablok
- Finnish Museum of Natural History (Botany), PO Box 7, 00014, Helsinki, Finland
- Department of Bioscience, Viikki Plant Science Center, PO Box 7, 00014, Helsinki, Finland
| |
Collapse
|
24
|
Lunn D, Smith GA, Wallis JG, Browse J. Development Defects of Hydroxy-Fatty Acid-Accumulating Seeds Are Reduced by Castor Acyltransferases. PLANT PHYSIOLOGY 2018; 177:553-564. [PMID: 29678860 PMCID: PMC6001331 DOI: 10.1104/pp.17.01805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/02/2018] [Indexed: 05/05/2023]
Abstract
Researchers have long endeavored to produce modified fatty acids in easily managed crop plants where they are not natively found. An important step toward this goal has been the biosynthesis of these valuable products in model oilseeds. The successful production of such fatty acids has revealed barriers to the broad application of this technology, including low seed oil and low proportion of the introduced fatty acid and reduced seed vigor. Here, we analyze the impact of producing hydroxy-fatty acids on seedling development. We show that germinating seeds of a hydroxy-fatty acid-accumulating Arabidopsis (Arabidopsis thaliana) line produce chlorotic cotyledons and suffer reduced photosynthetic capacity. These seedlings retain hydroxy-fatty acids in polar lipids, including chloroplast lipids, and exhibit decreased fatty acid synthesis. Triacylglycerol mobilization in seedling development also is reduced, especially for lipids that include hydroxy-fatty acid moieties. These developmental defects are ameliorated by increased flux of hydroxy-fatty acids into seed triacylglycerol created through the expression of either castor (Ricinus communis) acyltransferase enzyme ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE2 or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1A. Such expression increases both the level of total stored triacylglycerol and the rate at which it is mobilized, fueling fatty acid synthesis and restoring photosynthetic capacity. Our results suggest that further improvements in seedling development may require the specific mobilization of triacylglycerol-containing hydroxy-fatty acids. Understanding the defects in early development caused by the accumulation of modified fatty acids and providing mechanisms to circumvent these defects are vital steps in the development of tailored oil crops.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Gracen A Smith
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
25
|
Kobayashi K, Endo K, Wada H. Specific Distribution of Phosphatidylglycerol to Photosystem Complexes in the Thylakoid Membrane. FRONTIERS IN PLANT SCIENCE 2017; 8:1991. [PMID: 29209350 PMCID: PMC5701814 DOI: 10.3389/fpls.2017.01991] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/06/2017] [Indexed: 05/24/2023]
Abstract
The thylakoid membrane is the site of photochemical and electron transport reactions of oxygenic photosynthesis. The lipid composition of the thylakoid membrane, with two galactolipids, one sulfolipid, and one phospholipid, is highly conserved among oxygenic photosynthetic organisms. Besides providing a lipid bilayer matrix, thylakoid lipids are integrated in photosynthetic complexes particularly in photosystems I and II and play important roles in electron transport processes. Thylakoid lipids are differentially allocated to photosynthetic complexes and the lipid bilayer fraction, but distribution of each lipid in the thylakoid membrane is unclear. In this study, based on published crystallographic and biochemical data, we estimated the proportions of photosynthetic complex-associated and bilayer-associated lipids in thylakoid membranes of cyanobacteria and plants. The data suggest that ∼30 mol% of phosphatidylglycerol (PG), the only major phospholipid in thylakoid membranes, is allocated to photosystem complexes, whereas glycolipids are mostly distributed to the lipid bilayer fraction and constitute the membrane lipid matrix. Because PG is essential for the structure and function of both photosystems, PG buried in these complexes might have been selectively conserved among oxygenic phototrophs. The specific and substantial allocation of PG to the deep sites of photosystems may need a unique mechanism to incorporate PG into the complexes possibly in coordination with the synthesis of photosynthetic proteins and pigments.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
26
|
Rozentsvet O, Kosobryukhov A, Zakhozhiy I, Tabalenkova G, Nesterov V, Bogdanova E. Photosynthetic parameters and redox homeostasis of Artemisia santonica L. under conditions of Elton region. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:385-393. [PMID: 28710946 DOI: 10.1016/j.plaphy.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Structural and functional parameters and redox homeostasis in leaves of Artemisia santonica L. under environment conditions of Elton lake (the southeast region of the European part of Russia) were measured. The highest photosynthetic apparatus (PA) activity in A. santonica leaves on CO2 gas exchange as well as the highest content of green pigments was observed in the morning. Maximum share of violaxanthin cycle key pigments - zeaxanthin (Zx) and antheraxanthin (Ax) was observed in the afternoon and decreased in the evening. Lipids/chlorophyll (Chl) ratio increased in the evening due to the decrease in Chl concentration, and content of linolenic acid (С18:3n3) was decreased in the middle of the day. The content of TBA-reacting products increased 1.4-fold in the middle of the day, and decreased approximately 2-fold in the evening. The decrease of the activity was observed in diurnal dynamics of superoxide dismutase (SOD) and polyphenol oxidase (PPO). Increased accumulation of phenols and flavonoids, as well as free amino acids (FAA) in A. santonica leaves was observed in the middle of the day. Thus, the ability of A. santonica plants to resist the soil salinization, high levels of solar illumination and temperature consists of a number of protectively-adaptive reactions of metabolic and photosynthetic control.
Collapse
Affiliation(s)
- Olga Rozentsvet
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia.
| | - Anatoly Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2 Institutskaya St., 142290 Pushchino, Moscow region, Russia
| | - Ilya Zakhozhiy
- Institute of Biology of the Komi Science Centre of the Ural Division, Russian Academy of Sciences, 8 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Galina Tabalenkova
- Institute of Biology of the Komi Science Centre of the Ural Division, Russian Academy of Sciences, 8 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Viktor Nesterov
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia
| | - Elena Bogdanova
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia
| |
Collapse
|
27
|
Seiwert D, Witt H, Janshoff A, Paulsen H. The non-bilayer lipid MGDG stabilizes the major light-harvesting complex (LHCII) against unfolding. Sci Rep 2017; 7:5158. [PMID: 28698661 PMCID: PMC5505961 DOI: 10.1038/s41598-017-05328-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/07/2017] [Indexed: 01/03/2023] Open
Abstract
In the photosynthetic apparatus of plants a high proportion of LHCII protein is needed to integrate 50% non-bilayer lipid MGDG into the lamellar thylakoid membrane, but whether and how the stability of the protein is also affected is not known. Here we use single-molecule force spectroscopy to map the stability of LHCII against mechanical unfolding along the polypeptide chain as a function of oligomerization state and lipid composition. Comparing unfolding forces between monomeric and trimeric LHCII demonstrates that the stability does not increase significantly upon trimerization but can mainly be correlated with specific contact sites between adjacent monomers. In contrast, unfolding of trimeric complexes in membranes composed of different thylakoid lipids reveals that the non-bilayer lipid MGDG substantially increases the mechanical stability of LHCII in many segments of the protein compared to other lipids such as DGDG or POPG. We attribute these findings to steric matching of conically formed MGDG and the hourglass shape of trimeric LHCII, thereby extending the role of non-bilayer lipids to the structural stabilization of membrane proteins in addition to the modulation of their folding, conformation and function.
Collapse
Affiliation(s)
- Dennis Seiwert
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Hannes Witt
- Institute of Physical Chemistry, University of Goettingen, 37077, Göttingen, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Goettingen, 37077, Göttingen, Germany.
| | - Harald Paulsen
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
28
|
Salinity Response in Chloroplasts: Insights from Gene Characterization. Int J Mol Sci 2017; 18:ijms18051011. [PMID: 28481319 PMCID: PMC5454924 DOI: 10.3390/ijms18051011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
Salinity is a severe abiotic stress limiting agricultural yield and productivity. Plants have evolved various strategies to cope with salt stress. Chloroplasts are important photosynthesis organelles, which are sensitive to salinity. An understanding of molecular mechanisms in chloroplast tolerance to salinity is of great importance for genetic modification and plant breeding. Previous studies have characterized more than 53 salt-responsive genes encoding important chloroplast-localized proteins, which imply multiple vital pathways in chloroplasts in response to salt stress, such as thylakoid membrane organization, the modulation of photosystem II (PS II) activity, carbon dioxide (CO2) assimilation, photorespiration, reactive oxygen species (ROS) scavenging, osmotic and ion homeostasis, abscisic acid (ABA) biosynthesis and signaling, and gene expression regulation, as well as protein synthesis and turnover. This review presents an overview of salt response in chloroplasts revealed by gene characterization efforts.
Collapse
|
29
|
Pospíšil P, Yamamoto Y. Damage to photosystem II by lipid peroxidation products. Biochim Biophys Acta Gen Subj 2017; 1861:457-466. [DOI: 10.1016/j.bbagen.2016.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
|
30
|
Tenorio AT, de Jong EWM, Nikiforidis CV, Boom RM, van der Goot AJ. Interfacial properties and emulsification performance of thylakoid membrane fragments. SOFT MATTER 2017; 13:608-618. [PMID: 27991634 DOI: 10.1039/c6sm02195f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thylakoids membranes are sophisticated, dynamic structures found in plant leaves, composed of protein complexes in a dynamic lipid matrix. The interfacial absorption dynamics and viscoelasticity of thylakoid membranes fragments were measured to assess the properties of the interfacial layer and to elucidate an emulsifying mechanism that includes the role of thylakoid's composition and 3D structure. Thylakoid membranes were extracted from sugar beet leaves by a series of buffer washing, filtration and centrifugation. The extract containing the intact thylakoid membranes was suspended in water through high-pressure homogenisation, which disrupted the structure into membrane fragments. Thylakoid fragments showed surface and interfacial behaviour similar to soft particles or Pickering stabilizers with slow adsorption kinetics. After adsorption, an elastic and stable thin film was formed, indicating formation of new interactions between adjacent thylakoid fragments. In an emulsion, thylakoid fragments stabilised oil droplets against coalescence, despite droplet aggregation occurring already during emulsification. Droplet aggregation occurred by steric and electrostatic bridging, which in turn forms a 3D network where the oil droplets are immobilised, preventing further droplet coalescence or aggregation. It was concluded that both composition and structure of thylakoid fragments determine their emulsifying properties, conferring potential for encapsulation systems, where the search for natural materials is gaining more attention.
Collapse
Affiliation(s)
- A Tamayo Tenorio
- Food Process Engineering Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - E W M de Jong
- Food Process Engineering Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - C V Nikiforidis
- Food Process Engineering Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands. and Biobased Chemistry and Technology Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - R M Boom
- Food Process Engineering Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - A J van der Goot
- Food Process Engineering Group, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
31
|
Yanykin DV, Khorobrykh AA, Mamedov MD, Klimov VV. Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:236-243. [PMID: 27693844 DOI: 10.1016/j.jphotobiol.2016.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Abstract
Recently, it has been shown that the addition of 1M trehalose leads to the increase of the rate of oxygen photoconsumption associated with activation of electron transport in the reaction center of photosystem 2 (PS2) in Mn-depleted PS2 membranes (apo-WOC-PS2) [37]. In the present work the effect of trehalose on photoinhibition of apo-WOC-PS2 preparations (which are characterized by a high sensitivity to the donor side photoinhibition of PS2) was investigated. The degree of photoinhibition was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to reactivate the electron transport (measured by light-induced changes of chlorophyll fluorescence yield (∆F)) in apo-WOC-PS2. It was found that 1M trehalose enhanced the Mn2+-dependent suppression of photoinhibition of apo-WOC-PS2: in the presence of trehalose the addition of 0.2μM Mn2+ (corresponding to 2 Mn2+ per one reaction center) was sufficient for an almost complete suppression of the donor side photoinhibition of the complex. In the absence of trehalose it was necessary to add 100μM Mn2+ to achieve a similar result. The effect of trehalose was observed during photoinhibition of apo-WOC-PS2 at low (15μmolphotons-1m-2) and high (200μmolphotons-1m-2) light intensity. When Mn2+ was replaced by other PS2 electron donors (ferrocyanide, DPC) as well as by Ca2+ the protective effect of trehalose was not observed. It was also found that 1M trehalose decreased photoinhibition of apo-WOC-PS2 if the samples contained endogenous manganese (1-2 Mn ions per one RC was enough for the maximum protection effect). It is concluded that structural changes in PS2 caused by the addition of trehalose enhance the capability of photochemical reaction centers of apo-WOC-PS2 to accept electrons from manganese (both exogenous and endogenous), which in turn leads to a considerable suppression of the donor side photoinhibition of PS2.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia.
| | - A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - M D Mamedov
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Moscow 119991, Russia
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
32
|
Khorobrykh A, Yanykin D, Klimov V. Enhancement of photoassembly of the functionally active water-oxidizing complex in Mn-depleted photosystem II membranes upon transition to anaerobic conditions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:211-5. [DOI: 10.1016/j.jphotobiol.2016.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
33
|
Adaptive thermostability of light-harvesting complexes in marine picocyanobacteria. ISME JOURNAL 2016; 11:112-124. [PMID: 27458784 DOI: 10.1038/ismej.2016.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 11/08/2022]
Abstract
Marine Synechococcus play a key role in global oceanic primary productivity. Their wide latitudinal distribution has been attributed to the occurrence of lineages adapted to distinct thermal niches, but the physiological and molecular bases of this ecotypic differentiation remain largely unknown. By comparing six strains isolated from different latitudes, we showed that the thermostability of their light-harvesting complexes, called phycobilisomes (PBS), varied according to the average sea surface temperature at strain isolation site. Comparative analyses of thermal unfolding curves of the three phycobiliproteins (PBP) constituting PBS rods suggested that the differences in thermostability observed on whole PBSs relied on the distinct molecular flexibility and stability of their individual components. Phycocyanin was the least thermostable of all rod PBP, constituting a fragility point of the PBS under heat stress. Amino-acid composition analyses and structural homology modeling notably revealed the occurrence of two amino-acid substitutions, which might have a role in the observed differential thermotolerance of this phycobiliprotein among temperature ecotypes. We hypothesize that marine Synechococcus ancestors occurred first in warm niches and that during the colonization of cold, high latitude thermal niches, their descendants have increased the molecular flexibility of PBP to maintain optimal light absorption capacities, this phenomenon likely resulting in a decreased stability of these proteins. This apparent thermoadaptability of marine Synechococcus has most probably contributed to the remarkable ubiquity of these picocyanobacteria in the ocean.
Collapse
|
34
|
Yamamoto Y. Quality Control of Photosystem II: The Mechanisms for Avoidance and Tolerance of Light and Heat Stresses are Closely Linked to Membrane Fluidity of the Thylakoids. FRONTIERS IN PLANT SCIENCE 2016; 7:1136. [PMID: 27532009 PMCID: PMC4969305 DOI: 10.3389/fpls.2016.01136] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/18/2016] [Indexed: 05/22/2023]
Abstract
When oxygenic photosynthetic organisms are exposed to excessive light and/or heat, Photosystem II is damaged and electron transport is blocked. In these events, reactive oxygen species, endogenous radicals and lipid peroxidation products generated by photochemical reaction and/or heat cause the damage. Regarding light stress, plants first dissipate excessive light energy captured by light-harvesting chlorophyll protein complexes as heat to avoid the hazards, but once light stress is unavoidable, they tolerate the stress by concentrating damage in a particular protein in photosystem II, i.e., the reaction-center binding D1 protein of Photosystem II. The damaged D1 is removed by specific proteases and replaced with a new copy produced through de novo synthesis (reversible photoinhibition). When light intensity becomes extremely high, irreversible aggregation of D1 occurs and thereby D1 turnover is prevented. Once the aggregated products accumulate in Photosystem II complexes, removal of them by proteases is difficult, and irreversible inhibition of Photosystem II takes place (irreversible photoinhibition). Important is that various aspects of both the reversible and irreversible photoinhibition are highly dependent on the membrane fluidity of the thylakoids. Heat stress-induced inactivation of photosystem II is an irreversible process, which may be also affected by the fluidity of the thylakoid membranes. Here I describe why the membrane fluidity is a key to regulate the avoidance and tolerance of Photosystem II on environmental stresses.
Collapse
|
35
|
Garab G, Ughy B, Goss R. Role of MGDG and Non-bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes. Subcell Biochem 2016; 86:127-57. [PMID: 27023234 DOI: 10.1007/978-3-319-25979-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter we focus our attention on the enigmatic structural and functional roles of the major, non-bilayer lipid monogalactosyl-diacylglycerol (MGDG) in the thylakoid membrane. We give an overview on the state of the art on the role of MGDG and non-bilayer lipid phases in the xanthophyll cycles in different organisms. We also discuss data on the roles of MGDG and other lipid molecules found in crystal structures of different photosynthetic protein complexes and in lipid-protein assemblies, as well as in the self-assembly of the multilamellar membrane system. Comparison and critical evaluation of different membrane models--that take into account and capitalize on the special properties of non-bilayer lipids and/or non-bilayer lipid phases, and thus to smaller or larger extents deviate from the 'standard' Singer-Nicolson model--will conclude this review. With this chapter the authors hope to further stimulate the discussion about, what we think, is perhaps the most exciting question of membrane biophysics: the why and wherefore of non-bilayer lipids and lipid phases in, or in association with, bilayer biological membranes.
Collapse
Affiliation(s)
- Győző Garab
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Bettina Ughy
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Reimund Goss
- Institute of Biology, Department of Plant Physiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
36
|
Khorobrykh AA, Klimov VV. Involvement of molecular oxygen in the donor-side photoinhibition of Mn-depleted photosystem II membranes. PHOTOSYNTHESIS RESEARCH 2015; 126:417-425. [PMID: 25862644 DOI: 10.1007/s11120-015-0135-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
It has been shown by Khorobrykh et al. (Biochemistry (Moscow) 67:683-688, 2002); Yanykin et al. (Biochim Biophys Acta 1797:516-523, 2010); Khorobrykh et al. (Biochemistry 50:10658-10665, 2011) that Mn-depleted photosystem II (PSII) membrane fragments are characterized by an enhanced oxygen photoconsumption on the donor side of PSII which is accompanied with hydroperoxide formation and it was suggested that the events are related to the oxidative photoinhibition of PSII. Experimental confirmation of this suggestion is presented in this work. The degree of photoinhibition was determined by the loss of the capability of exogenous electron donors (Mn(2+) or sodium ascorbate) to the reactivation of electron transport [measured by the light-induced changes of chlorophyll fluorescence yield (∆F)] in Mn-depleted PSII membranes. The transition from anaerobic conditions to aerobic ones significantly activated photoinhibition of Mn-depleted PSII membranes both in the absence and in the presence of exogenous electron acceptor, ferricyanide. The photoinhibition of Mn-depleted PSII membranes was suppressed upon the addition of exogenous electron donors (Mn(2+), diphenylcarbazide, and ferrocyanide). The addition of superoxide dismutase did not affect the photoinhibition of Mn-depleted PSII membranes. It is concluded that the interaction of molecular oxygen (rather than superoxide anion radical formed on the acceptor side of PSII) with the oxidized components of the donor side of PSII reflects the involvement of O2 in the donor-side photoinhibition of Mn-depleted PSII membranes.
Collapse
Affiliation(s)
- A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
37
|
Trehalose stimulation of photoinduced electron transfer and oxygen photoconsumption in Mn-depleted photosystem 2 membrane fragments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:279-85. [PMID: 26386978 DOI: 10.1016/j.jphotobiol.2015.08.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/21/2022]
Abstract
It is known that the removal of manganese from the water-oxidizing complex (WOC) of photosystem 2 (PS2) leads to activation of oxygen photoconsumption (OPC) [Khorobrykh et al., 2002; Yanykin et al., 2010] that is accompanied by the formation of organic hydroperoxides on the electron-donor side of PS2 [Khorobrykh et al., 2011]. In the present work the effect of trehalose on the OPC in Mn-depleted PS2 preparations (apo-WOC-PS2) was investigated. A more than two-fold increase of the OPC is revealed upon the addition of 1M trehalose. Drastic (30%-70%) inhibition of the OPC upon the addition of either electron acceptor or electron donor indicates that the trehalose-induced activation of the OPC occurs on both donor and acceptor sides of PS2. A two-fold increase in the rate of superoxide-anion radical photoproduction on the electron-acceptor side of PS2 was also shown. Applying the "variable" chlorophyll fluorescence (ΔF) it was shown that the addition of trehalose induces: (i) a significant increase in the ability of exogenous Mn(2+) to donate electrons to the reaction center of PS2, (ii) slowing down the photoaccumulation of the primary quinone electron acceptor of PS2 (QA(-)) under aerobic conditions, (iii) acceleration of the reoxidation of QA(-) by QB (and by QB(-)) as well as the replacement of QB(2-) by a fully oxidized plastoquinone, and (iv) restoration of the electron transfer between the quinone electron carriers in the so-called "closed reaction centers of PS2" (their content in the apo-WOC-PS2 is 41%). It is suggested that the trehalose-induced increase in efficiency of the O2 interaction with the electron-donor and electron-acceptor sides of apo-WOC-PS2 is due to structural changes leading to both a decrease in the proportion of the "closed PS2 reaction centers" and an increase in the electron transfer rate in PS2.
Collapse
|
38
|
Chen J, Tan RK, Guo XJ, Fu ZL, Wang Z, Zhang ZY, Tan XL. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus. PLoS One 2015; 10:e0126250. [PMID: 25965272 PMCID: PMC4429122 DOI: 10.1371/journal.pone.0126250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47,216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36,368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factor families were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds will help us to further elucidate the lipids biosynthesis pathway in developing seeds and leaves.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Ren-Ke Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Xiao-Juan Guo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zheng-Li Fu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zhi-Yan Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
39
|
Hoyo J, Guaus E, Torrent-Burgués J, Sanz F. Biomimetic Monolayer Films of Monogalactosyldiacylglycerol Incorporating Plastoquinone. J Phys Chem B 2015; 119:6170-8. [DOI: 10.1021/acs.jpcb.5b02196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Javier Hoyo
- Department
of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa (Barcelona), Spain
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain
| | - Ester Guaus
- Department
of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa (Barcelona), Spain
| | - Juan Torrent-Burgués
- Department
of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa (Barcelona), Spain
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain
| | - Fausto Sanz
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain
- Department
of Physical Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
40
|
Rast A, Heinz S, Nickelsen J. Biogenesis of thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:821-30. [PMID: 25615584 DOI: 10.1016/j.bbabio.2015.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 12/15/2022]
Abstract
Thylakoids mediate photosynthetic electron transfer and represent one of the most elaborate energy-transducing membrane systems. Despite our detailed knowledge of its structure and function, much remains to be learned about how the machinery is put together. The concerted synthesis and assembly of lipids, proteins and low-molecular-weight cofactors like pigments and transition metal ions require a high level of spatiotemporal coordination. While increasing numbers of assembly factors are being functionally characterized, the principles that govern how thylakoid membrane maturation is organized in space are just starting to emerge. In both cyanobacteria and chloroplasts, distinct production lines for the fabrication of photosynthetic complexes, in particular photosystem II, have been identified. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Anna Rast
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Steffen Heinz
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
41
|
Elloumi N, Zouari M, Chaari L, Jomni C, Marzouk B, Ben Abdallah F. Effects of cadmium on lipids of almond seedlings (Prunus dulcis). BOTANICAL STUDIES 2014; 55:61. [PMID: 28510983 PMCID: PMC5430368 DOI: 10.1186/s40529-014-0061-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 02/11/2014] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cadmium uptake and distribution, as well as its effects on lipid composition was investigated in almond seedlings (Prunus dulcis) grown in culture solution supplied with two concentrations of Cd (50 and 150 μM). RESULTS The accumulation of Cd increased with external metal concentrations, and was considerably higher in roots than in leaves. Fourteen days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Galactolipid, phospholipid and neutral lipid concentrations decreased more in roots than in leaves by Cd-treatment. In almost all lipid classes the proportion of palmitic acid (16:0), linoleic (18: 2) and that of linolenic (18: 3) acid decreased, suggesting that heavy metal treatment induced an alteration in the fatty acid synthesis processes. CONCLUSIONS In conclusion, our results show that the changes found in total fatty acids, in the quantities of all lipids classes, and in the in the profiles of individual polar lipids suggest that membrane structure and function might be altered by Cd stress.
Collapse
Affiliation(s)
- Nada Elloumi
- Laboratory of Water, Energy and Environment, Sfax University, Higher Institute of Biotechnology of Sfax, Sfax, Tunisia
| | - Mohamed Zouari
- Laboratory of Environment and Biology of Arid Area, Department of Life Sciences, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Leila Chaari
- Laboratory of Water, Energy and Environment, Sfax University, ENIS, Sfax, Sfax Tunisia
| | - Chiraz Jomni
- Laboratory of Environment and Biology of Arid Area, Department of Life Sciences, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Brahim Marzouk
- Laboratory of Substances Bioactives, Centre de Biotechnologie de Borj Cedria (CBBC), Hammam-Lif, 1050 Tunisia
| | - Ferjani Ben Abdallah
- Laboratory of Environment and Biology of Arid Area, Department of Life Sciences, Faculty of Sciences of Sfax, Sfax, Tunisia
| |
Collapse
|
42
|
Sun R, Liu K, Dong L, Wu Y, Paulsen H, Yang C. Direct energy transfer from the major antenna to the photosystem II core complexes in the absence of minor antennae in liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:248-261. [PMID: 25461977 DOI: 10.1016/j.bbabio.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Minor antennae of photosystem (PS) II, located between the PSII core complex and the major antenna (LHCII), are important components for the structural and functional integrity of PSII supercomplexes. In order to study the functional significance of minor antennae in the energetic coupling between LHCII and the PSII core, characteristics of PSII-LHCII proteoliposomes, with or without minor antennae, were investigated. Two types of PSII preparations containing different antenna compositions were isolated from pea: 1) the PSII preparation composed of the PSII core complex, all of the minor antennae, and a small amount of major antennae (MCC); and 2) the purified PSII dimeric core complexes without periphery antenna (CC). They were incorporated, together with LHCII, into liposomes composed of thylakoid membrane lipids. The spectroscopic and functional characteristics were measured. 77K fluorescence emission spectra revealed an increased spectral weight of fluorescence from PSII reaction center in the CC-LHCII proteoliposomes, implying energetic coupling between LHCII and CC in the proteoliposomes lacking minor antennae. This result was further confirmed by chlorophyll a fluorescence induction kinetics. The incorporation of LHCII together with CC markedly increased the antenna cross-section of the PSII core complex. The 2,6-dichlorophenolindophenol photoreduction measurement implied that the lack of minor antennae in PSII supercomplexes did not block the energy transfer from LHCII to the PSII core complex. In conclusion, it is possible, in liposomes, that LHCII transfer energy directly to the PSII core complex, in the absence of minor antennae.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Kun Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China
| | - Lianqing Dong
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Yuling Wu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Harald Paulsen
- Institut für Allgemeine Botanik, Johannes-Gutenberg-Universität Mainz, Johannes-von-Müllerweg 6, 55099 Mainz, Germany
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China.
| |
Collapse
|
43
|
Kansy M, Wilhelm C, Goss R. Influence of thylakoid membrane lipids on the structure and function of the plant photosystem II core complex. PLANTA 2014; 240:781-96. [PMID: 25063517 DOI: 10.1007/s00425-014-2130-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/14/2014] [Indexed: 05/18/2023]
Abstract
MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport. The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly.
Collapse
Affiliation(s)
- Marcel Kansy
- Department of Plant Physiology, Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | | | | |
Collapse
|
44
|
Yamamoto Y, Kai S, Ohnishi A, Tsumura N, Ishikawa T, Hori H, Morita N, Ishikawa Y. Quality control of PSII: behavior of PSII in the highly crowded grana thylakoids under excessive light. PLANT & CELL PHYSIOLOGY 2014; 55:1206-15. [PMID: 24610582 PMCID: PMC4080270 DOI: 10.1093/pcp/pcu043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/22/2014] [Indexed: 05/19/2023]
Abstract
The grana thylakoids of higher plant chloroplasts are crowded with PSII and the associated light-harvesting complexes (LHCIIs). They constitute supercomplexes, and often form semi-crystalline arrays in the grana. The crowded condition of the grana may be necessary for efficient trapping of excitation energy by LHCII under weak light, but it might hinder proper movement of LHCII necessary for reversible aggregation of LHCII in the energy-dependent quenching of Chl fluorescence under moderate high light. When the thylakoids are illuminated with extreme high light, the reaction center-binding D1 protein of PSII is photodamaged, and the damaged protein migrates to the grana margins for degradation and subsequent repair. In both moderate and extreme high-light conditions, fluidity of the thylakoid membrane is crucial. In this review, we first provide an overview of photoprotective processes, then discuss changes in membrane fluidity and mobility of the protein complexes in the grana under excessive light, which are closely associated with photoprotection of PSII. We hypothesize that reversible aggregation of LHCII, which is necessary to avoid light stress under moderate high light, and swift turnover of the photodamaged D1 protein under extreme high light are threatened by irreversible protein aggregation induced by reactive oxygen species in photochemical reactions.
Collapse
Affiliation(s)
- Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Suguru Kai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Atsuki Ohnishi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Nodoka Tsumura
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Tomomi Ishikawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Haruka Hori
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Noriko Morita
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Yasuo Ishikawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
45
|
Petroutsos D, Amiar S, Abida H, Dolch LJ, Bastien O, Rébeillé F, Jouhet J, Falconet D, Block MA, McFadden GI, Bowler C, Botté C, Maréchal E. Evolution of galactoglycerolipid biosynthetic pathways – From cyanobacteria to primary plastids and from primary to secondary plastids. Prog Lipid Res 2014; 54:68-85. [DOI: 10.1016/j.plipres.2014.02.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/17/2022]
|
46
|
Lukeš M, Procházková L, Shmidt V, Nedbalová L, Kaftan D. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae). FEMS Microbiol Ecol 2014; 89:303-15. [PMID: 24698015 DOI: 10.1111/1574-6941.12299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 11/28/2022] Open
Abstract
Here, we report an effect of short acclimation to a wide span of temperatures on photosynthetic electron transfer, lipid and fatty acid composition in the snow alga Chlamydomonas cf. nivalis. The growth and oxygen evolution capacity were low at 2 °C yet progressively enhanced at 10 °C and were significantly higher at temperatures from 5 to 15 °C in comparison with the mesophilic control Chlamydomonas reinhardtii. In search of the molecular mechanisms responsible for the adaptation of photosynthesis to low temperatures, we have found unprecedented high rates of QA to QB electron transfer. The thermodynamics of the process revealed the existence of an increased structural flexibility that we explain with the amino acid changes in the D1 protein combined with the physico-chemical characteristics of the thylakoid membrane composed of > 80% negatively charged phosphatidylglycerol.
Collapse
Affiliation(s)
- Martin Lukeš
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic; Department of Phototrophic Microorganisms, Institute of Microbiology CAS, Opatovický mlýn, Třeboň, Czech Republic
| | | | | | | | | |
Collapse
|
47
|
The importance of the hydrophilic region of PsbL for the plastoquinone electron acceptor complex of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1435-46. [PMID: 24576450 DOI: 10.1016/j.bbabio.2014.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 11/23/2022]
Abstract
The PsbL protein is a 4.5kDa subunit at the monomer-monomer interface of Photosystem II (PS II) consisting of a single membrane-spanning domain and a hydrophilic stretch of ~15 residues facing the cytosolic (or stromal) side of the photosystem. Deletion of conserved residues in the N-terminal region has been used to investigate the importance of this hydrophilic extension. Using Synechocystis sp. PCC 6803, three deletion strains: ∆(N6-N8), ∆(P11-V12) and ∆(E13-N15), have been created. The ∆(N6-N8) and ∆(P11-V12) strains remained photoautotrophic but were more susceptible to photodamage than the wild type; however, the ∆(E13-N15) cells had the most severe phenotype. The Δ(E13-N15) mutant showed decreased photoautotrophic growth, a reduced number of PS II centers, impaired oxygen evolution in the presence of PS II-specific electron acceptors, and was highly susceptible to photodamage. The decay kinetics of chlorophyll a variable fluorescence after a single turnover saturating flash and the sensitivity to low concentrations of PS II-directed herbicides in the Δ(E13-N15) strain indicate that the binding of plastoquinone to the QB-binding site had been altered such that the affinity of QB is reduced. In addition, the PS II-specific electron acceptor 2,5-dimethyl-p-benzoquinone was found to inhibit electron transfer through the quinone-acceptor complex of the ∆(E13-N15) strain. The PsbL Y20A mutant was also investigated and it exhibited increased susceptibility to photodamage and increased herbicide sensitivity. Our data suggest that the N-terminal hydrophilic region of PsbL influences forward electron transfer from QA through indirect interactions with the D-E loop of the D1 reaction center protein. Our results further indicate that disruption of interactions between the N-terminal region of PsbL and other PS II subunits or lipids destabilizes PS II dimer formation. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
|
48
|
Botté CY, Maréchal E. Plastids with or without galactoglycerolipids. TRENDS IN PLANT SCIENCE 2014; 19:71-78. [PMID: 24231068 DOI: 10.1016/j.tplants.2013.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
In structural, functional, and evolutionary terms, galactoglycerolipids are signature lipids of chloroplasts. Their presence in nongreen plastids has been demonstrated in angiosperms and diatoms. Thus, galactoglycerolipids are considered as a landmark of green and nongreen plastids, deriving from either a primary or secondary endosymbiosis. The discovery of a plastid in Plasmodium falciparum, the causative agent of malaria, fueled the search for galactoglycerolipids as possible targets for treatments. However, recent data have provided evidence that the Plasmodium plastid does not contain any galactoglycerolipids. In this opinion article, we discuss questions raised by the loss of galactoglycerolipids during evolution: how have galactoglycerolipids been lost? How does the Plasmodium plastid maintain four membranes without these lipids? What are the main constituents instead of galactoglycerolipids?
Collapse
Affiliation(s)
- Cyrille Y Botté
- ApicoLipid Group, Laboratoire Adapation et Pathogenie des Microorganismes; CNRS, Université de Grenoble-Alpes, UMR 5163, Institut Jean Roget, F-38042 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale; CNRS, CEA, INRA, Université de Grenoble-Alpes, UMR 5168, Institut de Recherches en Sciences et Technologies pour le Vivant, CEA Grenoble, F-38054 Grenoble, France.
| |
Collapse
|
49
|
Gabdulkhakov AG, Dontsova MV. Structural studies on photosystem II of cyanobacteria. BIOCHEMISTRY (MOSCOW) 2014; 78:1524-38. [DOI: 10.1134/s0006297913130105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- A G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
50
|
Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|