1
|
García-Peña LM, Abel ED, Pereira RO. Mitochondrial Dynamics, Diabetes, and Cardiovascular Disease. Diabetes 2024; 73:151-161. [PMID: 38241507 PMCID: PMC10796300 DOI: 10.2337/dbi23-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 01/21/2024]
Abstract
Mitochondria undergo repeated cycles of fusion and fission that regulate their size and shape by a process known as mitochondrial dynamics. Numerous studies have revealed the importance of this process in maintaining mitochondrial health and cellular homeostasis, particularly in highly metabolically active tissues such as skeletal muscle and the heart. Here, we review the literature on the relationship between mitochondrial dynamics and the pathophysiology of type 2 diabetes and cardiovascular disease (CVD). Importantly, we emphasize divergent outcomes resulting from downregulating distinct mitochondrial dynamics proteins in various tissues. This review underscores compensatory mechanisms and adaptive pathways that offset potentially detrimental effects, resulting instead in improved metabolic health. Finally, we offer a perspective on potential therapeutic implications of modulating mitochondrial dynamics proteins for treatment of diabetes and CVD. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Luis Miguel García-Peña
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Renata O. Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
2
|
Zheng P, Ma W, Gu Y, Wu H, Bian Z, Liu N, Yang D, Chen X. High-fat diet causes mitochondrial damage and downregulation of mitofusin-2 and optic atrophy-1 in multiple organs. J Clin Biochem Nutr 2023; 73:61-76. [PMID: 37534099 PMCID: PMC10390808 DOI: 10.3164/jcbn.22-73] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/19/2023] [Indexed: 08/04/2023] Open
Abstract
High-fat consumption promotes the development of obesity, which is associated with various chronic illnesses. Mitochondria are the energy factories of eukaryotic cells, maintaining self-stability through a fine-tuned quality-control network. In the present study, we evaluated high-fat diet (HFD)-induced changes in mitochondrial ultrastructure and dynamics protein expression in multiple organs. C57BL/6J male mice were fed HFD or normal diet (ND) for 24 weeks. Compared with ND-fed mice, HFD-fed mice exhibited increased body weight, cardiomyocyte enlargement, pulmonary fibrosis, hepatic steatosis, renal and splenic structural abnormalities. The cellular apoptosis of the heart, liver, and kidney increased. Cellular lipid droplet deposition and mitochondrial deformations were observed. The proteins related to mitochondrial biogenesis (TFAM), fission (DRP1), autophagy (LC3 and LC3-II: LC3-I ratio), and mitophagy (PINK1) presented different changes in different organs. The mitochondrial fusion regulators mitofusin-2 (MFN2) and optic atrophy-1 (OPA1) were consistently downregulated in multiple organs, even the spleen. TOMM20 and ATP5A protein were enhanced in the heart, skeletal muscle, and spleen, and attenuated in the kidney. These results indicated that high-fat feeding caused pathological changes in multiple organs, accompanied by mitochondrial ultrastructural damage, and MFN2 and OPA1 downregulation. The mitochondrial fusion proteins may become promising targets and/or markers for treating metabolic disease.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Wenjing Ma
- Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Yilu Gu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Hengfang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Zhiping Bian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Nannan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
- Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Xiangjian Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
3
|
Tacchi F, Orozco-Aguilar J, Valero-Breton M, Cabello-Verrugio C. Bile Acids Alter the Autophagy and Mitogenesis in Skeletal Muscle Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:183-199. [PMID: 37093428 DOI: 10.1007/978-3-031-26163-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Muscle atrophy decreases muscle mass with the subsequent loss of muscle function. Among the mechanisms that trigger sarcopenia is mitochondrial dysfunction. Mitochondria, whose primary function is to produce ATP, are dynamic organelles that present the process of formation (mitogenesis) and elimination (mitophagy). Failure of any of these processes contributes to mitochondrial malfunction. Mitogenesis is mainly controlled by Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α), a transcriptional coactivator that regulates the expression of TFAM, which participates in mitogenesis. Mitophagy is a process of selective autophagy. Autophagy corresponds to a degradative pathway of protein complexes and organelles. Liver disease caused sarcopenia and increased bile acids in the blood. We demonstrated that the treatment with cholic (CA) or deoxycholic (DCA) bile acids generates mitochondrial dysfunction and loss of biomass. This work assessed whether CA and DCA alter autophagy and mitogenesis. For this, western blot evaluated the autophagy process by determining the protein levels of the LC3II/LC3I ratio. In addition, we assessed mitogenesis using a luciferase-coupled plasmid reporter for the PGC-1α promoter and the protein levels of TFAM by western blot. Our results indicate that treatment with CA or DCA induces autophagy, represented by an increase in the LC3II/LC3I ratio. In addition, a decreased autophagic flux was observed. On the other hand, when treated with CA or DCA, a decrease in the activity of the PGC-1α promoter was observed. However, the levels of TFAM increased in myotubes incubated with CA and DCA. Our results demonstrate that CA and DCA modulate autophagy ad mitogenesis in C2C12 myotubes.
Collapse
Affiliation(s)
- Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Prenatal Low-Protein Diet Affects Mitochondrial Structure and Function in the Skeletal Muscle of Adult Female Offspring. Nutrients 2022; 14:nu14061158. [PMID: 35334815 PMCID: PMC8954615 DOI: 10.3390/nu14061158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Gestational low-protein (LP) diet leads to glucose intolerance and insulin resistance in adult offspring. We had earlier demonstrated that LP programming affects glucose disposal in females. Mitochondrial health is crucial for normal glucose metabolism in skeletal muscle. In this study, we sought to analyze mitochondrial structure, function, and associated genes in skeletal muscles to explore the molecular mechanism of insulin resistance LP-programmed female offspring. On day four of pregnancy, rats were assigned to a control diet containing 20% protein or an isocaloric 6% protein-containing diet. Standard laboratory diet was given to the dams after delivery until the end of weaning and to pups after weaning. Gestational LP diet led to changes in mitochondrial ultrastructure in the gastrocnemius muscles, including a nine-fold increase in the presence of giant mitochondria along with unevenly formed cristae. Further, functional analysis showed that LP programming caused impaired mitochondrial functions. Although the mitochondrial copy number did not show significant changes, key genes involved in mitochondrial structure and function such as Fis1, Opa1, Mfn2, Nrf1, Nrf2, Pgc1b, Cox4b, Esrra, and Vdac were dysregulated. Our study shows that prenatal LP programming induced disruption in mitochondrial ultrastructure and function in the skeletal muscle of female offspring.
Collapse
|
5
|
Pandey A, Sarkar S, Yadav SK, Yadav SS, Srikrishna S, Siddiqui MH, Parmar D, Yadav S. Studies on Regulation of Global Protein Profile and Cellular Bioenergetics of Differentiating SH-SY5Y Cells. Mol Neurobiol 2022; 59:1799-1818. [PMID: 35025051 DOI: 10.1007/s12035-021-02667-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/25/2021] [Indexed: 01/07/2023]
Abstract
The SH-SY5Y cells differentiated by sequential exposure of retinoic acid (RA) and brain-derived neurotrophic growth factor (BDNF) are a well-employed cellular model for studying the mechanistic aspects of neural development and neurodegeneration. Earlier studies from our lab have identified dramatic upregulation (77 miRNAs) and downregulation (17 miRNAs) of miRNAs in SH-SY5Y cells differentiated with successive exposure of RA + BDNF and demonstrated the essential role of increased levels of P53 proteins in coping with the differentiation-induced changes in protein levels. In continuation to our earlier studies, we have performed unbiased LC-MS/MS global protein profiling of naïve and differentiated SH-SY5Y cells and analyzed the identified proteins in reference to miRNAs identified in our earlier studies to identify the cellular events regulated by both identified miRNAs and proteins. Analysis of LC-MS/MS data has shown a significant increase and decrease in levels of 215 and 163 proteins, respectively, in differentiated SH-SY5Y cells. Integrative analysis of miRNA identified in our previous studies and protein identified in the present study is carried out to discover novel miRNA-protein regulatory modules to elucidate miRNA-protein regulatory relationships of differentiating neurons. In silico network analysis of miRNAs and proteins deregulated upon SH-SY5Y differentiation identified cell cycle, synapse formation, axonogenesis, differentiation, neuron projection, and neurotransmission, as the topmost involved pathways. Further, measuring mitochondrial dynamics and cellular bioenergetics using qPCR and Seahorse XFp Flux Analyzer, respectively, showed that differentiated cells possess increased mitochondrial dynamics and OCR relative to undifferentiated cells. In summary, our studies have identified a novel set of proteins deregulated during neuronal differentiation and establish the role of miRNAs identified in earlier studies in the regulation of proteins identified by LC-MS/MS-based global profiling of differentiating neurons, which will help in future studies related to neural development and neurodegeneration.
Collapse
Affiliation(s)
- Anuj Pandey
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India.,Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sana Sarkar
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Sanjeev Kumar Yadav
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India
| | - Smriti Singh Yadav
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Devendra Parmar
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India.
| | - Sanjay Yadav
- Systems Toxicology and Health Risk Assessment Group, , CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, Lucknow, India. .,All India Institute of Medical Sciences (AIIMS), Uttar Pradesh, Raebareli, India.
| |
Collapse
|
6
|
Wang D, Jiang DM, Yu RR, Zhang LL, Liu YZ, Chen JX, Chen HC, Liu YP. The Effect of Aerobic Exercise on the Oxidative Capacity of Skeletal Muscle Mitochondria in Mice with Impaired Glucose Tolerance. J Diabetes Res 2022; 2022:3780156. [PMID: 35712028 PMCID: PMC9197611 DOI: 10.1155/2022/3780156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
METHODS Male C57BL/6J mice were randomly divided into six different experimental groups (8 animals/group): (1) normal group (NOR), (2) normal control group (NC), (3) normal + exercise group (NE), (4) IGT group (IGT), (5) IGT control group (IC), and (6) IGT+ exercise group (IE).The exercise group received aerobic exercise for 8 weeks. After the intervention, a blood glucose meter was used to detect the level of glucose tolerance in the mouse's abdominal cavity; a biochemical kit was used to detect serum lipid metabolism indicators, malondialdehyde, and superoxide dismutase levels; the ELISA method was used to detect serum insulin and mouse gastrocnemius homogenate LDH, PDH, SDH, and CCO levels. Western blot method was used to detect the protein expression levels of NOX4, PGC-1α, and Mfn2 in the gastrocnemius muscle of mice. RESULTS (1) Mice with high-fat diet for 30 weeks showed impaired glucose tolerance, insulin resistance, and lipid metabolism disorders. The level of LDH, PDH, SDH, and CCO in the gastrocnemius homogenate of mice was reduced. The expressions of NOX4 protein were significantly upregulated, while the expressions of PGC-1α and Mfn2 proteins were significantly downregulated. (2) 8-week aerobic exercise improved the disorders of glucose and lipid metabolism in IGT mice and increased homogenized LDH, PDH, SDH, and CCO levels, and the expressions of NOX4, PGC-1α, and Mfn2 proteins in the gastrocnemius muscle of mice were reversed. It is speculated that aerobic exercise can accelerate energy metabolism. CONCLUSION (1) C57BL/6 mice were fed high fat for 30 weeks and successfully constructed a mouse model of reduced diabetes; the mice with reduced diabetes have impaired glucose tolerance, insulin resistance, and lipid metabolism disorders; (2) 8 weeks of aerobic exercise improve glucose tolerance, reduce glucose tolerance in mice, reduce insulin resistance, improve lipid metabolism disorders, and reduce oxidative stress; (3) 8-week aerobic exercise reduces skeletal muscle NOX4 expression and increases glucose tolerance; reduces the expression of LDH, PDH, SDH, and CCO in mouse skeletal muscle; increases the expression level of mitochondrial fusion protein 2 and PGC-1α; improves glucose tolerance; reduces energy metabolism of mouse skeletal muscle; reduces oxidative stress; and reduces insulin resistance. It is speculated that aerobic exercise can accelerate energy metabolism. This process may involve two aspects: firstly, increase the expression level of oxidative metabolism enzymes and promote the tricarboxylic acid cycle; secondly, increase the expression of Mfn2 and accelerate mitochondria fission or fusion to regulate energy metabolism, thereby reducing oxidative stress and insulin resistance.
Collapse
Affiliation(s)
- Dan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Dong-Mou Jiang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Rong-Rong Yu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Lin-Lin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Yan-Zhong Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Jia-Xin Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Hai-Chun Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| |
Collapse
|
7
|
Khromova NV, Fedorov AV, Ma Y, Kondratov KA, Prikhodko SS, Ignatieva EV, Artemyeva MS, Anopova AD, Neimark AE, Kostareva AA, Babenko AY, Dmitrieva RI. Regulatory Action of Plasma from Patients with Obesity and Diabetes towards Muscle Cells Differentiation and Bioenergetics Revealed by the C2C12 Cell Model and MicroRNA Analysis. Biomolecules 2021; 11:769. [PMID: 34063883 PMCID: PMC8224077 DOI: 10.3390/biom11060769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are often combined and pathologically affect many tissues due to changes in circulating bioactive molecules. In this work, we evaluated the effect of blood plasma from obese (OB) patients or from obese patients comorbid with diabetes (OBD) on skeletal muscle function and metabolic state. We employed the mouse myoblasts C2C12 differentiation model to test the regulatory effect of plasma exposure at several levels: (1) cell morphology; (2) functional activity of mitochondria; (3) expression levels of several mitochondria regulators, i.e., Atgl, Pgc1b, and miR-378a-3p. Existing databases were used to computationally predict and analyze mir-378a-3p potential targets. We show that short-term exposure to OB or OBD patients' plasma is sufficient to affect C2C12 properties. In fact, the expression of genes that regulate skeletal muscle differentiation and growth was downregulated in both OB- and OBD-treated cells, maximal mitochondrial respiration rate was downregulated in the OBD group, while in the OB group, a metabolic switch to glycolysis was detected. These alterations correlated with a decrease in ATGL and Pgc1b expression in the OB group and with an increase of miR-378a-3p levels in the OBD group.
Collapse
Affiliation(s)
- Natalya V. Khromova
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Anton V. Fedorov
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Yi Ma
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Kirill A. Kondratov
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Stanislava S. Prikhodko
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Elena V. Ignatieva
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Marina S. Artemyeva
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Anna D. Anopova
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Aleksandr E. Neimark
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Anna A. Kostareva
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
- Center for Molecular Medicine, Department of Women’s and Children’s Health, Karolinska Institute, 17177 Stockholm, Sweden
| | - Alina Yu. Babenko
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| | - Renata I. Dmitrieva
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (A.V.F.); (Y.M.); (K.A.K.); (S.S.P.); (E.V.I.); (M.S.A.); (A.D.A.); (A.E.N.); (A.A.K.); (A.Y.B.); (R.I.D.)
| |
Collapse
|
8
|
Role of PGC-1α in the Mitochondrial NAD + Pool in Metabolic Diseases. Int J Mol Sci 2021; 22:ijms22094558. [PMID: 33925372 PMCID: PMC8123861 DOI: 10.3390/ijms22094558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that regulates metabolic function. A decrease in both mitochondria biogenesis and NAD+ is a characteristic of metabolic diseases, and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD+ pool. Here we discuss how PGC-1α is involved in the NAD+ synthesis pathway and metabolism, as well as the strategy for increasing the NAD+ pool in the metabolic disease state.
Collapse
|
9
|
Silva G, Ferraresi C, de Almeida RT, Motta ML, Paixão T, Ottone VO, Fonseca IA, Oliveira MX, Rocha-Vieira E, Dias-Peixoto MF, Esteves EA, Coimbra CC, Amorim FT, Magalhães FDC. Insulin resistance is improved in high-fat fed mice by photobiomodulation therapy at 630 nm. JOURNAL OF BIOPHOTONICS 2020; 13:e201960140. [PMID: 31707768 DOI: 10.1002/jbio.201960140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Photobiomodulation therapy (PBMT) in the infrared spectrum exerts positive effects on glucose metabolism, but the use of PBMT at the red spectrum has not been assessed. Male Swiss albino mice were divided into low-fat control and high-fat diet (HFD) for 12 weeks and were treated with red (630 nm) PBMT or no treatment (Sham) during weeks 9 to 12. PBMT was delivered at 31.19 J/cm2 , 60 J total dose per day for 20 days. In HFD-fed mice, PBMT improved glucose tolerance, insulin resistance and fasting hyperinsulinemia. PBMT also reduced adiposity and inflammatory infiltrate in adipose tissue. Phosphorylation of Akt in epididymal adipose tissue and rectus femoralis muscle was improved by PBMT. In epididymal fat PBMT reversed the reduced phosphorylation of AS160 and the reduced Glut4 content. In addition, PBMT reversed the alterations caused by HFD in rectus femoralis muscle on proteins involved in mitochondrial dynamics and β-oxidation. In conclusion, PBMT at red spectrum improved insulin resistance and glucose metabolism in HFD-fed mice.
Collapse
Affiliation(s)
- Gabriela Silva
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Cleber Ferraresi
- Post-Graduation Program in Biomedical Engineering, Universidade Brasil, São Paulo, Brazil
| | - Rodrigo T de Almeida
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Mariana L Motta
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Thiago Paixão
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Vinicius O Ottone
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Ivana A Fonseca
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Murilo X Oliveira
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Physiotherapy Department, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Marco F Dias-Peixoto
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Elizabethe A Esteves
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Cândido C Coimbra
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Endocrinology Laboratory, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabiano T Amorim
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Department of Heath, Exercise and Sports Science, University of New Mexico, Albuquerque, New Mexico
| | - Flávio de Castro Magalhães
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Department of Heath, Exercise and Sports Science, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
10
|
Dietz JV, Bohovych I, Viana MP, Khalimonchuk O. Proteolytic regulation of mitochondrial dynamics. Mitochondrion 2019; 49:289-304. [PMID: 31029640 DOI: 10.1016/j.mito.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Spatiotemporal changes in the abundance, shape, and cellular localization of the mitochondrial network, also known as mitochondrial dynamics, are now widely recognized to play a key role in mitochondrial and cellular physiology as well as disease states. This process involves coordinated remodeling of the outer and inner mitochondrial membranes by conserved dynamin-like guanosine triphosphatases and their partner molecules in response to various physiological and stress stimuli. Although the core machineries that mediate fusion and partitioning of the mitochondrial network have been extensively characterized, many aspects of their function and regulation are incompletely understood and only beginning to emerge. In the present review we briefly summarize current knowledge about how the key mitochondrial dynamics-mediating factors are regulated via selective proteolysis by mitochondrial and cellular proteolytic machineries.
Collapse
Affiliation(s)
- Jonathan V Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, United States of America; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
11
|
Suwanjang W, Wu KLH, Prachayasittikul S, Chetsawang B, Charngkaew K. Mitochondrial Dynamics Impairment in Dexamethasone-Treated Neuronal Cells. Neurochem Res 2019; 44:1567-1581. [PMID: 30888577 DOI: 10.1007/s11064-019-02779-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Dexamethasone is an approved steroid for clinical use to activate or suppress cytokines, chemokines, inflammatory enzymes and adhesion molecules. It enters the brain, by-passing the blood brain barrier, and acts through genomic mechanisms. High levels of dexamethasone are able to induce neuronal cell loss, reduce neurogenesis and cause neuronal dysfunction. The exact mechanisms of steroid, especially the dexamethasone contribute to neuronal damage remain unclear. Therefore, the present study explored the mitochondrial dynamics underlying dexamethasone-induced toxicity of human neuroblastoma SH-SY5Y cells. Neuronal cells treatment with the dexamethasone resulted in a marked decrease in cell proliferation. Dexamethasone-induced neurotoxicity also caused upregulation of mitochondrial fusion and cleaved caspase-3 proteins expression. Mitochondria fusion was found in large proportions of dexamethasone-treated cells. These results suggest that dexamethasone-induced hyperfused mitochondrial structures are associated with a caspase-dependent death process in dexamethasone-induced neurotoxicity. These findings point to the high dosage of dexamethasone as being neurotoxic through impairment of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 10700, Bangkok, Thailand.
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 10700, Bangkok, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 73170, Nakhonpathom, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, 10700, Bangkok, Thailand
| |
Collapse
|
12
|
Yu F, Xu T, Wang M, Chang W, Li P, Wang J. Function and regulation of mitofusin 2 in cardiovascular physiology and pathology. Eur J Cell Biol 2018; 97:474-482. [DOI: 10.1016/j.ejcb.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 02/03/2023] Open
|
13
|
Balampanis K, Chasapi A, Kourea E, Tanoglidi A, Hatziagelaki E, Lambadiari V, Dimitriadis G, Lambrou GI, Kalfarentzos F, Melachrinou M, Sotiropoulou-Bonikou G. Inter-tissue expression patterns of the key metabolic biomarker PGC-1α in severely obese individuals: Implication in obesity-induced disease. Hellenic J Cardiol 2018; 60:282-293. [PMID: 30138744 DOI: 10.1016/j.hjc.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE PGC-1α is already known as a significant regulator of mitochondrial biogenesis, oxidative phosphorylation and fatty acid metabolism. Our study focuses on the role of PGC1α in morbid obesity, in five different tissues, collected from 50 severely obese patients during planned bariatric surgery. METHODS The investigated tissues included subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscle (SM), extramyocellular adipose tissue (EMAT) and liver. PGC1α expression was investigated with immunohistochemistry and evaluated with microscopy. RESULTS Our findings highlighted significant positive inter-tissue correlations regarding PGC-1α expression between several tissue pairs (VAT-SAT, VAT-SM, VAT-EMAT, SAT-SM, SAT-EMAT, SM-EMAT). Moreover, we found significant negative correlations between PGC1α expression in VAT with CD68 expression in skeletal muscle and EMAT, implying a possible protective role of PGC1α against obesity-induced inflammation. CONCLUSION Unmasking the inter-tissue communication networks regarding PGC-1α expression in morbid obesity, will give more insight into its significant role in obesity-induced diseases. PGC1α could potentially represent a future preventive and therapeutic target against obesity-induced disease, probably through enhancing mitochondrial biogenesis and metabolism.
Collapse
Affiliation(s)
- Konstantinos Balampanis
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece; Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece.
| | - Athina Chasapi
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece.
| | - Eleni Kourea
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece.
| | - Anna Tanoglidi
- Department of Clinical Pathology, Akademiska University, Uppsala, Sweden.
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece.
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece.
| | - George Dimitriadis
- Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece.
| | - George I Lambrou
- First Department of Pediatrics, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Medical School, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece.
| | - Fotios Kalfarentzos
- Department of Surgery, Medical School, University of Patras, 26500 Patras, Greece.
| | - Maria Melachrinou
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece.
| | | |
Collapse
|
14
|
Zafaranieh S, Choobineh S, Soori R. The effect of 12 weeks of aerobic exercise on mitochondrial dynamics in cardiac myocytes of type 2 diabetic rats. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0430-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc 2017; 93:933-949. [PMID: 29068134 PMCID: PMC6446723 DOI: 10.1111/brv.12378] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations in these molecules are associated with severe neurodegenerative and non-neurological diseases pointing to the importance of functional mitochondrial dynamics in normal cell physiology. In recent years, significant progress has been made in our understanding of mitochondrial dynamics, which has raised interest in defining the physiological roles of key regulators of fusion and fission and led to the identification of additional functions of Mfn2 in mitochondrial metabolism, cell signalling, and apoptosis. In this review, we summarize the current knowledge of the structural and functional properties of Mfn2 as well as its regulation in different tissues, and also discuss the consequences of aberrant Mfn2 expression.
Collapse
Affiliation(s)
- Gursimran Chandhok
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Brent Neumann
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
16
|
Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP, Olvera A, Jeffers J, Souvenir R, Mcglauflin R, Seei A, Funari T, Sesaki H, Potthoff MJ, Adams CM, Anderson EJ, Abel ED. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J 2017; 36:2126-2145. [PMID: 28607005 PMCID: PMC5510002 DOI: 10.15252/embj.201696179] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism.
Collapse
Affiliation(s)
- Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Satya M Tadinada
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Frederick M Zasadny
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Karen Jesus Oliveira
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karla Maria Pereira Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Angela Olvera
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Jennifer Jeffers
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Rhonda Souvenir
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Rose Mcglauflin
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Alec Seei
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Trevor Funari
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthew J Potthoff
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Christopher M Adams
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Ethan J Anderson
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
- College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 2016; 12:633-645. [PMID: 27448057 DOI: 10.1038/nrendo.2016.104] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low levels of physical activity and the presence of obesity are associated with mitochondrial dysfunction. In addition, mitochondrial dysfunction has been associated with the development of insulin resistance and type 2 diabetes mellitus (T2DM). Although the evidence for a causal relationship between mitochondrial function and insulin resistance is still weak, emerging evidence indicates that boosting mitochondrial function might be beneficial to patient health. Exercise training is probably the most recognized promoter of mitochondrial function and insulin sensitivity and hence is still regarded as the best strategy to prevent and treat T2DM. Animal data, however, have revealed several new insights into the regulation of mitochondrial metabolism, and novel targets for interventions to boost mitochondrial function have emerged. Importantly, many of these targets seem to be regulated by factors such as nutrition, ambient temperature and circadian rhythms, which provides a basis for nonpharmacological strategies to prevent or treat T2DM in humans. Here, we will review the current evidence that mitochondrial function can be targeted therapeutically to improve insulin sensitivity and to prevent T2DM, focusing mainly on human intervention studies.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| | - Vera Schrauwen-Hinderling
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- Department of Radiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| |
Collapse
|
18
|
Mi X, Tang W, Chen X, Liu F, Tang X. Mitofusin 2 attenuates the histone acetylation at collagen IV promoter in diabetic nephropathy. J Mol Endocrinol 2016; 57:233-249. [PMID: 27997345 DOI: 10.1530/jme-16-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) increase in diabetic nephropathy (DN) is closely related to mitochondrial dysfunction. The mechanism of protective function of mitofusin 2 (Mfn2) for mitochondria remains largely unknown. In this study, the molecular mechanisms for the effect of Mfn2 on mitochondria and subsequent collagen IV expression in DN were investigated. Ras-binding-deficient mitofusin 2 (Mfn2-Ras(Δ)) were overexpressed in rat glomerular mesangial cells, and then the cells were detected for mitochondrial morphology, cellular reactive oxygen species (ROS), mRNA and protein expression of collagen IV with advanced glycation end-product (AGE) stimulation. Preliminary results reveal that the mitochondrial dysfunction and the increased synthesis of collagen IV after AGE stimulation were reverted by Mfn2-Ras(Δ) overexpression. Bioinformatical computations were performed to search transcriptional factor motifs in the promoter region of collagen IV. Three specific regions for TFAP2A binding were identified, followed by validation with chromatin immunoprecipitation experiments. Knocking down TFAP2A significantly decreased the TF binding in the first two regions and the gene expression of collagen IV. Furthermore, results reveal that Mfn2-Ras(Δ) overexpression significantly mitigated TFAP2A binding and also reverted the histone acetylation at Regions 1 and 2 after AGE stimulation. In streptozotocin-induced diabetic rats, Mfn2-Ras(Δ) overexpression also ameliorated glomerular mesangial lesions with decreased collagen IV expression, accompanied by decreased acetylation and TFAP2A binding at Region 1. In conclusion, this study highlights the pathway by which mitochondria affect the histone acetylation of gene promoter and provides a new potential therapy approach for DN.
Collapse
Affiliation(s)
- Xuhua Mi
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Wanxin Tang
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Xiaolei Chen
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Tang
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
García-Carrizo F, Nozhenko Y, Palou A, Rodríguez AM. Leptin Effect on Acetylation and Phosphorylation of Pgc1α in Muscle Cells Associated With Ampk and Akt Activation in High-Glucose Medium. J Cell Physiol 2016. [PMID: 26218179 DOI: 10.1002/jcp.25109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leptin is crucial in energy metabolism, including muscle regulation. Peroxisome proliferator activated receptor gamma co-activator 1α (PGC1α) orchestrates energy metabolism and is tightly controlled by post-translational covalent modifications such as phosphorylation and acetylation. We aimed to further the knowledge of PGC1α control by leptin (at physiological levels) in muscle cells by time-sequentially analysing the activation of AMP activated protein kinase (AMPK), P38 mitogen-activated protein kinase (P38 MAPK) and Akt (Protein kinase B)--all known to phosphorylate PGC1α and to be involved in the regulation of its acetylation status--in C2C12 myotubes placed in a high-glucose serum-free medium. We also studied the protein levels of PGC1α, Sirtuin 1, adiponectin, COX IV, mitofusin 2 (Mfn2), and pyruvate dehydrogenase kinase 4 (PDK4). Our main findings suggest an important role of leptin regulating AMPK and Akt phosphorylation, Mfn2 induction and PGC1α acetylation status, with the novelty that the latter in transitorily increased in response to leptin, an effect dependent, at least in part, on AMPK regulation. These post-translational reversible changes in PGC1α in response to leptin, especially the increase in acetylation status, may be related to the physiological role of the hormone in modulating muscle cell response to the physiological/nutritional status.
Collapse
Affiliation(s)
- Francisco García-Carrizo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Balearic Islands, Spain
| | - Yuriy Nozhenko
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Balearic Islands, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Balearic Islands, Spain
| | - Ana M Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
20
|
Putti R, Migliaccio V, Sica R, Lionetti L. Skeletal Muscle Mitochondrial Bioenergetics and Morphology in High Fat Diet Induced Obesity and Insulin Resistance: Focus on Dietary Fat Source. Front Physiol 2016; 6:426. [PMID: 26834644 PMCID: PMC4719079 DOI: 10.3389/fphys.2015.00426] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/27/2015] [Indexed: 12/21/2022] Open
Abstract
It has been suggested that skeletal muscle mitochondria play a key role in high fat (HF) diet induced insulin resistance (IR). Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle IR. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to IR. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of IR. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift toward mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and IR development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle IR and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle IR, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance.
Collapse
Affiliation(s)
- Rosalba Putti
- Department of Biology, University of Naples "Federico II," Naples, Italy
| | | | - Raffaella Sica
- Department of Biology, University of Naples "Federico II," Naples, Italy
| | - Lillà Lionetti
- Department of Biology, University of Naples "Federico II," Naples, Italy
| |
Collapse
|
21
|
Carson JA, Hardee JP, VanderVeen BN. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Semin Cell Dev Biol 2015; 54:53-67. [PMID: 26593326 DOI: 10.1016/j.semcdb.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed.
Collapse
Affiliation(s)
- James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA.
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| | - Brandon N VanderVeen
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| |
Collapse
|
22
|
Diaz B, Fuentes-Mera L, Tovar A, Montiel T, Massieu L, Martínez-Rodríguez H, Camacho A. Saturated lipids decrease mitofusin 2 leading to endoplasmic reticulum stress activation and insulin resistance in hypothalamic cells. Brain Res 2015; 1627:80-9. [DOI: 10.1016/j.brainres.2015.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/23/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023]
|
23
|
Jheng HF, Huang SH, Kuo HM, Hughes MW, Tsai YS. Molecular insight and pharmacological approaches targeting mitochondrial dynamics in skeletal muscle during obesity. Ann N Y Acad Sci 2015; 1350:82-94. [PMID: 26301786 DOI: 10.1111/nyas.12863] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Obesity-associated insulin resistance is the major characteristic of the early stage of metabolic syndrome. A decline in mitochondrial function plays a role in the development of insulin resistance in obesity and type 2 diabetes. Accumulating data reveal that mitochondrial dynamics, the balance between mitochondrial fusion and fission, are an important factor in the maintenance of mitochondrial function. Thus, the mechanisms underlying the regulation of mitochondrial dynamics in obesity deserve further investigation. This review describes an overview of mitochondrial fusion and fission machineries, and discusses the mechanistic and functional aspects of mitochondrial dynamics, with a focus on skeletal muscle in obesity. Finally, we discuss current pharmacological approaches of targeting mitochondrial dynamics. Elucidating the role of mitochondrial dynamics in skeletal muscle afflicted by obesity may provide not only important clues in understanding muscle insulin resistance, but also new therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Michael W Hughes
- Institute of Clinical Medicine.,International Research Center of Wound Repair and Regeneration
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| |
Collapse
|
24
|
Hsu WH, Lee BH, Pan TM. Leptin-induced mitochondrial fusion mediates hepatic lipid accumulation. Int J Obes (Lond) 2015; 39:1750-6. [PMID: 26119995 DOI: 10.1038/ijo.2015.120] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/02/2015] [Accepted: 06/22/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Leptin alleviates metabolic conditions such as insulin resistance and obesity, although the precise mechanism of action is unclear. Mitochondrial fusion/fission states affect energy balance, but the association between mitochondrial fusion and lipid metabolism is also unknown. The aim of this study was to determine whether mitochondrial fusion/fission state regulates lipid accumulation and to understand the role of leptin in mitochondrial function and its mechanism of action in metabolic regulation. METHODS Primary mouse hepatocytes were isolated from C57BL/6J mice and treated with leptin (25 ng ml(-1)) for 3 days before determinations of mitochondrial morphology and fatty acid accumulation. Hyperglycemia in C57BL/6J mice was induced by providing a 30% fructose-rich diet (FRD) for 6 months, followed by intraperitoneal injections of leptin (1 mg kg(-1) per body weight) for 6 weeks (twice per week). RESULTS Leptin triggered mitochondrial fusion and alleviated high glucose-induced fatty acid accumulation in primary hepatocytes by promoting mitochondrial fusion-associated transcription factor peroxisome proliferative-activated receptor-α and co-activator peroxisome proliferative-activated receptor-γ co-activator (PGC)-1α. In turn, these activate the fusion protein mitofusin 1 (Mfn-1). RNA silencing of Mfn-1 or PGC-1 blocked the inhibitory effect of leptin. Leptin treatment also elevated liver Mfn-1 and PGC-1α and improved lipid profiles in FRD mice. CONCLUSIONS Mitochondrial fusion has a critical role in alleviating hepatic fatty acid accumulation. Leptin switches mitochondrial morphology via a PGC-1α-dependent pathway to improve hyperlipidemia.
Collapse
Affiliation(s)
- W-H Hsu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Basic Medical Sciences, College of Veterinary Medicine, Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - B-H Lee
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Basic Medical Sciences, College of Veterinary Medicine, Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - T-M Pan
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Zhang Y, Zhao YP, Gao YF, Fan ZM, Liu MY, Cai XY, Xia ZK, Gao CL. Silencing miR-106b improves palmitic acid-induced mitochondrial dysfunction and insulin resistance in skeletal myocytes. Mol Med Rep 2015; 11:3834-41. [PMID: 25529328 DOI: 10.3892/mmr.2014.3124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNA‑106b (miR‑106b) is reported to correlate closely with skeletal muscle insulin resistance. In the current study the effect of miR‑106b on palmitic acid (PA)‑induced mitochondrial dysfunction and insulin resistance was investigated in C2C12 myotubes via the silencing of miR‑106b. MiR‑106b expression was increased under PA treatment, while miR‑106b loss of function improved insulin sensitivity by upregulating its target mitofusin‑2 (Mfn2) in C2C12 myocytes. Furthermore, miR‑106b loss of function partly improved mitochondrial morphological lesions and increased the levels of mitochondial DNA and intracellular adenosine triphosphate that had been impaired by PA exposure in C2C12 myocytes. MiR‑106b loss of function attenuated the levels of intracellular reactive oxygen species (ROS), and upregulated the expression levels of the estrogen‑related receptor (ERR)‑α/peroxisome proliferative activated receptor γ coactivator (PGC)‑1α/Mfn2 axis under PA exposure. In addition, miR‑106b negatively regulated skeletal muscle mitochondrial function and insulin sensitivity under PA‑induced insulin resistance by targeting Mfn2, which may be associated with reduced ROS and upregulation of the ERR‑α/PGC‑1α/Mfn2 axis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Ya-Ping Zhao
- Department of Pediatrics, The 82nd Hospital of the People's Liberation Army, Huai'an, Jiangsu 223001, P.R. China
| | - Yuan-Fu Gao
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Zhong-Min Fan
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Meng-Yuan Liu
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Xiao-Yi Cai
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Zheng-Kun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Chun-Lin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
26
|
Pant M, Sopariwala DH, Bal NC, Lowe J, Delfín DA, Rafael-Fortney J, Periasamy M. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy. PLoS One 2015; 10:e0123875. [PMID: 25859846 PMCID: PMC4393257 DOI: 10.1371/journal.pone.0123875] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/23/2015] [Indexed: 12/02/2022] Open
Abstract
The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.
Collapse
Affiliation(s)
- Meghna Pant
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
| | - Danesh H. Sopariwala
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
| | - Naresh C. Bal
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
| | - Jeovanna Lowe
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Dawn A. Delfín
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jill Rafael-Fortney
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Muthu Periasamy
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ryu SW, Han EC, Yoon J, Choi C. The mitochondrial fusion-related proteins Mfn2 and OPA1 are transcriptionally induced during differentiation of bone marrow progenitors to immature dendritic cells. Mol Cells 2015; 38:89-94. [PMID: 25387754 PMCID: PMC4314123 DOI: 10.14348/molcells.2015.2285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 02/04/2023] Open
Abstract
The shape and activity of mitochondria are tightly regulated by fusion and fission processes that are essential for maintaining normal cellular function. However, little is known about the involvement of mitochondrial dynamics in the development of the immune system. In this study, we demonstrate that mitochondrial dynamics play a role in the differentiation and migration of immature dendritic cells (imDCs). We show that mitochondrial elongation is induced during GM-CSF-stimulated differentiation of bone marrow progenitors to imDCs accompanied by upregulation of mitochondrial fusion proteins. These processes precede the changes in mitochondrial morphology and connectivity that occur during differentiation. Mfn2 and OPA1, but not Mfn1, are transcriptionally upregulated during differentiation; however, knockdown of Mfn2 and OPA1 does not induce any change in expression of CD11c, CDC80, or CD86. Notably, knockdown of Mfn2 or OPA1 by siRNA in imDCs significantly reduces CCR7 expression and CCL19-mediated migration. These results suggest that the mitochondrial fusion-related proteins Mfn2 and OPA1 are upregulated during bone marrow progenitor differentiation and promote the migration of imDCs by regulating the expression of CCR7.
Collapse
Affiliation(s)
- Seung-Wook Ryu
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
- KI for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Eun Chun Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Jonghee Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Chulhee Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
- KI for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| |
Collapse
|
28
|
The Emerging Role of MitomiRs in the Pathophysiology of Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 888:123-54. [DOI: 10.1007/978-3-319-22671-2_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Borengasser SJ, Faske J, Kang P, Blackburn ML, Badger TM, Shankar K. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring. Physiol Genomics 2014; 46:841-50. [PMID: 25336449 DOI: 10.1152/physiolgenomics.00059.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The proportion of pregnant women who are obese at conception continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are maternally inherited, and we have previously shown impaired mitochondrial function in rat offspring exposed to maternal obesity in utero. Mitochondrial health is maintained by mitochondrial dynamics, or the processes of fusion and fission, which serve to repair damaged mitochondria, remove irreparable mitochondria, and maintain mitochondrial morphology. An imbalance between fusion and fission has been associated with obesity, insulin resistance, and reproduction complications. In the present study, we examined the influence of maternal obesity and postweaning high-fat diet (HFD) on key regulators of mitochondrial fusion and fission in rat offspring at important developmental milestones which included postnatal day (PND)35 (2 wk HFD) and PND130 (∼16 wk HFD). Our results indicate HFD-fed offspring had reduced mRNA expression of presenilin-associated rhomboid-like (PARL), optic atrophy (OPA)1, mitofusin (Mfn)1, Mfn2, fission (Fis)1, and nuclear respiratory factor (Nrf)1 at PND35, while OPA1 and Mfn2 remained decreased at PND130. Putative transcriptional regulators of mitochondrial dynamics were reduced in rat placenta and offspring liver and skeletal muscle [peroxisome proliferator-activated receptor gamma coactivator (PGC1)α, PGC1β, and estrogen-related receptor (ERR)α], consistent with indirect calorimetry findings revealing reduced energy expenditure and impaired fat utilization. Overall, maternal obesity detrimentally alters mitochondrial targets that may contribute to impaired mitochondrial health and increased obesity susceptibility in later life.
Collapse
Affiliation(s)
- Sarah J Borengasser
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer Faske
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; and
| | - Ping Kang
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; and
| | | | - Thomas M Badger
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
30
|
Duarte FV, Palmeira CM, Rolo AP. The Role of microRNAs in Mitochondria: Small Players Acting Wide. Genes (Basel) 2014; 5:865-86. [PMID: 25264560 PMCID: PMC4276918 DOI: 10.3390/genes5040865] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that act as post-transcriptional gene regulators. They can inhibit target protein-coding genes, through repressing messenger RNA (mRNA) translation or promoting their degradation. miRNAs were initially found to be originated from nuclear genome and exported to cytosol; where they exerted most of their actions. More recently, miRNAs were found to be present specifically in mitochondria; even originated there from mitochondrial DNA, regulating in a direct manner genes coding for mitochondrial proteins, and consequently mitochondrial function. Since miRNAs are recognized as major players in several biological processes, they are being considered as a key to better understand, explain, and probably prevent/cure not only the pathogenesis of multifactorial diseases but also mitochondrial dysfunction and associated diseases. Here we review some of the molecular mechanisms purported for miRNA actions in several biological processes, particularly the miRNAs acting in mitochondria or in mitochondria-related mechanisms.
Collapse
Affiliation(s)
- Filipe V Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Carlos M Palmeira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Anabela P Rolo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
31
|
Demine S, Reddy N, Renard P, Raes M, Arnould T. Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites 2014; 4:831-78. [PMID: 25257998 PMCID: PMC4192695 DOI: 10.3390/metabo4030831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic.
Collapse
Affiliation(s)
- Stéphane Demine
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Nagabushana Reddy
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| |
Collapse
|
32
|
Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6. [PMID: 25988147 PMCID: PMC4428494 DOI: 10.3389/fmolb.2014.00006] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/06/2014] [Indexed: 12/14/2022] Open
Abstract
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida Tampa, FL, USA ; Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia ; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
33
|
Mitofusin 2 deficiency leads to oxidative stress that contributes to insulin resistance in rat skeletal muscle cells. Mol Biol Rep 2014; 41:6975-83. [DOI: 10.1007/s11033-014-3584-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/05/2014] [Indexed: 01/12/2023]
|
34
|
Abstract
Oxidative stress and inflammation underpin most diseases; their mechanisms are inextricably linked. Chronic inflammation is associated with oxidation, anti-inflammatory cascades are linked to decreased oxidation, increased oxidative stress triggers inflammation, and redox balance inhibits the inflammatory cellular response. Whether or not oxidative stress and inflammation represent the cause or consequence of cellular pathology, they contribute significantly to the pathogenesis of noncommunicable diseases (NCD). The incidence of obesity and other related metabolic disturbances are increasing, as are age-related diseases due to a progressively aging population. Relationships between oxidative stress, inflammatory signaling, and metabolism are, in the broad sense of energy transformation, being increasingly recognized as part of the problem in NCD. In this chapter, we summarize the pathologic consequences of an imbalance between circulating and cellular paraoxonases, the system for scavenging excessive reactive oxygen species and circulating chemokines. They act as inducers of migration and infiltration of immune cells in target tissues as well as in the pathogenesis of disease that perturbs normal metabolic function. This disruption involves pathways controlling lipid and glucose homeostasis as well as metabolically driven chronic inflammatory states that encompass several response pathways. Dysfunction in the endoplasmic reticulum and/or mitochondria represents an important feature of chronic disease linked to oxidation and inflammation seen as self-reinforcing in NCD. Therefore, correct management requires a thorough understanding of these relationships and precise interpretation of laboratory test results.
Collapse
|
35
|
Song A, Wang C, Ren L, Zhao J. Swimming improves high-fat induced insulin resistance by regulating lipid and energy metabolism and the insulin pathway in rats. Int J Mol Med 2014; 33:1671-9. [PMID: 24715199 DOI: 10.3892/ijmm.2014.1738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022] Open
Abstract
In this study, we aimed to determine the preventive and therapeutic effects of swimming on insulin resistance in high-fat-fed rats. Sprague-Dawley rats were divided into 4 groups and fed for 8 weeks as follows: i) the control (Con) group fed a control diet; ii) the high-fat (HF) group fed a high-fat diet; iii) the treatment (ST) group fed a high-fat diet and trained with swimming from the 4th week; and iv) the prevention (SP) group fed a high-fat diet and trained with swimming from the 1st week of the experiment. A hyperinsulinemic-euglycemic clamp was used to evaluate the insulin sensitivity of the rats. The ultrastructure of the liver cells was observed by electron microscopy. Hepatic lipid accumulation was observed by Oil Red O staining. Quantitative RT-PCR and western blot analysis were performed to detect the expression of proteins related to lipid metabolism, energy metabolism and insulin signaling transduction. After 8 weeks of feeding, compared with the Con group, the glucose infusion rate (GIR) was significantly decreased; a significant lipid accumulation was observed in the liver, while the ultrastructure of the liver cells was damaged in the HF group. Proteins related to lipid metabolism in the liver and skeletal muscle, including FAT and FABP were upregulated, while CPT1 and PPAR levels were downregulated in the HF group. The levels of the energy-metabolism-related molecules, AMPKα2, PGC1α, PGC1β and MFN2 were downregulated in skeletal muscle in the HF group. The expression levels of insulin signaling transduction molecules, INSR, IRS1, PI3K/p85, AKT2 and GLUT4, as well as the phosphorylation levels of INSR, IRS1, PI3K/p85 and AKT2 were lower in skeletal muscles in the HF rats. Compared with HF group, the GIR levels were significantly increased in the ST and SP groups. Lipid accumulation and damage to the ultrastructure of the liver cells were improved in both groups. The expression of molecules related to lipid metabolism in the liver and skeletal muscle, energy metabolism in skeletal muscle and insulin signaling transduction were all markedly upregulated. In conclusion, swimming can effectively improve insulin sensitivity and even prevent insulin resistance by affecting the expression of proteins related to lipid metabolism, energy metabolism and insulin signaling transduction in rats fed a high-fat diet.
Collapse
Affiliation(s)
- An Song
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chao Wang
- Department of Endocrinology, General Hospital of Hebei, Shijiazhuang, Hebei 050051, P.R. China
| | - Luping Ren
- Department of Endocrinology, General Hospital of Hebei, Shijiazhuang, Hebei 050051, P.R. China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
36
|
Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLoS One 2014; 9:e92810. [PMID: 24658162 PMCID: PMC3962456 DOI: 10.1371/journal.pone.0092810] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022] Open
Abstract
In most cells, mitochondria are highly dynamic organelles that constantly fuse, divide and move. These processes allow mitochondria to redistribute in a cell and exchange contents among the mitochondrial population, and subsequently repair damaged mitochondria. However, most studies on mitochondrial dynamics have been performed on cultured cell lines and neurons, and little is known about whether mitochondria are dynamic organelles in vivo, especially in the highly specialized and differentiated adult skeletal muscle cells. Using mitochondrial matrix-targeted photoactivatable green fluorescent protein (mtPAGFP) and electroporation methods combined with confocal microscopy, we found that mitochondria are dynamic in skeletal muscle in vivo, which enables mitochondria exchange contents within the whole mitochondrial population through nanotunneling-mediated mitochondrial fusion. Mitochondrial network promotes rapid transfer of mtPAGFP within the cell. More importantly, the dynamic behavior was impaired in high-fat diet (HFD)-induced obese mice, accompanying with disturbed mitochondrial respiratory function and decreased ATP content in skeletal muscle. We further found that proteins controlling mitochondrial fusion MFN1 and MFN2 but not Opa1 were decreased and proteins governing mitochondrial fission Fis1 and Drp1 were increased in skeletal muscle of HFD-induced mice when compared to normal diet-fed mice. Altogether, we conclude that mitochondria are dynamic organelles in vivo in skeletal muscle, and it is essential in maintaining mitochondrial respiration and bioenergetics.
Collapse
|
37
|
Epigallocatechin gallate counteracts oxidative stress in docosahexaenoxic acid-treated myocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:783-91. [PMID: 24486445 DOI: 10.1016/j.bbabio.2014.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 02/08/2023]
Abstract
Skeletal muscle is a key organ of mammalian energy metabolism, and its mitochondria are multifunction organelles that are targets of dietary bioactive compounds. The goal of this work was to examine the regulation of mitochondrial dynamics, functionality and cell energy parameters using docosahexaenoic acid (DHA), epigallocatechin gallate (EGCG) and a combination of both in L6 myocytes. Compounds (at 25μM) were incubated for 4h. Cells cultured with DHA displayed less oxygen consumption with higher ADP/ATP ratio levels concomitant with downregulation of Cox and Ant1 gene expression. The disruption of energetic homeostasis by DHA, increases intracellular reactive oxygen species (ROS) levels and decreases mitochondrial membrane potential. The defence mechanism to counteract the excess of ROS production was by the upregulation of Ucp2, Ucp3 and MnSod gene expression. Moreover myocytes cultured with DHA had a higher mitochondrial mass with a higher proportion of large and elongated mitochondria, whereas the fission genes Drp1 and Fiss1 and the fusion gene Mfn2 were downregulated. In myocytes co-incubated with DHA and EGCG, ROS levels and the adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio were similar to untreated myocytes and the decrease of oxygen consumption, higher mitochondrial mass and the overexpression of Ucp2 and Ucp3 genes were similar to the DHA-treated cells with also a higher amount of mitochondrial deoxyribonucleic acid (DNA), and reduced Drp1 and Fiss1 gene expression levels. In conclusion the addition of EGCG to DHA returned the cells to the control conditions in terms of mitochondrial morphology, energy and redox status, which were unbalanced in the DHA-treated myocytes.
Collapse
|
38
|
del Campo A, Parra V, Vásquez-Trincado C, Gutiérrez T, Morales PE, López-Crisosto C, Bravo-Sagua R, Navarro-Marquez MF, Verdejo HE, Contreras-Ferrat A, Troncoso R, Chiong M, Lavandero S. Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake. Am J Physiol Endocrinol Metab 2014; 306:E1-E13. [PMID: 24085037 DOI: 10.1152/ajpendo.00146.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.
Collapse
Affiliation(s)
- Andrea del Campo
- Advanced Center for Chronic Diseases (ACCDiSCEMC, Facultad Ciencias Químicas y Farmacéuticas y Facultad Medicina, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Yang L, Gao YF, Fan ZM, Cai XY, Liu MY, Guo XR, Gao CL, Xia ZK. MicroRNA-106b induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting mitofusin-2. Mol Cell Endocrinol 2013; 381:230-40. [PMID: 23954742 DOI: 10.1016/j.mce.2013.08.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/16/2022]
Abstract
MicroRNA-106b (miR-106b) is reported to correlate closely with skeletal muscle insulin resistance and type 2 diabetes. The aim of this study was to identify an mRNA targeted by miR-106b which regulates skeletal muscle insulin sensitivity. MiR-106b was found to target the 3' untranslated region (3' UTR) of mitofusin-2 (Mfn2) through miR-106b binding sites and to downregulate Mfn2 protein abundance at the post-transcriptional level by luciferase activity assay combined with mutational analysis and immunoblotting. Overexpression of miR-106b resulted in mitochondrial dysfunction and insulin resistance in C2C12 myotubes. MiR-106b was increased in insulin-resistant cultured C2C12 myotubes induced by TNF-α, and accompanied by increasing Mfn2 level, miR-106b loss of function improved mitochondrial function and insulin sensitivity impaired by TNF-α in C2C12 myotubes. In addition, both overexpression and downregulation of miR-106b upregulated peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and estrogen-related receptor (ERR)-α expression. MiR-106b targeted Mfn2 and regulated skeletal muscle mitochondrial function and insulin sensitivity. Therefor, Inhibition of miR-106b may be a potential new strategy for treating insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatrics, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 2013; 19:1496-504. [PMID: 24141423 DOI: 10.1038/nm.3363] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/29/2013] [Indexed: 12/11/2022]
Abstract
Sirtuin 1 (Sirt1), a NAD(+)-regulated deacetylase with numerous known positive effects on cellular and whole-body metabolism, is expressed in the renal cortex and medulla. It is known to have protective effects against age-related disease, including diabetes. Here we investigated the protective role of Sirt1 in diabetic renal damage. We found that Sirt1 in proximal tubules (PTs) was downregulated before albuminuria occurred in streptozotocin-induced or obese (db/db) diabetic mice. PT-specific SIRT1 transgenic and Sirt1 knockout mice showed prevention and aggravation of the glomerular changes that occur in diabetes, respectively, and nondiabetic knockout mice exhibited albuminuria, suggesting that Sirt1 in PTs affects glomerular function. Downregulation of Sirt1 and upregulation of the tight junction protein Claudin-1 by SIRT1-mediated epigenetic regulation in podocytes contributed to albuminuria. We did not observe these phenomena in 5/6 nephrectomized mice. We also demonstrated retrograde interplay from PTs to glomeruli using nicotinamide mononucleotide (NMN) from conditioned medium, measurement of the autofluorescence of photoactivatable NMN and injection of fluorescence-labeled NMN. In human subjects with diabetes, the levels of SIRT1 and Claudin-1 were correlated with proteinuria levels. These results suggest that Sirt1 in PTs protects against albuminuria in diabetes by maintaining NMN concentrations around glomeruli, thus influencing podocyte function.
Collapse
|
41
|
Maresca A, la Morgia C, Caporali L, Valentino ML, Carelli V. The optic nerve: a "mito-window" on mitochondrial neurodegeneration. Mol Cell Neurosci 2013; 55:62-76. [PMID: 22960139 PMCID: PMC3629569 DOI: 10.1016/j.mcn.2012.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/27/2012] [Accepted: 08/06/2012] [Indexed: 01/16/2023] Open
Abstract
Retinal ganglion cells (RGCs) project their long axons, composing the optic nerve, to the brain, transmitting the visual information gathered by the retina, ultimately leading to formed vision in the visual cortex. The RGC cellular system, representing the anterior part of the visual pathway, is vulnerable to mitochondrial dysfunction and optic atrophy is a very frequent feature of mitochondrial and neurodegenerative diseases. The start of the molecular era of mitochondrial medicine, the year 1988, was marked by the identification of a maternally inherited form of optic atrophy, Leber's hereditary optic neuropathy, as the first disease due to mitochondrial DNA point mutations. The field of mitochondrial medicine has expanded enormously over the last two decades and many neurodegenerative diseases are now known to have a primary mitochondrial etiology or mitochondrial dysfunction plays a relevant role in their pathogenic mechanism. Recent technical advancements in neuro-ophthalmology, such as optical coherence tomography, prompted a still ongoing systematic re-investigation of retinal and optic nerve involvement in neurodegenerative disorders. In addition to inherited optic neuropathies, such as Leber's hereditary optic neuropathy and dominant optic atrophy, and in addition to the syndromic mitochondrial encephalomyopathies or mitochondrial neurodegenerative disorders such as some spinocerebellar ataxias or familial spastic paraparesis and other disorders, we draw attention to the involvement of the optic nerve in classic age-related neurodegenerative disorders such as Parkinson and Alzheimer disease. We here provide an overview of optic nerve pathology in these different clinical settings, and we review the possible mechanisms involved in the pathogenesis of optic atrophy. This may be a model of general value for the field of neurodegeneration. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
| | | | | | | | - Valerio Carelli
- Corresponding author at: IRCCS Institute of Neurological Sciences of Bologna, Department of Neurological Sciences, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy. Fax: + 39 051 2092751.
| |
Collapse
|
42
|
Effect of ethyl pyruvate on skeletal muscle metabolism in rats fed on a high fat diet. Nutrients 2013; 5:2372-83. [PMID: 23857218 PMCID: PMC3738978 DOI: 10.3390/nu5072372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/09/2013] [Accepted: 06/14/2013] [Indexed: 01/27/2023] Open
Abstract
Impaired mitochondrial capacity may be implicated in the pathology of chronic metabolic diseases. To elucidate the effect of ethyl pyruvate supplementation on skeletal muscles metabolism we examined changes in activities of mitochondrial and antioxidant enzymes, as well as sulfhydryl groups oxidation (an indirect marker of oxidative stress) during the development of obesity. After 6 weeks feeding of control or high fat diet, Wistar rats were divided into four groups: control diet, control diet and ethyl pyruvate, high fat diet, and high fat diet and ethyl pyruvate. Ethyl pyruvate was administered as 0.3% solution in drinking water, for the following 6 weeks. High fat diet feeding induced the increase of activities 3-hydroxyacylCoA dehydrogenase, citrate synthase, and fumarase. Moreover, higher catalase and superoxide dismutase activities, as well as sulfhydryl groups oxidation, were noted. Ethyl pyruvate supplementation did not affect the mitochondrial enzymes’ activities, but induced superoxide dismutase activity and sulfhydryl groups oxidation. All of the changes were observed in soleus muscle, but not in extensor digitorum longus muscle. Additionally, positive correlations between fasting blood insulin concentration and activities of catalase (p = 0.04), and superoxide dismutase (p = 0.01) in soleus muscle were noticed. Prolonged ethyl pyruvate consumption elevated insulin concentration, which may cause modifications in oxidative type skeletal muscles.
Collapse
|
43
|
Erdogan B, Bosompem A, Peng D, Han L, Smith E, Kennedy ME, Alford CE, Wu H, Zhao Z, Mosse CA, El-Rifai W, Kim AS. Methylation of promoters of microRNAs and their host genes in myelodysplastic syndromes. Leuk Lymphoma 2013; 54:2720-7. [PMID: 23547841 DOI: 10.3109/10428194.2013.790542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myelodysplastic syndromes (MDS) are a group of hematopoietic malignancies characterized by ineffective hematopoiesis. Recently, we identified MDS-associated microRNAs (miRNAs) that are down-regulated in MDS. This study examines possible explanations for that observed down-regulation of miRNA expression in MDS. Since genomic losses are insufficient to explain the down-regulation of all our MDS-associated miRNAs, we explored other avenues. We demonstrate that these miRNAs are predominantly intragenic, and that, in many cases, they and their host genes are expressed in a similar pattern during myeloid maturation, suggesting their co-regulation. This co-regulation is further supported by the down-regulation of several of the host genes in MDS and increased methylation of the shared promoters of several miRNAs and their respective host genes. These studies identify a role of hypermethylation of miRNA promoters in the down-regulation of MDS-associated miRNAs, unifying research on miRNAs in MDS and epigenetic regulation in MDS into a common pathway.
Collapse
Affiliation(s)
- Begum Erdogan
- Department of Pathology, Immunology, and Microbiology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gan KX, Wang C, Chen JH, Zhu CJ, Song GY. Mitofusin-2 ameliorates high-fat diet-induced insulin resistance in liver of rats. World J Gastroenterol 2013; 19:1572-1581. [PMID: 23538485 PMCID: PMC3602474 DOI: 10.3748/wjg.v19.i10.1572] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 11/13/2012] [Accepted: 01/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of mitofusin-2 (MFN2) on insulin sensitivity and its potential targets in the liver of rats fed with a high-fat diet (HFD).
METHODS: Rats were fed with a control or HFD for 4 or 8 wk, and were then infected with a control or an MFN2 expressing adenovirus once a week for 3 wk starting from the 9th wk. Blood glucose (BG), plasma insulin and insulin sensitivity of rats were determined at end of the 4th and 8th wk, and after treatment with different amounts of MFN2 expressing adenovirus (108, 109 or 1010 vp/kg body weight). BG levels were measured by Accu-chek Active Meter. Plasma insulin levels were analyzed by using a Rat insulin enzyme-linked immunosorbent assay kit. Insulin resistance was evaluated by measuring the glucose infusion rate (GIR) using a hyperinsulinemic euglycemic clamp technique. The expression or phosphorylation levels of MFN2 and essential molecules in the insulin signaling pathway, such as insulin receptor (INSR), insulin receptor substrate 2 (IRS2), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT2) and glucose transporter type 2 (GLUT2) was assayed by quantitative real-time polymerase chain reaction and Western-blotting.
RESULTS: After the end of 8 wk, the body weight of rats receiving the normal control diet (ND) and the HFD was not significantly different (P > 0.05). Compared with the ND group, GIR in the HFD group was significantly decreased (P < 0.01), while the levels of BG, triglycerides (TG), total cholesterol (TC) and insulin in the HFD group were significantly higher than those in the ND group (P < 0.05). Expression of MFN2 mRNA and protein in liver of rats was significantly down-regulated in the HFD group (P < 0.01) after 8 wk of HFD feeding. The expression of INSR, IRS2 and GLUT2 were down-regulated markedly (P < 0.01). Although there were no changes in PI3K-P85 and AKT2 expression, their phosphorylation levels were decreased significantly (P < 0.01). After intervention with MFN2 expressing adenovirus for 3 wk, the expression of MFN2 mRNA and protein levels were up-regulated (P < 0.01). There was no difference in body weight of rats between the groups. The levels of BG, TG, TC and insulin in rats were lower than those in the Ad group (P < 0.05), but GIR in rats infected with Ad-MFN2 was significantly increased (P < 0.01), compared with the Ad group. The expression of INSR, IRS2 and GLUT2 was increased, while phosphorylation levels of PI3K-P85 and AKT2 were increased (P < 0.01), compared with the Ad group.
CONCLUSION: HFDs induce insulin resistance, and this can be reversed by MFN2 over-expression targeting the insulin signaling pathway.
Collapse
|
45
|
Hernández-Aguilera A, Rull A, Rodríguez-Gallego E, Riera-Borrull M, Luciano-Mateo F, Camps J, Menéndez JA, Joven J. Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm 2013; 2013:135698. [PMID: 23533299 PMCID: PMC3603328 DOI: 10.1155/2013/135698] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity is not necessarily a predisposing factor for disease. It is the handling of fat and/or excessive energy intake that encompasses the linkage of inflammation, oxidation, and metabolism to the deleterious effects associated with the continuous excess of food ingestion. The roles of cytokines and insulin resistance in excessive energy intake have been studied extensively. Tobacco use and obesity accompanied by an unhealthy diet and physical inactivity are the main factors that underlie noncommunicable diseases. The implication is that the management of energy or food intake, which is the main role of mitochondria, is involved in the most common diseases. In this study, we highlight the importance of mitochondrial dysfunction in the mutual relationships between causative conditions. Mitochondria are highly dynamic organelles that fuse and divide in response to environmental stimuli, developmental status, and energy requirements. These organelles act to supply the cell with ATP and to synthesise key molecules in the processes of inflammation, oxidation, and metabolism. Therefore, energy sensors and management effectors are determinants in the course and development of diseases. Regulating mitochondrial function may require a multifaceted approach that includes drugs and plant-derived phenolic compounds with antioxidant and anti-inflammatory activities that improve mitochondrial biogenesis and act to modulate the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Anna Rull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Marta Riera-Borrull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Javier A. Menéndez
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avda de Francia s/n, 1707 Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| |
Collapse
|
46
|
Mitochondrial metabolism in aging: effect of dietary interventions. Ageing Res Rev 2013; 12:22-8. [PMID: 22504406 DOI: 10.1016/j.arr.2012.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 01/09/2023]
Abstract
Mitochondrial energy metabolism and mitochondrially-derived oxidants have, for many years, been recognized as central toward the effects of aging. A body of recent work has focused on the relationship between mitochondrial redox state, aging and dietary interventions that affect lifespan. These studies have uncovered mechanisms through which diet alters mitochondrial metabolism, in addition to determining how these changes affect oxidant generation, which in itself has an impact on mitochondrial function in aged animals. Many of the studies conducted to date, however, are correlative, and it remains to be determined which of the energy metabolism and redox modifications induced by diet are central toward lifespan extent. Furthermore, dietary interventions used for laboratory animals are often unequal, and of difficult comparison with humans (for whom, by nature, no long-term sound scientific information on the effects of diet on mitochondrial redox state and aging is available). We hope future studies will be able to mechanistically characterize which energy metabolism and redox changes promoted by dietary interventions have positive lifespan effects, and translate these findings into human prevention and treatment of age-related disease.
Collapse
|
47
|
Increased insulin sensitivity and distorted mitochondrial adaptations during muscle unloading. Int J Mol Sci 2012; 13:16971-85. [PMID: 23443131 PMCID: PMC3546734 DOI: 10.3390/ijms131216971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 11/17/2022] Open
Abstract
We aimed to further investigate mitochondrial adaptations to muscle disuse and the consequent metabolic disorders. Male rats were submitted to hindlimb unloading (HU) for three weeks. Interestingly, HU increased insulin sensitivity index (ISI) and decreased blood level of triglyceride and insulin. In skeletal muscle, HU decreased expression of pyruvate dehydrogenase kinase 4 (PDK4) and its protein level in mitochondria. HU decreased mtDNA content and mitochondrial biogenesis biomarkers. Dynamin-related protein (Drp1) in mitochondria and Mfn2 mRNA level were decreased significantly by HU. Our findings provide more extensive insight into mitochondrial adaptations to muscle disuse, involving the shift of fuel utilization towards glucose, the decreased mitochondrial biogenesis and the distorted mitochondrial dynamics.
Collapse
|
48
|
Whittington HJ, Hall AR, McLaughlin CP, Hausenloy DJ, Yellon DM, Mocanu MM. Chronic Metformin Associated Cardioprotection Against Infarction: Not Just a Glucose Lowering Phenomenon. Cardiovasc Drugs Ther 2012. [DOI: 10.1007/s10557-012-6425-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Wang D, Wang J, Bonamy GMC, Meeusen S, Brusch RG, Turk C, Yang P, Schultz PG. A small molecule promotes mitochondrial fusion in mammalian cells. Angew Chem Int Ed Engl 2012; 51:9302-5. [PMID: 22907892 DOI: 10.1002/anie.201204589] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Danling Wang
- Department of Chemistry, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang D, Wang J, Bonamy GMC, Meeusen S, Brusch RG, Turk C, Yang P, Schultz PG. A Small Molecule Promotes Mitochondrial Fusion in Mammalian Cells. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|