1
|
Hou W, Watson C, Cecconie T, Bolaki MN, Brady JJ, Lu Q, Gatto GJ, Day TA. Biochemical and functional characterization of the p.A165T missense variant of mitochondrial amidoxime-reducing component 1. J Biol Chem 2024; 300:107353. [PMID: 38723751 PMCID: PMC11190489 DOI: 10.1016/j.jbc.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Recent genome-wide association studies have identified a missense variant p.A165T in mitochondrial amidoxime-reducing component 1 (mARC1) that is strongly associated with protection from all-cause cirrhosis and improved prognosis in nonalcoholic steatohepatitis. The precise mechanism of this protective effect is unknown. Substitution of alanine 165 with threonine is predicted to affect mARC1 protein stability and to have deleterious effects on its function. To investigate the mechanism, we have generated a knock-in mutant mARC1 A165T and a catalytically dead mutant C273A (as a control) in human hepatoma HepG2 cells, enabling characterization of protein subcellular distribution, stability, and biochemical functions of the mARC1 mutant protein expressed from its endogenous locus. Compared to WT mARC1, we found that the A165T mutant exhibits significant mislocalization outside of its traditional location anchored in the mitochondrial outer membrane and reduces protein stability, resulting in lower basal levels. We evaluated the involvement of the ubiquitin proteasome system in mARC1 A165T degradation and observed increased ubiquitination and faster degradation of the A165T variant. In addition, we have shown that HepG2 cells carrying the MTARC1 p.A165T variant exhibit lower N-reductive activity on exogenously added amidoxime substrates in vitro. The data from these biochemical and functional assays suggest a mechanism by which the MTARC1 p.A165T variant abrogates enzyme function which may contribute to its protective effect in liver disease.
Collapse
Affiliation(s)
- Wangfang Hou
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Christian Watson
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Ted Cecconie
- MEDDesign-NCE-MD SPMB US, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | - Quinn Lu
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Gregory J Gatto
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Fucho R, Solsona-Vilarrasa E, Torres S, Nuñez S, Insausti-Urkia N, Edo A, Calvo M, Bosch A, Martin G, Enrich C, García-Ruiz C, Fernandez-Checa JC. Zonal expression of StARD1 and oxidative stress in alcoholic-related liver disease. J Lipid Res 2023; 64:100413. [PMID: 37473919 PMCID: PMC10448177 DOI: 10.1016/j.jlr.2023.100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
Alcoholic-related liver disease (ALD) is one of the leading causes of chronic liver disease and morbidity. Unfortunately, the pathogenesis of ALD is still incompletely understood. StARD1 has emerged as a key player in other etiologies of chronic liver disease, and alcohol-induced liver injury exhibits zonal distribution. Here, we report that StARD1 is predominantly expressed in perivenous (PV) zone of liver sections from mice-fed chronic and acute-on-chronic ALD models compared to periportal (PP) area and is observed as early as 10 days of alcohol feeding. Ethanol and chemical hypoxia induced the expression of StARD1 in isolated primary mouse hepatocytes. The zonal-dependent expression of StARD1 resulted in the accumulation of cholesterol in mitochondria and increased lipid peroxidation in PV hepatocytes compared to PP hepatocytes, effects that were abrogated in PV hepatocytes upon hepatocyte-specific Stard1 KO mice. Transmission electron microscopy indicated differential glycogen and lipid droplets content between PP and PV areas, and alcohol feeding decreased glycogen content in both areas while increased lipid droplets content preferentially in PV zone. Moreover, transmission electron microscopy revealed that mitochondria from PV zone exhibited reduced length with respect to PP area, and alcohol feeding increased mitochondrial number, particularly, in PV zone. Extracellular flux analysis indicated lower maximal respiration and spared respiratory capacity in control PV hepatocytes that were reversed upon alcohol feeding. These findings reveal a differential morphology and functional activity of mitochondria between PP and PV hepatocytes following alcohol feeding and that StARD1 may play a key role in the zonal-dependent liver injury characteristic of ALD.
Collapse
Affiliation(s)
- Raquel Fucho
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Estel Solsona-Vilarrasa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Susana Nuñez
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Naroa Insausti-Urkia
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Albert Edo
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Maria Calvo
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Anna Bosch
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Gemma Martin
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Unit of Cell Biology, Departament of Biomedicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Center of Biomedical Research CELLEX, Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain.
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain; Department of Medicine, Keck School of Division of Gastrointestinal and Liver Disease, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Malnassy G, Keating CR, Gad S, Bridgeman B, Perera A, Hou W, Cotler SJ, Ding X, Choudhry M, Sun Z, Koleske AJ, Qiu W. Inhibition of Abelson Tyrosine-Protein Kinase 2 Suppresses the Development of Alcohol-Associated Liver Disease by Decreasing PPARgamma Expression. Cell Mol Gastroenterol Hepatol 2023; 16:685-709. [PMID: 37460041 PMCID: PMC10520367 DOI: 10.1016/j.jcmgh.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (ALD) represents a spectrum of alcohol use-related liver diseases. Outside of alcohol abstinence, there are currently no Food and Drug Administration-approved treatments for advanced ALD, necessitating a greater understanding of ALD pathogenesis and potential molecular targets for therapeutic intervention. The ABL-family proteins, including ABL1 and ABL2, are non-receptor tyrosine kinases that participate in a diverse set of cellular functions. We investigated the role of the ABL kinases in alcohol-associated liver disease. METHODS We used samples from patients with ALD compared with healthy controls to elucidate a clinical phenotype. We established strains of liver-specific Abl1 and Abl2 knockout mice and subjected them to the National Institute on Alcohol Abuse and Alcoholism acute-on-chronic alcohol feeding regimen. Murine samples were subjected to RNA sequencing, AST, Oil Red O staining, H&E staining, Western blotting, and quantitative polymerase chain reaction to assess phenotypic changes after alcohol feeding. In vitro modeling in HepG2 cells as well as primary hepatocytes from C57BL6/J mice was used to establish this mechanistic link of ALD pathogenesis. RESULTS We demonstrate that the ABL kinases are highly activated in ALD patient liver samples as well as in liver tissues from mice subjected to an alcohol feeding regimen. We found that the liver-specific knockout of Abl2, but not Abl1, attenuated alcohol-induced steatosis, liver injury, and inflammation. Subsequent RNA sequencing and gene set enrichment analyses of mouse liver tissues revealed that relative to wild-type alcohol-fed mice, Abl2 knockout alcohol-fed mice exhibited numerous pathway changes, including significantly decreased peroxisome proliferator activated receptor (PPAR) signaling. Further examination revealed that PPARγ, a previously identified regulator of ALD pathogenesis, was induced upon alcohol feeding in wild-type mice, but not in Abl2 knockout mice. In vitro analyses revealed that shRNA-mediated knockdown of ABL2 abolished the alcohol-induced accumulation of PPARγ as well as subsequent lipid accumulation. Conversely, forced overexpression of ABL2 resulted in increased PPARγ protein expression. Furthermore, we demonstrated that the regulation of hypoxia inducible factor 1 subunit alpha (HIF1α) by ABL2 is required for alcohol-induced PPARγ expression. Furthermore, treatment with ABL kinase inhibitors attenuated alcohol-induced PPARγ expression, lipid droplet formation, and liver injury. CONCLUSIONS On the basis of our current evidence, we propose that alcohol-induced ABL2 activation promotes ALD through increasing HIF1α and the subsequent PPARγ expression, and ABL2 inhibition may serve as a promising target for the treatment of ALD.
Collapse
Affiliation(s)
- Greg Malnassy
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Claudia R Keating
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Shaimaa Gad
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Bryan Bridgeman
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Scott J Cotler
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Mashkoor Choudhry
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|
4
|
Cáceres-Ayala C, Mira RG, Acuña MJ, Brandan E, Cerpa W, Rebolledo DL. Episodic Binge-like Ethanol Reduces Skeletal Muscle Strength Associated with Atrophy, Fibrosis, and Inflammation in Young Rats. Int J Mol Sci 2023; 24:ijms24021655. [PMID: 36675170 PMCID: PMC9861047 DOI: 10.3390/ijms24021655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
Binge Drinking (BD) corresponds to episodes of ingestion of large amounts of ethanol in a short time, typically ≤2 h. BD occurs across all populations, but young and sports-related people are especially vulnerable. However, the short- and long-term effects of episodic BD on skeletal muscle function have been poorly explored. Young rats were randomized into two groups: control and episodic Binge-Like ethanol protocol (BEP) (ethanol 3 g/kg IP, 4 episodes of 2-days ON-2-days OFF paradigm). Muscle function was evaluated two weeks after the last BEP episode. We found that rats exposed to BEP presented decreased muscle strength and increased fatigability, compared with control animals. Furthermore, we observed that skeletal muscle from rats exposed to BEP presented muscle atrophy, evidenced by reduced fiber size and increased expression of atrophic genes. We also observed that BEP induced fibrotic and inflammation markers, accompanied by mislocalization of nNOSµ and high levels of protein nitration. Our findings suggest that episodic binge-like ethanol exposure alters contractile capacity and increases fatigue by mechanisms involving atrophy, fibrosis, and inflammation, which remain for at least two weeks after ethanol clearance. These pathological features are common to several neuromuscular diseases and might affect muscle performance and health in the long term.
Collapse
Affiliation(s)
- Constanza Cáceres-Ayala
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - María José Acuña
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Waldo Cerpa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| | - Daniela L. Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| |
Collapse
|
5
|
Glutamine-dependent effects of nitric oxide on cancer cells subjected to hypoxia-reoxygenation. Nitric Oxide 2023; 130:22-35. [PMID: 36414197 DOI: 10.1016/j.niox.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Limited O2 availability can decrease essential processes in energy metabolism. However, cancers have developed distinct metabolic adaptations to these conditions. For example, glutaminolysis can maintain energy metabolism and hypoxia signaling. Additionally, it has been observed that nitric oxide (NO) possesses concentration-dependent, biphasic effects in cancer. NO has potent anti-tumor effects through modulating events such as angiogenesis and metastasis at low physiological concentrations and inducing cell death at higher concentrations. In this study, Ewing Sarcoma cells (A-673), MIA PaCa, and SKBR3 cells were treated with DetaNONOate (DetaNO) in a model of hypoxia (1% O2) and reoxygenation (21% O2). All 3 cell types showed NO-dependent inhibition of cellular O2 consumption which was enhanced as O2-tension decreased. L-Gln depletion suppressed the mitochondrial response to decreasing O2 tension in all 3 cell types and resulted in inhibition of Complex I activity. In A-673 cells the O2 tension dependent change in mitochondrial O2 consumption and increase in glycolysis was dependent on the presence of L-Gln. The response to hypoxia and Complex I activity were restored by α-ketoglutarate. NO exposure resulted in the A-673 cells showing greater sensitivity to decreasing O2 tension. Under conditions of L-Gln depletion, NO restored HIF-1α levels and the mitochondrial response to O2 tension possibly through the increase of 2-hydroxyglutarate. NO also resulted in suppression of cellular bioenergetics and further inhibition of Complex I which was not rescued by α-ketoglutarate. Taken together these data suggest that NO modulates the mitochondrial response to O2 differentially in the absence and presence of L-Gln. These data suggest a combination of metabolic strategies targeting glutaminolysis and Complex I in cancer cells.
Collapse
|
6
|
Simon L, Molina PE. Cellular Bioenergetics: Experimental Evidence for Alcohol-induced Adaptations. FUNCTION 2022; 3:zqac039. [PMID: 36120487 PMCID: PMC9469757 DOI: 10.1093/function/zqac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023] Open
Abstract
At-risk alcohol use is associated with multisystemic effects and end-organ injury, and significantly contributes to global health burden. Several alcohol-mediated mechanisms have been identified, with bioenergetic maladaptation gaining credence as an underlying pathophysiological mechanism contributing to cellular injury. This evidence-based review focuses on the current knowledge of alcohol-induced bioenergetic adaptations in metabolically active tissues: liver, cardiac and skeletal muscle, pancreas, and brain. Alcohol metabolism itself significantly interferes with bioenergetic pathways in tissues, particularly the liver. Alcohol decreases states of respiration in the electron transport chain, and activity and expression of respiratory complexes, with a net effect to decrease ATP content. In addition, alcohol dysregulates major metabolic pathways, including glycolysis, the tricarboxylic acid cycle, and fatty acid oxidation. These bioenergetic alterations are influenced by alcohol-mediated changes in mitochondrial morphology, biogenesis, and dynamics. The review highlights similarities and differences in bioenergetic adaptations according to tissue type, pattern of (acute vs. chronic) alcohol use, and energy substrate availability. The compromised bioenergetics synergizes with other critical pathophysiological mechanisms, including increased oxidative stress and accelerates cellular dysfunction, promoting senescence, programmed cell death, and end-organ injury.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23020774. [PMID: 35054960 PMCID: PMC8775426 DOI: 10.3390/ijms23020774] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.
Collapse
|
8
|
Zhang Y, Li C, Pei Y, Zheng L, Sun X, Zhao Z, Wang S. Trelagliptin ameliorates oxygen-glucose deprivation/reperfusion (OGD/R)-induced mitochondrial dysfunction and metabolic disturbance of endothelial cells. Hum Cell 2021; 34:1717-1726. [PMID: 34435315 DOI: 10.1007/s13577-021-00594-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022]
Abstract
Acute myocardial infarction (AMI) is a severe cardiovascular disease with high mortality. It is reported to be closely related to the mitochondrial dysfunction and metabolic disturbance on endothelial cells under a chronic hypoxic state. Significant declined mitochondrial respiration, ATP production, and metabolic changes are the main characteristics of endothelial injury in the disease. Trelagliptin is a DPP-4 inhibitor applied for the treatment of type II diabetes and has been recently reported to exert various pharmacological properties. In this investigation, we examined whether Trelagliptin possessed a protective effect against mitochondrial dysfunction and metabolic disturbance in human aortic valvular endothelial cells (HAVECs) under oxygen-glucose deprivation/reperfusion (OGD/R) conditions. We found that both the cytotoxicity and mitochondrial oxidative stress in HAVECs induced by OGD/R stimulation were greatly alleviated by Trelagliptin. In addition, the declined mitochondrial respiration and ATP production decreased secretion of cystathionine and creatine, and the increased production of triglyceride and adiponectin in OGD/R-challenged HAVECs was dramatically reversed by Trelagliptin, accompanied by the upregulated expression level of PGC-1α and CPT-1. Lastly, the AMPK pathway was observed to be significantly activated in OGD/R-challenged HAVECs by Trelagliptin treatment. After co-administration of the inhibitor of the AMPK pathway, the effects of Trelagliptin on mitochondrial function and metabolic alterations were significantly abolished. Taken together, our data indicate that Trelagliptin ameliorated OGD/R-induced mitochondrial disturbance and metabolic changes by activating the AMPK pathway.
Collapse
Affiliation(s)
- Yatong Zhang
- Department of pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, China
| | - Chao Li
- Department of pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, China
| | - Yifang Pei
- Department of pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, China
| | - Li Zheng
- Department of Pharmacy, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, 100074, China
| | - Xuelin Sun
- Department of pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, China
| | - Zinan Zhao
- Department of pharmacy, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, #15 Dazhong Street, Liandu District, Lishui City, 323000, Zhejiang, China.
| |
Collapse
|
9
|
Middleton P, Vergis N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 2021; 14:17562848211031394. [PMID: 34377148 PMCID: PMC8320552 DOI: 10.1177/17562848211031394] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/18/2021] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are key organelles involved in energy production as well as numerous metabolic processes. There is a growing interest in the role of mitochondrial dysfunction in the pathogenesis of common chronic diseases as well as in cancer development. This review will examine the role mitochondria play in the pathophysiology of common liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, chronic hepatitis B and hepatocellular carcinoma. Mitochondrial dysfunction is described widely in the literature in studies examining patient tissue and in disease models. Despite significant differences in pathophysiology between chronic liver diseases, common mitochondrial defects are described, including increased mitochondrial reactive oxygen species production and impaired oxidative phosphorylation. We review the current literature on mitochondrial-targeted therapies, which have the potential to open new therapeutic avenues in the management of patients with chronic liver disease.
Collapse
Affiliation(s)
| | - Nikhil Vergis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
10
|
Yuan F, Xu Y, You K, Zhang J, Yang F, Li YX. Calcitriol alleviates ethanol-induced hepatotoxicity via AMPK/mTOR-mediated autophagy. Arch Biochem Biophys 2020; 697:108694. [PMID: 33232716 DOI: 10.1016/j.abb.2020.108694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
Excessive ethanol consumption causes cellular damage, leading to fetal alcohol syndrome and alcohol liver diseases, which are frequently seen with vitamin D (VD) deficiency. A great deal of progress has been achieved in the mechanisms of ethanol-induced hepatocyte damage. However, there are limited intervention means to reduce or rescue hepatocytes damage caused by ethanol. On the basis of our preliminary limited screen process, calcitriol showed a positive effect on protecting hepatocyte viability. Therefore, the molecular basis is worth elucidating. We found that calcitriol pretreatment markedly improved the cell viability, decreased cell apoptosis and oxidative stress and alleviated the abnormal mitochondrial morphology and membrane potential of hepatocytes induced by ethanol. Notably, autophagy was significantly enhanced by calcitriol, as evident by the increasing number of autophagosomes and autolysosomes, upregulated LC3B-Ⅱ and ATG5 levels, and promotion of p62 degradation. Furthermore, calcitriol pretreatment increased the colocalization of GFP-LC3-labeled autophagosomes with mitochondria, suggesting that calcitriol effectively promoted ethanol-induced mitophagy in hepatocytes. In addition, the inhibition of autophagy attenuated the protective and preventive effect of calcitriol. Furthermore, the effect of calcitriol on autophagy was regulated by AMPK/mTOR signaling, and signaling transduction was dependent on the Vitamin D receptor (VDR). In conclusion, calcitriol ameliorates ethanol-induced hepatocyte damage by enhancing autophagy. It may offer a convenient preventive and hepatoprotective mean for people on occasional social drink.
Collapse
Affiliation(s)
- Fang Yuan
- School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yingying Xu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Jiaye Zhang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yin-Xiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.
| |
Collapse
|
11
|
Angireddy R, Chowdhury AR, Zielonka J, Ruthel G, Kalyanaraman B, Avadhani NG. Alcohol-induced CYP2E1, mitochondrial dynamics and retrograde signaling in human hepatic 3D organoids. Free Radic Biol Med 2020; 159:1-14. [PMID: 32738395 DOI: 10.1016/j.freeradbiomed.2020.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/20/2022]
Abstract
Alcohol toxicity is a significant health problem with ~3 million estimated deaths per year globally. Alcohol is metabolized to the toxic metabolite, acetaldehyde by alcohol dehydrogenase or CYP2E1 in the hepatic tissue, and also induces reactive oxygen species (ROS), which together play a pivotal role in cell and tissue damage. Our previous studies with COS-7 cells transduced with unique human CYP2E1 variants that mostly localize to either microsomes or mitochondria revealed that mitochondrially-localized CYP2E1 drives alcohol toxicity through the generation of higher levels of ROS, which has a consequent effect on cytochrome c oxidase (CcO) and mitochondrial oxidative function. Alcohol treatment of human hepatocyte cell line, HepaRG, in monolayer cultures increased ROS, affected CcO activity/stability, and induced mitophagy. Alcohol treatment of 3D organoids of HepaRG cells induced higher levels of CYP2E1 mRNA and activated mitochondrial stress-induced retrograde signaling, and also induced markers of hepatic steatosis. Knock down of CYP2E1 mRNA using specific shRNA, FK506, a Calcineurin inhibitor, and Mdivi-1, a DRP1 inhibitor, ameliorated alcohol-induced mitochondrial retrograde signaling, and hepatic steatosis. These results for the first time present a mechanistic link between CYP2E1 function and alcohol mediated mitochondrial dysfunction, retrograde signaling, and activation of hepatic steatosis in a 3D organoid system that closely recapitulates the in vivo liver response.
Collapse
Affiliation(s)
- Rajesh Angireddy
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacek Zielonka
- Department of Biophysics and, Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gordon Ruthel
- Department of Pathobiology, Veterinary Center for Imaging, Hill Pavilion, School of Veterinary Medicine, University of Pennsylvania, PA, 19104, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and, Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Romeo S. MARC1 and HNRNPUL1: Two Novel Players in Alcohol-related Liver Disease. Gastroenterology 2020; 159:1231-1232. [PMID: 32800779 DOI: 10.1053/j.gastro.2020.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
13
|
Valcin JA, Udoh US, Swain TM, Andringa KK, Patel CR, Al Diffalha S, Baker PRS, Gamble KL, Bailey SM. Alcohol and Liver Clock Disruption Increase Small Droplet Macrosteatosis, Alter Lipid Metabolism and Clock Gene mRNA Rhythms, and Remodel the Triglyceride Lipidome in Mouse Liver. Front Physiol 2020; 11:1048. [PMID: 33013449 PMCID: PMC7504911 DOI: 10.3389/fphys.2020.01048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy alcohol drinking dysregulates lipid metabolism, promoting hepatic steatosis – the first stage of alcohol-related liver disease (ALD). The molecular circadian clock plays a major role in synchronizing daily rhythms in behavior and metabolism and clock disruption can cause pathology, including liver disease. Previous studies indicate that alcohol consumption alters liver clock function, but the impact alcohol or clock disruption, or both have on the temporal control of hepatic lipid metabolism and injury remains unclear. Here, we undertook studies to determine whether genetic disruption of the liver clock exacerbates alterations in lipid metabolism and worsens steatosis in alcohol-fed mice. To address this question, male liver-specific Bmal1 knockout (LKO) and flox/flox (Fl/Fl) control mice were fed a control or alcohol-containing diet for 5 weeks. Alcohol significantly dampened diurnal rhythms of mRNA levels in clock genes Bmal1 and Dbp, phase advanced Nr1d1/REV-ERBα, and induced arrhythmicity in Clock, Noct, and Nfil3/E4BP4, with further disruption in livers of LKO mice. Alcohol-fed LKO mice exhibited higher plasma triglyceride (TG) and different time-of-day patterns of hepatic TG and macrosteatosis, with elevated levels of small droplet macrosteatosis compared to alcohol-fed Fl/Fl mice. Diurnal rhythms in mRNA levels of lipid metabolism transcription factors (Srebf1, Nr1h2, and Ppara) were significantly altered by alcohol and clock disruption. Alcohol and/or clock disruption significantly altered diurnal rhythms in mRNA levels of fatty acid (FA) synthesis and oxidation (Acaca/b, Mlycd, Cpt1a, Fasn, Elovl5/6, and Fads1/2), TG turnover (Gpat1, Agpat1/2, Lpin1/2, Dgat2, and Pnpla2/3), and lipid droplet (Plin2/5, Lipe, Mgll, and Abdh5) genes, along with protein abundances of p-ACC, MCD, and FASN. Lipidomics analyses showed that alcohol, clock disruption, or both significantly altered FA saturation and remodeled the FA composition of the hepatic TG pool, with higher percentages of several long and very long chain FA in livers of alcohol-fed LKO mice. In conclusion, these results show that the liver clock is important for maintaining temporal control of hepatic lipid metabolism and that disrupting the liver clock exacerbates alcohol-related hepatic steatosis.
Collapse
Affiliation(s)
- Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Uduak S Udoh
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Telisha M Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelly K Andringa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chirag R Patel
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sameer Al Diffalha
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Gerber L, Clow KA, Katan T, Emam M, Leeuwis RHJ, Parrish CC, Gamperl AK. Cardiac mitochondrial function, nitric oxide sensitivity and lipid composition following hypoxia acclimation in sablefish. ACTA ACUST UNITED AC 2019; 222:jeb.208074. [PMID: 31645375 DOI: 10.1242/jeb.208074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
In fishes, the effect of O2 limitation on cardiac mitochondrial function remains largely unexplored. The sablefish (Anoplopoma fimbria) encounters considerable variations in environmental oxygen availability, and is an interesting model for studying the effects of hypoxia on fish cardiorespiratory function. We investigated how in vivo hypoxia acclimation (6 months at 40% then 3 weeks at 20% air saturation) and in vitro anoxia-reoxygenation affected sablefish cardiac mitochondrial respiration and reactive oxygen species (ROS) release rates using high-resolution fluorespirometry. Further, we investigated how hypoxia acclimation affected the sensitivity of mitochondrial respiration to nitric oxide (NO), and compared mitochondrial lipid and fatty acid (FA) composition between groups. Hypoxia acclimation did not alter mitochondrial coupled or uncoupled respiration, or respiratory control ratio, ROS release rates, P 50 or superoxide dismutase activity. However, it increased citrate synthase activity (by ∼20%), increased the sensitivity of mitochondrial respiration to NO inhibition (i.e., the NO IC50 was 25% lower), and enhanced the recovery of respiration (by 21%) and reduced ROS release rates (by 25-30%) post-anoxia. In addition, hypoxia acclimation altered mitochondrial FA composition [increasing arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3) proportions by 11 and 14%, respectively], and SIMPER analysis revealed that the phospholipid:sterol ratio was the largest contributor (24%) to the dissimilarity between treatments. Overall, these results suggest that hypoxia acclimation may protect sablefish cardiac bioenergetic function during or after periods of O2 limitation, and that this may be related to alterations in mitochondrial sensitivity to NO and to adaptive changes in membrane composition (fluidity).
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Robine H J Leeuwis
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | | | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
15
|
Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr Mol Pharmacol 2019; 10:207-225. [PMID: 26278393 DOI: 10.2174/1874467208666150817111114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892. United States
| | - Seung-Kwon Ha
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| |
Collapse
|
16
|
Abstract
Alcohol-associated liver disease (AALD) is the third most common preventable cause for disease burden and mortality in the US. AALD, including alcoholic hepatitis (AH), contributes to half of admissions from decompensated liver disease and 20% of all liver transplants in the US. Peripheral blood cells contribute to systemic inflammation, oxidative stress, mitochondrial dysfunction, and fibrosis in AALD and AH. Alcohol dysregulates function of lymphocytes, neutrophils, monocytes, and tissue macrophages of the innate immune system. These alterations in turn can modulate adaptive immune responses. In this review, we describe these disruptive effects of alcohol on cells of the innate and adaptive immune system and focus on cellular-based emerging biomarkers on diagnosis and prognosis of patients with AALD and AH.
Collapse
Affiliation(s)
- Ashwani K. Singal
- *Division of Gastroenterology and Hepatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shannon M. Bailey
- †Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Butler MG, Hossain WA, Tessman R, Krishnamurthy PC. Preliminary observations of mitochondrial dysfunction in Prader-Willi syndrome. Am J Med Genet A 2018; 176:2587-2594. [PMID: 30289596 DOI: 10.1002/ajmg.a.40526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/02/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023]
Abstract
Prader-Willi syndrome (PWS) is a complex multisystem disorder because of errors in genomic imprinting with severe hypotonia, decreased muscle mass, poor suckling, feeding problems and failure to thrive during infancy, growth and other hormone deficiency, childhood-onset hyperphagia, and subsequent obesity. Decreased energy expenditure in PWS is thought to contribute to reduced muscle mass and physical activity but may also relate to cellular metabolism and disturbances in mitochondrial function. We established fibroblast cell lines from six children and adults with PWS and six healthy controls for mitochondrial assays. We used Agilent Seahorse XF extracellular flux technology to determine real-time measurements of several metabolic parameters including cellular substrate utilization, Adenosine Triphosphate (ATP)-linked respiration, and mitochondrial capacity in living cells. Decreased mitochondrial function was observed in the PWS patients compared to the healthy controls with significant differences in basal respiration, maximal respiratory capacity, and ATP-linked respiration. These results suggest disturbed mitochondrial bioenergetics in PWS although the low number of studied subjects will require a larger subject population before a general consensus can be reached to identify if mitochondrial dysfunction is a contributing factor in PWS.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Waheeda A Hossain
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Robert Tessman
- Department of Pharmacology, Toxicology, & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Partha C Krishnamurthy
- Department of Pharmacology, Toxicology, & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
18
|
Sun YY, Zhao YX, Li XF, Huang C, Meng XM, Li J. β-Arrestin 2 Promotes Hepatocyte Apoptosis by Inhibiting Akt Pathway in Alcoholic Liver Disease. Front Pharmacol 2018; 9:1031. [PMID: 30283336 PMCID: PMC6156347 DOI: 10.3389/fphar.2018.01031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Alcoholic liver disease (ALD) is a complex process that includes a wide range of hepatic lesions, from steatosis to cirrhosis, and even hepatocellular carcinoma (HCC). Accumulating evidence shows that the cytotoxic effects of ethanol metabolism lead to cell apoptosis and necrosis in ALD. Recently, several studies revealed that multifunctional protein β-arrestin 2 (Arrb2) modulated cell apoptosis in liver fibrosis and HCC, but its role in ALD has not been fully understood. The aim of this study is to explore the function and underlying mechanism of Arrb2 in hepatocyte survival and apoptosis in ALD. In our study, the primary hepatocytes were isolated from the livers of C57BL/6 mice fed EtOH-containing diet, it showed an increased level of Arrb2. EtOH also significantly up-regulated Arrb2 production in AML-12 cells in vitro. Furthermore, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and FCM results demonstrated that knockdown of Arrb2 could inhibit hepatocyte apoptosis induced by EtOH in vivo and vitro while over-expression of Arrb2 induced apoptosis in ALD. In addition, western blot results revealed that Arrb2 remarkably suppressed the Akt signaling. Taken together, our data suggested that Arrb2 may serve as a potential therapeutic target for ALD by promoting hepatocyte apoptosis via Akt suppression.
Collapse
Affiliation(s)
- Ying-Yin Sun
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yu-Xin Zhao
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Feng Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Udoh US, Valcin JA, Swain TM, Filiano AN, Gamble KL, Young ME, Bailey SM. Genetic deletion of the circadian clock transcription factor BMAL1 and chronic alcohol consumption differentially alter hepatic glycogen in mice. Am J Physiol Gastrointest Liver Physiol 2018; 314:G431-G447. [PMID: 29191941 PMCID: PMC5899240 DOI: 10.1152/ajpgi.00281.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023]
Abstract
Multiple metabolic pathways exhibit time-of-day-dependent rhythms that are controlled by the molecular circadian clock. We have shown that chronic alcohol is capable of altering the molecular clock and diurnal oscillations in several elements of hepatic glycogen metabolism ( 19 , 44 ). Herein, we sought to determine whether genetic disruption of the hepatocyte clock differentially impacts hepatic glycogen content in chronic alcohol-fed mice. Male hepatocyte-specific BMAL1 knockout (HBK) and littermate controls were fed control or alcohol-containing diets for 5 wk to alter hepatic glycogen content. Glycogen displayed a significant diurnal rhythm in livers of control genotype mice fed the control diet. While rhythmic, alcohol significantly altered the diurnal oscillation of glycogen in livers of control genotype mice. The glycogen rhythm was mildly altered in livers of control-fed HBK mice. Importantly, glycogen content was arrhythmic in livers of alcohol-fed HBK mice. Consistent with these changes in hepatic glycogen content, we observed that some glycogen and glucose metabolism genes were differentially altered by chronic alcohol consumption in livers of HBK and littermate control mice. Diurnal rhythms in glycogen synthase (mRNA and protein) were significantly altered by alcohol feeding and clock disruption. Alcohol consumption significantly altered Gck, Glut2, and Ppp1r3g rhythms in livers of control genotype mice, with diurnal rhythms of Pklr, Glut2, Ppp1r3c, and Ppp1r3g further disrupted (dampened or arrhythmic) in livers of HBK mice. Taken together, these findings show that chronic alcohol consumption and hepatocyte clock disruption differentially influence the diurnal rhythm of glycogen and various key glycogen metabolism-related genes in the liver. NEW & NOTEWORTHY We report that circadian clock disruption exacerbates alcohol-mediated alterations in hepatic glycogen. We observed differential responsiveness in diurnal rhythms of glycogen and glycogen metabolism genes and proteins in livers of hepatocyte-specific BMAL1 knockout and littermate control mice fed alcohol. Our findings provide new insights into potential mechanisms by which alcohol alters glycogen, an important energy source for liver and other organs.
Collapse
Affiliation(s)
- Uduak S Udoh
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jennifer A Valcin
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Telisha M Swain
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ashley N Filiano
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry, Division of Behavioral Neurobiology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham , Birmingham, Alabama
| | - Shannon M Bailey
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
20
|
Glutamate contributes to alcohol hepatotoxicity by enhancing oxidative stress in mitochondria. J Bioenerg Biomembr 2017; 49:253-264. [PMID: 28478591 DOI: 10.1007/s10863-017-9713-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
Chronic alcohol intoxication is associated with increased oxidative stress. However, the mechanisms by which ethanol triggers an increase in the production of reactive oxygen species (ROS) and the role of mitochondria in the development of oxidative stress has been insufficiently studied. The biochemical and proteomic data obtained in the present work suggest that one of the main causes of an increase in ROS generation is enhanced oxidation of glutamate in response to long-term alcohol exposure. In the course of glutamate oxidation, liver mitochondria from alcoholic rats generated more superoxide anion and H2O2 than in the presence of other substrates and more than control organelles. In mitochondria from alcoholic rats, rates of H2O2 production and NAD reduction in the presence of glutamate were almost twice higher than in the control. The proteomic study revealed a higher content of glutamate dehydrogenase in liver mitochondria of rats subjected to chronic alcohol exposure. Simultaneously, the content of mitochondrial catalase decreased compared to control. Each of these factors stimulates the production of ROS in addition to ROS generated by the respiratory chain complex I. The results are consistent with the conclusion that glutamate contributes to alcohol hepatotoxicity by enhancing oxidative stress in mitochondria.
Collapse
|
21
|
Reddyvari H, Govatati S, Matha SK, Korla SV, Malempati S, Pasupuleti SR, Bhanoori M, Nallanchakravarthula V. Therapeutic effect of green tea extract on alcohol induced hepatic mitochondrial DNA damage in albino wistar rats. J Adv Res 2017; 8:289-295. [PMID: 28337346 PMCID: PMC5349453 DOI: 10.1016/j.jare.2017.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/12/2017] [Accepted: 02/16/2017] [Indexed: 12/12/2022] Open
Abstract
The present study principally sought to investigate the effect of green tea extract (GTE) supplementation on hepatic mitochondrial DNA (mtDNA) damage in alcohol receiving rats. MtDNA was isolated from hepatic tissues of albino wistar rats after alcohol treatment with and without GTE supplementation. Entire displacement loop (D-loop) of mtDNA was screened by PCR-Sanger's sequencing method. In addition, mtDNA deletions and antioxidant activity were measured in hepatic tissue of all rats. Results showed increased frequency of D-loop mutations in alcoholic rats (ALC). DNA mfold analysis predicted higher free energy for 15507C and 16116C alleles compared to their corresponding wild alleles which represents less stable secondary structures with negative impact on overall mtDNA function. Interestingly, D-loop mutations observed in ALC rats were successfully restored on GTE supplementation. MtDNA deletions were observed in ALC rats, but intact native mtDNA was found in ALC + GTE group suggesting alcohol induced oxidative damage of mtDNA and ameliorative effect of GTE. Furthermore, markedly decreased activities of glutathione peroxidise, superoxide dismutase, catalase and glutathione content were identified in ALC rats; however, GTE supplementation significantly (P < 0.05) restored these levels close to normal. In conclusion, green tea could be used as an effective nutraceutical against alcohol induced mitochondrial DNA damage.
Collapse
Affiliation(s)
- Hymavathi Reddyvari
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur 515 003, India
| | - Suresh Govatati
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur 515 003, India
| | - Sumanth Kumar Matha
- Department of Environmental Sciences, Andhra University, Visakhapatnam 530 003, India
| | - Swapna Vahini Korla
- Department of Biotechnology, Dr BR Ambedkar University, Srikakulam 532 410, India
| | - Sravanthi Malempati
- Department of Biochemistry, Krishna University Dr. MRAR PG Center, Nuzvid 521 201, India
| | - Sreenivasa Rao Pasupuleti
- Department of Advanced Research Centre, Narayana Medical College and Hospital, Nellore 524 003, India
| | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad 500 007, India
| | | |
Collapse
|
22
|
Kubat H, Yurtsever AS, Büyükafşar K. Rho/rho-kinase signalling in chronically alcohol-fed mice. Turk J Med Sci 2017; 47:668-674. [PMID: 28425264 DOI: 10.3906/sag-1512-161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/07/2016] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM The effects of chronic ethanol consumption on male sexual function are debateable, and its effects on the Rho/Rho-kinase pathway are unknown. Therefore, we investigated smooth muscle reactivity and Rho/Rho-kinase signalling in the corpus cavernosum of ethanol-fed mice. MATERIALS AND METHODS Ethanol was added to drinking water at 5% concentration in the first 2 days with 5% increment every subsequent 2 days, up to a final concentration of 20% for 45 days. Corpora cavernosa were isolated and a cumulative dose-response curve to phenylephrine was obtained. Acetylcholine (10-6 M), electrical field stimulation (EFS, 40 V, 8-16 Hz) and Y-27632 (10-6-10-5 M)-induced relaxations were compared in the control and ethanol groups. RESULTS Blood ethanol levels in the control and ethanol-treated mice were 1.5 ± 0.3 mg/dL and 37.4 ± 4.1 mg/dL (P < 0.001), respectively. Phenylephrine-induced contractile responses were potentiated in the ethanol group, with pD2 values of 4.92 ± 0.18 and 5.71 ± 0.21 (P < 0.01) in the corpus cavernosum obtained from control and alcohol-fed mice, respectively. The relaxant responses to acetylcholine and EFS, but not Y-27632, were significantly augmented in the corpus cavernosum obtained from ethanol-treated mice. However, expression and activation of Rho-kinase remained unchanged in the alcohol group. CONCLUSION Ethanol drinking may increase sensitivity to both vasoconstrictors and vasodilators in the mouse corpus cavernosum without any alteration in Rho/Rho-kinase signalling.
Collapse
Affiliation(s)
- Havva Kubat
- Department of Pharmacology, School of Medicine, Mersin University, Mersin, Turkey
| | | | - Kansu Büyükafşar
- Department of Pharmacology, School of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
23
|
Chao X, Wang S, Ding WX. Cell Death in Alcohol-Induced Liver Injury. CELLULAR INJURY IN LIVER DISEASES 2017:119-142. [DOI: 10.1007/978-3-319-53774-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
The effect of chronic alcohol consumption on mitochondrial calcium handling in hepatocytes. Biochem J 2016; 473:3903-3921. [PMID: 27582500 DOI: 10.1042/bcj20160255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
Abstract
The damage to liver mitochondria is universally observed in both humans and animal models after excessive alcohol consumption. Acute alcohol treatment has been shown to stimulate calcium (Ca2+) release from internal stores in hepatocytes. The resultant increase in cytosolic Ca2+ is expected to be accumulated by neighboring mitochondria, which could potentially lead to mitochondrial Ca2+ overload and injury. Our data indicate that total and free mitochondrial matrix Ca2+ levels are, indeed, elevated in hepatocytes isolated from alcohol-fed rats compared with their pair-fed control littermates. In permeabilized hepatocytes, the rates of mitochondrial Ca2+ uptake were substantially increased after chronic alcohol feeding, whereas those of mitochondrial Ca2+ efflux were decreased. The changes in mitochondrial Ca2+ handling could be explained by an up-regulation of the mitochondrial Ca2+ uniporter and loss of a cyclosporin A-sensitive Ca2+ transport pathway. In intact cells, hormone-induced increases in mitochondrial Ca2+ declined at slower rates leading to more prolonged elevations of matrix Ca2+ in the alcohol-fed group compared with controls. Moreover, treatment with submaximal concentrations of Ca2+-mobilizing hormones markedly increased the levels of mitochondrial reactive oxygen species (ROS) in hepatocytes from alcohol-fed rats, but did not affect ROS levels in controls. The changes in mitochondrial Ca2+ handling are expected to buffer and attenuate cytosolic Ca2+ increases induced by acute alcohol exposure or hormone stimulation. However, these alterations in mitochondrial Ca2+ handling may also lead to Ca2+ overload during cytosolic Ca2+ increases, which may stimulate the production of mitochondrial ROS, and thus contribute to alcohol-induced liver injury.
Collapse
|
25
|
Chigurupati H, Auddy B, Biyani M, Stohs SJ. Hepatoprotective Effects of a Proprietary Glycyrrhizin Product during Alcohol Consumption: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Phytother Res 2016; 30:1943-1953. [DOI: 10.1002/ptr.5699] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | - Biswajit Auddy
- Chigurupati Technologies Private Limited; Hyderabad India
| | - M. Biyani
- Chigurupati Technologies Private Limited; Hyderabad India
| | - Sidney J. Stohs
- Creighton University; 7068 Maumee Valley Court Frisco TX 75034 USA
| |
Collapse
|
26
|
King AL, Mantena SK, Andringa KK, Millender-Swain T, Dunham-Snary KJ, Oliva CR, Griguer CE, Bailey SM. The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease. Redox Biol 2016; 9:188-197. [PMID: 27566282 PMCID: PMC5007436 DOI: 10.1016/j.redox.2016.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction and bioenergetic stress play an important role in the etiology of alcoholic liver disease. Previous studies from our laboratory show that the primary methyl donor S-Adenosylmethionine (SAM) minimizes alcohol-induced disruptions in several mitochondrial functions in the liver. Herein, we expand on these earlier observations to determine whether the beneficial actions of SAM against alcohol toxicity extend to changes in the responsiveness of mitochondrial respiration to inhibition by nitric oxide (NO), induction of the mitochondrial permeability transition (MPT) pore, and the hypoxic state of the liver. METHODS For this, male Sprague-Dawley rats were pair-fed control and alcohol-containing liquid diets with and without SAM for 5 weeks and liver hypoxia, mitochondrial respiration, MPT pore induction, and NO-dependent control of respiration were examined. RESULTS Chronic alcohol feeding significantly enhanced liver hypoxia, whereas SAM supplementation attenuated hypoxia in livers of alcohol-fed rats. SAM supplementation prevented alcohol-mediated decreases in mitochondrial state 3 respiration and cytochrome c oxidase activity. Mitochondria isolated from livers of alcohol-fed rats were more sensitive to calcium-mediated MPT pore induction (i.e., mitochondrial swelling) than mitochondria from pair-fed controls, whereas SAM treatment normalized sensitivity for calcium-induced swelling in mitochondria from alcohol-fed rats. Liver mitochondria from alcohol-fed rats showed increased sensitivity to NO-dependent inhibition of respiration compared with pair-fed controls. In contrast, mitochondria isolated from the livers of SAM treated alcohol-fed rats showed no change in the sensitivity to NO-mediated inhibition of respiration. CONCLUSION Collectively, these findings indicate that the hepato-protective effects of SAM against alcohol toxicity are mediated, in part, through a mitochondrial mechanism involving preservation of key mitochondrial bioenergetic parameters and the attenuation of hypoxic stress.
Collapse
Affiliation(s)
- Adrienne L King
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Sudheer K Mantena
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Kelly K Andringa
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Telisha Millender-Swain
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Kimberly J Dunham-Snary
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Claudia R Oliva
- Departments of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Corinne E Griguer
- Departments of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Shannon M Bailey
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
27
|
Glade MJ, Meguid MM. A Glance At … ethanol consumption, GSH suppression, and oxidative liver damage. Nutrition 2016; 33:199-203. [PMID: 27644136 DOI: 10.1016/j.nut.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/09/2016] [Indexed: 02/07/2023]
Affiliation(s)
| | - Michael M Meguid
- Professor Emeritus, Surgery, Neuroscience and Nutrition, Department of Surgery, University Hospital, Upstate Medical University, Syracuse, New York
| |
Collapse
|
28
|
Chiu CH, Chang CC, Lin ST, Chyau CC, Peng RY. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity. Int J Mol Sci 2016; 17:ijms17071128. [PMID: 27428953 PMCID: PMC4964502 DOI: 10.3390/ijms17071128] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity.
Collapse
Affiliation(s)
- Chun-Hung Chiu
- Research Institute of Biotechnology, Hungkuang University, Taichung City 43302, Taiwan.
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shiang-Ting Lin
- Research Institute of Biotechnology, Hungkuang University, Taichung City 43302, Taiwan.
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, Taichung City 43302, Taiwan.
| | - Robert Y Peng
- Research Institute of Biotechnology, Hungkuang University, Taichung City 43302, Taiwan.
- Research Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
29
|
Ansari RA, Husain K, Rizvi SAA. Role of Transcription Factors in Steatohepatitis and Hypertension after Ethanol: The Epicenter of Metabolism. Biomolecules 2016; 6:biom6030029. [PMID: 27348013 PMCID: PMC5039415 DOI: 10.3390/biom6030029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol consumption induces multi-organ damage, including alcoholic liver disease (ALD), pancreatitis and hypertension. Ethanol and ethanol metabolic products play a significant role in the manifestation of its toxicity. Ethanol metabolizes to acetaldehyde and produces reduced nicotinamide adenine dinucleotide (NADH) by cytosolic alcohol dehydrogenase. Ethanol metabolism mediated by cytochrome-P450 2E1 causes oxidative stress due to increased production of reactive oxygen species (ROS). Acetaldehyde, increased redox cellular state and ROS activate transcription factors, which in turn activate genes for lipid biosynthesis and offer protection of hepatocytes from alcohol toxicity. Sterol regulatory element binding proteins (SREBPs) and peroxisome proliferator activated-receptors (PPARs) are two key lipogenic transcription factors implicated in the development of fatty liver in alcoholic and non-alcoholic steatohepatitis. SREBP-1 is activated in the livers of chronic ethanol abusers. An increase in ROS activates nuclear factor erythroid-2-related factor-2 (Nrf2) and hypoxia inducible factor (HIF) to provide protection to hepatocytes from ethanol toxicity. Under ethanol exposure, due to increased gut permeability, there is release of gram-negative bacteria-derived lipopolysaccharide (LPS) from intestine causing activation of immune response. In addition, the metabolic product, acetaldehyde, modifies the proteins in hepatocyte, which become antigens inviting auto-immune response. LPS activates macrophages, especially the liver resident macrophages, Kupffer cells. These Kupffer cells and circulating macrophages secrete various cytokines. The level of tumor necrosis factor-α (TNFα), interleukin-1beta (IL-1β), IL-6, IL-8 and IL-12 have been found elevated among chronic alcoholics. In addition to elevation of these cytokines, the peripheral iron (Fe(2+)) is also mobilized. An increased level of hepatic iron has been observed among alcoholics. Increased ROS, IL-1β, acetaldehyde, and increased hepatic iron, all activate nuclear factor-kappa B (NF-κB) transcription factor. Resolution of increased reactive oxygen species requires increased expression of genes responsible for dismutation of increased ROS which is partially achieved by IL-6 mediated activation of signal transducers and activators of transcription 3 (STAT3). In addition to these transcription factors, activator protein-1 may also be activated in hepatocytes due to its association with resolution of increased ROS. These transcription factors are central to alcohol-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Rais A Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, USA.
| | - Kazim Husain
- Department of Physiology, Pharmacology and Toxicology, Ponce School of Medicine, P.O. Box 7004, Ponce, PR 00732-2575, USA.
| | - Syed A A Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
30
|
Nagy LE, Ding WX, Cresci G, Saikia P, Shah VH. Linking Pathogenic Mechanisms of Alcoholic Liver Disease With Clinical Phenotypes. Gastroenterology 2016; 150:1756-68. [PMID: 26919968 PMCID: PMC4887335 DOI: 10.1053/j.gastro.2016.02.035] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) develops in approximately 20% of alcoholic patients, with a higher prevalence in females. ALD progression is marked by fatty liver and hepatocyte necrosis, as well as apoptosis, inflammation, regenerating nodules, fibrosis, and cirrhosis.(1) ALD develops via a complex process involving parenchymal and nonparenchymal cells, as well as recruitment of other cell types to the liver in response to damage and inflammation. Hepatocytes are damaged by ethanol, via generation of reactive oxygen species and induction of endoplasmic reticulum stress and mitochondrial dysfunction. Hepatocyte cell death via apoptosis and necrosis are markers of ethanol-induced liver injury. We review the mechanisms by which alcohol injures hepatocytes and the response of hepatic sinusoidal cells to alcohol-induced injury. We also discuss how recent insights into the pathogenesis of ALD will affect the treatment and management of patients.
Collapse
Affiliation(s)
- Laura E. Nagy
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195,Department of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Gail Cresci
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195,Department of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Paramananda Saikia
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195,Department of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Vijay H. Shah
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
31
|
Wang S, Pacher P, De Lisle RC, Huang H, Ding WX. A Mechanistic Review of Cell Death in Alcohol-Induced Liver Injury. Alcohol Clin Exp Res 2016; 40:1215-23. [PMID: 27130888 DOI: 10.1111/acer.13078] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a major health problem in the United States and worldwide without successful treatments. Chronic alcohol consumption can lead to ALD, which is characterized by steatosis, inflammation, fibrosis, cirrhosis, and even liver cancer. Recent studies suggest that alcohol induces both cell death and adaptive cell survival pathways in the liver, and the balance of cell death and cell survival ultimately decides the pathogenesis of ALD. This review summarizes the recent progress on the role and mechanisms of apoptosis, necroptosis, and autophagy in the pathogenesis of ALD. Understanding the complex regulation of apoptosis, necrosis, and autophagy may help to develop novel therapeutic strategies by targeting all 3 pathways simultaneously.
Collapse
Affiliation(s)
- Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.,Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Robert C De Lisle
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
32
|
Nuño-Lámbarri N, Barbero-Becerra VJ, Uribe M, Chávez-Tapia NC. Mitochondrial Molecular Pathophysiology of Nonalcoholic Fatty Liver Disease: A Proteomics Approach. Int J Mol Sci 2016; 17:281. [PMID: 26999105 PMCID: PMC4813145 DOI: 10.3390/ijms17030281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver condition that can progress to nonalcoholic steatohepatitis, cirrhosis and cancer. It is considered an emerging health problem due to malnourishment or a high-fat diet (HFD) intake, which is observed worldwide. It is well known that the hepatocytes’ apoptosis phenomenon is one of the most important features of NAFLD. Thus, this review focuses on revealing, through a proteomics approach, the complex network of protein interactions that promote fibrosis, liver cell stress, and apoptosis. According to different types of in vitro and murine models, it has been found that oxidative/nitrative protein stress leads to mitochondrial dysfunction, which plays a major role in stimulating NAFLD damage. Human studies have revealed the importance of novel biomarkers, such as retinol-binding protein 4, lumican, transgelin 2 and hemoglobin, which have a significant role in the disease. The post-genome era has brought proteomics technology, which allows the determination of molecular pathogenesis in NAFLD. This has led to the search for biomarkers which improve early diagnosis and optimal treatment and which may effectively prevent fatal consequences such as cirrhosis or cancer.
Collapse
Affiliation(s)
- Natalia Nuño-Lámbarri
- Traslational Research Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
| | | | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
| | - Norberto C Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
| |
Collapse
|
33
|
Alcoholic Liver Disease: A Mouse Model Reveals Protection by Lactobacillus fermentum. Clin Transl Gastroenterol 2016; 7:e138. [PMID: 26795070 PMCID: PMC4737872 DOI: 10.1038/ctg.2015.66] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/04/2015] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Alcoholism is one of the most devastating diseases with high incidence, but knowledge of its pathology and treatment is still plagued with gaps mostly because of the inherent limitations of research with patients. We developed an animal model for studying liver histopathology, Hsp (heat-shock protein)-chaperones involvement, and response to treatment. METHODS The system was standardized using mice to which ethanol was orally administered alone or in combination with Lactobacillus fermentum following a precise schedule over time and applying, at predetermined intervals, a battery of techniques (histology, immunohistochemistry, western blotting, real-time PCR, immunoprecipitation, 3-nitrotyrosine labeling) to assess liver pathology (e.g., steatosis, fibrosis), and Hsp60 and iNOS (inducible form of nitric oxide synthase) gene expression and protein levels, and post-translational modifications. RESULTS Typical ethanol-induced liver pathology occurred and the effect of the probiotic could be reliably monitored. Steatosis score, iNOS levels, and nitrated proteins (e.g., Hsp60) decreased after probiotic intake. CONCLUSIONS We describe a mouse model useful for studying liver disease induced by chronic ethanol intake and for testing pertinent therapeutic agents, e.g., probiotics. We tested L. fermentum, which reduced considerably ethanol-induced tissue damage and deleterious post-translational modifications of the chaperone Hsp60. The model is available to test other agents and probiotics with therapeutic potential in alcoholic liver disease.
Collapse
|
34
|
Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber's Hereditary Optic Neuropathy Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3187560. [PMID: 26881022 PMCID: PMC4736215 DOI: 10.1155/2016/3187560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/19/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber's hereditary optic neuropathy (LHON) patients. We report that peripheral blood mononuclear cells (PBMCs), derived from a female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment.
Collapse
|
35
|
Williams JA, Ding WX. A Mechanistic Review of Mitophagy and Its Role in Protection against Alcoholic Liver Disease. Biomolecules 2015; 5:2619-42. [PMID: 26501336 PMCID: PMC4693250 DOI: 10.3390/biom5042619] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major health problem worldwide, and alcohol is well-known to cause mitochondrial damage, which exacerbates alcohol-induced liver injury and steatosis. No successful treatments are currently available for treating ALD. Therefore, a better understanding of mechanisms involved in regulation of mitochondrial homeostasis in the liver and how these mechanisms may protect against alcohol-induced liver disease is needed for future development of better therapeutic options for ALD. Mitophagy is a key mechanism for maintaining mitochondrial homeostasis by removing damaged mitochondria, and mitophagy protects against alcohol-induced liver injury. Parkin, an E3 ubiquitin ligase, is well-known to induce mitophagy in in vitro models although Parkin-independent mechanisms for mitophagy induction also exist. In this review, we discuss the roles of Parkin and mitophagy in protection against alcohol-induced liver injury and steatosis. We also discuss Parkin-independent mechanisms for mitophagy induction, which have not yet been evaluated in the liver but may also potentially have a protective role against ALD. In addition to mitophagy, mitochondrial spheroid formation may also provide a novel mechanism of protection against ALD, but the role of mitochondrial spheroids in protection against ALD progression needs to be further explored. Targeting removal of damaged mitochondria by mitophagy or inducing formation of mitochondrial spheroids may be promising therapeutic options for treatment of ALD.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| |
Collapse
|
36
|
Williams JA, Ni HM, Ding Y, Ding WX. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice. Am J Physiol Gastrointest Liver Physiol 2015; 309:G324-40. [PMID: 26159696 PMCID: PMC4556950 DOI: 10.1152/ajpgi.00108.2015] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/27/2015] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease claims two million lives per year. We previously reported that autophagy protected against alcohol-induced liver injury and steatosis by removing damaged mitochondria. However, the mechanisms for removal of these mitochondria are unknown. Parkin is an evolutionarily conserved E3 ligase that is recruited to damaged mitochondria to initiate ubiquitination of mitochondrial outer membrane proteins and subsequent mitochondrial degradation by mitophagy. In addition to its role in mitophagy, Parkin has been shown to have other roles in maintaining mitochondrial function. We investigated whether Parkin protected against alcohol-induced liver injury and steatosis using wild-type (WT) and Parkin knockout (KO) mice treated with alcohol by the acute-binge and Gao-binge (chronic plus acute-binge) models. We found that Parkin protected against liver injury in both alcohol models, likely because of Parkin's role in maintaining a population of healthy mitochondria. Alcohol caused greater mitochondrial damage and oxidative stress in Parkin KO livers compared with WT livers. After alcohol treatment, Parkin KO mice had severely swollen and damaged mitochondria that lacked cristae, which were not seen in WT mice. Furthermore, Parkin KO mice had decreased mitophagy, β-oxidation, mitochondrial respiration, and cytochrome c oxidase activity after acute alcohol treatment compared with WT mice. Interestingly, liver mitochondria seemed able to adapt to alcohol treatment, but Parkin KO mouse liver mitochondria had less capacity to adapt to Gao-binge treatment compared with WT mouse liver mitochondria. Overall, our findings indicate that Parkin is an important mediator of protection against alcohol-induced mitochondrial damage, steatosis, and liver injury.
Collapse
Affiliation(s)
| | | | | | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
37
|
Song BJ, Akbar M, Abdelmegeed MA, Byun K, Lee B, Yoon SK, Hardwick JP. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol 2015; 3:109-23. [PMID: 25465468 PMCID: PMC4297931 DOI: 10.1016/j.redox.2014.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are critically important in providing cellular energy ATP as well as their involvement in anti-oxidant defense, fat oxidation, intermediary metabolism and cell death processes. It is well-established that mitochondrial functions are suppressed when living cells or organisms are exposed to potentially toxic agents including alcohol, high fat diets, smoking and certain drugs or in many pathophysiological states through increased levels of oxidative/nitrative stress. Under elevated nitroxidative stress, cellular macromolecules proteins, DNA, and lipids can undergo different oxidative modifications, leading to disruption of their normal, sometimes critical, physiological functions. Recent reports also indicated that many mitochondrial proteins are modified via various post-translation modifications (PTMs) and primarily inactivated. Because of the recently-emerging information, in this review, we specifically focus on the mechanisms and roles of five major PTMs (namely oxidation, nitration, phosphorylation, acetylation, and adduct formation with lipid-peroxides, reactive metabolites, or advanced glycation end products) in experimental models of alcoholic and nonalcoholic fatty liver disease as well as acute hepatic injury caused by toxic compounds. We also highlight the role of the ethanol-inducible cytochrome P450-2E1 (CYP2E1) in some of these PTM changes. Finally, we discuss translational research opportunities with natural and/or synthetic anti-oxidants, which can prevent or delay the onset of mitochondrial dysfunction, fat accumulation and tissue injury. Hepatotoxic agents including alcohol and high fat elevate nitroxidative stress. Increased nitroxidative stress promotes post-translational protein modifications. Post-translational protein modifications of many proteins lead to their inactivation. Inactivation of mitochondrial proteins contributes to mitochondrial dysfunction. Mitochondrial dysfunction contributes to necrotic or apoptotic tissue injury.
Collapse
|
38
|
Hao Z, Ma Y, Wang J, Fan D, Han C, Wang Y, Ji Y, Wen S. Hypoxia promotes AMP-activated protein kinase (AMPK) and induces apoptosis in mouse osteoblasts. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4892-4902. [PMID: 26191182 PMCID: PMC4503054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/26/2015] [Indexed: 06/04/2023]
Abstract
The hypoxic environment around the fracture site develops post the blood flow disruption and leads to osteoblast cell death and further impairs fracture healing. Hypoxia usually leads to the mitochondrial dysfunction and then results in apoptotic cell death. AMPK is ubiquitously expressed and functions as an intracellular fuel sensor by maintaining energy balance, as is potentially activated by hypoxia, ischemia, and ROS, however, the regulatory role of AMPK in hypoxia-induced apoptosis in osteoblasts and in the fracture healing has not been identified. In present study, we firstly determined the apoptosis induction by hypoxia in mouse osteoblastic MC3T3-E1 cells via examining the apoptotic cells and the activation of apoptosis-related molecules, then investigated the activation of AMPK signaling by hypoxia via analyzing the phosphorylation of AMPKα and ACC1, finally we explored the association of the AMPK activation with the hypoxia-induced apoptosis using loss-of-function strategy. Results demonstrated that hypoxia induced apoptosis in MC3T3-E1 cells and activated the AMPK signaling. And the knockdown of AMPK via chemical treatment or RNA interfering significantly decreased the hypoxia-induced apoptosis in MC3T3-E1 cells. Taken together, present study unveiled the regulatory role of AMPK signaling in the hypoxia-induced osteoblast apoptosis.
Collapse
Affiliation(s)
- Zengtao Hao
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Yuxia Ma
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Jihong Wang
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Dongsheng Fan
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Chaoqian Han
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Yongfei Wang
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Yuntao Ji
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| | - Shuzheng Wen
- Department of Hand Microsurgery, The Second Affiliated Hospital of Inner Mongolia Medical University Inner Mongolia, Hohhot 010030, China
| |
Collapse
|
39
|
Ni HM, Bhakta A, Wang S, Li Z, Manley S, Huang H, Copple B, Ding WX. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice. PLoS One 2014; 9:e115849. [PMID: 25536043 PMCID: PMC4275262 DOI: 10.1371/journal.pone.0115849] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD). While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α), conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Amar Bhakta
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenrui Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sharon Manley
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bryan Copple
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Yun JW, Son MJ, Abdelmegeed MA, Banerjee A, Morgan TR, Yoo SH, Song BJ. Binge alcohol promotes hypoxic liver injury through a CYP2E1-HIF-1α-dependent apoptosis pathway in mice and humans. Free Radic Biol Med 2014; 77:183-94. [PMID: 25236742 PMCID: PMC4304203 DOI: 10.1016/j.freeradbiomed.2014.08.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/11/2022]
Abstract
Binge drinking, a common pattern of alcohol ingestion, is known to potentiate liver injury caused by chronic alcohol abuse. This study was aimed at investigating the effects of acute binge alcohol on hypoxia-inducible factor-1α (HIF-1α)-mediated liver injury and the roles of alcohol-metabolizing enzymes in alcohol-induced hypoxia and hepatotoxicity. Mice and human specimens assigned to binge or nonbinge groups were analyzed for blood alcohol concentration (BAC), alcohol-metabolizing enzymes, HIF-1α-related protein nitration, and apoptosis. Binge alcohol promoted acute liver injury in mice with elevated levels of ethanol-inducible cytochrome P450 2E1 (CYP2E1) and hypoxia, both of which were colocalized in the centrilobular areas. We observed positive correlations among elevated BAC, CYP2E1, and HIF-1α in mice and humans exposed to binge alcohol. The CYP2E1 protein levels (r = 0.629, p = 0.001) and activity (r = 0.641, p = 0.001) showed a significantly positive correlation with BAC in human livers. HIF-1α levels were also positively correlated with BAC (r = 0.745, p < 0.001) or CYP2E1 activity (r = 0.792, p < 0.001) in humans. Binge alcohol promoted protein nitration and apoptosis with significant correlations observed between inducible nitric oxide synthase and BAC, CYP2E1, or HIF-1α in human specimens. Binge-alcohol-induced HIF-1α activation and subsequent protein nitration or apoptosis seen in wild type were significantly alleviated in the corresponding Cyp2e1-null mice, whereas pretreatment with an HIF-1α inhibitor, PX-478, prevented HIF-1α elevation with a trend of decreased levels of 3-nitrotyrosine and apoptosis, supporting the roles of CYP2E1 and HIF-1α in binge-alcohol-mediated protein nitration and hepatotoxicity. Thus binge alcohol promotes acute liver injury in mice and humans at least partly through a CYP2E1-HIF-1α-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Jun-Won Yun
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Min-Jeong Son
- Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Mohamed A Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Atrayee Banerjee
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Timothy R Morgan
- Gastroenterology Service, Veterans Administration Long Beach Healthcare System, Long Beach, CA 90822, USA; Division of Gastroenterology, University of California at Irvine, Irvine, CA 92697, USA
| | - Seong-Ho Yoo
- Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA.
| |
Collapse
|
41
|
Abstract
Bioenergetics has become central to our understanding of pathological mechanisms, the
development of new therapeutic strategies and as a biomarker for disease progression
in neurodegeneration, diabetes, cancer and cardiovascular disease. A key concept is
that the mitochondrion can act as the ‘canary in the coal mine’ by
serving as an early warning of bioenergetic crisis in patient populations. We propose
that new clinical tests to monitor changes in bioenergetics in patient populations
are needed to take advantage of the early and sensitive ability of bioenergetics to
determine severity and progression in complex and multifactorial diseases. With the
recent development of high-throughput assays to measure cellular energetic function
in the small number of cells that can be isolated from human blood these clinical
tests are now feasible. We have shown that the sequential addition of
well-characterized inhibitors of oxidative phosphorylation allows a bioenergetic
profile to be measured in cells isolated from normal or pathological samples. From
these data we propose that a single value–the Bioenergetic Health Index
(BHI)–can be calculated to represent the patient's composite mitochondrial
profile for a selected cell type. In the present Hypothesis paper, we discuss how BHI
could serve as a dynamic index of bioenergetic health and how it can be measured in
platelets and leucocytes. We propose that, ultimately, BHI has the potential to be a
new biomarker for assessing patient health with both prognostic and diagnostic
value.
Collapse
|
42
|
Functional roles of protein nitration in acute and chronic liver diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:149627. [PMID: 24876909 PMCID: PMC4021747 DOI: 10.1155/2014/149627] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Abstract
Nitric oxide, when combined with superoxide, produces peroxynitrite, which is known to be an important mediator for a number of diseases including various liver diseases. Peroxynitrite can modify tyrosine residue(s) of many proteins resulting in protein nitration, which may alter structure and function of each target protein. Various proteomics and immunological methods including mass spectrometry combined with both high pressure liquid chromatography and 2D PAGE have been employed to identify and characterize nitrated proteins from pathological tissue samples to determine their roles. However, these methods contain a few technical problems such as low efficiencies with the detection of a limited number of nitrated proteins and labor intensiveness. Therefore, a systematic approach to efficiently identify nitrated proteins and characterize their functional roles is likely to shed new insights into understanding of the mechanisms of hepatic disease pathophysiology and subsequent development of new therapeutics. The aims of this review are to briefly describe the mechanisms of hepatic diseases. In addition, we specifically describe a systematic approach to efficiently identify nitrated proteins to study their causal roles or functional consequences in promoting acute and chronic liver diseases including alcoholic and nonalcoholic fatty liver diseases. We finally discuss translational research applications by analyzing nitrated proteins in evaluating the efficacies of potentially beneficial agents to prevent or treat various diseases in the liver and other tissues.
Collapse
|
43
|
Hollie NI, Cash JG, Matlib MA, Wortman M, Basford JE, Abplanalp W, Hui DY. Micromolar changes in lysophosphatidylcholine concentration cause minor effects on mitochondrial permeability but major alterations in function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:888-95. [PMID: 24315825 DOI: 10.1016/j.bbalip.2013.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/02/2013] [Accepted: 11/26/2013] [Indexed: 12/17/2022]
Abstract
Mice deficient in group 1b phospholipase A2 have decreased plasma lysophosphatidylcholine and increased hepatic oxidation that is inhibited by intraperitoneal lysophosphatidylcholine injection. This study sought to identify a mechanism for lysophosphatidylcholine-mediated inhibition of hepatic oxidative function. Results showed that in vitro incubation of isolated mitochondria with 40-200μM lysophosphatidylcholine caused cyclosporine A-resistant swelling in a concentration-dependent manner. However, when mitochondria were challenged with 220μM CaCl2, cyclosporine A protected against permeability transition induced by 40μM, but not 80μM lysophosphatidylcholine. Incubation with 40-120μM lysophosphatidylcholine also increased mitochondrial permeability to 75μM CaCl2 in a concentration-dependent manner. Interestingly, despite incubation with 80μM lysophosphatidylcholine, the mitochondrial membrane potential was steady in the presence of succinate, and oxidation rates and respiratory control indices were similar to controls in the presence of succinate, glutamate/malate, and palmitoyl-carnitine. However, mitochondrial oxidation rates were inhibited by 30-50% at 100μM lysophosphatidylcholine. Finally, while 40μM lysophosphatidylcholine has no effect on fatty acid oxidation and mitochondria remained impermeable in intact hepatocytes, 100μM lysophosphatidylcholine inhibited fatty acid stimulated oxidation and caused intracellular mitochondrial permeability. Taken together, these present data demonstrated that LPC concentration dependently modulates mitochondrial microenvironment, with low micromolar concentrations of lysophosphatidylcholine sufficient to change hepatic oxidation rate whereas higher concentrations are required to disrupt mitochondrial integrity.
Collapse
Affiliation(s)
- Norris I Hollie
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James G Cash
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M Abdul Matlib
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew Wortman
- Department of Internal Medicine, Division of Endocrinology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joshua E Basford
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William Abplanalp
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
44
|
Benavides GA, Liang Q, Dodson M, Darley-Usmar V, Zhang J. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Free Radic Biol Med 2013; 65:1215-1228. [PMID: 24056030 PMCID: PMC3859859 DOI: 10.1016/j.freeradbiomed.2013.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/28/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Excessive nitric oxide (NO) production is known to damage mitochondrial proteins and the autophagy repair pathway and so can potentially contribute to neurotoxicity. Accordingly, we hypothesized that protection against protein damage from reactive oxygen and nitrogen species under conditions of low oxygen by the autophagy pathway in neurons would be impaired by NO and enhance bioenergetic dysfunction. Rat primary cortical neurons had the same basal cellular respiration in hypoxia as in normoxia, whereas NO-exposed cells exhibited a gradual decrease in mitochondrial respiration in hypoxia. Upon reoxygenation, the respiration in NO-treated cells did not recover to prehypoxic levels. Hypoxia-reoxygenation in the presence of NO was associated with inhibition of autophagy, and the inability to recover during reoxygenation was exacerbated by an inhibitor of autophagy, 3-methyladenine. The effects of hypoxia could be recapitulated by inhibiting glycolytic flux under normoxic conditions. Under both normoxic and hypoxic conditions NO exposure induced immediate stimulation of glycolysis, but prolonged NO exposure, associated with irreversible inhibition of mitochondrial respiration in hypoxia, inhibited glycolysis. Importantly, we found that NO inhibited basal respiration under normoxic conditions only when glucose was absent from the medium or glycolysis was inhibited by 2-deoxy-d-glucose, revealing a novel NO-dependent mechanism for the inhibition of mitochondrial respiration that is modulated by glycolysis. Taken together these data suggest an oxygen-dependent interaction between mitochondrial respiration, glycolysis, and autophagy in protecting neuronal cells exposed to NO. Importantly, they indicate that mitochondrial dysfunction is intimately linked to a failure of glycolytic flux induced by exposure to NO. In addition, these studies provide new insights into the understanding of how autophagy and NO may play interactive roles in neuroinflammation-induced cellular damage, which is pertinent to our understanding of the pathology of neurodegenerative diseases in which excessive NO is generated.
Collapse
Affiliation(s)
- Gloria A Benavides
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | - Qiuli Liang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | - Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Veterans Affairs, Birmingham VA Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
45
|
Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics. Biochem Soc Trans 2013; 41:127-33. [PMID: 23356271 DOI: 10.1042/bst20120231] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction is associated with a broad range of pathologies including diabetes, ethanol toxicity, metabolic syndrome and cardiac failure. It is now becoming clear that maintaining mitochondrial quality through a balance between biogenesis, reserve capacity and mitophagy is critical in determining the response to metabolic or xenobiotic stress. In diseases associated with metabolic stress, such as Type II diabetes and non-alcoholic and alcoholic steatosis, the mitochondria are subjected to multiple 'hits' such as hypoxia and oxidative and nitrative stress, which can overwhelm the mitochondrial quality control pathways. In addition, the underlying mitochondrial genetics that evolved to accommodate high-energy demand, low-calorie supply environments may now be maladapted to modern lifestyles (low-energy demand, high-calorie environments). The pro-oxidant and pro-inflammatory environment of a sedentary western lifestyle has been associated with modified redox cell signalling pathways such as steatosis, hypoxic signalling, inflammation and fibrosis. These data suggest that loss of mitochondrial quality control is intimately associated with the aberrant activation of redox cell signalling pathways under pathological conditions. In the present short review, we discuss evidence from alcoholic liver disease supporting this concept, the insights obtained from experimental models and the application of bioenergetic-based therapeutics in the context of maintaining mitochondrial quality.
Collapse
|
46
|
Mitochondrial bioenergetics of metastatic breast cancer cells in response to dynamic changes in oxygen tension: effects of HIF-1α. PLoS One 2013; 8:e68348. [PMID: 23840849 PMCID: PMC3696014 DOI: 10.1371/journal.pone.0068348] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Solid tumors are characterized by regions of low oxygen tension (OT), which play a central role in tumor progression and resistance to therapy. Low OT affects mitochondrial function and for the cells to survive, mitochondria must functionally adapt to low OT to maintain the cellular bioenergetics. In this study, a novel experimental approach was developed to examine the real-time bioenergetic changes in breast cancer cells (BCCs) during adaptation to OT (from 20% to <1% oxygen) using sensitive extracellular flux technology. Oxygen was gradually removed from the medium, and the bioenergetics of metastatic BCCs (MDA-MB-231 and MCF10CA clones) was compared with non-tumorigenic (MCF10A) cells. BCCs, but not MCF10A, rapidly responded to low OT by stabilizing HIF-1α and increasing HIF-1α responsive gene expression and glucose uptake. BCCs also increased extracellular acidification rate (ECAR), which was markedly lower in MCF10A. Interestingly, BCCs exhibited a biphasic response in basal respiration as the OT was reduced from 20% to <1%. The initial stimulation of oxygen consumption is found to be due to increased mitochondrial respiration. This effect was HIF-1α-dependent, as silencing HIF-1α abolished the biphasic response. During hypoxia and reoxygenation, BCCs also maintained oxygen consumption rates at specific OT; however, HIF-1α silenced BCC were less responsive to changes in OT. Our results suggest that HIF-1α provides a high degree of bioenergetic flexibility under different OT which may confer an adaptive advantage for BCC survival in the tumor microenvironment and during invasion and metastasis. This study thus provides direct evidence for the cross-talk between HIF-1α and mitochondria during adaptation to low OT by BCCs and may be useful in identifying novel therapeutic agents that target the bioenergetics of BCCs in response to low OT.
Collapse
|
47
|
Abstract
Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology Birmingham VA medical Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
48
|
Alcohol-induced oxidative/nitrosative stress alters brain mitochondrial membrane properties. Mol Cell Biochem 2012; 375:39-47. [PMID: 23212448 DOI: 10.1007/s11010-012-1526-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
Abstract
Chronic alcohol consumption causes numerous biochemical and biophysical changes in the central nervous system, in which mitochondria is the primary organelle affected. In the present study, we hypothesized that alcohol alters the mitochondrial membrane properties and leads to mitochondrial dysfunction via mitochondrial reactive oxygen species (mROS) and reactive nitrogen species (RNS). Alcohol-induced hypoxia further enhances these effects. Administration of alcohol to rats significantly increased the mitochondrial lipid peroxidation and protein oxidation with decreased SOD2 mRNA and protein expression was decreased, while nitric oxide (NO) levels and expression of iNOS and nNOS in brain cortex were increased. In addition, alcohol augmented HIF-1α mRNA and protein expression in the brain cortex. Results from this study showed that alcohol administration to rats decreased mitochondrial complex I, III, IV activities, Na(+)/K(+)-ATPase activity and cardiolipin content with increased anisotropic value. Cardiolipin regulates numerous enzyme activities, especially those related to oxidative phosphorylation and coupled respiration. In the present study, decreased cardiolipin could be ascribed to ROS/RNS-induced damage. In conclusion, alcohol-induced ROS/RNS is responsible for the altered mitochondrial membrane properties, and alcohol-induced hypoxia further enhance these alterations, which ultimately leads to mitochondrial dysfunction.
Collapse
|
49
|
Hill BG, Benavides GA, Lancaster JR, Ballinger S, Dell’Italia L, Zhang J, Darley-Usmar VM. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 2012; 393:1485-1512. [PMID: 23092819 PMCID: PMC3594552 DOI: 10.1515/hsz-2012-0198] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 06/22/2012] [Indexed: 02/06/2023]
Abstract
Bioenergetic dysfunction is emerging as a cornerstone for establishing a framework for understanding the pathophysiology of cardiovascular disease, diabetes,cancer and neurodegeneration. Recent advances in cellular bioenergetics have shown that many cells maintain a substantial bioenergetic reserve capacity, which is a prospective index of ‘ healthy ’ mitochondrial populations.The bioenergetics of the cell are likely regulated by energy requirements and substrate availability. Additionally,the overall quality of the mitochondrial population and the relative abundance of mitochondria in cells and tissues also impinge on overall bioenergetic capacity and resistance to stress. Because mitochondria are susceptible to damage mediated by reactive oxygen/nitrogen and lipid species, maintaining a ‘ healthy ’ population of mitochondria through quality control mechanisms appears to be essential for cell survival under conditions of pathological stress. Accumulating evidence suggest that mitophagy is particularly important for preventing amplification of initial oxidative insults, which otherwise would further impair the respiratory chain or promote mutations in mitochondrial DNA (mtDNA). The processes underlying the regulation of mitophagy depend on several factors, including the integrity of mtDNA, electron transport chain activity, and the interaction and regulation of the autophagic machinery. The integration and interpretation of cellular bioenergetics in the context of mitochondrial quality control and genetics is the theme of this review.
Collapse
Affiliation(s)
- Bradford G. Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY
- Departments of Biochemistry and Molecular Biology and Physiology and Biophysics, University of Louisville, Louisville, KY
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jack R. Lancaster
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lou Dell’Italia
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
50
|
Xu Y, Feng Y, Li H, Gao Z. Ferric citrate CYP2E1-independently promotes alcohol-induced apoptosis in HepG2 cells via oxidative/nitrative stress which is attenuated by pretreatment with baicalin. Food Chem Toxicol 2012; 50:3264-72. [PMID: 22699086 DOI: 10.1016/j.fct.2012.05.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/19/2012] [Accepted: 05/31/2012] [Indexed: 12/26/2022]
Abstract
In the case of alcoholic liver injury, an iron overload is always present. Both alcohol and iron can individually induce oxidative stress in liver. However, the combined effect of physiological concentrations of alcohol and iron on oxidative stress in hepatocytes remains unknown. Baicalin has been demonstrated to be an antioxidant or iron chelator in animal experiments. In this study, we investigated the injury to hepatocytes CYP2E1-independently induced by the combination of alcohol and iron and the protective effect of baicalin. Compared with cells treated with ethanol alone, ferric citrate enhanced the accumulation of reactive oxygen and nitrogen species, increased the occurrence of protein carbonylation/nitration and the levels of 4-hydroxy-2-nonenal, changed the distribution of iNOS, and eventually resulted in apoptosis. However, pretreatment with baicalin inhibited the oxidative stress induced by the combination of alcohol and iron, mainly by chelating iron. Our findings therefore suggest that iron could CPY2E1-independently enhance the oxidative stress induced by alcohol, which probably contributes to the pathogenesis of alcoholic liver disease. Baicalin is a promising phytomedicine for preventing alcoholic liver disease.
Collapse
Affiliation(s)
- Yan Xu
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | | | | | | |
Collapse
|