1
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
2
|
Yang L, Shen Y, Li W, Zha B, Xu W, Ding H. Elevated plasma myoglobin level is closely associated with type 2 diabetic kidney disease. J Diabetes 2024; 16:e13508. [PMID: 38036859 PMCID: PMC10925879 DOI: 10.1111/1753-0407.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the most frequent complication in patients with type 2 diabetes mellitus (T2DM). It causes a chronic and progressive decline in kidney function, and ultimately patients require renal replacement therapy. To date, an increasing number of clinical studies have been conducted to explore the potential and novel biomarkers, which can advance the diagnosis, estimate the prognosis, and optimize the therapeutic strategies at the early stage of DKD. In the current study, we sought to investigate the association of plasma myoglobin with DKD. METHODS A total of 355 T2DM patients with DKD and 710 T2DM patients without DKD were enrolled in this study. Laboratory parameters including blood cell count, hemoglobin A1c, biochemical parameters, and plasma myoglobin were recorded. Patients were classified on admission according to the tertile of myoglobin and clinical parameters were compared between the groups. Pearson correlation analysis, linear regression, logistic regression, receiver operating characteristics (ROC) analysis, and spline regression were performed. RESULTS Plasma myoglobin significantly increased in patients with DKD and was associated with renal function and inflammatory parameters. Plasma myoglobin was an independent risk factor for the development of DKD. The area under ROC curve of myoglobin was 0.831. Spline regression showed that there was a significant linear association between DKD incidence and a high level of plasma myoglobin when it exceeded 36.4 mg/mL. CONCLUSIONS This study shows that elevated plasma myoglobin level is closely associated with the development of kidney injury in patients with T2DM.
Collapse
Affiliation(s)
- Lin Yang
- Department of Nephrology, Shanghai Fifth People's HospitalFudan UniversityShanghaiChina
| | - Yan Shen
- Department of Endocrinology, Shanghai Fifth People's HospitalFudan UniversityShanghaiChina
| | - Wenxiao Li
- Department of Endocrinology, Shanghai Fifth People's HospitalFudan UniversityShanghaiChina
- Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
- Jiangchuan Community Health Service CenterShanghaiChina
| | - Bingbing Zha
- Department of Endocrinology, Shanghai Fifth People's HospitalFudan UniversityShanghaiChina
| | - Wenjun Xu
- Department of NephrologyZhejiang Kaihua County Hospital of Chinese MedicineZhejiangChina
| | - Heyuan Ding
- Department of Endocrinology, Shanghai Fifth People's HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Luo Y, Liu C, Li D, Yang B, Shi J, Guo X, Fan H, Lv Q. Progress in the Diagnostic and Predictive Evaluation of Crush Syndrome. Diagnostics (Basel) 2023; 13:3034. [PMID: 37835777 PMCID: PMC10572195 DOI: 10.3390/diagnostics13193034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Crush syndrome (CS), also known as traumatic rhabdomyolysis, is a syndrome with a wide clinical spectrum; it is caused by external compression, which often occurs in earthquakes, wars, and traffic accidents, especially in large-scale disasters. Crush syndrome is the second leading cause of death after direct trauma in earthquakes. A series of clinical complications caused by crush syndrome, including hyperkalemia, myoglobinuria, and, in particular, acute kidney injury (AKI), is the main cause of death in crush syndrome. The early diagnosis of crush syndrome, the correct evaluation of its severity, and accurate predictions of a poor prognosis can provide personalized suggestions for rescuers to carry out early treatments and reduce mortality. This review summarizes various methods for the diagnostic and predictive evaluation of crush syndrome, including urine dipstick tests for a large number of victims, traditional and emerging biomarkers, imaging-assisted diagnostic methods, and developed evaluation models, with the aim of providing materials for scholars in this research field.
Collapse
Affiliation(s)
- Yu Luo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Chunli Liu
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Duo Li
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Bofan Yang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Jie Shi
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Haojun Fan
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Qi Lv
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| |
Collapse
|
4
|
Yu F, Wang L, Yuan H, Gao Z, He L, Hu F. Wasp venom-induced acute kidney injury: current progress and prospects. Ren Fail 2023; 45:2259230. [PMID: 38376456 PMCID: PMC10512847 DOI: 10.1080/0886022x.2023.2259230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 02/21/2024] Open
Abstract
Wasp venom can trigger local and systemic reactions, with the kidneys being commonly affected, potentially causing acute kidney injury (AKI). Despite of the recent advances, our knowledge on the underlying mechanisms of toxicity and targeted therapies remain poor. AKI can result from direct nephrotoxic effects of the wasp venom or secondary rhabdomyolysis and intravascular hemolysis, which will release myoglobin and free hemoglobin. Inflammatory responses play a central role in these pathological mechanisms. Noteworthily, the successful establishment of a suitable experimental model can assist in basic research and clinical advancements related to wasp venom-induced AKI. The combination of therapeutic plasma exchange and continuous renal replacement therapy appears to be the preferred treatment for wasp venom-induced AKI. In addition, studies on cilastatin and varespladib for wasp venom-induced AKI treatment have shown their potential as therapeutic agents. This review summarizes the available evidence on the mechanisms and treatment of wasp venom-induced AKI, with a particular focus on the role of inflammatory responses and potential targets for therapeutic drugs, and, therefore, aiming to support the development of clinical treatment against wasp venom-induced AKI.
Collapse
Affiliation(s)
- Fanglin Yu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ling Wang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Zhao Gao
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Li He
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
5
|
Piko N, Bevc S, Hojs R, Ekart R. The Role of Oxidative Stress in Kidney Injury. Antioxidants (Basel) 2023; 12:1772. [PMID: 37760075 PMCID: PMC10525550 DOI: 10.3390/antiox12091772] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury and chronic kidney disease are among the most common non-communicable diseases in the developed world, with increasing prevalence. Patients with acute kidney injury are at an increased risk of developing chronic kidney disease. One of kidney injury's most common clinical sequelae is increased cardiovascular morbidity and mortality. In recent years, new insights into the pathophysiology of renal damage have been made. Oxidative stress is the imbalance favoring the increased generation of ROS and/or reduced body's innate antioxidant defense mechanisms and is of pivotal importance, not only in the development and progression of kidney disease but also in understanding the enhanced cardiovascular risk in these patients. This article summarizes and emphasizes the role of oxidative stress in acute kidney injury, various forms of chronic kidney disease, and also in patients on renal replacement therapy (hemodialysis, peritoneal dialysis, and after kidney transplant). Additionally, the role of oxidative stress in the development of drug-related nephrotoxicity and also in the development after exposure to various environmental and occupational pollutants is presented.
Collapse
Affiliation(s)
- Nejc Piko
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre, 2000 Maribor, Slovenia;
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre, 2000 Maribor, Slovenia; (S.B.); (R.H.)
- Medical Faculty, University of Maribor, 2000 Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre, 2000 Maribor, Slovenia; (S.B.); (R.H.)
- Medical Faculty, University of Maribor, 2000 Maribor, Slovenia
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre, 2000 Maribor, Slovenia;
- Medical Faculty, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Nasir NJM, Heemskerk H, Jenkins J, Hamadee NH, Bunte R, Tucker-Kellogg L. Myoglobin-derived iron causes wound enlargement and impaired regeneration in pressure injuries of muscle. eLife 2023; 12:85633. [PMID: 37267120 DOI: 10.7554/elife.85633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 06/04/2023] Open
Abstract
The reasons for poor healing of pressure injuries are poorly understood. Vascular ulcers are worsened by extracellular release of hemoglobin, so we examined the impact of myoglobin (Mb) iron in murine muscle pressure injuries (mPI). Tests used Mb-knockout or treatment with deferoxamine iron chelator (DFO). Unlike acute injuries from cardiotoxin, mPI regenerated poorly with a lack of viable immune cells, persistence of dead tissue (necro-slough), and abnormal deposition of iron. However, Mb-knockout or DFO-treated mPI displayed a reversal of the pathology: decreased tissue death, decreased iron deposition, decrease in markers of oxidative damage, and higher numbers of intact immune cells. Subsequently, DFO treatment improved myofiber regeneration and morphology. We conclude that myoglobin iron contributes to tissue death in mPI. Remarkably, a large fraction of muscle death in untreated mPI occurred later than, and was preventable by, DFO treatment, even though treatment started 12 hr after pressure was removed. This demonstrates an opportunity for post-pressure prevention to salvage tissue viability.
Collapse
Affiliation(s)
- Nurul Jannah Mohamed Nasir
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hans Heemskerk
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- BioSyM and CAMP Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore
| | - Julia Jenkins
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Ralph Bunte
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Lisa Tucker-Kellogg
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- BioSyM and CAMP Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore
| |
Collapse
|
7
|
Afolabi JM, Kanthakumar P, Williams JD, Kumar R, Soni H, Adebiyi A. Post-injury Inhibition of Endothelin-1 Dependent Renal Vasoregulation Mitigates Rhabdomyolysis-Induced Acute Kidney Injury. FUNCTION 2023; 4:zqad022. [PMID: 37342410 PMCID: PMC10278989 DOI: 10.1093/function/zqad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/22/2023] Open
Abstract
In patients with rhabdomyolysis, the overwhelming release of myoglobin into the circulation is the primary cause of kidney injury. Myoglobin causes direct kidney injury as well as severe renal vasoconstriction. An increase in renal vascular resistance (RVR) results in renal blood flow (RBF) and glomerular filtration rate (GFR) reduction, tubular injury, and acute kidney injury (AKI). The mechanisms that underlie rhabdomyolysis-induced AKI are not fully understood but may involve the local production of vasoactive mediators in the kidney. Studies have shown that myoglobin stimulates endothelin-1 (ET-1) production in glomerular mesangial cells. Circulating ET-1 is also increased in rats subjected to glycerol-induced rhabdomyolysis. However, the upstream mechanisms of ET-1 production and downstream effectors of ET-1 actions in rhabdomyolysis-induced AKI remain unclear. Vasoactive ET-1 is generated by ET converting enzyme 1 (ECE-1)-induced proteolytic processing of inactive big ET to biologically active peptides. The downstream ion channel effectors of ET-1-induced vasoregulation include the transient receptor potential cation channel, subfamily C member 3 (TRPC3). This study demonstrates that glycerol-induced rhabdomyolysis in Wistar rats promotes ECE-1-dependent ET-1 production, RVR increase, GFR decrease, and AKI. Rhabdomyolysis-induced increases in RVR and AKI in the rats were attenuated by post-injury pharmacological inhibition of ECE-1, ET receptors, and TRPC3 channels. CRISPR/Cas9-mediated knockout of TRPC3 channels attenuated ET-1-induced renal vascular reactivity and rhabdomyolysis-induced AKI. These findings suggest that ECE-1-driven ET-1 production and downstream activation of TRPC3-dependent renal vasoconstriction contribute to rhabdomyolysis-induced AKI. Hence, post-injury inhibition of ET-1-mediated renal vasoregulation may provide therapeutic targets for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jada D Williams
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Chen S, Zhang C, Zhong Y, Tang B, Xie Q, Guo R, Qiao Z, Li C, Ge Y, Zhu J. Association between preoperative serum myoglobin and acute kidney injury after Stanford Type A aortic dissection surgery. Clin Chim Acta 2023; 541:117232. [PMID: 36690242 DOI: 10.1016/j.cca.2023.117232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication after Type A aortic dissection (TAAD) surgery, and it is associated with poor outcomes. The nephrotoxic effect of myoglobin was established, but its correlation with AKI following TAAD repair still lacks sufficient evidence. We clarified the correlation between preoperative serum myoglobin (pre-sMyo) concentrations and AKI after TAAD surgery. METHOD A retrospective analysis was performed on the perioperative data of 382 patients treated with TAAD surgery at Beijing Anzhen Hospital. AKI was defined and classified according to the criteria established by the Kidney Disease: Improving Global Outcomes Acute Kidney Injury Work Group. We attempted to determine the correlation between pre-sMyo concentrations and postoperative AKI. RESULTS The incidences of Stage 1, 2, and 3 AKI were 37.3 % (57/153), 23.5 % (36/153), and 39.2 % (60/153), respectively. The pre-sMyo concentrations of the AKI group were significantly increased than the non-AKI group [43.1 (21.4, 107.5) vs 26.4 (18.0, 37.2), P < 0.001]. Pre-sMyo concentrations have a linear correlation with preoperative renal function-related indicators. The multivariable logistic regression analysis showed that Ln (pre-sMyo) was an independent risk factor for AKI. When the pre-sMyo concentration was at the fourth quartile [109.3 (64.8, 213.4) ng/ml], the risk of developing any-stage and severe AKI was significantly increased (OR = 4.333, 95 % CI: 2.364-7.943, P < 0.001; OR = 3.862, 95 %, CI: 2.011-7.419, P < 0.001). This difference persisted after adjustment (OR = 3.830, 95 % CI: 1.848-7.936, P < 0.001; OR = 2.330, 95 % CI: 1.045-5.199, P = 0.039). Furthermore, pre-sMyo concentrations were not affected by lower limb malperfusion, myocardial malperfusion, and cardiac tamponade. CONCLUSIONS Increased pre-sMyo concentrations correlated with postoperative AKI in TAAD, which may increase the risk of developing any-stage AKI and severe AKI after TAAD surgery.
Collapse
Affiliation(s)
- Suwei Chen
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chenhan Zhang
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongliang Zhong
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bing Tang
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qiang Xie
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Rutao Guo
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Qiao
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengnan Li
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yipeng Ge
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Guo W, Wang Y, Wu Y, Liu J, Li Y, Wang J, Ou S, Wu W. Integration of transcriptomics and metabolomics reveals the molecular mechanisms underlying the effect of nafamostat mesylate on rhabdomyolysis-induced acute kidney injury. Front Pharmacol 2022; 13:931670. [PMID: 36532745 PMCID: PMC9748812 DOI: 10.3389/fphar.2022.931670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/17/2022] [Indexed: 11/09/2023] Open
Abstract
Objective: To investigate the role and mechanisms of action of nafamostat mesylate (NM) in rhabdomyolysis-induced acute kidney injury (RIAKI). Methods: RIAKI rats were assigned into control group (CN), RIAKI group (RM), and NM intervention group (NM). Inflammatory cytokines and proenkephalin a 119-159 (PENKID) were assessed. Cell apoptosis and glutathione peroxidase-4 (GPX4) were detected using TUNEL assay and immunohistochemical staining. Mitochondrial membrane potential (MMP) was detected by JC-1 dye. The expression of genes and metabolites after NM intervention was profiled using transcriptomic and metabolomic analysis. The differentially expressed genes (DEGs) were validated using qPCR. The KEGG and conjoint analysis of transcriptome and metabolome were used to analyze the enriched pathways and differential metabolites. The transcription factors were identified based on the animal TFDB 3.0 database. Results: Serum creatinine, blood urea nitrogen, and PENKID were remarkably higher in the RM group and lower in the NM group compared to the CN group. Pro-inflammatory cytokines increased in the RM group and notably decreased following NM treatment compared to the CN group. Tubular pathological damages were markedly attenuated and renal cell apoptosis was reduced significantly in the NM group compared to the RM group. The expression of GPX4 was lower in the RM group compared to the CN group, and it increased significantly after NM treatment. A total of 294 DEGs were identified in the RM group compared with the NM group, of which 192 signaling pathways were enriched, and glutathione metabolism, IL-17 signaling, and ferroptosis-related pathways were the top-ranking pathways. The transcriptional levels of Anpep, Gclc, Ggt1, Mgst2, Cxcl13, Rgn, and Akr1c1 were significantly different between the NM and RM group. Gclc was the key gene contributing to NM-mediated renal protection in RIAKI. Five hundred and five DEGs were annotated. Compared with the RM group, most of the upregulated DEGs in the NM group belonged to Glutathione metabolism, whereas most of the downregulated DEGs were related to the transcription factor Cytokine-cytokine receptor interaction. Conclusion: NM protects the kidneys against RIAKI, which is mainly associated with NM mediated regulation of glutathione metabolism, inflammatory response, ferroptosis-related pathways, and the related key DEGs. Targeting these DEGs might emerge as a potential molecular therapy for RIAKI.
Collapse
Affiliation(s)
- Wenli Guo
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Nephrology and Rheumatology, Sichuan Provincial People’s Hospital Qionglai Hospital, Medical Center Hospital Of Qionglai City. Chengdu, Sichuan, China
| | - Yu Wang
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuxuan Wu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiang Liu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Wang
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Santao Ou
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Weihua Wu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Jerman A, Andonova M, Persic V, Gubensek J. Extracorporeal Removal of Myoglobin in Patients with Rhabdomyolysis and Acute Kidney Injury: Comparison of High and Medium Cut-Off Membrane and an Adsorber Cartridge. Blood Purif 2022; 51:907-911. [PMID: 35340002 PMCID: PMC9808672 DOI: 10.1159/000521923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/27/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The role of extracorporeal myoglobin removal in the treatment of rhabdomyolysis-associated severe acute kidney injury (AKI) is not yet fully established. High cut-off (HCO) and medium cut-off (MCO) dialysis membrane and cytokine adsorber (CytoSorb®) have been used to this purpose in clinical practice. The data on comparative effectiveness of those methods are scarce. METHODS In this single-center retrospective study, we included patients with AKI and concomitant rhabdomyolysis (myoglobin >20,000 μg/L), who underwent at least one extracorporeal myoglobin removal procedure. The main outcome parameter was myoglobin reduction ratio, whereas albumin was assessed as a safety parameter. RESULTS We analyzed data for 15 patients, who underwent 28 procedures (13 HCO, 9 MCO, and 6 adsorber). Pre-treatment serum myoglobin levels were similar between the groups and myoglobin reduction was significant in HCO (p = 0.03) and MCO groups (p < 0.01) and borderline significant in adsorber group (p = 0.06). Reduction ratios were comparable between the groups (median 0.64 (inter-quartile range IQR 0.13-0.72), 0.54 (IQR 0.51-0.61) and 0.50 (IQR 0.37-0.62), respectively, p = 0.83). Both pre- and post-procedure serum albumin levels were significantly lower in the MCO group. However, with routine albumin substitution in the HCO group only, serum albumin remained stable during the procedures in all subgroups. CONCLUSIONS Novel MCO membrane might represent the optimal mode of treatment of severe rhabdomyolysis-associated AKI, as it allows for efficient removal of myoglobin, avoids albumin supplementation and is associated with lower costs. For patients requiring cytokine removal, the adsorption capsule can simultaneously reduce cytokine and myoglobin levels.
Collapse
Affiliation(s)
- Alexander Jerman
- Department of Nephrology, Center for Acute and Complicated Dialysis, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Milena Andonova
- Department of Nephrology, Center for Acute and Complicated Dialysis, University Medical Center Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vanja Persic
- Department of Nephrology, Center for Acute and Complicated Dialysis, University Medical Center Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jakob Gubensek
- Department of Nephrology, Center for Acute and Complicated Dialysis, University Medical Center Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,*Jakob Gubensek,
| |
Collapse
|
11
|
Semenovich DS, Plotnikov EY, Lukiyenko EP, Astrowski AA, Kanunnikova NP. Protective Effect of D-Panthenol in Rhabdomyolysis-Induced Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms232012273. [PMID: 36293129 PMCID: PMC9603683 DOI: 10.3390/ijms232012273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
We investigated the nephroprotective effect of D-panthenol in rhabdomyolysis-induced acute kidney injury (AKI). Adult male Wistar rats were injected with 50% glycerol solution to induce rhabdomyolysis. Animals with rhabdomyolysis were injected with D-panthenol (200 mg/kg) for 7 days. On day 8, we examined AKI markers, renal histology, antioxidant capacity, and protein glutathionylation in kidneys to uncover mechanisms of D-panthenol effects. Rhabdomyolysis kidneys were shown to have pathomorphological alterations (mononuclear infiltration, dilatation of tubules, and hyaline casts in Henle's loops and collecting ducts). Activities of skeletal muscle damage markers (creatine kinase and lactate dehydrogenase) increased, myoglobinuria was observed, and creatinine, BUN, and pantetheinase activity in serum and urine rose. Signs of oxidative stress in the kidney tissue of rhabdomyolysis rats, increased levels of lipid peroxidation products, and activities of antioxidant enzymes (SOD, catalase, and glutathione peroxidase) were all alleviated by administration of D-panthenol. Its application improved kidney morphology and decreased AKI markers. Mechanisms of D-panthenol's beneficial effects were associated with an increase in total coenzyme A levels, activity of Krebs cycle enzymes, and attenuation of protein glutathionylation. D-Panthenol protects kidneys from rhabdomyolysis-induced AKI through antioxidant effects, normalization of mitochondrial metabolism, and modulation of glutathione-dependent signaling.
Collapse
Affiliation(s)
- Dmitry S. Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Correspondence:
| | - Elena P. Lukiyenko
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus
| | - Alexander A. Astrowski
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus
| | - Nina P. Kanunnikova
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, 230023 Grodno, Belarus
| |
Collapse
|
12
|
Adepu KK, Bhandari D, Anishkin A, Adams SH, Chintapalli SV. Myoglobin-Pyruvate Interactions: Binding Thermodynamics, Structure-Function Relationships, and Impact on Oxygen Release Kinetics. Int J Mol Sci 2022; 23:ijms23158766. [PMID: 35955898 PMCID: PMC9369265 DOI: 10.3390/ijms23158766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Myoglobin (Mb), besides its roles as an oxygen (O2) carrier/storage protein and nitric oxide NO scavenger/producer, may participate in lipid trafficking and metabolite binding. Our recent findings have shown that O2 is released from oxy-Mb upon interaction with lactate (LAC, anerobic glycolysis end-product). Since pyruvate (PYR) is structurally similar and metabolically related to LAC, we investigated the effects of PYR (aerobic glycolysis end-product) on Mb using isothermal titration calorimetry, circular dichroism, and O2-kinetic studies to evaluate PYR affinity toward Mb and to compare the effects of PYR and LAC on O2 release kinetics of oxy-Mb. Similar to LAC, PYR interacts with both oxy- and deoxy-Mb with a 1:1 stoichiometry. Time-resolved circular dichroism spectra revealed that there are no major conformational changes in the secondary structures of oxy- or deoxy-Mb during interactions with PYR or LAC. However, we found contrasting results with respect to binding affinities and substrate preference, where PYR has higher affinity toward deoxy-Mb when compared with LAC (which prefers oxy-Mb). Furthermore, PYR interaction with oxy-Mb releases a significantly lower amount of O2 than LAC. Taken together, our findings support the hypothesis that glycolytic end-products play a distinctive role in the Mb-rich tissues by serving as novel regulators of O2 availability, and/or by impacting other activities related to oxy-/deoxy-Mb toggling in resting vs. exercised or metabolically activated conditions.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Correspondence: (K.K.A.); (S.V.C.)
| | | | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Sean H. Adams
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Center for Alimentary and Metabolic Science, University of California, Davis, CA 95817, USA
| | - Sree V. Chintapalli
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Correspondence: (K.K.A.); (S.V.C.)
| |
Collapse
|
13
|
Hebisz R, Borkowski J, Hebisz P. Creatine Kinase and Myoglobin Plasma Levels in Mountain Bike and Road Cyclists 1 h after the Race. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159456. [PMID: 35954814 PMCID: PMC9367889 DOI: 10.3390/ijerph19159456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022]
Abstract
The aim of this study was to determine if 1 h after a cycling race, changes in plasma creatine kinase activity (CK) and myoglobin concentrations (MB) differ between mountain bike and road cyclists and if these changes show any correlation with race performance. Male mountain bike cyclists (n = 11) under 23 years old and male road cyclists (n = 14), also under 23 years old, were studied following one of their respective races. The cyclists had blood drawn 2 h before and 1 h after the race to assess CK and MB, then the change in pre- and post-race difference was calculated (ΔCK and ΔMB). Each cyclist’s performance time was recorded and the time difference from the winner was calculated (TD). The cyclists’ aerobic capacity was assessed during the incremental test, which determines maximal oxygen uptake and maximal aerobic power. It was observed that 1 h after the cycling race, CK (p = 0.001, η2 = 0.40, F = 15.6) and MB (p = 0.000, η2 = 0.43, F = 17.2) increased, compared to pre-race values. Post-race CK increased only in road cyclists, while post-race MB increased only in mountain bike cyclists. Smaller TD were found for lower ΔMB in road cyclists but for higher ΔCK in mountain bike cyclists.
Collapse
|
14
|
Mard SA, Hoseinynejad K, Nejaddehbashi F. Gallic Acid Improves Therapeutic Effects of Mesenchymal Stem Cells Derived from Adipose Tissue in Acute Renal Injury Following Rhabdomyolysis Induced by Glycerol. Inflammation 2022; 45:2294-2308. [PMID: 35789305 DOI: 10.1007/s10753-022-01691-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 04/09/2022] [Accepted: 05/22/2022] [Indexed: 11/05/2022]
Abstract
Acute kidney injury (AKI) is identified by a progressive reduction in the glomerular filtration rate (GFR) and retention of nitrogenous waste products. Traumatic and nontraumatic rhabdomyolysis is recently considered the main cause of AKI. According to several studies, stem cell treatment is a promising therapeutic strategy for many types of disorders including AKI. The main limitation of mesenchymal stem cells (MSCs) therapy is reducing cell survival in response to oxidative stress products in injured organ areas. Gallic acid (GA) as a well-known antioxidant has been reported to confer potent-free radical scavenging and anti-inflammatory properties. Therefore, the aim of the current study was to assess the influence of MSCs and GA in acute renal injury following rhabdomyolysis induced by glycerol. A total of 70 healthy rats were divided into seven groups (10 in each group): control, AKI (glycerol, intramuscular), cell therapy (AKI + intravenous injection of mesenchymal stem cells derived from adipose tissue (AMCs), AKI + AMCs + GA (50, 100, and 200 mg/kg, intraperitoneally, 3 days a week for 3 consecutive weeks), and positive control group (the most effective dose of gallic acid). After the treatment, rats were sacrificed; blood, urine, and kidney tissues were collected; and qualitative and quantitative parameters (including blood urea nitrogen (BUN), creatine kinase (CK), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), aspartate transaminase (SGOT), oxidative stress markers kidney function parameters) and histopathological indexes were assayed. Our results revealed that co-treatment of AMCs plus GA into AKI rats decreased BUN and creatinine and ameliorated kidney injury parameters after 3 weeks. Improved oxidative stress markers such as decreased MDA and increased SOD and CAT were significant in the GA + AMCs group compared to the AMCs alone in AKI rats. Also, the histopathological appearances of AKI rats including renal tubule cavity expansion and renal tubular epithelial cell edema, and interstitial inflammation, were alleviated using GA + AMCs treatment compared to the control. The obtained results of the current study documented that antioxidants could make mesenchymal stem cells more resistant to the condition in which they are supposed to be transplanted and probably improve the efficacy of stem cell therapy in AKI patients.
Collapse
Affiliation(s)
- Seyyed Ali Mard
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khojasteh Hoseinynejad
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Adepu KK, Bhandari D, Anishkin A, Adams SH, Chintapalli SV. Myoglobin Interaction with Lactate Rapidly Releases Oxygen: Studies on Binding Thermodynamics, Spectroscopy, and Oxygen Kinetics. Int J Mol Sci 2022; 23:ijms23094747. [PMID: 35563138 PMCID: PMC9103699 DOI: 10.3390/ijms23094747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 01/27/2023] Open
Abstract
Myoglobin (Mb)-mediated oxygen (O2) delivery and dissolved O2 in the cytosol are two major sources that support oxidative phosphorylation. During intense exercise, lactate (LAC) production is elevated in skeletal muscles as a consequence of insufficient intracellular O2 supply. The latter results in diminished mitochondrial oxidative metabolism and an increased reliance on nonoxidative pathways to generate ATP. Whether or not metabolites from these pathways impact Mb-O2 associations remains to be established. In the present study, we employed isothermal titration calorimetry, O2 kinetic studies, and UV-Vis spectroscopy to evaluate the LAC affinity toward Mb (oxy- and deoxy-Mb) and the effect of LAC on O2 release from oxy-Mb in varying pH conditions (pH 6.0–7.0). Our results show that LAC avidly binds to both oxy- and deoxy-Mb (only at acidic pH for the latter). Similarly, in the presence of LAC, increased release of O2 from oxy-Mb was detected. This suggests that with LAC binding to Mb, the structural conformation of the protein (near the heme center) might be altered, which concomitantly triggers the release of O2. Taken together, these novel findings support a mechanism where LAC acts as a regulator of O2 management in Mb-rich tissues and/or influences the putative signaling roles for oxy- and deoxy-Mb, especially under conditions of LAC accumulation and lactic acidosis.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Correspondence: (K.K.A.); (S.V.C.)
| | | | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| | - Sean H. Adams
- Department of Surgery, School of Medicine, University of California, Davis, CA 95616, USA;
- Center for Alimentary and Metabolic Science, University of California, Davis, CA 95616, USA
| | - Sree V. Chintapalli
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Correspondence: (K.K.A.); (S.V.C.)
| |
Collapse
|
16
|
Penjweini R, Roarke B, Alspaugh G, Link KA, Andreoni A, Mori MP, Hwang PM, Sackett DL, Knutson JR. Intracellular imaging of metmyoglobin and oxygen using new dual purpose probe EYFP-Myoglobin-mCherry. JOURNAL OF BIOPHOTONICS 2022; 15:e202100166. [PMID: 34689421 PMCID: PMC8901566 DOI: 10.1002/jbio.202100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The biological relevance of nitric oxide (NO) and reactive oxygen species (ROS) in signaling, metabolic regulation, and disease treatment has become abundantly clear. The dramatic change in NO/ROS processing that accompanies a changing oxygen landscape calls for new imaging tools that can provide cellular details about both [O2 ] and the production of reactive species. Myoglobin oxidation to the met state by NO/ROS is a known sensor with absorbance changes in the visible range. We previously employed Förster resonance energy transfer to read out the deoxygenation/oxygenation of myoglobin, creating the subcellular [O2 ] sensor Myoglobin-mCherry. We now add the fluorescent protein EYFP to this sensor to create a novel probe that senses both met formation, a proxy for ROS/NO exposure, and [O2 ]. Since both proteins are present in the construct, it can also relieve users from the need to measure fluorescence lifetime, making [O2 ] sensing available to a wider group of laboratories.
Collapse
Affiliation(s)
- Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Branden Roarke
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Greg Alspaugh
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Katie A. Link
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Alessio Andreoni
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
- Laboratory of Optical Neurophysiology, Department of Biochemistry and Molecular Medicine, University of California Davis, Tupper Hall, Davis, CA 95616
| | - Mateus P. Mori
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Paul M. Hwang
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Dan L. Sackett
- Cytoskeletal Dynamics Group, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda MD, 20892-0924
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| |
Collapse
|
17
|
Penjweini R, Mori MP, Hwang PM, Sackett DL, Knutson JR. Fluorescence lifetime imaging of metMyoglobin formation due to nitric oxide stress. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11965:119650H. [PMID: 35463920 PMCID: PMC9022600 DOI: 10.1117/12.2608888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Myoglobin is a protein that is expressed quite unevenly among different cell types. Nevertheless, it has been widely acknowledged that the Fe3+ state of myoglobin, metmyoglobin (metMb) has a broad functional role in metabolism, oxidative/nitrative regulation and gene networks. Accordingly, real-time monitoring of oxygenated, deoxygenated and metMb proportions- or, more broadly, of the mechanisms by which metMb is formed, presents a promising line of research. We had previously introduced a Förster resonance energy transfer (FRET) method to read out the deoxygenation/oxygenation states of myoglobin, by creating the targetable oxygen (O2) sensor Myoglobin-mCherry. In this sensor, changes in myoglobin absorbance features that occur with lost O2 occupancy -or upon metMb production- control the FRET rate from the fluorescent protein to myoglobin. When O2 is bound, mCherry fluorescence is only slightly quenched, but if either O2 is released or met is produced, FRET will increase- and this rate competing with emission reduces both emission yield and lifetime. Nitric oxide (NO) is an important signal (but also a toxic molecule) that can oxidize myoglobin to metMb with absorbance increases in the red visible range. mCherry thus senses both met and deoxygenated myoglobin, which cannot be easily separated at hypoxia. In order to dissect this, we treat cells with NO and investigate how the Myoglobin-mCherry lifetime is affected by generating metMb. More discriminatory power is then achieved when the fluorescent protein EYFP is added to Myoglobin-mCherry, creating a sandwich probe whose lifetime can selectively respond to metMb while being indifferent to O2 occupancy.
Collapse
Affiliation(s)
- Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD 20892-1412
| | - Mateus P Mori
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Paul M Hwang
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Dan L Sackett
- Cytoskeletal Dynamics Group, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Building 9, Room 1E129, Bethesda MD, 20892-0924
| | - Jay R Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD 20892-1412
| |
Collapse
|
18
|
Telomere Length, Apoptotic, and Inflammatory Genes: Novel Biomarkers of Gastrointestinal Tract Pathology and Meat Quality Traits in Chickens under Chronic Stress ( Gallus gallus domesticus). Animals (Basel) 2021; 11:ani11113276. [PMID: 34828008 PMCID: PMC8614256 DOI: 10.3390/ani11113276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The assessment of poultry’s gastrointestinal (GI) tract and meat quality traits are crucial for sustainable poultry production in the tropics. The search for well-conserved and more reliable biomarkers for the GI tract and meat traits has faced many challenges. In this study, we observed the effect of corticosterone (CORT) and age on body weight, buffy coat telomere length, GI tract, and meat quality traits. The critical evaluation of the GI tract and meat traits in this study revealed that telomere length, mitochondria, and acute phase protein genes were altered by chronic stress and were associated with the traits. This study informed us of the potential of telomere length, mitochondria, and acute phase protein genes in the assessment of GI tract pathological conditions and meat quality in the poultry sector for sustainable production. Abstract This study was designed to examine the potentials of telomere length, mitochondria, and acute phase protein genes as novel biomarkers of gastrointestinal (GI) tract pathologies and meat quality traits. Chickens were fed a diet containing corticosterone (CORT) for 4 weeks and records on body weight, telomere length, GI tract and muscle histopathological test, meat quality traits, mitochondria, and acute phase protein genes were obtained at weeks 4 and 6 of age. The body weight of CORT-fed chickens was significantly suppressed (p < 0.05). CORT significantly altered the GI tract and meat quality traits. The interaction effect of CORT and age on body weight, duodenum and ileum crypt depth, pH, and meat color was significant (p < 0.05). CORT significantly (p < 0.05) shortened buffy coat telomere length. UCP3 and COX6A1 were diversely and significantly expressed in the muscle, liver, and heart of the CORT-fed chicken. Significant expression of SAAL1 and CRP in the liver and hypothalamus of the CORT-fed chickens was observed at week 4 and 6. Therefore, telomere lengths, mitochondria, and acute phase protein genes could be used as novel biomarkers for GI tract pathologies and meat quality traits.
Collapse
|
19
|
Wu M, Wang C, Liu Z, Liu Z. Sequential Organ Failure Assessment Score for Prediction of Mortality of Patients With Rhabdomyolysis Following Exertional Heatstroke: A Longitudinal Cohort Study in Southern China. Front Med (Lausanne) 2021; 8:724319. [PMID: 34708052 PMCID: PMC8542709 DOI: 10.3389/fmed.2021.724319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Heatstroke is a medical emergency that causes multi-organ injury and death without intervention, but limited data are available on the illness scores in predicting the outcomes of exertional heat stroke (EHS) with rhabdomyolysis (RM). The aim of our study was to investigate the Sequential Organ Failure Assessment (SOFA) score in predicting mortality of patients with RM after EHS. Methods: A retrospective cohort study was performed, which included all patients with EHS admitted into the intensive care unit (ICU) of General Hospital of Southern Theater Command of Peoples Liberation Army from January 2008 to June 2019. RM was defined as creatine kinase (CK) > 1,000 U/L. Data, including the baseline data at admission, vital organ function indicators, and 90-day mortality, were reviewed. Results: A total of 176 patients were enrolled; among them, 85 (48.3%) had RM. Patients with RM had a significantly higher SOFA score (4.0 vs. 3.0, p = 0.021), higher occurrence rates of disseminated intravascular coagulation (DIC) (53.1 vs. 18.3%, p < 0.001) and acute liver injury (ALI) (21.4 vs. 5.5%, p = 0.002) than patients with non-RM. RM was positively correlated with ALI and DIC, and the correlation coefficients were 0.236 and 0.365, respectively (both p-values <0.01). Multivariate logistics analysis showed that the SOFA score [odds ratio (OR) 1.7, 95% CI 1.1-2.6, p = 0.024] was the risk factor for 90-day mortality in patients with RM after EHS, with the area under the curve (AUC) 0.958 (95% CI 0.908-1.000, p < 0.001) and the optimal cutoff 7.5 points. Conclusions: Patients with RM after EHS have severe clinical conditions, which are often accompanied by DIC or ALI. The SOFA score could predict the prognosis of patients with RM with EHS. Early treatment strategies based on decreasing the SOFA score at admission may be pivotal to reduce the 90-day mortality of patients with EHS.
Collapse
Affiliation(s)
- Ming Wu
- Department of Critical Care Medicine and Hospital Infection Prevention and Control, Health Science Center, The Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
| | - Conglin Wang
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
| | - Zheying Liu
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
- Key Laboratory of Hot Zone Trauma Care and Tissue Repair of Peoples Liberation Army, General Hospital of Southern Theatre Command of Peoples Liberation Army, Guangzhou, China
| |
Collapse
|
20
|
Al Abdulmonem W, Aljohani ASM, Alhumaydhi FA, Mousa AHM, Rasheed Z. Protective Potential of Uric Acid, Folic Acid, Glutathione and Ascorbic Acid Against the Formation of Toxic Met-Myoglobin. Protein Pept Lett 2021; 28:282-289. [PMID: 32957872 DOI: 10.2174/0929866527666200921165312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Myoglobin is an oxygen binding protein and its dysfunction has been associated with the pathology of several human disorders. This study was undertaken to investigation the role of hydrogen peroxide (H2O2) in the formation of met-myoglobin and the protective potential of four different reductants such as uric acid, folic acid, glutathione and ascorbic acid were also tested against met-myoglobin formation. METHODS Human myoglobin was treated with H2O2 in-vitro in order to prepare met-myoglobin. The generation of met-myoglobin was confirmed by UV-visible spectroscopy and its stability was analysed by the treatment of human myoglobin with H2O2 at varying pH or time. High performance liquid chromatography (HPLC) was used to determine the oxidatively modified heme products in met-myoglobin. Spectroscopic analysis was used to identify the protective potential of uric acid, folic acid, glutathione and ascorbic acid against the formation of met-myoglobin. RESULTS The novel data of this study showed that H2O2 induced extensive damage of myoglobin but the treatment with uric acid, folic acid, glutathione or ascorbic acid provides protection of myoglobin against H2O2 induced oxidative damaged. The study apparently proved the protective potential of all these compounds against the toxicity produced by H2O2. CONCLUSION This is the first study that shows uric acid, folic acid, glutathione and ascorbic acid provide protection against the generation of toxic met-myoglobin and might be used therapeutically to modify the blood conditions in order to prevent the progression of human disorders associated with myoglobin dysfunction.
Collapse
Affiliation(s)
- Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agricultural and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Amira H M Mousa
- Department of Pathology, Postgraduate Medical College, University of Khartoum, Khartoum, Sudan
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
21
|
Sharma AK, Kaur A, Kaur J, Kaur G, Chawla A, Khanna M, Kaur H, Kaur H, Kaur T, Singh AP. Ameliorative Role of Diallyl Disulfide Against Glycerol-induced Nephrotoxicity in Rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:129-135. [PMID: 34084059 PMCID: PMC8142911 DOI: 10.4103/jpbs.jpbs_177_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction: This study investigated the role of diallyl disulfide (DADS) against glycerol-induced nephrotoxicity in rats. Moreover, the role of peroxisome proliferator activated receptor-γ (PPAR-γ) in DADS-mediated renoprotection has been explored. Materials and Methods: Male Wistar albino rats were challenged with glycerol (50% w/v, 8 mL/kg intramuscular) to induce nephrotoxicity. Kidney injury was quantified by measuring serum creatinine, creatinine clearance, urea, potassium, fractional excretion of sodium, and microproteinuria in rats. Renal oxidative stress was measured in terms of thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Hematoxylin–eosin (H&E) and periodic acid Schiff staining of renal samples was done to show histological changes. Glycerol-induced muscle damage was quantified by assaying creatine kinase (CK) levels in rat serum. Results: Administration of glycerol resulted in muscle damage as reflected by significant rise in CK levels in rats. Glycerol intoxication led kidney damage was reflected by significant change in renal biochemical parameters, renal oxidative stress and histological changes in rat kidneys. Administration of DADS attenuated glycerol-induced renal damage. Notably, pretreatment with bisphenol A diglycidyl ether, a PPAR-γ antagonist, abolished DADS renoprotection in rats. Conclusion: We conclude that DADS affords protection against glycerol-induced renal damage in rats. Moreover, PPAR-γ plays a key role in DADS-mediated renoprotective effect.
Collapse
Affiliation(s)
- Ashwani Kumar Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anmoldeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Japneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Apporva Chawla
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mannan Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harmanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harnoor Kaur
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Tajpreet Kaur
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
22
|
Ciceri P, Cozzolino M. Expanded Haemodialysis as a Current Strategy to Remove Uremic Toxins. Toxins (Basel) 2021; 13:toxins13060380. [PMID: 34073439 PMCID: PMC8226798 DOI: 10.3390/toxins13060380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/04/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by the retention of solutes named uremic toxins, which strongly associate with high morbidity and mortality. Mounting evidence suggests that targeting uremic toxins and/or their pathways may decrease the risk of cardiovascular disease in CKD patients. Dialysis therapies have been developed to improve removal of uremic toxins. Advances in our understanding of uremic retention solutes as well as improvements in dialysis membranes and techniques (HDx, Expanded Hemodialysis) will offer the opportunity to ameliorate clinical symptoms and outcomes, facilitate personalized and targeted dialysis treatment, and improve quality of life, morbidity and mortality.
Collapse
Affiliation(s)
- Paola Ciceri
- Renal Research Laboratory, Department of Nephrology, Dialysis and Renal Transplant, Fondazione Ca’ Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence: ; Tel.: +39-02-81844215
| |
Collapse
|
23
|
Thévenod F, Lee WK, Garrick MD. Iron and Cadmium Entry Into Renal Mitochondria: Physiological and Toxicological Implications. Front Cell Dev Biol 2020; 8:848. [PMID: 32984336 PMCID: PMC7492674 DOI: 10.3389/fcell.2020.00848] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Regulation of body fluid homeostasis is a major renal function, occurring largely through epithelial solute transport in various nephron segments driven by Na+/K+-ATPase activity. Energy demands are greatest in the proximal tubule and thick ascending limb where mitochondrial ATP production occurs through oxidative phosphorylation. Mitochondria contain 20-80% of the cell's iron, copper, and manganese that are imported for their redox properties, primarily for electron transport. Redox reactions, however, also lead to reactive, toxic compounds, hence careful control of redox-active metal import into mitochondria is necessary. Current dogma claims the outer mitochondrial membrane (OMM) is freely permeable to metal ions, while the inner mitochondrial membrane (IMM) is selectively permeable. Yet we recently showed iron and manganese import at the OMM involves divalent metal transporter 1 (DMT1), an H+-coupled metal ion transporter. Thus, iron import is not only regulated by IMM mitoferrins, but also depends on the OMM to intermembrane space H+ gradient. We discuss how these mitochondrial transport processes contribute to renal injury in systemic (e.g., hemochromatosis) and local (e.g., hemoglobinuria) iron overload. Furthermore, the environmental toxicant cadmium selectively damages kidney mitochondria by "ionic mimicry" utilizing iron and calcium transporters, such as OMM DMT1 or IMM calcium uniporter, and by disrupting the electron transport chain. Consequently, unraveling mitochondrial metal ion transport may help develop new strategies to prevent kidney injury induced by metals.
Collapse
Affiliation(s)
- Frank Thévenod
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Wing-Kee Lee
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Michael D Garrick
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
24
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|
25
|
Heyman SN, Khamaisi M, Zorbavel D, Rosen S, Abassi Z. Role of Hypoxia in Renal Failure Caused by Nephrotoxins and Hypertonic Solutions. Semin Nephrol 2020; 39:530-542. [PMID: 31836036 DOI: 10.1016/j.semnephrol.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypoxia plays a role in the pathogenesis of acute kidney injury under diverse clinical settings, including nephrotoxicity. Although some nephrotoxins exert direct renal parenchymal injury, likely with consequent altered oxygenation, others primarily reduce renal parenchymal oxygenation, leading to hypoxic tubular damage. As outlined in this review, nephrotoxin-related renal hypoxia may result from an altered renal oxygen supply (cyclosporine), enhanced oxygen consumption for tubular transport (agents inducing osmotic diuresis), or their combination (nonsteroidal anti-inflammatory drugs, radiocontrast agents, and others). Most agents causing hypoxic renal injury further supress physiologic low medullary Po2, in which a limited regional blood supply barely matches the intense regional tubular transport and oxygen consumption. The medullary tubular transport and blood supply are finely matched, securing oxygen sufficiency. Predisposition to hypoxia-mediated nephrotoxicity by medical conditions, such as chronic kidney disease or diabetes, may be explained by malfunctioning of control systems that normally maintain medullary oxygenation. However, this propensity may be diminished by hypoxia-mediated adaptive responses governed by hypoxia-inducible factors. Recent reports have suggested that inhibitors of sodium-glucose cotransporters and the administration of hypertonic saline may be added to the growing list of common therapeutic interventions that intensify medullary hypoxia, and potentially could lead to hypoxic acute kidney injury.
Collapse
Affiliation(s)
- Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel.
| | - Mogher Khamaisi
- Department of Medicine D, Rambam Health Care Campus, Haifa, Israel; Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel
| | - Danny Zorbavel
- Department of Medicine D, Rambam Health Care Campus, Haifa, Israel
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA; Department of Pathology, Harvard Medical School, Boston, MA
| | - Zaid Abassi
- Department of Physiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel; Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
26
|
Martin-Sanchez D, Fontecha-Barriuso M, Martinez-Moreno JM, Ramos AM, Sanchez-Niño MD, Guerrero-Hue M, Moreno JA, Ortiz A, Sanz AB. Ferroptosis and kidney disease. Nefrologia 2020; 40:384-394. [PMID: 32624210 DOI: 10.1016/j.nefro.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Cell death is a finely regulated process occurring through different pathways. Regulated cell death, either through apoptosis or regulated necrosis offers the possibility of therapeutic intervention. Necroptosis and ferroptosis are among the best studied forms of regulated necrosis in the context of kidney disease. We now review the current evidence supporting a role for ferroptosis in kidney disease and the implications of this knowledge for the design of novel therapeutic strategies. Ferroptosis is defined functionally, as a cell modality characterized by peroxidation of certain lipids, constitutively suppressed by GPX4 and inhibited by iron chelators and lipophilic antioxidants. There is functional evidence of the involvement of ferroptosis in diverse forms of kidneys disease. In a well characterized nephrotoxic acute kidney injury model, ferroptosis caused an initial wave of death, triggering an inflammatory response that in turn promoted necroptotic cell death that perpetuated kidney dysfunction. This suggests that ferroptosis inhibitors may be explored as prophylactic agents in clinical nephrotoxicity or ischemia-reperfusion injury such as during kidney transplantation. Transplantation offers the unique opportunity of using anti-ferroptosis agent ex vivo, thus avoiding bioavailability and in vivo pharmacokinetics and pharmacodynamics issues.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Julio M Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | | | - Juan A Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, Cordoba, Spain; Centre of Biomedical Research in Network of Cardiovascular Disease (CIBERCV), Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain; School of Medicine, UAM, Madrid, Spain
| | - Ana B Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain.
| |
Collapse
|
27
|
Rose JJ, Bocian KA, Xu Q, Wang L, DeMartino AW, Chen X, Corey CG, Guimarães DA, Azarov I, Huang XN, Tong Q, Guo L, Nouraie M, McTiernan CF, O'Donnell CP, Tejero J, Shiva S, Gladwin MT. A neuroglobin-based high-affinity ligand trap reverses carbon monoxide-induced mitochondrial poisoning. J Biol Chem 2020; 295:6357-6371. [PMID: 32205448 PMCID: PMC7212636 DOI: 10.1074/jbc.ra119.010593] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC-treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 μm) and nitric oxide (100 μm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 μm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning.
Collapse
Affiliation(s)
- Jason J Rose
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| | - Kaitlin A Bocian
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Qinzi Xu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Ling Wang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Anthony W DeMartino
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Xiukai Chen
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Catherine G Corey
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Danielle A Guimarães
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Ivan Azarov
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Xueyin N Huang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Qin Tong
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Lanping Guo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Charles F McTiernan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Christopher P O'Donnell
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jesús Tejero
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Sruti Shiva
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Mark T Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
28
|
Lim AKH. Abnormal liver function tests associated with severe rhabdomyolysis. World J Gastroenterol 2020; 26:1020-1028. [PMID: 32205993 PMCID: PMC7081005 DOI: 10.3748/wjg.v26.i10.1020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyolysis is a syndrome of skeletal muscle injury with release of cellular constituents such as potassium, phosphate, urate and intracellular proteins such as myoglobin into the circulation, which may cause complications including acute kidney injury, electrolyte disturbance and cardiac instability. Abnormal liver function tests are frequently observed in cases of severe rhabdomyolysis. Typically, there is an increase in serum aminotransferases, namely aspartate aminotransferase and alanine aminotransferase. This raises the question of liver injury and often triggers a pathway of investigation which may lead to a liver biopsy. However, muscle can also be a source of the increased aminotransferase activity. This review discusses the dilemma of finding abnormal liver function tests in the setting of muscle injury and the potential implications of such an association. It delves into some of the clinical and experimental evidence for correlating muscle injury to raised aminotransferases, and discusses pathophysiological mechanisms such as oxidative stress which may cause actual liver injury. Serum aminotransferases lack tissue specificity to allow clinicians to distinguish primary liver injury from muscle injury. This review also explores potential approaches to improve the accuracy of our diagnostic tools, so that excessive or unnecessary liver investigations can be avoided.
Collapse
Affiliation(s)
- Andy KH Lim
- Department of General Medicine, Monash Health, Clayton VIC 3168, Australia
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton VIC 3168, Australia
| |
Collapse
|
29
|
Lim AKH, Arumugananthan C, Lau Hing Yim C, Jellie LJ, Wong EWW, Junckerstorff RK. A Cross-Sectional Study of the Relationship between Serum Creatine Kinase and Liver Biochemistry in Patients with Rhabdomyolysis. J Clin Med 2019; 9:jcm9010081. [PMID: 31905634 PMCID: PMC7019809 DOI: 10.3390/jcm9010081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/20/2022] Open
Abstract
Abnormal liver function tests are commonly observed with rhabdomyolysis, but the nature of this association is not fully defined. This study aims to determine the functional relationship between serum creatine kinase, as a marker of rhabdomyolysis severity, and liver biochemistry. We used linear regression to model the relationship between liver biochemistry and peak serum creatine kinase. A total of 528 patients with a median age of 74 years were included. The distribution of creatine kinase, bilirubin, alkaline phosphatase, alanine aminotransferase, and γ-glutamyl transferase were significantly skewed, and these variables were log-transformed prior to regression. There was a positive linear correlation between log-alanine aminotransferase and log-creatine kinase. In the multiple regression analysis, log-creatine kinase, age, acute kidney injury stage, and chronic liver disease were independently associated with log-alanine aminotransferase. This model explained 46% of the variance of log-alanine aminotransferase. We found no correlation between the log-creatine kinase and the log-bilirubin, log-alkaline phosphatase, or log-γ-glutamyl transferase. Serum alanine aminotransferase was not associated with inpatient mortality but a higher creatine kinase-alanine aminotransferase ratio was associated with lower odds of mortality. In conclusion, an isolated elevation in alanine aminotransferase can occur in rhabdomyolysis, and it may be possible to anticipate the level of increase based on the peak creatine kinase.
Collapse
Affiliation(s)
- Andy K. H. Lim
- General Medicine, Monash Health, Clayton, Victoria 3168, Australia; (C.A.); (C.L.H.Y.); (L.J.J.); (E.W.W.W.); (R.K.J.)
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
- Correspondence:
| | - Chitherangee Arumugananthan
- General Medicine, Monash Health, Clayton, Victoria 3168, Australia; (C.A.); (C.L.H.Y.); (L.J.J.); (E.W.W.W.); (R.K.J.)
| | - Corinne Lau Hing Yim
- General Medicine, Monash Health, Clayton, Victoria 3168, Australia; (C.A.); (C.L.H.Y.); (L.J.J.); (E.W.W.W.); (R.K.J.)
| | - Lucy J. Jellie
- General Medicine, Monash Health, Clayton, Victoria 3168, Australia; (C.A.); (C.L.H.Y.); (L.J.J.); (E.W.W.W.); (R.K.J.)
| | - Elena W. W. Wong
- General Medicine, Monash Health, Clayton, Victoria 3168, Australia; (C.A.); (C.L.H.Y.); (L.J.J.); (E.W.W.W.); (R.K.J.)
| | - Ralph K. Junckerstorff
- General Medicine, Monash Health, Clayton, Victoria 3168, Australia; (C.A.); (C.L.H.Y.); (L.J.J.); (E.W.W.W.); (R.K.J.)
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
30
|
Weng C, Lan K, Li T, Zhang L, Wang J, Lai X. Regional hypothermia attenuates secondary-injury caused by time-out application of tourniquets following limb fragments injury combined with hemorrhagic shock. Scand J Trauma Resusc Emerg Med 2019; 27:104. [PMID: 31752982 PMCID: PMC6873525 DOI: 10.1186/s13049-019-0678-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023] Open
Abstract
Background Tourniquet is the most widely used and effective first-aid equipment for controlling hemorrhage of injured limb in battlefield. However, time-out application of tourniquets leads to ischemic-necrosis of skeletal muscles and ischemia-reperfusion injury. Regional hypothermia (RH) on wounded limb can relieve the injury on local tissue and distant organs. We aimed to investigate the protective effects of RH on rabbits’ limbs injured by a steel-ball combined with hemorrhagic-shock, and then employed tourniquet over-time, tried to identify the optimal treatment RH. Methods Thirty rabbits were randomly divided into 5 groups. All rabbits were anesthetized, intubated femoral artery and vein in right-hind limbs. Sham operation group (Sham): only femoral arteriovenous cannula in right-hind limb. None RH group (NRH): rabbits were intubated as Sham group, then the soft tissues of rabbits’ left-hinds were injured by a steel-ball shooting, and were exsanguinated until shock, then bundled with rubber tourniquets for 4 h. Three RH subgroups: rabbits were injured as mentioned above, the injured limbs were bundled with rubber tourniquets and treated with different temperature (5 ± 1 °C, 10 ± 1 °C, and 20 ± 1 °C, respectively) for 4 h. The injury severity of lung and regional muscle was assessed by histologic examination. Activity of adenosine triphosphatase (ATPase) and content of malondialdehyde (MDA) in muscle, inflammatory cytokines, myoglobin, creatine kinase-MM (CK-MM), Heme, Heme oxygenase 1 (HO-1), lactic acid (Lac), and lectrolyte ion in serum were detected. Results Following with RH treatment, the injury of lung and local muscle tissue was alleviated evidencing by mitigation of histopathological changes, significant decrease of water-content and MDA content, and increase of ATPase activity. Lower level of Lac, Potassium (K+), inflammatory cytokines, Heme, CK-MM, myoglobin content, and higher level of Calcium (Ca2+), HO-1 content were shown in RH treatment. 10 °C was the most effective RH to increase ATPase activity, and decrease MDA, myoglobin, CK-MM content. Conclusion Transient RH (4 h) had a “long-term mitigation effects” (continued for 6 h) on time-out application of tourniquet with the fluid resuscitation and core temperature maintenance, and the most effective temperature for reducing the side effects on tourniquet time-out application was 10 °C.
Collapse
Affiliation(s)
- Changmei Weng
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.,State Key Laboratory of Trauma, Burn and Combined Injury Research Institute, Third Military Medical University, Chongqing, 400042, China
| | - Kai Lan
- State Key Laboratory of Trauma and Burns, Surgery Research Institute; Research Institute of Surgery, Daping Hospital, Third Military Medical University, 10 Changjiang Road, Chongqing, 400042, China
| | - Tao Li
- Joint Surgery Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liangchao Zhang
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.,State Key Laboratory of Trauma, Burn and Combined Injury Research Institute, Third Military Medical University, Chongqing, 400042, China
| | - Jianmin Wang
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.,State Key Laboratory of Trauma, Burn and Combined Injury Research Institute, Third Military Medical University, Chongqing, 400042, China
| | - Xinan Lai
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,State Key Laboratory of Trauma, Burn and Combined Injury Research Institute, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
31
|
Abstract
Iron is an essential element that is indispensable for life. The delicate physiological body iron balance is maintained by both systemic and cellular regulatory mechanisms. The iron-regulatory hormone hepcidin assures maintenance of adequate systemic iron levels and is regulated by circulating and stored iron levels, inflammation and erythropoiesis. The kidney has an important role in preventing iron loss from the body by means of reabsorption. Cellular iron levels are dependent on iron import, storage, utilization and export, which are mainly regulated by the iron response element-iron regulatory protein (IRE-IRP) system. In the kidney, iron transport mechanisms independent of the IRE-IRP system have been identified, suggesting additional mechanisms for iron handling in this organ. Yet, knowledge gaps on renal iron handling remain in terms of redundancy in transport mechanisms, the roles of the different tubular segments and related regulatory processes. Disturbances in cellular and systemic iron balance are recognized as causes and consequences of kidney injury. Consequently, iron metabolism has become a focus for novel therapeutic interventions for acute kidney injury and chronic kidney disease, which has fuelled interest in the molecular mechanisms of renal iron handling and renal injury, as well as the complex dynamics between systemic and local cellular iron regulation.
Collapse
|
32
|
Yin M, Jiang N, Guo L, Ni Z, Al-Brakati AY, Othman MS, Abdel Moneim AE, Kassab RB. Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats. Life Sci 2019; 232:116634. [DOI: 10.1016/j.lfs.2019.116634] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
|
33
|
Kadıoğlu E, Tekşen Y, Koçak C, Koçak FE. Beneficial effects of bardoxolone methyl, an Nrf2 activator, on crush-related acute kidney injury in rats. Eur J Trauma Emerg Surg 2019; 47:241-250. [PMID: 31471671 DOI: 10.1007/s00068-019-01216-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effects of bardoxolone methyl (BM), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, on acute kidney injury in a rat model of crush syndrome model. METHODS Sixty-four rats were separated equally into eight groups, sham (sterile saline ip), crush, crush + vehicle (DMSO ip), and crush + BM (10 mg/kg ip) (n = 8). All groups were also divided as 3 and 24 h after decompression. Crush injury was induced by 6 h of direct compression to both hind limbs of the rats with blocks weighing 3.6 kg on each side, followed by 3 and 24 h of decompression. Kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrotizing factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) concentrations, tissue total oxidant status (TOS) and total antioxidant status (TAS) were measured in the kidneys. Serum creatine kinase (CK), blood urea nitrogen (BUN) and creatinine concentrations were also measured. Glomerular and tubular structures were examined histopathologically. Bcl-2 was measured using immunohistochemistry. Apoptosis was assessed using the TUNEL method. RESULTS BM treatment reduced KIM-1, NGAL, TNF-α, TGF-β1, TOS concentrations, and increased TAS concentrations in the kidneys 3 and 24 h after decompression. Serum CK, BUN and creatinine concentrations were also reduced with BM. BM treatment decreased apoptosis in crush-related AKI. The Nrf2 activator BM reversed the crush-induced changes in the experimental rats. CONCLUSION BM treatment prevented the progression of crush-related AKI in rats possibly through its cytoprotective effects of being an antioxidant, anti-inflammatory and anti-apoptotic agent.
Collapse
Affiliation(s)
- Emine Kadıoğlu
- Department of Emergency Medicine, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey
| | - Yasemin Tekşen
- Department of Pharmacology, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey.
| | - Cengiz Koçak
- Department of Pathology, Faculty of Medicine, Uşak University, Bir Eylül Kampüsü, 64000, Uşak, Turkey
| | - Fatma Emel Koçak
- Department of Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey
| |
Collapse
|
34
|
Mannino MH, Patel RS, Eccardt AM, Perez Magnelli RA, Robinson CLC, Janowiak BE, Warren DE, Fisher JS. Myoglobin as a versatile peroxidase: Implications for a more important role for vertebrate striated muscle in antioxidant defense. Comp Biochem Physiol B Biochem Mol Biol 2019; 234:9-17. [PMID: 31051268 DOI: 10.1016/j.cbpb.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Myoglobins (Mb) are ubiquitous proteins found in striated muscle of nearly all vertebrate taxa. Although their function is most commonly associated with facilitating oxygen storage and diffusion, Mb has also been implicated in cellular antioxidant defense. The oxidized (Fe3+) form of Mb (metMB) can react with hydrogen peroxide (H2O2) to produce ferrylMb. FerrylMb can be reduced back to metMb for another round of reaction with H2O2. In the present study, we have shown that horse skeletal muscle Mb displays peroxidase activity using 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as reducing substrates, as well as the biologically-relevant substrates NADH/NADPH, ascorbate, caffeic acid, and resveratrol. We have also shown that ferrylMb can be reduced by both ethanol and acetaldehyde, which are known to accumulate in some vertebrate tissues under anaerobic conditions, such as anoxic goldfish and crucian carp, implying a potential mechanism for ethanol detoxification in striated muscle. We found that metMb peroxidase activity is pH-dependent, increasing as pH decreases from 7.4 to 6.1, which is biologically relevant to anaerobic vertebrate muscle when incurring intracellular lactic acidosis. Finally, we found that metMb reacts with hypochlorite in a heme-dependent fashion, indicating that Mb could play a role in hypochlorite detoxification. Taken together, these data suggest that Mb peroxidase activity might be an important antioxidant mechanism in vertebrate cardiac and skeletal muscle under a variety of physiological conditions, such as those that might occur in contracting skeletal muscle or during hypoxia.
Collapse
|
35
|
Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C, Martín-Sanchez D, Farré-Alins V, Egea J, Cannata P, Praga M, Ortiz A, Egido J, Sanz AB, Moreno JA. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J 2019; 33:8961-8975. [PMID: 31034781 DOI: 10.1096/fj.201900077r] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute kidney injury is a common complication of rhabdomyolysis. A better understanding of this syndrome may be useful to identify novel therapeutic targets because there is no specific treatment so far. Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death that is involved in renal injury. In this study, we investigated whether ferroptosis is associated with rhabdomyolysis-mediated renal damage, and we studied the therapeutic effect of curcumin, a powerful antioxidant with renoprotective properties. Induction of rhabdomyolysis in mice increased serum creatinine levels, endothelial damage, inflammatory chemokines, and cytokine expression, alteration of redox balance (increased lipid peroxidation and decreased antioxidant defenses), and tubular cell death. Treatment with curcumin initiated before or after rhabdomyolysis induction ameliorated all these pathologic and molecular alterations. Although apoptosis or receptor-interacting protein kinase (RIPK)3-mediated necroptosis were activated in rhabdomyolysis, our results suggest a key role of ferroptosis. Thus, treatment with ferrostatin 1, a ferroptosis inhibitor, improved renal function in glycerol-injected mice, whereas no beneficial effects were observed with the pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-(O-methyl)-fluoromethylketone or in RIPK3-deficient mice. In cultured renal tubular cells, myoglobin (Mb) induced ferroptosis-sensitive cell death that was also inhibited by curcumin. Mechanistic in vitro studies showed that curcumin reduced Mb-mediated inflammation and oxidative stress by inhibiting the TLR4/NF-κB axis and activating the cytoprotective enzyme heme oxygenase 1. Our findings are the first to demonstrate the involvement of ferroptosis in rhabdomyolysis-associated renal damage and its sensitivity to curcumin treatment. Therefore, curcumin may be a potential therapeutic approach for patients with this syndrome.-Guerrero-Hue, M., García-Caballero, C., Palomino-Antolín, A., Rubio-Navarro, A., Vázquez-Carballo, C., Herencia, C., Martín-Sanchez, D., Farré-Alins, V., Egea, J., Cannata, P., Praga, M., Ortiz, A., Egido, J., Sanz, A. B., Moreno, J. A. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death.
Collapse
Affiliation(s)
- Melania Guerrero-Hue
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Cristina García-Caballero
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Alejandra Palomino-Antolín
- Instituto de Investigación Sanitaria (IIS), Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departament of Pharmacology and Therapeutics, Medicine Faculty, Autónoma University, Madrid, Spain
| | - Alfonso Rubio-Navarro
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Cristina Vázquez-Carballo
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Carmen Herencia
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Diego Martín-Sanchez
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Víctor Farré-Alins
- Instituto de Investigación Sanitaria (IIS), Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departament of Pharmacology and Therapeutics, Medicine Faculty, Autónoma University, Madrid, Spain
| | - Javier Egea
- Instituto de Investigación Sanitaria (IIS), Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departament of Pharmacology and Therapeutics, Medicine Faculty, Autónoma University, Madrid, Spain
| | - Pablo Cannata
- Pathology Department, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Manuel Praga
- Department of Nephrology, 12 de Octubre Hospital, Madrid, Spain
| | - Alberto Ortiz
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain.,Diabetes and Associated Metabolic Diseases Networking Biomedical Research Center (CIBERDEM), Madrid, Spain
| | - Ana Belén Sanz
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Juan Antonio Moreno
- Renal, Vascular, and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain.,Department of Cell Biology, Physiology, and Immunology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| |
Collapse
|
36
|
Long B, Koyfman A, Gottlieb M. An evidence-based narrative review of the emergency department evaluation and management of rhabdomyolysis. Am J Emerg Med 2019; 37:518-523. [DOI: 10.1016/j.ajem.2018.12.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
|
37
|
Tekşen Y, Kadıoğlu E, Koçak C, Koçak H. Effect of Hydrogen Sulfide on Kidney Injury in Rat Model of Crush Syndrome. J Surg Res 2018; 235:470-478. [PMID: 30691831 DOI: 10.1016/j.jss.2018.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute kidney injury is the most serious complication of crush syndrome. Hydrogen sulfide (H2S) is an endogenously produced gaseous signaling molecule. It is involved in homeostatic functions, such as blood pressure control, apoptosis, oxidative stress, and inflammation. In this study, effects of H2S on kidney injury were investigated in a rat model of crush syndrome. METHODS Rats were divided into six groups (n = 8): Sham (steril saline ip), crush (sterile saline ip), crush + NaHS (sodium hydrosulfide, an H2S donor) (100 μmol/kg ip). All these groups were also separated as 3 and 24 h after decompression. Crush injury was induced by 6 h of direct compression to both hindlimbs of anesthetized rats with blocks weighing 3.6 kg each sides, followed by 3 or 24 h of decompression. Kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, tumor-necrotizing factor-α, transforming growth factor-β, tissue total oxidant status, and total antioxidant status levels were measured in kidney homogenates 3 and 24 h after decompression. Serum creatine kinase, blood urea nitrogen, and creatinine levels were also measured. Apoptosis was assessed by TUNEL method. Bcl-2 was assessed by immunohistochemistry. Glomerular and tubular structures were also examined histopathologically. RESULTS NaHS reduced kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, tumor-necrotizing factor-α, transforming growth factor-β, total oxidant status levels, and increased total antioxidant status levels in kidney 3 and 24 h after decompression. Serum urea, creatinine, and creatine kinase levels also reduced with NaHS. NaHS decreased renal damage and apoptosis in crush-related acute kidney injury. CONCLUSIONS These results suggest that H2S could reduce crush-related acute kidney injury via anti-inflammatory, antioxidant, and antiapoptotic effects.
Collapse
Affiliation(s)
- Yasemin Tekşen
- Department of Pharmacology, Faculty of Medicine, Dumlupınar University, Kütahya, Turkey.
| | - Emine Kadıoğlu
- Department of Emergency Medicine, Faculty of Medicine, Dumlupınar University, Kütahya, Turkey
| | - Cengiz Koçak
- Department of Pathology, Faculty of Medicine, Dumlupınar University, Kütahya, Turkey
| | - Havva Koçak
- Department of Biochemistry, Faculty of Medicine, Asst. Prof. Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
38
|
Abstract
Legionella pneumonia is occasionally accompanied by renal complications; however, the cause of this remains unknown. We herein report a 70-year-old Japanese man with Legionella pneumonia who presented with hyponatremia, hypophosphatemia, and hypouricemia. The levels of urinary β2-microglobulin and N-acetyl-β-D-glucosaminidase were remarkably high, indicating severe renal tubular damage. The presence of glycosuria and aminoaciduria as well as increased fractional excretion of uric acid and decreased tubular reabsorption of phosphate indicated that the patient's condition was complicated with Fanconi syndrome. After antimicrobial therapy, the electrolyte abnormalities and renal tubular damage were completely resolved.
Collapse
Affiliation(s)
- Ryo Koda
- Department of Nephrology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Japan
| | - Ryo Itoh
- Department of Respiratory Medicine, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Japan
| | - Masafumi Tsuchida
- Department of Nephrology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Japan
| | - Kazumasa Ohashi
- Department of Respiratory Medicine, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Japan
| | - Noriaki Iino
- Department of Nephrology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Japan
| | - Toshinori Takada
- Department of Respiratory Medicine, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Science, Japan
| |
Collapse
|
39
|
Jankauskas SS, Silachev DN, Andrianova NV, Pevzner IB, Zorova LD, Popkov VA, Plotnikov EY, Zorov DB. Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle 2018; 17:1291-1309. [PMID: 29963970 DOI: 10.1080/15384101.2018.1482149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The anti-aging strategy is one of the main challenges of the modern biomedical science. The term "aging" covers organisms, cells, cellular organelles and their constituents. In general term, aging system admits the existence of nonfunctional structures which by some reasons have not been removed by a clearing system, e.g., through autophagy/mitophagy marking and destroying unwanted cells or mitochondria. This directly relates to the old kidney which normal functioning is critical for the viability of the organism. One of the main problems in biomedical studies is that in their majority, young organisms serve as a standard with further extrapolation on the aged system. However, some protective systems, which demonstrate their efficiency in young systems, lose their beneficial effect in aged organisms. It is true for ischemic preconditioning of the kidney, which is almost useless for an old kidney. The pharmacological intervention could correct the defects of the senile system provided that the complete understanding of all elements involved in aging will be achieved. We discuss critical elements which determine the difference between young and old phenotypes and give directions to prevent or cure lesions occurring in aged organs including kidney. ABBREVIATIONS AKI: acute kidney injury; I/R: ischemia/reperfusion; CR: caloric restriction; ROS: reactive oxygen species; RC: respiratory chain.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Denis N Silachev
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Nadezda V Andrianova
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,c Faculty of Bioengineering and Bioinformatics , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Irina B Pevzner
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Ljubava D Zorova
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Vasily A Popkov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,c Faculty of Bioengineering and Bioinformatics , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Egor Y Plotnikov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Dmitry B Zorov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| |
Collapse
|
40
|
Pevzner IB, Pavlenko TA, Popkov VA, Andrianova NV, Zorova LD, Brezgunova AA, Zorov SD, Yankauskas SS, Silachev DN, Zorov DB, Plotnikov EY. Comparative Study of the Severity of Renal Damage in Newborn and Adult Rats under Conditions of Ischemia/Reperfusion and Endotoxin Administration. Bull Exp Biol Med 2018; 165:189-194. [PMID: 29923010 DOI: 10.1007/s10517-018-4127-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 11/29/2022]
Abstract
Oxidative kidney injury was compared in newborn and adult rats under conditions of ischemia/reperfusion and in experimental model of systemic inflammation induced by endotoxin (LPS of bacterial cell wall) administration. Oxidative stress in the kidney accompanied both experimental models, but despite similar oxidative tissue damage, kidney dysfunction in neonates was less pronounced than in adult animals. It was found that neonatal kidney has a more potent regenerative potential with higher level of cell proliferation than adult kidney, where the level proliferating cell antigen (PCNA) increased only on day 2 after ischemia/reperfusion. The pathological process in the neonatal kidney developed against the background of active cell proliferation, and, as a result, proliferating cells could almost immediately replace the damaged structures. In the adult kidney, regeneration of the renal tissue was activated only after significant loss of functional nephrons and impairment of renal function.
Collapse
Affiliation(s)
- I B Pevzner
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.,V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - T A Pavlenko
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - V A Popkov
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - N V Andrianova
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - L D Zorova
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.,V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - A A Brezgunova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - S D Zorov
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - S S Yankauskas
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - D N Silachev
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.,V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - D B Zorov
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.,V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - E Yu Plotnikov
- Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
41
|
Rhabdomyolysis in a patient complicated with hypopituitarism and multiple organ dysfunction syndrome and the literature review. Am J Emerg Med 2018; 36:1723.e1-1723.e6. [PMID: 29910183 DOI: 10.1016/j.ajem.2018.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Muscular symptoms, including stiffness, myalgia, cramps, and fatigue, are present in the majority of the patients with hypopituitarism, adrenal insufficiency and hypothyroidism, but rhabdomyolysis, the rapid breakdown of skeletal muscle, is a rare manifestation. In most patients who develop rhabdomyolysis, precipitating factors, such as strenuous exercise or use of lipid-lowering drugs, can be identified. CASE REPORT We report the case of a 23-year-old male with primary hypopituitarism who developed acute renal impairment (AKI) with rhabdomyolysis after strenuous physical activity (push-ups). His blood test confirmed marked hypopituitarism. Severe elevation of serum CK consistent with rhabdomyolysis was noted and an elevated creatinine indicated AKI and multiple organ dysfunction syndrome (MODS). Patient's condition improved significantly after continuous renal replacement therapy (CRRT), glucocorticoid hormone replacement therapy and aggressive hydration. MODS with rhabdomyolysis in patients with hypothyroidism is quite rare and we expect that this case report adds to the existing literature on this subject. We also emphasize that thyroid and adrenal gland status should be evaluated in patients with unexplained AKI, MODS and presenting with the symptoms of muscle involvement. LITERATURE REVIEW We respectively reviewed 23 patients with hypopituitarism, adrenal Insufficiency and hypothyroidism induced rhabdomyolysis who were involved in the past 40 years relevant literatures. CONCLUSION We report a successfully treated case of rhabdomyolysis, which is a rare but potentially serious complication of hypopituitarism. Screening for endocrine abnormality in patients with elevated muscle enzymes should be considered, since an early diagnosis and prompt treatment is essential to prevent rhabdomyolysis and its consequences.
Collapse
|
42
|
Ondruschka B, Rosinsky F, Trauer H, Schneider E, Dreßler J, Franke H. Drug- and/or trauma-induced hyperthermia? Characterization of HSP70 and myoglobin expression. PLoS One 2018; 13:e0194442. [PMID: 29566034 PMCID: PMC5864017 DOI: 10.1371/journal.pone.0194442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/02/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction Heat shock protein 70 (HSP70) expression could be discussed as an adaption that promotes repair and counteracts cell damage. Myoglobin is released upon muscle damage of several pathways. The purpose of the present study was to determine whether the expression of HSP70 in kidney, heart and brain and of myoglobin in the kidney were associated with the cause of death and the survival times after lethal intoxications with three of the drugs most widely used in our local area (Saxony, Germany) as well as after fatal traumatic brain injury (TBI). Methods We retrospectively collected kidney, heart and brain samples of 50 autopsy cases with toxicological proved lethal intoxication (main drugs methamphetamine, morphine, alcohol), 14 TBI cases and 15 fatalities with acute myocardial injury in age- and gender-matched compilations. Results Our main findings suggest that HSP70 is associated with hyperthermal and other stress factors of most cell populations. HSP70 expressions in kidney and heart muscle are useful for a differentiation between fatal intoxications and cases without toxicological influence (p < 0.05). There were significant differences in the cerebral expression patterns between methamphetamine- and morphine-associated deaths compared to alcohol fatalities (p < 0.05). An intensive staining of HSP70 in the pericontusional zone and the hippocampus after TBI (especially neuronal and vascular) was shown even after short survival times and may be useful as an additional marker in questions of vitality or wound age. A relevant myoglobin decoration of renal tubules was only shown for methamphetamine abuse in the study presented. Conclusion In sum, the immunohistochemical characteristics presented can be supportive for determining final death circumstances and minimal trauma survival times but are not isolated usefully for the detection of drug- or trauma-induced hyperthermia.
Collapse
Affiliation(s)
- Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Franziska Rosinsky
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Heiner Trauer
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | - Jan Dreßler
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
The role of complement activation in rhabdomyolysis-induced acute kidney injury. PLoS One 2018; 13:e0192361. [PMID: 29466390 PMCID: PMC5821337 DOI: 10.1371/journal.pone.0192361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022] Open
Abstract
Rhabdomyolysis (RM) may cause kidney damage and results primarily in acute kidney injury (AKI). Complement is implicated in the pathogenesis of renal diseases and ischemia-reperfusion injury (IRI), but the role of complement, especially its activation pathway(s) and its effect in RM-induced AKI, is not clear. This study established a rat model of AKI induced by RM via intramuscular treatment with glycerol. Cobra venom factor (CVF) was administered via tail vein injection to deplete complement 12 h prior to intramuscular injection of glycerol. We found that the complement components, including complement 3 (C3), C1q, MBL-A, factor B(fB), C5a, C5b-9, and CD59, were significantly increased in rat kidneys after intramuscular glycerol administration. However, the levels of serum BUN and Cr, renal tubular injury scores, and the number of TUNEL-positive cells decreased significantly in the CVF+AKI group. These results suggest that complement plays an important role in RM-induced AKI and that complement depletion may improve renal function and decrease renal tissue damage by reducing the inflammatory response and apoptosis.
Collapse
|
44
|
Carmona G, Mendiguchía J, Alomar X, Padullés JM, Serrano D, Nescolarde L, Rodas G, Cussó R, Balius R, Cadefau JA. Time Course and Association of Functional and Biochemical Markers in Severe Semitendinosus Damage Following Intensive Eccentric Leg Curls: Differences between and within Subjects. Front Physiol 2018; 9:54. [PMID: 29467666 PMCID: PMC5807877 DOI: 10.3389/fphys.2018.00054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023] Open
Abstract
Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs) by (1) assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC), functional magnetic resonance (fMRI), and serum muscle enzyme levels and (2) analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison). Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC). Serum enzyme levels, fMRI transverse relaxation time (T2) and perceived muscle soreness were also assessed and compared against the FGC. Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders (n = 10, severe muscle damage) and moderate responders (n = 3, moderate muscle damage). In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST) muscle suffered severe damage in the three regions measured (proximal, middle, and distal). The biceps femoris short head (BFsh) muscle was also damaged and there were significant differences in the FGC within subjects in the high responders. Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders). fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an excessive load on the BFsh and causing it to perform a synergistic compensation that leads to structural damage. Finally, T2 and MVC values did not correlate for the leg with the smaller FGC decrease in the hamstring muscles, suggesting that long-lasting increases in T2 signals after FGC markers have returned to baseline values might indicate an adaptive process rather than damage.
Collapse
Affiliation(s)
- Gerard Carmona
- Escola Superior de Ciències de la Salut, Pompeu Fabra University, Mataró, Spain.,Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Spain
| | - Jurdan Mendiguchía
- Department of Physical Therapy, Zentrum Rehab and Performance Center, Barañain, Spain
| | - Xavier Alomar
- Department of Radiology, Clínica Creu Blanca, Barcelona, Spain
| | - Josep M Padullés
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Spain
| | - David Serrano
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Spain
| | - Lexa Nescolarde
- Department of Electronic, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Gil Rodas
- Futbol Club Barcelona, Barcelona, Spain
| | - Roser Cussó
- Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Joan A Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona, Spain.,Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Mahadeva Rao US, Shanmuga Sundaram C. Antihypercholesterolemic, antioxidant and renal protective effects of Mengkudu (Rubiaceae) fruit in nephropathy-induced albino rats. Chin J Integr Med 2017:10.1007/s11655-017-2785-1. [PMID: 28914438 DOI: 10.1007/s11655-017-2785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess the modulatory impact of alcoholic extract of fruit of Mengkudu (AEFM, Morinda citrifolia L., Rubiaceae) on renal oxido-lipidemic stress in hypercholesterolemic albino rats. METHODS Twenty-four male albino rats were randomly divided into four groups with six rats in each group: group I as control, group II fed with hypercholesterolemic diet (HCD) for 45 days (4% cholesterol and 1% cholic acid), Group III rats fed with HCD for 45 days + AEFM (300 mg/kg body weight/day orally) for last 30 days and group IV normal rats fed AEFM alone. The blood was collected using ethylenediamine tetraacetic acid (EDTA) as an anticoagulant for various biochemical analysis, and excision of kidney was done for histological analysis. RESULTS The levels of total cholesterol (TC), triacylglycerol (TG), phospholipids (PLs), renal functional parameters and lipid peroxidation products were markedly mitigated in AEFM treated hypercholesterolemic rats (group III) compared to group I (P<0.01). Activities of both enzymic and non-enzymic free radical scavenging factors were significantly increased in group III compared to group I (P<0.01). In group III the mRNA levels of interstitial endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) genes were obviously up-regulated (P<0.01) and down-regulated in (P<0.05) compared with group I. Histomorphological observations also exhibited similar as in group III AEFM commendably protects the renal tissues compared with group I (P<0.01). CONCLUSION AEFM can act as nephroprotective agent by attenuating the renal oxidative stress, lipid levels as well as regulating NOS level and by this means protects the kidney in hypercholesterolemic induced nephropathy experimental rats.
Collapse
Affiliation(s)
- U S Mahadeva Rao
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, 20400, Malaysia.
| | - C Shanmuga Sundaram
- Department of Microbiology, Hindustan College of arts and Science, Kelambakkam, Chennai, 603103, India
| |
Collapse
|
46
|
Moggio A, Geraci S, Boido A, Sticht C, Gretz N, Bussolati B. Assessment of acute kidney injury in rhabdomyolytic mice by transcutaneous measurement of sinistrin excretion. Nephrol Dial Transplant 2017; 32:1167-1175. [DOI: 10.1093/ndt/gfw438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
47
|
Susa AC, Xia Z, Williams ER. Native Mass Spectrometry from Common Buffers with Salts That Mimic the Extracellular Environment. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anna C. Susa
- Department of Chemistry; University of California, Berkeley, California; B42 Hildebrand Hall Berkeley CA 94720 USA
| | - Zijie Xia
- Department of Chemistry; University of California, Berkeley, California; B42 Hildebrand Hall Berkeley CA 94720 USA
| | - Evan R. Williams
- Department of Chemistry; University of California, Berkeley, California; B42 Hildebrand Hall Berkeley CA 94720 USA
| |
Collapse
|
48
|
Susa AC, Xia Z, Williams ER. Native Mass Spectrometry from Common Buffers with Salts That Mimic the Extracellular Environment. Angew Chem Int Ed Engl 2017; 56:7912-7915. [DOI: 10.1002/anie.201702330] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Anna C. Susa
- Department of Chemistry; University of California, Berkeley, California; B42 Hildebrand Hall Berkeley CA 94720 USA
| | - Zijie Xia
- Department of Chemistry; University of California, Berkeley, California; B42 Hildebrand Hall Berkeley CA 94720 USA
| | - Evan R. Williams
- Department of Chemistry; University of California, Berkeley, California; B42 Hildebrand Hall Berkeley CA 94720 USA
| |
Collapse
|
49
|
Abstract
The clinical category of acute kidney injury includes a wide range of completely different disorders, many with their own pathomechanisms and treatment targets. In this review we focus on the role of inflammation in the pathogenesis of acute tubular necrosis (ATN). We approach this topic by first discussing the role of the immune system in the different phases of ATN (ie, early and late injury phase, recovery phase, and the long-term outcome phase of an ATN episode). A more detailed discussion focuses on putative therapeutic targets among the following mechanisms and mediators: oxidative stress and reactive oxygen species-related necroinflammation, regulated cell death-related necroinflammation, immunoregulatory lipid mediators, cytokines and cytokine signaling, chemokines and chemokine signaling, neutrophils and neutrophils extracellular traps (NETs) associated neutrophil cell death, called NETosis, extracellular histones, proinflammatory mononuclear phagocytes, humoral mediators such as complement, pentraxins, and natural antibodies. Any prioritization of these targets has to take into account the intrinsic differences between rodent models and human ATN, the current acute kidney injury definitions, and the timing of clinical decision making. Several conceptual problems need to be solved before anti-inflammatory drugs that are efficacious in rodent ATN may become useful therapeutics for human ATN.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Alexander Holderied
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Santhosh V Kumar
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
50
|
Tsai JP, Lee CJ, Subeq YM, Lee RP, Hsu BG. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats. Int J Med Sci 2017; 14:680-689. [PMID: 28824301 PMCID: PMC5562120 DOI: 10.7150/ijms.19479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.
Collapse
Affiliation(s)
- Jen-Pi Tsai
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yi-Maun Subeq
- Department of Nursing, Tzu Chi University, Hualien, Taiwan
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Nephrology, Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|