1
|
Bellomo C, Furone F, Rotondo R, Ciscognetti I, Carpinelli M, Nicoletti M, D'Aniello G, Sepe L, Barone MV, Nanayakkara M. Role of Protein Tyrosine Phosphatases in Inflammatory Bowel Disease, Celiac Disease and Diabetes: Focus on the Intestinal Mucosa. Cells 2024; 13:1981. [PMID: 39682729 DOI: 10.3390/cells13231981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are a family of enzymes essential for numerous cellular processes, such as cell growth, inflammation, differentiation, immune-mediated responses and oncogenic transformation. The aim of this review is to review the literature concerning the role of several PTPs-PTPN22, PTPN2, PTPN6, PTPN11, PTPσ, DUSP2, DUSP6 and PTPRK-at the level of the intestinal mucosa in inflammatory bowel disease (IBD), celiac disease (CeD) and type 1 diabetes (T1D) in both in vitro and in vivo models. The results revealed shared features, at the level of the intestinal mucosa, between these diseases characterized by alterations of different biological processes, such as proliferation, autoimmunity, cell death, autophagy and inflammation. PTPs are now actively studied to develop new drugs. Also considering the availability of organoids as models to test new drugs in personalized ways, it is very likely that soon these proteins will be the targets of useful drugs.
Collapse
Affiliation(s)
- Claudia Bellomo
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Francesca Furone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Ilaria Ciscognetti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Carpinelli
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Nicoletti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Genoveffa D'Aniello
- ELFID (European Laboratory for the Investigation of Food-Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- ELFID (European Laboratory for the Investigation of Food-Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | |
Collapse
|
2
|
Kruckow KL, Murray E, Shayhidin E, Rosenberg AF, Bowdish DME, Orihuela CJ. Chronic TNF exposure induces glucocorticoid-like immunosuppression in the alveolar macrophages of aged mice that enhances their susceptibility to pneumonia. Aging Cell 2024; 23:e14133. [PMID: 38459711 PMCID: PMC11296116 DOI: 10.1111/acel.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024] Open
Abstract
Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.
Collapse
Affiliation(s)
- Katherine L. Kruckow
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth Murray
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elnur Shayhidin
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Alexander F. Rosenberg
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Dawn M. E. Bowdish
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Carlos J. Orihuela
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
3
|
Guan Y, Zhang Y, Zhao X, Wang Y. Comprehensive analysis revealed the immunoinflammatory targets of rheumatoid arthritis based on intestinal flora, miRNA, transcription factors, and RNA-binding proteins databases, GSEA and GSVA pathway observations, and immunoinfiltration typing. Hereditas 2024; 161:6. [PMID: 38273392 PMCID: PMC10809458 DOI: 10.1186/s41065-024-00310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic inflammatory arthritis. This study aimed to identify potential biomarkers and possible pathogenesis of RA using various bioinformatics analysis tools. METHODS The GMrepo database provided a visual representation of the analysis of intestinal flora. We selected the GSE55235 and GSE55457 datasets from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) separately. With the intersection of these DEGs with the target genes associated with RA found in the GeneCards database, we obtained the DEGs targeted by RA (DERATGs). Subsequently, Disease Ontology, Gene Ontology, and the Kyoto Encyclopedia of Genes and Genomes were used to analyze DERATGs functionally. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed on the data from the gene expression matrix. Additionally, the protein-protein interaction network, transcription factor (TF)-targets, target-drug, microRNA (miRNA)-mRNA networks, and RNA-binding proteins (RBPs)-DERATGs correlation analyses were built. The CIBERSORT was used to evaluate the inflammatory immune state. The single-sample GSEA (ssGSEA) algorithm and differential analysis of DERATGs were used among the infiltration degree subtypes. RESULTS There were some correlations between the abundance of gut flora and the prevalence of RA. A total of 54 DERATGs were identified, mainly related to immune and inflammatory responses and immunodeficiency diseases. Through GSEA and GSVA analysis, we found pathway alterations related to metabolic regulations, autoimmune diseases, and immunodeficiency-related disorders. We obtained 20 hub genes and 2 subnetworks. Additionally, we found that 39 TFs, 174 drugs, 2310 miRNAs, and several RBPs were related to DERATGs. Mast, plasma, and naive B cells differed during immune infiltration. We discovered DERATGs' differences among subtypes using the ssGSEA algorithm and subtype grouping. CONCLUSIONS The findings of this study could help with RA diagnosis, prognosis, and targeted molecular treatment.
Collapse
Affiliation(s)
- Yin Guan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yue Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Xiaoqian Zhao
- Department of Ethics Committee, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yue Wang
- Department of Rheumatism Immunity Branch, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
4
|
El Badaoui L, Barr AJ. Analysis of Receptor-Type Protein Tyrosine Phosphatase Extracellular Regions with Insights from AlphaFold. Int J Mol Sci 2024; 25:820. [PMID: 38255894 PMCID: PMC10815196 DOI: 10.3390/ijms25020820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The receptor-type protein tyrosine phosphatases (RPTPs) are involved in a wide variety of physiological functions which are mediated via their diverse extracellular regions. They play key roles in cell-cell contacts, bind various ligands and are regulated by dimerization and other processes. Depending on the subgroup, they have been described as everything from 'rigid rods' to 'floppy tentacles'. Here, we review current experimental structural knowledge on the extracellular region of RPTPs and draw on AlphaFold structural predictions to provide further insights into structure and function of these cellular signalling molecules, which are often mutated in disease and are recognised as drug targets. In agreement with experimental data, AlphaFold predicted structures for extracellular regions of R1, and R2B subgroup RPTPs have an extended conformation, whereas R2B RPTPs are twisted, reflecting their high flexibility. For the R3 PTPs, AlphaFold predicts that members of this subgroup adopt an extended conformation while others are twisted, and that certain members, such as CD148, have one or more large, disordered loop regions in place of fibronectin type 3 domains suggested by sequence analysis.
Collapse
Affiliation(s)
| | - Alastair J. Barr
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| |
Collapse
|
5
|
Torices L, Nunes-Xavier CE, Mingo J, Luna S, Erramuzpe A, Cortés JM, Pulido R. Induction of Translational Readthrough on Protein Tyrosine Phosphatases Targeted by Premature Termination Codon Mutations in Human Disease. Methods Mol Biol 2024; 2743:1-19. [PMID: 38147205 DOI: 10.1007/978-1-0716-3569-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nonsense mutations generating premature termination codons (PTCs) in various genes are frequently associated with somatic cancer and hereditary human diseases since PTCs commonly generate truncated proteins with defective or altered function. Induced translational readthrough during protein biosynthesis facilitates the incorporation of an amino acid at the position of a PTC, allowing the synthesis of a complete protein. This may evade the pathological effect of the PTC mutation and provide new therapeutic opportunities. Several protein tyrosine phosphatases (PTPs) genes are targeted by PTC in human disease, the tumor suppressor PTEN being the more prominent paradigm. Here, using PTEN and laforin as examples, two PTPs from the dual-specificity phosphatase subfamily, we describe methodologies to analyze in silico the distribution and frequency of pathogenic PTC in PTP genes. We also summarize laboratory protocols and technical notes to study the induced translational readthrough reconstitution of the synthesis of PTP targeted by PTC in association with disease in cellular models.
Collapse
Affiliation(s)
- Leire Torices
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Caroline E Nunes-Xavier
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Janire Mingo
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Sandra Luna
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Asier Erramuzpe
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Jesús M Cortés
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rafael Pulido
- Biobizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
6
|
Ahn D, Kwon J, Song S, Lee J, Yoon S, Chung SJ. Methyl Syringate Stimulates Glucose Uptake by Inhibiting Protein Tyrosine Phosphatases Relevant to Insulin Resistance. Life (Basel) 2023; 13:1372. [PMID: 37374154 DOI: 10.3390/life13061372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Several protein tyrosine phosphatases (PTPs), particularly PTPN1, PTPN2, PTPN6, PTPN9, PTPN11, PTPRS, and DUSP9, are involved in insulin resistance. Therefore, these PTPs could be promising targets for the treatment of type 2 diabetes. Our previous studies revealed that PTPN2 and PTPN6 are potential antidiabetic targets. Therefore, the identification of dual-targeting inhibitors of PTPN2 and PTPN6 could be a potential therapeutic strategy for the treatment or prevention of type 2 diabetes. In this study, we demonstrate that methyl syringate inhibits the catalytic activity of PTPN2 and PTPN6 in vitro, indicating that methyl syringate acts as a dual-targeting inhibitor of PTPN2 and PTPN6. Furthermore, methyl syringate treatment significantly increased glucose uptake in mature 3T3-L1 adipocytes. Additionally, methyl syringate markedly enhanced phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in 3T3L1 adipocytes. Taken together, our results suggest that methyl syringate, a dual-targeting inhibitor of PTPN2 and PTPN6, is a promising therapeutic candidate for the treatment or prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihee Kwon
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Songyi Song
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jooyoung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunyoung Yoon
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
8
|
Zhou J, Guo H, Zhang Y, Liu H, Dou Q. The role of PTP1B (PTPN1) in the prognosis of solid tumors: A meta-analysis. Medicine (Baltimore) 2022; 101:e30826. [PMID: 36221386 PMCID: PMC9543024 DOI: 10.1097/md.0000000000030826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) played different role in different solid tumors, and was associated with the prognosis of solid tumors. However, the roles existed controversy. This meta-analysis was performed to determine whether PTP1B was relevant to the prognosis of solid tumors. MATERIALS AND METHODS A literature search in Web of Science, Embase and PubMed databases were performed up to November 1, 2021. A meta-analysis dealed with PTP1B assessment in solid tumors, providing clinical stages and survival comparisons according to the PTP1B status. RESULTS High PTP1B expression was significantly associated with later clinical stage of solid tumors (Odds ratio [OR] 2.25, 95% confidence interval [CI]: 1.71-2.98, P < .001). For solid tumors, the hazard ratio (HR) for disease free survival (DFS) detrimental with high PTP1B expression compared with low PTP1B expression was 1.07 (95%CI: 0.67-1.73, P = .77) with the obvious heterogeneity (P = .03, I2 = 66%). The HR of overall survival (OS) for solid tumors with high PTP1B expression versus low PTP1B expression was 1.26 (95%CI: 1.03-1.55, P = .03) with significant publication bias (t = 3.28, P = .005). Subgroup analysis indicated that the high expression of PTP1B was remarkably correlated with poor OS in colorectal carcinoma, only (HR = 1.43; 95%CI: 1.18-1.74; P = .003). CONCLUSIONS High PTP1B expression is significantly associated with later clinical stage of solid tumors. The high expression of PTP1B is remarkably correlated with poor OS in colorectal carcinoma, only. There is no definite conclusion that PTP1B was, or not associated with DFS and OS of solid tumors because of heterogeneity and publication bias. Whether PTP1B can be used as a biomarker for predicting the prognosis of solid tumors needs further study.
Collapse
Affiliation(s)
- Jiupeng Zhou
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
- *Correspondence: Jiupeng Zhou, Xian Chest Hospital, Xi’an 710000, Shaanxi Province, China (e-mail: )
| | - Hui Guo
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | | | - Heng Liu
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
| | - Quanli Dou
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
| |
Collapse
|
9
|
Arnaud T, Rodrigues-Lima F, Viguier M, Deshayes F. Interplay between EGFR, E-cadherin, and PTP1B in epidermal homeostasis. Tissue Barriers 2022:2104085. [PMID: 35875939 PMCID: PMC10364651 DOI: 10.1080/21688370.2022.2104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Maintaining epithelial homeostasis is crucial to allow embryo development but also the protective barrier which is ensured by the epidermis. This homeostasis is regulated through the expression of several molecules among which EGFR and E-cadherin which are of major importance. Indeed, defects in the regulation of these proteins lead to abnormalities in cell adhesion, proliferation, differentiation, and migration. Hence, regulation of these two proteins is of the utmost importance as they are involved in numerous skin pathologies and cancers. In the last decades it has been described several pathways of regulation of these two proteins and notably several mechanisms of cross-regulation between these partners. In this review, we aimed to describe the current understanding of the regulation of EGFR and interactions between EGFR and E-cadherin and, in particular, the implication of these cross-regulations in epithelium homeostasis. We pay particular attention to PTP1B, a phosphatase involved in the regulation of EGFR.
Collapse
Affiliation(s)
- Tessa Arnaud
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | | | | | | |
Collapse
|
10
|
Henderson IM, Marez C, Dokladny K, Smoake J, Martinez M, Johnson D, Uhl GR. Substrate-selective positive allosteric modulation of PTPRD’s phosphatase by flavonols. Biochem Pharmacol 2022; 202:115109. [PMID: 35636503 PMCID: PMC10184881 DOI: 10.1016/j.bcp.2022.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
The receptor type protein tyrosine phosphatase D (PTPRD) is expressed by neurons and implicated in interesting phenotypes that include reward from addictive substances, restless leg syndrome and neurofibrillary tangle densities in Alzheimer's disease (AD-NFTs). However, the brain phosphotyrosine phosphoprotein (PTPP) substrates for PTPRD's phosphatase have not been clearly defined. Although we have identified small molecule inhibitors of PTPRD's phosphatase that are candidates for reducing reward from addictive substances, no positive allosteric modulators of this phosphatase that might be candidates for reducing AD-NFTs have been reported. We now report identification of candidate brain substrates for PTPRD based on their increased phosphorylation in knockout vs wildtype animals, coexpression with PTPRD in neuronal subtypes and brisk dephosphorylation by recombinant human PTPRD phosphatase. We also report discovery that quercetin and other flavonols, though not closely-related flavones, enhance rates of PTPRD's dephosphorylation of a group of these candidate substrate PTPPs but not others. This substrate-selective positive allosteric modulation provides a novel pharmacological action. Flavonol-mediated increases in PTPRD's dephosphorylation of the GSK3 β and α kinases that hyperphosphorylate tau, the major component of AD-NFTs, could help to explain recent data concerning genetic and dietary impacts on Alzheimer's disease.
Collapse
Affiliation(s)
- Ian M Henderson
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - Carlissa Marez
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - Karol Dokladny
- Department of Medicine, University of New Mexico, Albuquerque, NM 87131, United States
| | - Jane Smoake
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - Maria Martinez
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - David Johnson
- College of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| | - George R Uhl
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States; Departments of Neurology, Neuroscience and Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, United States; Departments of Neurology and Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Maryland VA Healthcare System, Baltimore, MD 21201, United States.
| |
Collapse
|
11
|
Terminalin from African Mango (Irvingia gabonensis) Stimulates Glucose Uptake through Inhibition of Protein Tyrosine Phosphatases. Biomolecules 2022; 12:biom12020321. [PMID: 35204821 PMCID: PMC8869479 DOI: 10.3390/biom12020321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs), along with protein tyrosine kinases, control signaling pathways involved in cell growth, metabolism, differentiation, proliferation, and survival. Several PTPs, such as PTPN1, PTPN2, PTPN9, PTPN11, PTPRS, and DUSP9, disrupt insulin signaling and trigger type 2 diabetes, indicating that PTPs are promising drug targets for the treatment or prevention of type 2 diabetes. As part of an ongoing study on the discovery of pharmacologically active bioactive natural products, we conducted a phytochemical investigation of African mango (Irvingia gabonensis) using liquid chromatography–mass spectrometry (LC/MS)-based analysis, which led to the isolation of terminalin as a major component from the extract of the seeds of I. gabonensis. The structure of terminalin was characterized by spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution (HR) electrospray ionization (ESI) mass spectroscopy. Moreover, terminalin was evaluated for its antidiabetic property; terminalin inhibited the catalytic activity of PTPN1, PTPN9, PTPN11, and PTPRS in vitro and led to a significant increase in glucose uptake in differentiated C2C12 muscle cells, indicating that terminalin exhibits antidiabetic effect through the PTP inhibitory mechanism. These findings suggest that terminalin derived from African mango could be used as a functional food ingredient or pharmaceutical supplement for the prevention of type 2 diabetes.
Collapse
|
12
|
Wu Y, Zhao Z, Zhang J, Wang Y, Song X. Identification of Hub Genes and Biological Pathways in Inclusion Body Myositis Using Bioinformatics Analysis. Int J Gen Med 2022; 15:1281-1293. [PMID: 35173467 PMCID: PMC8841524 DOI: 10.2147/ijgm.s346965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Inclusion body myositis (IBM) is a unique idiopathic inflammatory myopathy with unclear pathogenesis and poor prognosis. Although previous publications have identified some molecular biomarkers, the value of these biomarkers is unknown. Objective To identify hub genes and signaling pathways related to IBM for understanding the IBM-related mechanisms and providing guidance for therapy development. Methods Two microarray datasets (GSE3112 and GSE128470) were downloaded from the Gene Expression Omnibus (GEO) database. GEO2R was used to detect differentially expressed genes (DEGs) between IBM and normal muscle tissues. The hub genes were determined using protein–protein interaction (PPI) network in Cytoscape. The specific signaling pathways and biological functions of IBM were identified using GO, KEGG, and GSEA enrichment analyses. Moreover, CIBERSORT was applied to estimate the expression level of 22 immune cell types in IBM and normal muscle tissue. The relationship between the immune cell types and hub genes was then explored. Results A total of 219 DEGs and 10 hub genes were identified. Enrichment analyses revealed that the chemokine signaling pathway, cellular response to interferon-gamma, and P53 pathway have crucial roles in IBM. Immune infiltration analyses showed that IBM was associated with high level of CD8 T cells, Tregs, and macrophages. Finally, five potential drugs were predicted for IBM patients through CMap (connectivity map) database. Conclusion In this study, the underlying molecular mechanisms and immunological landscape of IBM were investigated, and thus may provide new directions for future research on IBM pathogenesis.
Collapse
Affiliation(s)
- Yue Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, People’s Republic of China
| | - Zijun Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Heibei, 050000, People’s Republic of China
| | - Jinru Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, People’s Republic of China
| | - Yaye Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, People’s Republic of China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Xueqin Song, Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, People’s Republic of China, Tel/Fax +86-318-2187209, Email
| |
Collapse
|
13
|
Bae JH, Park D. Effect of dietary calcium on the gender-specific association between polymorphisms in the PTPRD locus and osteoporosis. Clin Nutr 2022; 41:680-686. [DOI: 10.1016/j.clnu.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/01/2022] [Accepted: 01/21/2022] [Indexed: 11/03/2022]
|
14
|
Fernández-Carrión R, Sorlí JV, Coltell O, Pascual EC, Ortega-Azorín C, Barragán R, Giménez-Alba IM, Alvarez-Sala A, Fitó M, Ordovas JM, Corella D. Sweet Taste Preference: Relationships with Other Tastes, Liking for Sugary Foods and Exploratory Genome-Wide Association Analysis in Subjects with Metabolic Syndrome. Biomedicines 2021; 10:biomedicines10010079. [PMID: 35052758 PMCID: PMC8772854 DOI: 10.3390/biomedicines10010079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Taste perception and its association with nutrition and related diseases (type 2 diabetes, obesity, metabolic syndrome, cardiovascular, etc.) are emerging fields of biomedicine. There is currently great interest in investigating the environmental and genetic factors that influence sweet taste and sugary food preferences for personalized nutrition. Our aims were: (1) to carry out an integrated analysis of the influence of sweet taste preference (both in isolation and in the context of other tastes) on the preference for sugary foods and its modulation by type 2 diabetes status; (2) as well as to explore new genetic factors associated with sweet taste preference. We studied 425 elderly white European subjects with metabolic syndrome and analyzed taste preference, taste perception, sugary-foods liking, biochemical and genetic markers. We found that type 2 diabetic subjects (38%) have a small, but statistically higher preference for sweet taste (p = 0.021) than non-diabetic subjects. No statistically significant differences (p > 0.05) in preferences for the other tastes (bitter, salty, sour or umami) were detected. For taste perception, type 2 diabetic subjects have a slightly lower perception of all tastes (p = 0.026 for the combined “total taste score”), bitter taste being statistically lower (p = 0.023). We also carried out a principal component analysis (PCA), to identify latent variables related to preferences for the five tastes. We identified two factors with eigenvalues >1. Factor 2 was the one with the highest correlation with sweet taste preference. Sweet taste preference was strongly associated with a liking for sugary foods. In the exploratory SNP-based genome-wide association study (GWAS), we identified some SNPs associated with sweet taste preference, both at the suggestive and at the genome-wide level, especially a lead SNP in the PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) gene, whose minor allele was associated with a lower sweet taste preference. The PTPRN2 gene was also a top-ranked gene obtained in the gene-based exploratory GWAS analysis. In conclusion, sweet taste preference was strongly associated with sugary food liking in this population. Our exploratory GWAS identified an interesting candidate gene related with sweet taste preference, but more studies in other populations are required for personalized nutrition.
Collapse
Affiliation(s)
- Rebeca Fernández-Carrión
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Jose V. Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellon, Spain
| | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Carolina Ortega-Azorín
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Rocío Barragán
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Sleep Center of Excellence, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ignacio M. Giménez-Alba
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Andrea Alvarez-Sala
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA;
- Nutritional Genomics and Epigenomics Group, IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Correspondence: ; Tel.: +34-96-386-4800
| |
Collapse
|
15
|
Ismail MA, Nasrallah GK, Monne M, AlSayab A, Yassin MA, Varadharaj G, Younes S, Sorio C, Cook R, Modjtahedi H, Al-Dewik NI. Description of PTPRG genetic variants identified in a cohort of Chronic Myeloid Leukemia patients and their ability to influence response to Tyrosine kinase Inhibitors. Gene 2021; 813:146101. [PMID: 34906644 DOI: 10.1016/j.gene.2021.146101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have remarkably transformed Ph+ chronic myeloid leukemia (CML) management; however, TKI resistance remains a major clinical challenge. Mutations in BCR-ABL1 are well studied but fail to explain 20-40% of resistant cases, suggesting the activation of alternative, BCR-ABL1-independent pathways. Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a tumor suppressor, was found to be well expressed in CML patients responsive to TKIs and down-regulated in resistant patients. In this study, we aimed to identify genetic variants in PTPRG that could potentially modulate TKIs response in CML patients. DNA was extracted from peripheral blood samples collected from two CML cohorts (Qatar and Italy) and targeted exome sequencing was performed. Among 31 CML patients, six were TKI-responders and 25 were TKI-resistant. Sequencing identified ten variants, seven were annotated and three were novel SNPs (c.1602_1603insC, c.85+86delC, and c.2289-129delA). Among them, five variants were identified in 15 resistant cases. Of these, one novel exon variant (c.1602_1603insC), c.841-29C>T (rs199917960) and c.1378-224A>G (rs2063204) were found to be significantly different between the resistant cases compared to responders. Our findings suggest that PTPRG variants may act as an indirect resistance mechanism of BCR-ABL1 to affect TKI treatment.
Collapse
Affiliation(s)
- Mohamed A Ismail
- School of Life Science, Pharmacy and Chemistry, Faculty of science, engineering & computing-Kingston University London, United Kingdom; Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Maria Monne
- Centro di Diagnostica Biomolecolare e Citogenetica Emato-Oncologica, "San Francesco" Hospital, Nuoro, Italy
| | - Ali AlSayab
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohamed A Yassin
- Department of Medical Oncology, National Centre for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha, Qatar
| | | | - Salma Younes
- Department of Research, Women's Wellness and Research Center, Hamad Medical Corporation, Qatar
| | - Claudio Sorio
- Department of Medicine, University of Verona, Verona, Italy
| | - Richard Cook
- School of Life Science, Pharmacy and Chemistry, Faculty of science, engineering & computing-Kingston University London, United Kingdom
| | - Helmout Modjtahedi
- School of Life Science, Pharmacy and Chemistry, Faculty of science, engineering & computing-Kingston University London, United Kingdom
| | - Nader I Al-Dewik
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar; Faculty of Health and Social Care Sciences, Kingston University, St. George's University of London, UK; Clinical and Metabolic Genetics, Department of Pediatrics, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
| |
Collapse
|
16
|
Nunes-Xavier CE, Zaldumbide L, Mosteiro L, López-Almaraz R, García de Andoin N, Aguirre P, Emaldi M, Torices L, López JI, Pulido R. Protein Tyrosine Phosphatases in Neuroblastoma: Emerging Roles as Biomarkers and Therapeutic Targets. Front Cell Dev Biol 2021; 9:811297. [PMID: 34957126 PMCID: PMC8692838 DOI: 10.3389/fcell.2021.811297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma is a type of cancer intimately related with early development and differentiation of neuroendocrine cells, and constitutes one of the pediatric cancers with higher incidence and mortality. Protein tyrosine phosphatases (PTPs) are key regulators of cell growth and differentiation by their direct effect on tyrosine dephosphorylation of specific protein substrates, exerting major functions in the modulation of intracellular signaling during neuron development in response to external cues driving cell proliferation, survival, and differentiation. We review here the current knowledge on the role of PTPs in neuroblastoma cell growth, survival, and differentiation. The potential of PTPs as biomarkers and molecular targets for inhibition in neuroblastoma therapies is discussed.
Collapse
Affiliation(s)
- Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Lorena Mosteiro
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | | | | | - Pablo Aguirre
- Department of Pathology, Donostia University Hospital, San Sebastian, Spain
| | - Maite Emaldi
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José I. López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| |
Collapse
|
17
|
Yoon SY, Ahn D, Kim JK, Seo SO, Chung SJ. Nepetin Acts as a Multi-Targeting Inhibitor of Protein Tyrosine Phosphatases Relevant to Insulin Resistance. Chem Biodivers 2021; 19:e202100600. [PMID: 34725898 DOI: 10.1002/cbdv.202100600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are essential modulators of signal transduction pathways and has been implicated in many human diseases such as cancer, diabetes, obesity, autoimmune disorders, and neurological diseases, indicating that PTPs are next-generation drug targets. Since PTPN1, PTPN2, and PTPN11 have been reported to be negative regulators of insulin action, the identification of PTP inhibitors may be an effective strategy to develop therapeutic agents for the treatment of type 2 diabetes. In this study, we observed for the first time that nepetin inhibits the catalytic activity of PTPN1, PTPN2, and PTPN11 in vitro, indicating that nepetin acts as a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11. Furthermore, treatment of mature 3T3-L1 adipocytes with 20 μM nepetin stimulates glucose uptake through AMPK activation. Taken together, our findings provide evidence that nepetin, a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11, could be a promising therapeutic candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- Department of Cosmetic Science, Kwangju Women's University, Gwangju, 62396, Republic of Korea
| | - Dohee Ahn
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Kwan Kim
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Oh Seo
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
18
|
Shaw AM, Qasem A, Naser SA. Modulation of PTPN2/22 Function by Spermidine in CRISPR-Cas9-Edited T-Cells Associated with Crohn's Disease and Rheumatoid Arthritis. Int J Mol Sci 2021; 22:8883. [PMID: 34445589 PMCID: PMC8396355 DOI: 10.3390/ijms22168883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Crohn's Disease (CD) and Rheumatoid Arthritis (RA) share some single nucleotide polymorphisms (SNPs) in protein tyrosine phosphatase non-receptor types 2 and 22 (PTPN2/22). Recently, we reported that clinical samples from CD and RA patients associated with PTPN2:rs478582 or PTPN22:rs2476601 genotypes were linked to overactive immune response and exacerbation of inflammation. Here, we investigated in vitro the effects of these SNPs in Jurkat T-cells using CRISPR-Cas9. All cells were evaluated for PTPN22/22 loss of function and effects on cell response. We measured gene expression via RT-qPCR and cytokines by ELISA. We also measured cell proliferation using a BrdU labeling proliferation ELISA, and T-cell activation using CD-25 fluorescent immunostaining. In PTPN2 SNP-edited cells, PTPN2 expression decreased by 3.2-fold, and proliferation increased by 10.2-fold compared to control. Likewise, expression of PTPN22 decreased by 2.4-fold and proliferation increased by 8.4-fold in PTPN22 SNP-edited cells. IFN-γ and TNF-α secretions increased in both edited cell lines. CD25 expression (cell activation) was 80.32% in PTPN2 SNP-edited cells and 85.82% in PTPN22 SNP-edited cells compared to 70.48% in unedited Jurkat T-cells. Treatment of PTPN2 and PTPN22-edited cells with a maximum 20 μM spermidine restored PTPN2/22 expression and cell response including cell proliferation, activation, and cytokines secretion. Most importantly, the effect of spermidine on edited cells restored normal expression and secretion of IFN-γ and TNF-α. The data clearly demonstrated that edited SNPs in PTPN2 or PTPN22 were associated with reduced gene expression, which resulted in an increase in cell proliferation and activation and overactive immune response. The data validated our earlier observations in CD and RA clinical samples. Surprisingly, spermidine restored PTPN2/22 expression in edited Jurkat T-cells and the consequent beneficial effect on cell response and inflammation. The study supports the use of polyamines dietary supplements for management of CD and in RA patients.
Collapse
MESH Headings
- Arthritis, Rheumatoid/genetics
- CRISPR-Cas Systems
- Crohn Disease/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Genetic Predisposition to Disease
- Humans
- Jurkat Cells
- Leukemia, T-Cell/drug therapy
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/pathology
- Lymphocyte Activation
- Polymorphism, Single Nucleotide
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
- Spermidine/pharmacology
Collapse
Affiliation(s)
| | | | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA; (A.M.S.); (A.Q.)
| |
Collapse
|
19
|
Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2021; 230:107966. [PMID: 34403682 DOI: 10.1016/j.pharmthera.2021.107966] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Phosphorylation is a reversible post-translational modification regulated by phosphorylase and dephosphorylase to mediate important cellular events. Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by PTPN11 is the first identified oncogenic protein in protein tyrosine phosphatases family. Serving as a convergent node, SHP2 is involved in multiple cascade signaling pathways including Ras-Raf-MEK-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 pathways. Especially, the double-edged roles of SHP2 based on the substrate specificity in various biological contexts dramatically increase the effect complexity in different SHP2-associated diseases. Evidences suggest that by collaborating with other mutations in associated pathways, dysregulation of SHP2 contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer treatment. SHP2 can either act as oncogenic factor or tumor suppressor in different diseases, and both the conserved catalytic dephosphorylation mechanism and the unique allosteric regulation mechanism of SHP2 provide opportunities for the development of SHP2 inhibitors and activators. To date, several small-molecule SHP2 inhibitors have advanced into clinical trials for mono- or combined therapy of cancers. Moreover, SHP2 activators and proteolysis-targeting chimera (PROTAC)-based degraders also display therapeutic promise. In this review, we comprehensively summarize the overall structures, regulation mechanisms, double-edged roles of SHP2 in both physiological and carcinogenic pathways, and SHP2 inhibitors in clinical trials. SHP2 activators and degraders are also briefly discussed. This review aims to provide in-depth understanding of the biological roles of SHP2 and highlight therapeutic potential of targeting SHP2.
Collapse
|
20
|
Yoon SY, Ahn D, Hwang JY, Kang MJ, Chung SJ. Linoleic acid exerts antidiabetic effects by inhibiting protein tyrosine phosphatases associated with insulin resistance. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Chmielewska JJ, Burkardt D, Granadillo JL, Slaugh R, Morgan S, Rotenberg J, Keren B, Mignot C, Escobar L, Turnpenny P, Zuteck M, Seaver LH, Ploski R, Dziembowska M, Wynshaw-Boris A, Adegbola A. PTPN4 germline variants result in aberrant neurodevelopment and growth. HGG ADVANCES 2021; 2:100033. [PMID: 34527963 PMCID: PMC8439436 DOI: 10.1016/j.xhgg.2021.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/31/2021] [Indexed: 11/29/2022] Open
Abstract
Protein-tyrosine phosphatases (PTPs) are pleomorphic regulators of eukaryotic cellular responses to extracellular signals that function by modulating the phosphotyrosine of specific proteins. A handful of PTPs have been implicated in germline and somatic human disease. Using exome sequencing, we identified missense and truncating variants in PTPN4 in six unrelated individuals with varying degrees of intellectual disability or developmental delay. The variants occurred de novo in all five subjects in whom segregation analysis was possible. Recurring features include postnatal growth deficiency or excess, seizures, and, less commonly, structural CNS, heart, or skeletal anomalies. PTPN4 is a widely expressed protein tyrosine phosphatase that regulates neuronal cell homeostasis by protecting neurons against apoptosis. We suggest that pathogenic variants in PTPN4 confer risk for growth and cognitive abnormalities in humans.
Collapse
Affiliation(s)
- Joanna J. Chmielewska
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Deepika Burkardt
- Center for Human Genetics and Department of Genetics and Genome Sciences, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Jorge Luis Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Slaugh
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Boris Keren
- Département de Génétique, APHP, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Cyril Mignot
- Département de Génétique, APHP, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Luis Escobar
- Medical Genetics and Neurodevelopmental Center, Peyton Manning Children’s Hospital, Indianapolis, IN, USA
| | - Peter Turnpenny
- University of Exeter Medical School and Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Melissa Zuteck
- Medical Genetics and Genomics, Spectrum Health/Helen Devos Children’s Hospital, Grand Rapids, MI, USA
| | - Laurie H. Seaver
- Medical Genetics and Genomics, Spectrum Health/Helen Devos Children’s Hospital, Grand Rapids, MI, USA
- Department of Pediatrics and Human Development, Michigan State College of Human Medicine, Grand Rapids, MI, USA
| | - Rafal Ploski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anthony Wynshaw-Boris
- Center for Human Genetics and Department of Genetics and Genome Sciences, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Abidemi Adegbola
- Center for Human Genetics and Department of Genetics and Genome Sciences, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
22
|
Rajkumar AP, Hye A, Lange J, Manesh YR, Ballard C, Fladby T, Aarsland D. Next-Generation RNA-Sequencing of Serum Small Extracellular Vesicles Discovers Potential Diagnostic Biomarkers for Dementia With Lewy Bodies. Am J Geriatr Psychiatry 2021; 29:573-584. [PMID: 33160816 DOI: 10.1016/j.jagp.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE There is an urgent clinical need for identifying blood-based diagnostic biomarkers for Dementia with Lewy Bodies (DLB). Transcriptomic studies have reported unique RNA changes in postmortem DLB brains. Small extracellular vesicles (SEV) that transport RNA between brain and peripheral circulation enable identifying molecular changes in living human brain. Hence, we aimed to identify differentially expressed RNA in serum SEVs from people with DLB. METHODS We investigated serum SEV total RNA profiles in people with DLB (n = 10) and age and gender matched comparisons (n = 10) using next-generation RNA-sequencing. SEVs were separated by ultracentrifugation with density gradient and were characterized by nanoparticle analysis and western blotting. We verified the differential expression levels of identified differentially expressed genes (DEG) using high-throughput qPCR. Functional implications of identified DEG were evaluated using Ingenuity pathway analyses. RESULTS We identified 846 nominally significant DEG including 30 miRNAs in DLB serum SEVs. We identified significant downregulation of proinflammatory genes, IL1B, CXCL8, and IKBKB. Previously reported postmortem DLB brain DEGs were significantly enriched (χ2=4.99; df=1; p = 0.03) among the identified DEGs, and the differential expression of 40 postmortem DLB brain DEGs could be detected in serum SEVs of people living with DLB. Functional pathway and network analyses highlighted the importance of immunosenescence, ubiquitin proteasome system (UPS) dysfunction, DNA repair, and RNA post-transcriptional modification deficits in DLB pathology. CONCLUSION Identified DEGs, especially reduced expression levels of inflammation, and UPS-associated RNA, may aid diagnosing DLB, and their biomarker potential warrants further investigation in larger clinical cohorts. Our findings corroborate the absence of chronic neuroinflammation in DLB.
Collapse
Affiliation(s)
- Anto P Rajkumar
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK; Division of Psychiatry and Applied Psychology, University of Nottingham (APR), Nottingham, UK.
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK
| | - Johannes Lange
- Norwegian Centre for Movement Disorders, Stavanger University Hospital (JL), Stanvanger, Norway
| | - Yazmin Rashid Manesh
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK
| | - Clive Ballard
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK; Medical School, Exeter University (CB), Exeter, UK
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, University of Oslo (TF), Lørenskog, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK; NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS foundation trust (APR, DA), London, UK
| |
Collapse
|
23
|
Yoon SY, Yu JS, Hwang JY, So HM, Seo SO, Kim JK, Jang TS, Chung SJ, Kim KH. Phloridzin Acts as an Inhibitor of Protein-Tyrosine Phosphatase MEG2 Relevant to Insulin Resistance. Molecules 2021; 26:molecules26061612. [PMID: 33799458 PMCID: PMC7998658 DOI: 10.3390/molecules26061612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of the megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2, also named PTPN9) activity has been shown to be a potential therapeutic strategy for the treatment of type 2 diabetes. Previously, we reported that PTP-MEG2 knockdown enhances adenosine monophosphate activated protein kinase (AMPK) phosphorylation, suggesting that PTP-MEG2 may be a potential antidiabetic target. In this study, we found that phloridzin, isolated from Ulmus davidiana var. japonica, inhibits the catalytic activity of PTP-MEG2 (half-inhibitory concentration, IC50 = 32 ± 1.06 μM) in vitro, indicating that it could be a potential antidiabetic drug candidate. Importantly, phloridzin stimulated glucose uptake by differentiated 3T3-L1 adipocytes and C2C12 muscle cells compared to that by the control cells. Moreover, phloridzin led to the enhanced phosphorylation of AMPK and Akt relevant to increased insulin sensitivity. Importantly, phloridzin attenuated palmitate-induced insulin resistance in C2C12 muscle cells. We also found that phloridzin did not accelerate adipocyte differentiation, suggesting that phloridzin improves insulin sensitivity without significant lipid accumulation. Taken together, our results demonstrate that phloridzin, an inhibitor of PTP-MEG2, stimulates glucose uptake through the activation of both AMPK and Akt signaling pathways. These results strongly suggest that phloridzin could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
- Department of Cosmetic Science, Kwangju Women’s University, Gwangju 62396, Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Ji Young Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Hae Min So
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Seung Oh Seo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tae Su Jang
- Department of Medicine, Dankook University, Cheonan, Chungnam 31116, Korea;
| | - Sang J. Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
- Correspondence: (S.J.C.); (K.H.K.); Tel.: +82-31-290-7703 (S.J.C.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
- Correspondence: (S.J.C.); (K.H.K.); Tel.: +82-31-290-7703 (S.J.C.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
24
|
Yang X, Ding W, Qian X, Jiang P, Chen Q, Zhang X, Lu Y, Wu J, Sun F, Pan Z, Li X, Pan W. Schistosoma japonicum Infection Leads to the Reprogramming of Glucose and Lipid Metabolism in the Colon of Mice. Front Vet Sci 2021; 8:645807. [PMID: 33791356 PMCID: PMC8006365 DOI: 10.3389/fvets.2021.645807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
The deposition of Schistosoma japonicum (S. japonicum) eggs commonly induces inflammation, fibrosis, hyperplasia, ulceration, and polyposis in the colon, which poses a serious threat to human health. However, the underlying mechanism is largely neglected. Recently, the disorder of glucose and lipid metabolism was reported to participate in the liver fibrosis induced by the parasite, which provides a novel clue for studying the underlying mechanism of the intestinal pathology of the disease. This study focused on the metabolic reprogramming profiles of glucose and lipid in the colon of mice infected by S. japonicum. We found that S. japonicum infection shortened the colonic length, impaired intestinal integrity, induced egg-granuloma formation, and increased colonic inflammation. The expression of key enzymes involved in the pathways regulating glucose and lipid metabolism was upregulated in the colon of infected mice. Conversely, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and its downstream signaling targets were significantly inhibited after infection. In line with these results, in vitro stimulation with soluble egg antigens (SEA) downregulated the expression of PTEN in CT-26 cells and induced metabolic alterations similar to that observed under in vivo results. Moreover, PTEN over-expression prevented the reprogramming of glucose and lipid metabolism induced by SEA in CT-26 cells. Overall, the present study showed that S. japonicum infection induces the reprogramming of glucose and lipid metabolism in the colon of mice, and PTEN may play a vital role in mediating this metabolic reprogramming. These findings provide a novel insight into the pathogenicity of S. japonicum in hosts.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Weimin Ding
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Xinyu Qian
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Jiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Qingqing Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Xin Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Yang Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Jiacheng Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Zhihua Pan
- National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Ma Q, Chen Y, Xiao F, Hao Y, Song Z, Zhang J, Okuda K, Um SW, Silva M, Shimada Y, Si C, Liang C. A signature of estimate-stromal-immune score-based genes associated with the prognosis of lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:1484-1500. [PMID: 33889524 PMCID: PMC8044489 DOI: 10.21037/tlcr-21-223] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Immune and stromal component evaluation is necessary to establish accurate prognostic markers for the prediction of clinical outcomes in lung adenocarcinoma (LUAD). We aimed to develop a gene signature based on the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE)-stromal-immune score in LUAD. Methods The transcriptomic profiles of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA), and the immune and stromal scores were derived using the ESTIMATE algorithm. The prognostic signature genes were selected from the differentially expressed genes (DEGs) using the robust partial likelihood-based cox proportional hazards regression method. The negative log-likelihood and the Akaike Information Criterion (AIC) were used to identify the optimal gene signature. The validation was carried out in 2 independent datasets from the Gene Expression Omnibus (GSE68571 and GSE72094). Results Patients with high ESTIMATE, stromal, and immune scores had better overall survivals (P=0.0035, P=0.066, and P=0.0077). The expression of thirty-seven genes was related to ESTIMATE-stromal-immune score. A risk stratification model was developed based on a gene signature containing CD74, JCHAIN, and PTGDS. The ESTIMATE-stromal-immune risk score was revealed to be a prognostic factor (P=0.009) after multivariate analysis. Four groups were classified based on this risk stratification model, yielding increasing survival outcomes (log-rank test, P=0.0051). This risk stratification model and other clinicopathological factors were combined to generate a nomogram. The calibration curves showed perfect agreement between the nomogram-predicted outcomes and those actually observed. Similar observations were made in 2 independent cohorts. Conclusions The gene signature based on the ESTIMATE-stromal-immune score could predict the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Xiao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yang Hao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhiyi Song
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mario Silva
- Section of Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University, Tokyo, Japan
| | - Chaozeng Si
- Department of Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
26
|
Lee YH, Yoon SY, Baek J, Kim SJ, Yu JS, Kang H, Kang KS, Chung SJ, Kim KH. Metabolite Profile of Cucurbitane-Type Triterpenoids of Bitter Melon (Fruit of Momordica charantia) and Their Inhibitory Activity against Protein Tyrosine Phosphatases Relevant to Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1816-1830. [PMID: 33406828 DOI: 10.1021/acs.jafc.0c06085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Qualitative analysis of cucurbitane-type triterpenoids of bitter melon (fruit of Momordica charantia L.) using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry revealed 27 promising cucurbitane-type triterpenoids, and LC/MS-guided chemical analysis of M. charantia fruit extract led to the isolation and structural characterization of 22 cucurbitane-type triterpenoids (1-22), including 8 new cucurbitane-type triterpenoidal saponins, yeojoosides A-H (1-8). The structures of the new compounds (1-8) were elucidated by spectroscopic methods, including 1D and 2D NMR and high-resolution electrospray ionization mass spectrometry. Their absolute configurations were assigned by quantum chemical electronic circular dichroism calculations, chemical reactions, and DP4+ analysis using gauge-including atomic orbital NMR chemical shift calculations. All isolated compounds (1-22) were examined for inhibitory activity against protein tyrosine phosphatases relevant to insulin resistance. Nine compounds (7, 8, 9, 11, 14, 15, 19, 20, and 21) showed selective inhibitory effects of over 70% against PTPN2. The present results suggested that these compounds would be potential antidiabetic agents.
Collapse
Affiliation(s)
- Yong Hoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Korea
| | - Jiyun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heesun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Protein tyrosine phosphatases (PTPs) in diabetes: causes and therapeutic opportunities. Arch Pharm Res 2021; 44:310-321. [PMID: 33590390 DOI: 10.1007/s12272-021-01315-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) have an emerging paradigm for the development of antidiabetic drugs. Herein, we provide a comprehensive overview of the relevance of PTPs to type 2 diabetes (T2D) and the therapeutic opportunities thereof, while critically evaluating the potential challenges for PTP inhibitors to be next generation antidiabetics. This review briefly discusses the structure and function of PTPs. An account of importance and relevance of PTPs in various human diseases is presented with special attention to diabetes. The PTPs relevant to T2D have been targeted by small molecule inhibitors such as natural products and synthetic compounds as well as antisense nucleic acids. This review will give better understanding of the important concepts helpful in outlining the strategies for the development of new therapeutic agents with promising antidiabetic activities.
Collapse
|
28
|
Kang J, Kwon EJ, Ha M, Lee H, Yu Y, Kang JW, Kim Y, Lee EY, Joo JY, Heo HJ, Kim EK, Kim TW, Kim YH, Park HR. Identification of Shared Genes and Pathways in Periodontitis and Type 2 Diabetes by Bioinformatics Analysis. Front Endocrinol (Lausanne) 2021; 12:724278. [PMID: 35145474 PMCID: PMC8822582 DOI: 10.3389/fendo.2021.724278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION It is well known that the presence of diabetes significantly affects the progression of periodontitis and that periodontitis has negative effects on diabetes and diabetes-related complications. Although this two-way relationship between type 2 diabetes and periodontitis could be understood through experimental and clinical studies, information on common genetic factors would be more useful for the understanding of both diseases and the development of treatment strategies. MATERIALS AND METHODS Gene expression data for periodontitis and type 2 diabetes were obtained from the Gene Expression Omnibus database. After preprocessing of data to reduce heterogeneity, differentially expressed genes (DEGs) between disease and normal tissue were identified using a linear regression model package. Gene ontology and Kyoto encyclopedia of genes and genome pathway enrichment analyses were conducted using R package 'vsn'. A protein-protein interaction network was constructed using the search tool for the retrieval of the interacting genes database. We used molecular complex detection for optimal module selection. CytoHubba was used to identify the highest linkage hub gene in the network. RESULTS We identified 152 commonly DEGs, including 125 upregulated and 27 downregulated genes. Through common DEGs, we constructed a protein-protein interaction and identified highly connected hub genes. The hub genes were up-regulated in both diseases and were most significantly enriched in the Fc gamma R-mediated phagocytosis pathway. DISCUSSION We have identified three up-regulated genes involved in Fc gamma receptor-mediated phagocytosis, and these genes could be potential therapeutic targets in patients with periodontitis and type 2 diabetes.
Collapse
Affiliation(s)
- Junho Kang
- Medical Research Institute, Pusan National University, Busan, South Korea
| | - Eun Jung Kwon
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Busan, South Korea
| | - Mihyang Ha
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Busan, South Korea
| | - Hansong Lee
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Busan, South Korea
| | - Yeuni Yu
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Busan, South Korea
| | - Ji Wan Kang
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Busan, South Korea
| | - Yeongjoo Kim
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Busan, South Korea
| | - Eun Young Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Ji-Young Joo
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Hye Jin Heo
- Departmment of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Eun Kyoung Kim
- Departmment of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Tae Woo Kim
- Department of Orthopaedic Surgery, Pusan National University Yangsan Hospital, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Yun Hak Kim
- Departmment of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, South Korea
- *Correspondence: Yun Hak Kim, ; Hae Ryoun Park,
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, South Korea
- *Correspondence: Yun Hak Kim, ; Hae Ryoun Park,
| |
Collapse
|
29
|
Yang Y, Peng X, Ying P, Tian J, Li J, Ke J, Zhu Y, Gong Y, Zou D, Yang N, Wang X, Mei S, Zhong R, Gong J, Chang J, Miao X. AWESOME: a database of SNPs that affect protein post-translational modifications. Nucleic Acids Res 2020; 47:D874-D880. [PMID: 30215764 PMCID: PMC6324025 DOI: 10.1093/nar/gky821] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Protein post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, acetylation, glycosylation et al, are very important biological processes. PTM changes in some critical genes, which may be induced by base-pair substitution, are shown to affect the risk of diseases. Recently, large-scale exome-wide association studies found that missense single nucleotide polymorphisms (SNPs) play an important role in the susceptibility for complex diseases or traits. One of the functional mechanisms of missense SNPs is that they may affect PTMs and leads to a protein dysfunction and its downstream signaling pathway disorder. Here, we constructed a database named AWESOME (A Website Exhibits SNP On Modification Event, http://www.awesome-hust.com), which is an interactive web-based analysis tool that systematically evaluates the role of SNPs on nearly all kinds of PTMs based on 20 available tools. We also provided a well-designed scoring system to compare the performance of different PTM prediction tools and help users to get a better interpretation of results. Users can search SNPs, genes or position of interest, filter with specific modifications or prediction methods, to get a comprehensive PTM change induced by SNPs. In summary, our database provides a convenient way to detect PTM-related SNPs, which may potentially be pathogenic factors or therapeutic targets.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Xiating Peng
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Pingting Ying
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jianbo Tian
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jiaoyuan Li
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Juntao Ke
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Yajie Gong
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Danyi Zou
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Nan Yang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Xiaoyang Wang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Shufang Mei
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Rong Zhong
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jing Gong
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jiang Chang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Xiaoping Miao
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| |
Collapse
|
30
|
Kim M, Morales LD, Lee CJ, Olivarez SA, Kim WJ, Hernandez J, Mummidi S, Jenkinson C, Tsin AT, Jang IS, Slaga TJ, Kim DJ. Overexpression of TC-PTP in murine epidermis attenuates skin tumor formation. Oncogene 2020; 39:4241-4256. [PMID: 32286519 PMCID: PMC7244373 DOI: 10.1038/s41388-020-1282-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
T-cell protein tyrosine phosphatase (TC-PTP), encoded by Ptpn2, has been shown to function as a tumor suppressor during skin carcinogenesis. In the current study, we generated a novel epidermal-specific TC-PTP-overexpressing (K5HA.Ptpn2) mouse model to show that TC-PTP contributes to the attenuation of chemically induced skin carcinogenesis through the synergistic regulation of STAT1, STAT3, STAT5, and PI3K/AKT signaling. We found overexpression of TC-PTP increased epidermal sensitivity to DMBA-induced apoptosis and it decreased TPA-mediated hyperproliferation, coinciding with reduced epidermal thickness. Inhibition of STAT1, STAT3, STAT5, or AKT reversed the effects of TC-PTP overexpression on epidermal survival and proliferation. Mice overexpressing TC-PTP in the epidermis developed significantly reduced numbers of tumors during skin carcinogenesis and presented a prolonged latency of tumor initiation. Examination of human papillomas and squamous cell carcinomas (SCCs) revealed that TC-PTP expression was significantly reduced and TC-PTP expression was inversely correlated with the increased grade of SCCs. Our findings demonstrate that TC-PTP is a potential therapeutic target for the prevention of human skin cancer given that it is a major negative regulator of oncogenic signaling.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Liza D Morales
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Cheol Jung Lee
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Serena A Olivarez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Woo Jin Kim
- School of Mathematical and Statistical Sciences, College of Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Joselin Hernandez
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Srinivas Mummidi
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Christopher Jenkinson
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Andrew T Tsin
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Ik-Soon Jang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, 305-333, Republic of Korea
| | - Thomas J Slaga
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dae Joon Kim
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
31
|
Ishihara E, Nagaoka Y, Okuno T, Kofuji S, Ishigami-Yuasa M, Kagechika H, Kamimura K, Terai S, Yokomizo T, Sugimoto Y, Fujita Y, Suzuki A, Nishina H. Prostaglandin E 2 and its receptor EP2 trigger signaling that contributes to YAP-mediated cell competition. Genes Cells 2020; 25:197-214. [PMID: 31989743 PMCID: PMC7078805 DOI: 10.1111/gtc.12750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/28/2022]
Abstract
Cell competition is a biological process by which unfit cells are eliminated from “cell society.” We previously showed that cultured mammalian epithelial Madin‐Darby canine kidney (MDCK) cells expressing constitutively active YAP were eliminated by apical extrusion when surrounded by “normal” MDCK cells. However, the molecular mechanism underlying the elimination of active YAP‐expressing cells was unknown. Here, we used high‐throughput chemical compound screening to identify cyclooxygenase‐2 (COX‐2) as a key molecule triggering cell competition. Our work shows that COX‐2‐mediated PGE2 secretion engages its receptor EP2 on abnormal and nearby normal cells. This engagement of EP2 triggers downstream signaling via an adenylyl cyclase‐cyclic AMP‐PKA pathway that, in the presence of active YAP, induces E‐cadherin internalization leading to apical extrusion. Thus, COX‐2‐induced PGE2 appears a warning signal to both abnormal and surrounding normal cells to drive cell competition.
Collapse
Affiliation(s)
- Erika Ishihara
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuya Nagaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Kofuji
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
32
|
Kumar A, Rana D, Rana R, Bhatia R. Protein Tyrosine Phosphatase (PTP1B): A promising Drug Target Against Life-threatening Ailments. Curr Mol Pharmacol 2020; 13:17-30. [DOI: 10.2174/1874467212666190724150723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Background:Protein tyrosine phosphatases are enzymes which help in the signal transduction in diabetes, obesity, cancer, liver diseases and neurodegenerative diseases. PTP1B is the main member of this enzyme from the protein extract of human placenta. In phosphate inhibitors development, significant progress has been made over the last 10 years. In early-stage clinical trials, few compounds have reached whereas in the later stage trials or registration, yet none have progressed. Many researchers investigate different ways to improve the pharmacological properties of PTP1B inhibitors.Objective:In the present review, authors have summarized various aspects related to the involvement of PTP1B in various types of signal transduction mechanisms and its prominent role in various diseases like cancer, liver diseases and diabetes mellitus.Conclusion:There are still certain challenges for the selection of PTP1B as a drug target. Therefore, continuous future efforts are required to explore this target for the development of PTP inhibitors to treat the prevailing diseases associated with it.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Divya Rana
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Rajat Rana
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| |
Collapse
|
33
|
Ciolfi A, Aref-Eshghi E, Pizzi S, Pedace L, Miele E, Kerkhof J, Flex E, Martinelli S, Radio FC, Ruivenkamp CAL, Santen GWE, Bijlsma E, Barge-Schaapveld D, Ounap K, Siu VM, Kooy RF, Dallapiccola B, Sadikovic B, Tartaglia M. Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature. Clin Epigenetics 2020; 12:7. [PMID: 31910894 PMCID: PMC6947958 DOI: 10.1186/s13148-019-0804-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We previously associated HIST1H1E mutations causing Rahman syndrome with a specific genome-wide methylation pattern. RESULTS Methylome analysis from peripheral blood samples of six affected subjects led us to identify a specific hypomethylated profile. This "episignature" was enriched for genes involved in neuronal system development and function. A computational classifier yielded full sensitivity and specificity in detecting subjects with Rahman syndrome. Applying this model to a cohort of undiagnosed probands allowed us to reach diagnosis in one subject. CONCLUSIONS We demonstrate an epigenetic signature in subjects with Rahman syndrome that can be used to reach molecular diagnosis.
Collapse
Affiliation(s)
- Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5C1, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, Canada
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Jennifer Kerkhof
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5C1, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, Canada
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300, The Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300, The Netherlands
| | - Emilia Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300, The Netherlands
| | - Daniela Barge-Schaapveld
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300, The Netherlands
| | - Katrin Ounap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 50406, Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Victoria Mok Siu
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2650, Antwerp, Belgium
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5C1, Canada. .,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, Canada.
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
34
|
Rodríguez-López ML, Martínez-Magaña JJ, Cabrera-Mendoza B, Genis-Mendoza AD, García-Dolores F, López-Armenta M, Flores G, Vázquez-Roque RA, Nicolini H. Exploratory analysis of genetic variants influencing molecular traits in cerebral cortex of suicide completers. Am J Med Genet B Neuropsychiatr Genet 2020; 183:26-37. [PMID: 31418530 DOI: 10.1002/ajmg.b.32752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/13/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Genetic factors have been implicated in suicidal behavior. It has been suggested that one of the roles of genetic factors in suicide could be represented by the effect of genetic variants on gene expression regulation. Alteration in the expression of genes participating in multiple biological systems in the suicidal brain has been demonstrated, so it is imperative to identify genetic variants that could influence gene expression or its regulatory mechanisms. In this study, we integrated DNA methylation, gene expression, and genotype data from the prefrontal cortex of suicides to identify genetic variants that could be factors in the regulation of gene expression, generally called quantitative trait locus (xQTLs). We identify 6,224 methylation quantitative trait loci and 2,239 expression quantitative trait loci (eQTLs) in the prefrontal cortex of suicide completers. The xQTLs identified influence the expression of genes involved in neurodevelopment and cell organization. Two of the eQTLs identified (rs8065311 and rs1019238) were previously associated with cannabis dependence, highlighting a candidate genetic variant for the increased suicide risk in subjects with substance use disorders. Our findings suggest that genetic variants may regulate gene expression in the prefrontal cortex of suicides through the modulation of promoter and enhancer activity, and to a lesser extent, binding transcription factors.
Collapse
Affiliation(s)
- Mariana L Rodríguez-López
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - José J Martínez-Magaña
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Brenda Cabrera-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Alma D Genis-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Psychiatric Care Services, Child Psychiatric Hospital Dr. Juan N Navarro, CDMX, Mexico
| | | | | | - Gonzalo Flores
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Puebla, Mexico
| | - Rubén A Vázquez-Roque
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Puebla, Mexico
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Carracci Medical Group, CDMX, Mexico
| |
Collapse
|
35
|
Nunes-Xavier CE, Aurtenetxe O, Zaldumbide L, López-Almaraz R, Erramuzpe A, Cortés JM, López JI, Pulido R. Protein tyrosine phosphatase PTPN1 modulates cell growth and associates with poor outcome in human neuroblastoma. Diagn Pathol 2019; 14:134. [PMID: 31837707 PMCID: PMC6911276 DOI: 10.1186/s13000-019-0919-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Background Protein tyrosine phosphatases (PTPs) regulate neuronal differentiation and survival, but their expression patterns and functions in human neuroblastoma (NB) are scarcely known. Here, we have investigated the function and expression of the non-receptor PTPN1 on human NB cell lines and human NB tumor samples. Material/methods NB tumor samples from 44 patients were analysed by immunohistochemistry using specific antibodies against PTPN1, PTPRH, PTPRZ1, and PTEN. PTPN1 knock-down, cell proliferation and tyrosine phosphorylation analyses, and RT-qPCR mRNA expression was assessed on SH-SY5Y, SMS-KCNR, and IMR-32 human NB cell lines. Results Knock-down of PTPN1 in SH-SY5Y NB cells resulted in increased tyrosine phosphorylation and cell proliferation. Retinoic acid-mediated differentiation of NB cell lines did not affect PTPN1 mRNA expression, as compared with other PTPs. Importantly, PTPN1 displayed high expression on NB tumors in association with metastasis and poor prognosis. Conclusions Our results identify PTPN1 as a candidate regulator of NB cell growth and a potential NB prognostic biomarker.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain. .,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, P.O. Box 4950 Nydalen, N-0424, Oslo, Norway.
| | - Olaia Aurtenetxe
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia, Spain
| | - Ricardo López-Almaraz
- Pediatric Oncology and Hematology, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Asier Erramuzpe
- Quantitative Biomedicine Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Jesús M Cortés
- Quantitative Biomedicine Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - José I López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.,Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain. .,Biocruces Bizkaia Health Research Institute, Hospital Universitario de Cruces, Plaza Cruces s/n, 48903, Barakaldo, Spain.
| |
Collapse
|
36
|
Yoon SY, Kim DH, Min Roh K, Ahn D, Jin Kang H, Chung SJ. Identification of Vaccinia-H1 Related Phosphatase as an Anticancer Target for 1,2,3,4,6-O-Pentagalloylglucose. Chem Biodivers 2019; 17:e1900414. [PMID: 31797547 DOI: 10.1002/cbdv.201900414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
Protein tyrosine phosphatases are involved in diverse human diseases, including cancer, diabetes and inflammatory disorders. Loss of Vaccinia-H1 related phosphatase (VHR) has been shown to arrest at the G1-S and G2-M transitions of the cell cycle, and to increases cell death of prostate cancer cells through JNK activation, suggesting that VHR can be considered as an anticancer target. In this study, 658 natural products were screened through in vitro enzyme assay to identify VHR inhibitor. Among the VHR-inhibitory compounds, 1,2,3,4,6-O-pentagalloylglucose (PGG) was selected for further study as it has been reported to show antitumor effects against tumor model mice, but its direct target has not been identified. PGG inhibited the catalytic activity of VHR (Ki =53 nm) in vitro. Furthermore, the incubation of HeLa cervical cancer cells with PGG dramatically decreased cell viability and markedly increased the protein levels of the cleaved PARP, a hallmark of apoptosis. In addition, treatment of HeLa cells with PGG significantly reduced the protein levels of cyclin D1, Bcl-2 and STAT3 phosphorylation. Taken together, these results suggest that PGG could be a potential therapeutic candidate for the treatment of cervical cancer through VHR inhibition.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Do-Hwi Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung Min Roh
- Department of Chemistry, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyo Jin Kang
- Department of Chemistry, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
37
|
Yoon SY, Kang HJ, Ahn D, Hwang JY, Kwon SJ, Chung SJ. Identification of chebulinic acid as a dual targeting inhibitor of protein tyrosine phosphatases relevant to insulin resistance. Bioorg Chem 2019; 90:103087. [PMID: 31284101 DOI: 10.1016/j.bioorg.2019.103087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 01/16/2023]
Abstract
Natural products as antidiabetic agents have been shown to stimulate insulin signaling via the inhibition of the protein tyrosine phosphatases relevant to insulin resistance. Previously, we have identified PTPN9 and DUSP9 as potential antidiabetic targets and a multi-targeting natural product thereof. In this study, knockdown of PTPN11 increased AMPK phosphorylation in differentiated C2C12 muscle cells by 3.8 fold, indicating that PTPN11 could be an antidiabetic target. Screening of a library of 658 natural products against PTPN9, DUSP9, or PTPN11 identified chebulinic acid (CA) as a strong allosteric inhibitor with a slow cooperative binding to PTPN9 (IC50 = 34 nM) and PTPN11 (IC50 = 37 nM), suggesting that it would be a potential antidiabetic candidate. Furthermore, CA stimulated glucose uptake and resulted in increased AMP-activated protein kinase (AMPK) phosphorylation. Taken together, we demonstrated that CA increased glucose uptake as a dual inhibitor of PTPN9 and PTPN11 through activation of the AMPK signaling pathway. These results strongly suggest that CA could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyo Jin Kang
- Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea
| | - Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Young Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Jeong Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
38
|
Vidmar L, Maver A, Drulović J, Sepčić J, Novaković I, Ristič S, Šega S, Peterlin B. Multiple Sclerosis patients carry an increased burden of exceedingly rare genetic variants in the inflammasome regulatory genes. Sci Rep 2019; 9:9171. [PMID: 31235738 PMCID: PMC6591387 DOI: 10.1038/s41598-019-45598-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
The role of rare genetic variation and the innate immune system in the etiology of multiple sclerosis (MS) is being increasingly recognized. Recently, we described several rare variants in the NLRP1 gene, presumably conveying an increased risk for familial MS. In the present study we aimed to assess rare genetic variation in the inflammasome regulatory network. We performed whole exome sequencing of 319 probands, comprising patients with familial MS, sporadic MS and control subjects. 62 genes involved in the NLRP1/NLRP3 inflammasome regulation were screened for potentially pathogenic rare genetic variation. Aggregate mutational burden was analyzed, considering the variants' predicted pathogenicity and frequency in the general population. We demonstrate an increased (p = 0.00004) variant burden among MS patients which was most pronounced for the exceedingly rare variants with high predicted pathogenicity. These variants were found in inflammasome genes (NLRP1/3, CASP1), genes mediating inflammasome inactivation via auto and mitophagy (RIPK2, MEFV), and genes involved in response to infection with DNA viruses (POLR3A, DHX58, IFIH1) and to type-1 interferons (TYK2, PTPRC). In conclusion, we present new evidence supporting the importance of rare genetic variation in the inflammasome signaling pathway and its regulation via autophagy and interferon-β to the etiology of MS.
Collapse
Affiliation(s)
- Lovro Vidmar
- Clinical Institute of Medical Genetics, Slajmerjeva 3, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ales Maver
- Clinical Institute of Medical Genetics, Slajmerjeva 3, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jelena Drulović
- Clinic of Neurology, CCS, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Juraj Sepčić
- Postgraduate Study, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivana Novaković
- Faculty of Medicine, University of Belgrade, Institute of Human Genetics, 26 Visegradska, Belgrade, Serbia
| | - Smiljana Ristič
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Saša Šega
- Division of Neurology, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, Slajmerjeva 3, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
39
|
Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr Top Med Chem 2019; 19:246-263. [PMID: 30714526 DOI: 10.2174/1568026619666190201152153] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM), is a metabolic disorder characterized by high blood glucose levels. The main types of diabetes mellitus are Diabetes mellitus type I, Diabetes mellitus type II, gestational diabetes and Diabetes of other etiology. Diabetes type II, the Non Insulin Dependent Type (NIDDM) is the most common type, characterized by the impairment in activation of the intracellular mechanism leading to the insertion and usage of glucose after interaction of insulin with its receptor, known as insulin resistance. Although, a number of drugs have been developed for the treatment of diabetes type II, their ability to reduce blood glucose levels is limited, while several side effects are also observed. Furthermore, none of the market drugs targets the enhancement of the action of the intracellular part of insulin receptor or recuperation of the glucose transport mechanism in GLUT4 dependent cells. The Protein Tyrosine Phosphatase (PTP1b) is the main enzyme involved in insulin receptor desensitization and has become a drug target for the treatment of Diabetes type II. Several PTP1b inhibitors have already been found, interacting with the binding site of the enzyme, surrounding the catalytic amino acid Cys215 and the neighboring area or with the allosteric site of the enzyme, placed at a distance of 20 Å from the active site, around Phe280. However, the research continues for finding more potent inhibitors with increased cell permeability and specificity. OBJECTIVE The aim of this review is to show the attempts made in developing of Protein Tyrosine Phosphatase (PTP1b) inhibitors with high potency, selectivity and bioavailability and to sum up the indications for favorable structural characteristics of effective PTP1b inhibitors. METHODS The methods used include a literature survey and the use of Protein Structure Databanks such as PuBMed Structure and RCSB and the tools they provide. CONCLUSION The research for finding PTP1b inhibitors started with the design of molecules mimicking the Tyrosine substrate of the enzyme. The study revealed that an aromatic ring connected to a polar group, which preferably enables hydrogen bond formation, is the minimum requirement for small inhibitors binding to the active site surrounding Cys215. Molecules bearing two hydrogen bond donor/acceptor (Hb d/a) groups at a distance of 8.5-11.5 Å may form more stable complexes, interacting simultaneously with a secondary area A2. Longer molecules with two Hb d/a groups at a distance of 17 Å or 19 Å may enable additional interactions with secondary sites (B and C) that confer stability as well as specificity. An aromatic ring linked to polar or Hb d/a moieties is also required for allosteric inhibitors. A lower distance between Hb d/a moieties, around 7.5 Å may favor allosteric interaction. Permanent inhibition of the enzyme by oxidation of the catalytic Cys215 has also been referred. Moreover, covalent modification of Cys121, placed near but not inside the catalytic pocket has been associated with permanent inhibition of the enzyme.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki 57400, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
40
|
Wawrusiewicz-Kurylonek N, Koper-Lenkiewicz OM, Gościk J, Myśliwiec J, Pawłowski P, Krętowski AJ. Association of PTPN22 polymorphism and its correlation with Graves' disease susceptibility in Polish adult population-A preliminary study. Mol Genet Genomic Med 2019; 7:e661. [PMID: 30938100 PMCID: PMC6565548 DOI: 10.1002/mgg3.661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
Background Susceptibility to Graves' disease (GD) is determined by various genetic factors; the gene encoding protein tyrosine phosphatase (PTPN22) may be one of those associated with higher risk of GD. The aim was to estimate the association of the PTPN22 gene polymorphism rs2476601:c.C>T (c.1858C>T) with the predisposition to GD within the adult north‐eastern Polish population. Methods PTPN22 gene polymorphism was analyzed in individuals with clinical GD history (n = 166) and healthy subjects (n = 154). The presence of different variants of the investigated gene polymorphism was estimated using the DNA Sanger sequencing method. Results Patients with GD had a more frequent occurrence of the T gene allele of PTPN22 gene compared to the control group, however, it was not significant (p = 0.257). Analysis of genotype distribution showed significantly more frequent occurrence of TT homozygote in GD patients compared to control individuals (p = 0.016, OR = 9.28). Patients with ophthalmopathy had a less frequent occurrence of the T gene allele of PTPN22 gene compared to patients without ophthalmopathy, however, it was not significant (p = 0.12). Occurrence of the T gene allele of PTPN22 gene in GD manifestation in those under 40‐year old was more frequent compared to individuals over 40, but the obtained difference was also not significant (p = 0.75). Conclusions Our preliminary study suggest that PTPN22:c.1858C>T gene polymorphism may be associated with a predisposition to GD within the adult north‐eastern Polish population. The studied polymorphism of the PTPN22 gene did not significantly affect the risk of ophthalmopathy developing and disease manifestation before the age of 40.
Collapse
Affiliation(s)
| | | | - Joanna Gościk
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Janusz Myśliwiec
- Department of Nuclear Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Przemysław Pawłowski
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
41
|
Yang XK, Liu J, Chen SY, Li M, Zhang MM, Leng RX, Pan HF, Shen Y, Liu WX, Xu SQ, Ye DQ, Shuai ZW. UBASH3A gene polymorphisms and expression profile in rheumatoid arthritis. Autoimmunity 2019; 52:21-26. [PMID: 30822156 DOI: 10.1080/08916934.2019.1581773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Recent evidence has demonstrated that UBASH3A play a pivotal role in multiple autoimmune diseases. In this study, we explored the association between UBASH3A gene single-nucleotide polymorphisms (SNPs) and rheumatoid arthritis (RA) in a Chinese Han population. We also comparatively evaluated the UBASH3A expression profile in peripheral blood mononuclear cells (PBMCs) from patients with RA and healthy controls. METHODS Four UBASH3A polymorphisms (rs1893592, rs11203203, rs2277798, and rs3788013) were studied in 553 patients with RA and 587 controls in a Chinese population. Genotyping was performed using the Fluidigm 192.24 Dynamic Array Integrated Fluidic Circuit (IFC). For gene expression study, UBASH3A mRNA levels of 30 RA patients and 31 healthy individuals were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Data were analyzed by SPSS 19.0 software. RESULTS A significant association between rs1893592 polymorphism and RA was found under all genetic models (all p<.05). We also discovered a significant association between rs3788013 polymorphism and RA in the allele and genotype distributions, as well as the recessive model (all p<.05). Moreover, we found the genotype distribution and allele frequency of rs1893592 were significantly associated with RF phenotype in the RA patients (χ2 = 6.786, p=.034; χ2 = 4.534, p=.033; respectively). We also found the genotype distribution and allele frequency of rs2277798 were significantly associated with anti-CCP phenotype in the RA patients (χ2 = 7.873, p=.020; χ2 = 4.473, p=.034; respectively). However, we did not detect any significant associations between rs11203203 and RA susceptibility and autoantibody profiles (all p>.05). The mRNA expression of UBASH3A was increased in PBMCs of patients with RA when compared to healthy controls (p=.001). CONCLUSIONS Our observations suggested that the dysregulation of UBASH3A might be associated with the pathogenesis of RA, and UBASH3A gene polymorphisms (rs1893592 and rs3788013) might contribute to RA susceptibility in Chinese Han population.
Collapse
Affiliation(s)
- Xiao-Ke Yang
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Juan Liu
- b Wuxi Center for Disease Control and Prevention , Wuxi , Jiangsu , China
| | - Shan-Yu Chen
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Mu Li
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Ming-Ming Zhang
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Rui-Xue Leng
- c Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China
| | - Hai-Feng Pan
- c Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China
| | - Yuan Shen
- b Wuxi Center for Disease Control and Prevention , Wuxi , Jiangsu , China
| | - Wen-Xue Liu
- d Wuxi Emergency Medical Centre , Wuxi , Jiangsu , China
| | - Sheng-Qian Xu
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Dong-Qing Ye
- c Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China
| | - Zong-Wen Shuai
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| |
Collapse
|
42
|
Lack of CD45 in FLT3-ITD mice results in a myeloproliferative phenotype, cortical porosity, and ectopic bone formation. Oncogene 2019; 38:4773-4787. [DOI: 10.1038/s41388-019-0757-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/12/2018] [Accepted: 02/05/2019] [Indexed: 01/08/2023]
|
43
|
Uhl GR, Martinez MJ. PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Ann N Y Acad Sci 2019; 1451:112-129. [PMID: 30648269 PMCID: PMC6629525 DOI: 10.1111/nyas.14002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
Receptor-type protein tyrosine phosphatase, receptor type D (PTPRD) has likely roles as a neuronal cell adhesion molecule and synaptic specifier. Interest in its neurobiology and genomics has been stimulated by results from human genetics and mouse models for phenotypes related to addiction, restless leg syndrome, neurofibrillary pathology in Alzheimer's disease, cognitive impairment/intellectual disability, mood lability, and obsessive-compulsive disorder. We review PTPRD's discovery, gene family, candidate homomeric and heteromeric binding partners, phosphatase activities, brain distribution, human genetic associations with nervous system phenotypes, and mouse model data relevant to these phenotypes. We discuss the recently reported discovery of the first small molecule inhibitor of PTPRD phosphatase, the identification of its addiction-related effects, and the implications of these findings for the PTPRD-associated brain phenotypes. In assembling PTPRD neurobiology, human genetics, and mouse genetic and pharmacological datasets, we provide a compelling picture of the roles played by PTPRD, its variation, and its potential as a target for novel therapeutics.
Collapse
Affiliation(s)
- George R Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico.,Departments of Neurology, Neuroscience, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico.,Biomedical Research Institute of New Mexico, Albuquerque, New Mexico.,Departments of Neurology, Neuroscience and Mental Health, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Maria J Martinez
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico.,Biomedical Research Institute of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
44
|
Li L, Peng M, Xue W, Fan Z, Wang T, Lian J, Zhai Y, Lian W, Qin D, Zhao J. Integrated analysis of dysregulated long non-coding RNAs/microRNAs/mRNAs in metastasis of lung adenocarcinoma. J Transl Med 2018; 16:372. [PMID: 30587197 PMCID: PMC6307237 DOI: 10.1186/s12967-018-1732-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), largely remains a primary cause of cancer-related death worldwide. The molecular mechanisms in LUAD metastasis have not been completely uncovered. METHODS In this study, we identified differentially expressed genes (DEGs), miRNAs (DEMs) and lncRNAs (DELs) underlying metastasis of LUAD from The Cancer Genome Atlas database. Intersection mRNAs were used to perform gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and co-expression network analysis. In addition, survival analyses of intersection mRNAs were conducted. Finally, intersection mRNAs, miRNAs and lncRNAs were subjected to construct miRNA-mRNA-lncRNA network. RESULTS A total of 1015 DEGs, 54 DEMs and 22 DELs were identified in LUAD metastasis and non-metastasis samples. GO and KEGG pathway analysis had proven that the functions of intersection mRNAs were closely related with many important processes in cancer pathogenesis. Among the co-expression interactions network, 22 genes in the co-expression network were over the degree 20. These genes imply that they have connections with many other gene nodes. In addition, 14 target genes (ARHGAP11A, ASPM, HELLS, PRC1, TMPO, ARHGAP30, CD52, IL16, IRF8, P2RY13, PRKCB, PTPRC, SASH3 and TRAF3IP3) were found to be associated with survival in patients with LUAD significantly (log-rank P < 0.05). Two lncRNAs (LOC96610 and ADAM6) acting as ceRNAs were identified based on the miRNA-mRNA-lncRNA network. CONCLUSIONS Taken together, the results may provide a novel perspective to develop a multiple gene diagnostic tool for LUAD prognosis, which might also provide potential biomarkers or therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Lifeng Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,National Engineering Laboratory for Internet Medical Systems and Applications, Zhengzhou, 450052, Henan, China
| | - Mengle Peng
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou, 450052, Henan, China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhirui Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tian Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jingyao Lian
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yunkai Zhai
- National Engineering Laboratory for Internet Medical Systems and Applications, Zhengzhou, 450052, Henan, China
| | - Wenping Lian
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou, 450052, Henan, China
| | - Dongchun Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, 450052, Henan, China.
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,National Engineering Laboratory for Internet Medical Systems and Applications, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
45
|
Miras-Portugal MT, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Gualix J, Delicado EG, Pérez-Sen R. P2 receptor interaction and signalling cascades in neuroprotection. Brain Res Bull 2018; 151:74-83. [PMID: 30593879 DOI: 10.1016/j.brainresbull.2018.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Nucleotides can contribute to the survival of different glial and neuronal models at the nervous system via activation of purinergic P2X and P2Y receptors. Their activation counteracts different proapoptotic events, such as excitotoxicity, mitochondrial impairment, oxidative stress and DNA damage, which concur to elicit cell loss in different processes of neurodegeneration and brain injury. Thus, it is frequent to find that different neuroprotective mediators converge in the activation of the same intracellular survival pathways to protect cells from death. The present review focuses on the role of P2Y1 and P2Y13 metabotropic receptors, and P2X7 ionotropic receptors to regulate the balance between survival and apoptosis. In particular, we analyze the intracellular pathways involved in the signaling of these nucleotide receptors to elicit survival, including calcium/PLC, PI3K/Akt/GSK3, MAPK cascades, and the expression of antioxidant and antiapoptotic genes. This review emphasizes the novel contribution of nucleotide receptors to maintain cell homeostasis through the regulation of MAP kinases and phosphatases. Unraveling the different roles found for nucleotide receptors in different models and cellular contexts may be crucial to delineate future therapeutic applications based on targeting nucleotide receptors for neuroprotection.
Collapse
Affiliation(s)
- Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Mª José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|
46
|
Gagné-Sansfacon J, Langlois A, Langlois MJ, Coulombe G, Tremblay S, Vaillancourt-Lavigueur V, Qu CK, Menendez A, Rivard N. The tyrosine phosphatase Shp-2 confers resistance to colonic inflammation by driving goblet cell function and crypt regeneration. J Pathol 2018; 247:135-146. [PMID: 30376595 PMCID: PMC6519201 DOI: 10.1002/path.5177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/30/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022]
Abstract
The Src homology‐2 domain‐containing tyrosine phosphatase 2 (SHP‐2) regulates many cellular processes, including proliferation, differentiation and survival. Polymorphisms in the gene encoding SHP‐2 are associated with an increased susceptibility to develop ulcerative colitis. We recently reported that intestinal epithelial cell (IEC)‐specific deletion of Shp‐2 in mice (Shp‐2IEC‐KO) leads to chronic colitis and colitis‐associated cancer. This suggests that SHP‐2‐dependent signaling protects the colonic epithelium against inflammation and colitis‐associated cancer development. To verify this hypothesis, we generated mice expressing the Shp‐2 E76K activated form specifically in IEC. Our results showed that sustained Shp‐2 activation in IEC increased intestine and crypt length, correlating with increased cell proliferation and migration. Crypt regeneration capacity was also markedly enhanced, as revealed by ex vivo organoid culture. Shp‐2 activation alters the secretory cell lineage, as evidenced by increased goblet cell numbers and mucus secretion. Notably, these mice also demonstrated elevated ERK signaling in IEC and exhibited resistance against both chemical‐ and Citrobacter rodentium‐induced colitis. In contrast, mice with IEC‐specific Shp‐2 deletion displayed reduced ERK signaling and rapidly developed chronic colitis. Remarkably, expression of an activated form of Braf in Shp‐2‐deficient mice restored ERK activation, goblet cell production and prevented colitis. Altogether, our results indicate that chronic activation of Shp‐2/ERK signaling in the colonic epithelium confers resistance to mucosal erosion and colitis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jessica Gagné-Sansfacon
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Ariane Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Geneviève Coulombe
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Sarah Tremblay
- Department of Microbiology and Infectiology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Vanessa Vaillancourt-Lavigueur
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alfredo Menendez
- Department of Microbiology and Infectiology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
47
|
DUSP5 expression associates with poor prognosis in human neuroblastoma. Exp Mol Pathol 2018; 105:272-278. [DOI: 10.1016/j.yexmp.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
|
48
|
Nagata R, Igaki T. Cell competition: Emerging mechanisms to eliminate neighbors. Dev Growth Differ 2018; 60:522-530. [DOI: 10.1111/dgd.12575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Rina Nagata
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| | - Tatsushi Igaki
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| |
Collapse
|
49
|
Cocaine reward is reduced by decreased expression of receptor-type protein tyrosine phosphatase D (PTPRD) and by a novel PTPRD antagonist. Proc Natl Acad Sci U S A 2018; 115:11597-11602. [PMID: 30348770 DOI: 10.1073/pnas.1720446115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Receptor-type protein tyrosine phosphatase D (PTPRD) is a neuronal cell-adhesion molecule/synaptic specifier that has been implicated in addiction vulnerability and stimulant reward by human genomewide association and mouse cocaine-conditioned place-preference data. However, there have been no reports of effects of reduced expression on cocaine self-administration. There have been no reports of PTPRD targeting by any small molecule. There are no data about behavioral effects of any PTPRD ligand. We now report (i) robust effects of heterozygous PTPRD KO on cocaine self-administration (These data substantially extend prior conditioned place-preference data and add to the rationale for PTPRD as a target for addiction therapeutics.); (ii) identification of 7-butoxy illudalic acid analog (7-BIA) as a small molecule that targets PTPRD and inhibits its phosphatase with some specificity; (iii) lack of toxicity when 7-BIA is administered to mice acutely or with repeated dosing; (iv) reduced cocaine-conditioned place preference when 7-BIA is administered before conditioning sessions; and (v) reductions in well-established cocaine self-administration when 7-BIA is administered before a session (in WT, not PTPRD heterozygous KOs). These results add to support for PTPRD as a target for medications to combat cocaine use disorders. 7-BIA provides a lead compound for addiction therapeutics.
Collapse
|
50
|
Yoon SY, Lee JH, Kwon SJ, Kang HJ, Chung SJ. Ginkgolic acid as a dual-targeting inhibitor for protein tyrosine phosphatases relevant to insulin resistance. Bioorg Chem 2018; 81:264-269. [PMID: 30153591 DOI: 10.1016/j.bioorg.2018.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
Several protein tyrosine phosphatases (PTPs) that disrupt the insulin-signaling pathway were investigated by siRNAs to identify potential antidiabetic targets. Individual knockdown of PTPN9 and DUSP9 in 3T3-L1 preadipocytes increased AMPK phosphorylation, respectively, and furthermore, concurrent knockdown of both PTPN9 and DUSP9 synergistically increased AMPK phosphorylation. Next, 658 natural products were screened to identify dual inhibitors of both PTPN9 and DUSP9. Based on the selectivity and inhibition potency of the compounds, ginkgolic acid (GA) was selected for further study as a potential antidiabetic drug candidate. GA inhibited the enzymatic activity of PTPN9 (Ki = 53 µM) and DUSP9 (Ki = 2.5 µM) in vitro and resulted in a significant increase of glucose-uptake in differentiated C2C12 muscle cells and 3T3-L1 adipocytes. In addition, GA increased phosphorylation of AMPK in 3T3L1 adipocytes. In this study, GA as a dual targeting inhibitor of PTPN9 and DUSP9 increased glucose uptake in 3T3L1 and C2C12 cells by activating the AMPK signaling pathway. These results strongly suggest GA could be used as a therapeutic candidate for type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hee Lee
- Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea
| | - Se Jeong Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyo Jin Kang
- Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea.
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|