1
|
Xie Y, Fan Y, Liu X, Li Z, Liu S. 4D-DIA-based proteomics analysis reveals the protective effects of Pidanjiangtang granules in IGT rat model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119012. [PMID: 39481621 DOI: 10.1016/j.jep.2024.119012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Pidanjiangtang (PDJT) formula was founded on the "Pidan" theory from the "Nei Jing." PDJT is considered to eliminate the accumulation of pathological products, remove heat sources, and prevent damage to organs such as the liver and islets. It is widely used in clinical practice to treat impaired glucose tolerance (IGT). However, the bioactive ingredients and underlying mechanisms are still unclear and need further investigation. OBJECTIVE This study aimed to determine the therapeutic effect of PDJT on IGT rats and explore the mechanism of PDJT intervention on IGT by four-dimensional independent data acquisition (4D-DIA) proteomics analysis. MATERIALS AND METHODS The IGT model was established by a high-fat diet combined with Streptozotocin (STZ) injection. The IGT rats were treated with low, medium, and high doses of PDJT orally for 42 days and compared with the Metformin positive control group. The therapeutic effects of PDJT on IGT rats were evaluated using the oral glucose tolerance test (OGTT), serum lipoprotein detection, insulin detection, liver histopathology, and hepatic steatosis assessment. 4D-DIA proteomics analysis was used to explore the differential proteins (DEPs) and potential pathways of PDJT. Finally, Western blotting and ELISA techniques were used to verify DEPs and major targets. RESULTS PDJT can enhance glucose metabolism, restore islet β cell function, regulate lipoprotein metabolism, reduce hepatic steatosis, and consequently slow down the progression of IGT. In the proteomic analysis, a total of 355 DEPs were identified, and critical proteins were validated. The results indicated that the JAK2/STAT1 signaling pathway plays a pivotal role in the effects of PDJT. IκB-ζ may be a potential target for PDJT in regulating the inflammatory response of IGT. CONCLUSION PDJT is an effective formula for improving IGT, with its potential mechanism linked to the JAK2/STAT1/IκB-ζ signaling pathway. This study offers a novel approach to investigating the mechanisms of TCM formula through proteomics and offers new insight into exploring TCM treatment for IGT.
Collapse
Affiliation(s)
- Yu Xie
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Fan
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Liu
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zirong Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Shangjian Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Gao Y, Lan L, Wang C, Wang Y, Shi L, Sun L. Selective JAK1 inhibitors and the therapeutic applications thereof: a patent review (2016-2023). Expert Opin Ther Pat 2025; 35:181-195. [PMID: 39716925 DOI: 10.1080/13543776.2024.2446223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION The family of Janus kinases (JAKs) consists of four intracellular non-receptor tyrosine kinases: JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2). Among these four subtypes, JAK1 is the only isoform that can form heterodimers with all three JAKs, and JAK1 dysfunction can lead to inflammation and severe autoimmune diseases. Interest in JAK1 inhibitors has grown tremendously, and the number of inhibitors targeting JAK1 continues to rise annually. AREAS COVERED This paper reviews JAK1 small molecule inhibitors that were reported in patent literature from January 2016 to December 2023. Web of Science, SciFinder, PubMed, WIPO, EPO, USPTO, and CNIPA databases were used for searching the literature and patents for JAK1 inhibitors. EXPERT OPINION JAK1 inhibitors show great promise in treating cytokine dysregulated disorders; nevertheless, nonselective JAK1 inhibitors have more severe side effects, which restricts the therapy's safety and use. Therefore, developing highly selective JAK1 inhibitors can mitigate potential risks and lead to next-generation therapies with improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Yuhui Gao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Li Lan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Cheng Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Yuwei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Liping Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
3
|
Li H, Ke X, Feng B, Tian H, Cai Z, Zhang A, Man Q. Research progress on the mechanism and markers of metabolic disorders in the occurrence and development of cognitive dysfunction after ischemic stroke. Front Endocrinol (Lausanne) 2025; 16:1500650. [PMID: 39911922 PMCID: PMC11794095 DOI: 10.3389/fendo.2025.1500650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a common complication following a stroke that significantly affects patients' quality of life and rehabilitation outcomes. It also imposes a heavy economic burden. There is an urgent need to better understand the pathophysiology and pathogenesis of PSCI, as well as to identify markers that can predict PSCI early in the clinical stage, facilitating early prevention, monitoring, and treatment. Although the mechanisms underlying PSCI are complex and multifaceted, involving factors such as atherosclerosis and neuroinflammation, metabolic disorders also play a critical role. This article primarily reviews the relationship between metabolic disorders of the three major nutrients-sugar, fat, and protein-and the development of cognitive dysfunction following ischemic stroke (IS). It aims to elucidate how these metabolic disturbances contribute to cognitive dysfunction post-stroke and to explore potential metabolic biomarkers for PSCI. We believe that this review will offer new insights into the early identification, treatment, and prognostic assessment of PSCI.
Collapse
Affiliation(s)
- Huaqiang Li
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bianying Feng
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huan Tian
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenzhen Cai
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Aghaei SM, Hosseini SM. Inflammation-related miRNAs in obesity, CVD, and NAFLD. Cytokine 2024; 182:156724. [PMID: 39106574 DOI: 10.1016/j.cyto.2024.156724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Obesity, cardiovascular diseases (CVD), and nonalcoholic fatty liver disease (NAFLD) pose significant worldwide health challenges, characterized by complex interplay among inflammatory pathways that underlie their development. In this review, we examine the contribution of inflammation and associated signaling molecules to the pathogenesis of these conditions, while also emphasizing the significant participation of non-coding RNAs (ncRNAs) in modulating inflammatory pathways. In the context of obesity, aberrant expression patterns of inflammatory-associated miRNAs play a contributory role in adipose tissue inflammation and insulin resistance, thereby exacerbating disturbances in metabolic homeostasis. Similarly, in CVD, dysregulated miRNA expression alters inflammatory reactions, disrupts endothelial function, and induces cardiac remodeling, thereby impacting the advancement of the disease. Moreover, in the context of NAFLD, inflammatory-associated miRNAs are implicated in mediating hepatic inflammation, lipid deposition, and fibrosis, underscoring their candidacy as promising therapeutic targets. Additionally, the competing endogenous RNA (ceRNA) network has emerged as a novel regulatory mechanism in the etiology of CVD, obesity, and NAFLD, wherein ncRNAs assume pivotal roles in facilitating communication across diverse molecular pathways. Moreover, in the concluding section, we underscored the potential efficacy of directing interventions towards inflammatory-related miRNAs utilizing herbal remedies and therapies based on exosome delivery systems as a promising strategy for ameliorating pathologies associated with inflammation in obesity, CVD, and NAFLD.
Collapse
Affiliation(s)
- Sayed Mohsen Aghaei
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang Z, Chang L, Wang B, Wei Y, Li X, Li X, Zhang Y, Wang K, Qiao R, Yang F, Yu T, Han X. Differential chromatin accessibility and Gene Expression Associated with Backfat Deposition in pigs. BMC Genomics 2024; 25:902. [PMID: 39349998 PMCID: PMC11441165 DOI: 10.1186/s12864-024-10805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Backfat serves as a vital fat reservoir in pigs, and its excessive accumulation will adversely impact pig growth performance, farming efficiency, and pork quality. The aim of this research is to integrate assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) to explore the molecular mechanisms underlying porcine backfat deposition. RESULTS ATAC-seq analysis identified 568 genes originating from 698 regions exhibiting differential accessibility, which were significantly enriched in pathways pertinent to adipocyte differentiation and lipid metabolism. Besides, a total of 283 transcription factors (TFs) were identified by motif analysis. RNA-seq analysis revealed 978 differentially expressed genes (DEGs), which were enriched in pathways related to energy metabolism, cell cycle and signal transduction. The integration of ATAC-seq and RNA-seq data indicates that DEG expression levels are associated with chromatin accessibility. This comprehensive study highlights the involvement of critical pathways, including the Wnt signaling pathway, Jak-STAT signaling pathway, and fatty acid degradation, in the regulation of backfat deposition. Through rigorous analysis, we identified several candidate genes (LEP, CTBP2, EHHADH, OSMR, TCF7L2, BCL2, FGF1, UCP2, CCND1, TIMP1, and VDR) as potentially significant contributors to backfat deposition. Additionally, we constructed TF-TF and TF-target gene regulatory networks and identified a series of potential TFs related to backfat deposition (FOS, STAT3, SMAD3, and ESR1). CONCLUSIONS This study represents the first application of ATAC-seq and RNA-seq, affording a novel perspective into the mechanisms underlying backfat deposition and providing invaluable resources for the enhancement of pig breeding programs.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lebin Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bingjie Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Sanya Institute, Hainan Academy of Agricultural Science, Sanya, 572025, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongqian Zhang
- Henan Yifa Animal Husbandry Co., Ltd, Hebi, 458000, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tong Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Gao R, Zhu Q, Huang L, Fan X, Teng X, Miao Y. LEP Gene Promotes Milk Fat Synthesis via the JAK2-STAT3 and mTOR Signaling Pathways in Buffalo Mammary Epithelial Cells. Animals (Basel) 2024; 14:2446. [PMID: 39199979 PMCID: PMC11350831 DOI: 10.3390/ani14162446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Leptin (LEP), a protein hormone well-known for its role in metabolic regulation, has recently been linked to lipid metabolism in cattle. However, its function in buffalo mammary glands remains unclear. To address this issue, we isolated and identified the LEP gene and conducted experiments to investigate its function in buffalo mammary epithelial cells (BuMECs). In this study, two transcript variants of LEP, designated as LEP_X1 and LEP_X2, were identified. The coding sequences (CDS) of LEP_X1 and LEP_X2 are 504 bp and 579 bp in length, encoding 167 and 192 amino acid residues, respectively. Bioinformatics analysis revealed that LEP_X2 is a hydrophobic protein with an isoelectric point below 7 and contains a signal peptide, while LEP_X1 is hydrophilic and lacks a signal peptide. Our study found that LEP gene expression in lactating BuMECs was significantly higher than in non-lactating cells, with LEP_X2 expression remarkably higher than LEP_X1 in lactating BuMECs. Overexpression of both LEP_X1 and LEP_X2 significantly promoted the expression of genes related to milk fat synthesis in lactating BuMECs, including STAT3, PI3K, mTOR, SCD, and SREBF1, accompanied by an increase in cellular triglycerides (TG). Interestingly, LEP_X2 overexpression significantly suppressed LEP_X1 expression while increasing intracellular TG concentration by 12.10-fold compared to LEP_X1 overexpression, suggesting an antagonistic relationship between the two variants and supposing LEP_X2 plays a dominant role in milk fat synthesis in lactating BuMECs. Additionally, four nucleotide substitutions were identified in the buffalo LEP CDS, including a nonsynonymous substitution c.148C>T (p.Arg50Cys), which was predicted to decrease the stability of the LEP protein without affecting its function. These results collectively underscore the significant role of LEP in milk fat synthesis and can provide a basis for molecular breeding strategies of buffalo.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongwang Miao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.G.); (Q.Z.); (L.H.); (X.F.); (X.T.)
| |
Collapse
|
7
|
You YL, Choi HS. Nootkatone (NK), a grapefruit-derived aromatic compound, inhibited lipid accumulation by regulating JAK2-STAT signaling and antioxidant response in adipocyte. Food Sci Biotechnol 2024; 33:2631-2641. [PMID: 39144189 PMCID: PMC11319697 DOI: 10.1007/s10068-024-01522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 08/16/2024] Open
Abstract
Nootkatone (NK) is an aromatic compound derived from grapefruit. This study aimed to investigate the inhibitory effect of NK on lipid accumulation and its underlying mechanism in adipocytes. NK effectively inhibited adipogenic lipid storage by downregulating C/EBPα and PPARγ, while upregulating KLF2, an early inhibitory factor, downregulating C/EBPβ, an early promoting factor. In addition, NK inhibited the JAK2-STAT signaling pathway by decreasing the phosphorylation of STAT3 and STAT5 in the early adipogenic stage. NK significantly reduced ROS generation while elevating antioxidant enzymes such as catalase and glutathione peroxidase. It activated NRF2-HO-1 signaling, responsible for antioxidant response, by increasing protein levels. Furthermore, NK regulated adipokines, increasing adiponectin and visfatin, while downregulating resistin. Collectively, NK inhibited adipogenic lipid accumulation through the suppression of JAK2-STAT signaling and the augmentation of antioxidant response. This study highlights the potential of NK as an edible agent to alleviate obesity and its associated metabolic diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01522-2.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
8
|
Peng H, Lin X, Wang Y, Chen J, Zhao Q, Chen S, Cheng Q, Chen C, Sang T, Zhou H, Xiao J, Wang W, Fang L, Wang X. Epigallocatechin gallate suppresses mitotic clonal expansion and adipogenic differentiation of preadipocytes through impeding JAK2/STAT3-mediated transcriptional cascades. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155563. [PMID: 38552377 DOI: 10.1016/j.phymed.2024.155563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/03/2024] [Accepted: 03/21/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Mitotic clonal expansion (MCE) is a prerequisite for preadipocyte differentiation and adipogenesis. Epigallocatechin gallate (EGCG) has been shown to inhibit preadipocyte differentiation. However, the exact molecular mechanisms are still elusive. PURPOSE This study investigated whether EGCG could inhibit adipogenesis and lipid accumulation by regulating the cell cycle in the MCE phase of adipogenesis and its underlying molecular mechanisms. METHOD 3T3-L1 preadipocytes were induced to differentiate by a differentiation cocktail (DMI) and were treated with EGCG (25-100 μM) for 9, 18, and 24 h to examine the effect on MCE, or eight days to examine the effect on terminal differentiation. C57BL/6 mice were fed a high-fat diet (HFD) for three months to induce obesity and were given EGCG (50 or 100 mg/kg) daily by gavage. RESULTS We showed that EGCG significantly inhibited terminal adipogenesis and lipid accumulation in 3T3-L1 cells and decreased expressions of PPARγ, C/EBPα, and FASN. Notably, at the MCE phase, EGCG regulated the cell cycle in sequential order, induced G0/G1 arrest at 18 h, and inhibited the G2/M phase at 24 h upon DMI treatment. Meanwhile, EGCG regulated the expressions of cell cycle regulators (cyclin D1, cyclin E1, CDK4, CDK6, cyclin B1, cyclin B2, p16, and p27), and decreased C/EBPβ, PPARγ, and C/EBPα expressions at MCE. Mechanistic studies using STAT3 agonist Colivelin and antagonist C188-9 revealed that EGCG-induced cell cycle arrest in the MCE phase and terminal adipocyte differentiation was mediated by the inhibition of JAK2/STAT3 signaling cascades and STAT3 (Tyr705) nuclear translocation. Furthermore, EGCG significantly protected mice from HFD-induced obesity, reduced body weight and lipid accumulations in adipose tissues, reduced hyperlipidemia and leptin levels, and improved glucose intolerance and insulin sensitivity. Moreover, RNA sequencing (RNA-seq) analysis showed that the cell cycle changes in epididymal white adipose tissue (eWAT) were significantly enriched upon EGCG treatment. We further verified that EGCG treatment significantly reduced expressions of adipogenic factors, cell cycle regulators, and p-STAT3 in eWAT. CONCLUSION EGCG inhibits MCE, resulting in the inhibition of early and terminal adipocyte differentiation and lipid accumulation, which were mediated by inhibiting p-STAT3 nucleus translocation and activation.
Collapse
Affiliation(s)
- He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Ying Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Qi Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Chaojie Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Tingting Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Hongyu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Jun Xiao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Wen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Liu Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China.
| |
Collapse
|
9
|
Su Y, Qu Q, Li J, Han Z, Fang Y, Flavorta BL, Jia Z, Yu Q, Zhang Y, Qian P, Tang X. Perilipin1 inhibits Nosema bombycis proliferation by promoting Domeless- and Hop-mediated JAK-STAT pathway activation in Bombyx mori. Microbiol Spectr 2024; 12:e0367123. [PMID: 38690912 PMCID: PMC11237581 DOI: 10.1128/spectrum.03671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that participate in the regulation of lipid metabolism and cellular homeostasis inside of cells. LD-associated proteins, also known as perilipins (PLINs), are a family of proteins found on the surface of LDs that regulate lipid metabolism, immunity, and other functions. In silkworms, pébrine disease caused by infection by the microsporidian Nosema bombycis (Nb) is a severe threat to the sericultural industry. Although we found that Nb relies on lipids from silkworms to facilitate its proliferation, the relationship between PLINs and Nb proliferation remains unknown. Here, we found Nb infection caused the accumulation of LDs in the fat bodies of silkworm larvae. The characterized perilipin1 gene (plin1) promotes the accumulation of intracellular LDs and is involved in Nb proliferation. plin1 is similar to perilipin1 in humans and is conserved in all insects. The expression of plin1 was mostly enriched in the fat body rather than in other tissues. Knockdown of plin1 enhanced Nb proliferation, whereas overexpression of plin1 inhibited its proliferation. Furthermore, we confirmed that plin1 increased the expression of the Domeless and Hop in the JAK-STAT immune pathway and inhibited Nb proliferation. Taken together, our current findings demonstrate that plin1 inhibits Nb proliferation by promoting the JAK-STAT pathway through increased expression of Domeless and Hop. This study provides new insights into the complicated connections among microsporidia pathogens, LD surface proteins, and insect immunity.IMPORTANCELipid droplets (LDs) are lipid storage sites in cells and are present in almost all animals. Many studies have found that LDs may play a role in host resistance to pathogens and are closely related to innate immunity. The present study found that a surface protein of insect lipid droplets could not only regulate the morphological changes of lipid droplets but also inhibit the proliferation of a microsporidian pathogen Nosema bombycis (Nb) by activating the JAK-STAT signaling pathway. This is the first discovery of the relationship between microsporidian pathogen and insect lipid surface protein perilipin and insect immunity.
Collapse
Affiliation(s)
- Yaping Su
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qingsheng Qu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Junling Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhenghao Han
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yujia Fang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Billong Laura Flavorta
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhenwei Jia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qiong Yu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yiling Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ping Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xudong Tang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
10
|
Lee HW, Karki R, Han JH. Inhibition of the RPS6KA1/FoxO1 signaling axis by hydroxycitric acid attenuates HFD-induced obesity through MCE suppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155551. [PMID: 38569293 DOI: 10.1016/j.phymed.2024.155551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.
Collapse
Affiliation(s)
- Hyung-Won Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, South Korea; Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea.
| |
Collapse
|
11
|
Sheet S, Jang SS, Kim JH, Park W, Kim D. A transcriptomic analysis of skeletal muscle tissues reveals promising candidate genes and pathways accountable for different daily weight gain in Hanwoo cattle. Sci Rep 2024; 14:315. [PMID: 38172605 PMCID: PMC10764957 DOI: 10.1038/s41598-023-51037-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Cattle traits like average daily weight gain (ADG) greatly impact profitability. Selecting based on ADG considering genetic variability can lead to economic and genetic advancements in cattle breeding. This study aimed to unravel genetic influences on ADG variation in Hanwoo cattle at the skeletal muscle transcriptomic level. RNA sequencing was conducted on longissimus dorsi (LD), semimembranosus (SB), and psoas major (PM) muscles of 14 steers assigned to same feed, grouped by low (≤ 0.71 kg) and high (≥ 0.77 kg) ADG. At P ≤ 0.05 and log2fold > 1.5, the distinct pattern of gene expression was identified with 184, 172, and 210 differentially expressed genes in LD, SB, and PM muscles, respectively. Tissue-specific responses to ADG variation were evident, with myogenesis and differentiation associated JAK-STAT signaling pathway and prolactin signaling pathways enriched in LD and SB muscles, while adipogenesis-related PPAR signaling pathways were enriched in PM muscle. Key hub genes (AXIN2, CDKN1A, MYC, PTGS2, FZD5, SPP1) were upregulated and functionally significant in muscle growth and differentiation. Notably, DPP6, CDKN1A, and FZD5 emerged as possible candidate genes linked to ADG variation. These findings enhance our understanding of genetic factors behind ADG variation in Hanwoo cattle, illuminating skeletal muscle mechanisms influencing ADG.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Jae Hwan Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| |
Collapse
|
12
|
Perumal NL, Do SK, Choi JS, Lee JH, Ban GT, Kim G, Mufida A, Yoo HS, Jang BC. Anti‑adipogenic effect and underlying mechanism of lignan‑enriched nutmeg extract on 3T3‑L1 preadipocytes. Biomed Rep 2024; 20:4. [PMID: 38124767 PMCID: PMC10729302 DOI: 10.3892/br.2023.1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
Nutmeg is the seed derived from Myristica fragrans. Nutmeg seeds contain alkylbenzene derivatives such as myristicin, which are toxic to the human organism, and lignan compounds such as nectandrin B, which possess anti-aging and anti-diabetic properties. However, the anti-adipogenic, prolipolytic and anti-inflammatory effects of lignan-enriched nutmeg extract (LNX) on preadipocytes remain unclear. In the present study, the effects of LNX on lipid accumulation, glycerol release and inflammatory cyclooxygenase-2 (COX-2) expression in differentiated 3T3-L1 preadipocytes were investigated. Oil red O staining demonstrated that treatment with LNX resulted in a concentration-dependent reduction in lipid accumulation in differentiating 3T3-L1 preadipocytes without affecting cell growth. Mechanistically, LNX treatment at 6 µg/ml led to a reduction in phosphorylation levels of signal transducer and activator of transcription 3 (STAT3), whereas it did not influence the peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT enhancer binding protein alpha (C/EBP-α) expression levels during 3T3-L1 preadipocyte differentiation. In addition, LNX treatment at 6 µg/ml led to a decrease in fatty acid synthase (FAS) expression levels on day (D) 2, but not D5 and D8, during preadipocyte differentiation. Treatment with LNX at 6 µg/ml did not affect the expression levels of perilipin A during preadipocyte differentiation. In differentiated 3T3-L1 adipocytes, LNX treatment at 6 µg/ml did not stimulate glycerol release and hormone-sensitive lipase phosphorylation, which are known lipolysis hallmarks. Furthermore, LNX treatment at the doses tested had no effect on tumor necrosis factor alpha-induced COX-2 expression in 3T3-L1 preadipocytes. Collectively, these results demonstrated that LNX has an anti-adipogenic effect on differentiating 3T3-L1 preadipocytes, which is mediated by the downregulation of STAT3 phosphorylation and FAS expression.
Collapse
Affiliation(s)
| | - Sung Kuk Do
- College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Je-Ho Lee
- Geron Biotech Ltd., Daejeon 34133, Republic of Korea
| | - Gyung-Tae Ban
- Geron Biotech Ltd., Daejeon 34133, Republic of Korea
| | - Gyuri Kim
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Amila Mufida
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Hwa Seung Yoo
- College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
13
|
Yang M, Zhao W, Wang Z, Liu J, Sun X, Wang S. Detection of key gene InDels in JAK/STAT pathway and their associations with growth traits in four Chinese sheep breeds. Gene 2023; 888:147750. [PMID: 37657690 DOI: 10.1016/j.gene.2023.147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE The Janus kinase/signal transducer and transporter activator (JAK/STAT) signaling pathway plays crucial roles in lipid metabolism, glucose metabolism and cell senescence, suggesting that they are potential candidate genes affecting growth traits in animals. The present study aimed to evaluate the association between InDels in the JAK/STAT pathway and growth traits of four Chinese sheep breeds, including Tong sheep, Hu sheep, Small-tailed Han sheep and Lanzhou fat-tailed sheep. RESULTS Seventy-six indel loci of 11 genes in JAK/STAT were detected, and three genotypes were selected at four loci by PCR amplification, electrophoresis and sequencing, including one locus in STAT3, one locus in STAT5A, and two loci in JAK1. The Correlation analysis indicated that there was no significant correlation between STAT3 and growth traits in four sheep breeds (P > 0.05); STAT5A was significantly associated with body height, rump width and tube circumference in Hu sheep and body length in Tong sheep (P < 0.05); JAK1 was significantly correlated with body height, body oblique length, cross height and tube circumference in Hu sheep (P < 0.05) and body oblique length, cross height and tube circumference in small-tailed Han sheep (P < 0.05). CONCLUSION Overall, our results indicated a potential association between the growth traits of sheep and the InDels of JAK1 and STAT5A.
Collapse
Affiliation(s)
- Mengzhe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wanxia Zhao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ziteng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
14
|
Maharati A, Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Zangouei AS, Moghbeli M. MicroRNA-495: a therapeutic and diagnostic tumor marker. J Mol Histol 2023; 54:559-578. [PMID: 37759132 DOI: 10.1007/s10735-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Therapeutic and diagnostic progresses have significantly reduced the mortality rate among cancer patients during the last decade. However, there is still a high rate of mortality among cancer patients. One of the important reasons involved in the high mortality rate is the late diagnosis in advanced tumor stages that causes the failure of therapeutic strategies in these patients. Therefore, investigating the molecular mechanisms involved in tumor progression has an important role in introducing the efficient early detection markers. MicroRNAs (miRNAs) as stable factors in body fluids are always considered as non-invasive diagnostic and prognostic markers. In the present review, we investigated the role of miR-495 in tumor progression. It has been reported that miR-495 has mainly a tumor suppressor function through the regulation of transcription factors and tyrosine kinases as well as cellular processes such as multidrug resistance, chromatin remodeling, and signaling pathways. This review can be an effective step towards introducing the miR-495 as a non-invasive diagnostic/prognostic marker as well as a suitable target in tumor therapy.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Alhamdan F, Greulich T, Daviaud C, Marsh LM, Pedersen F, Thölken C, Pfefferle PI, Bahmer T, Potaczek DP, Tost J, Garn H. Identification of extracellular vesicle microRNA signatures specifically linked to inflammatory and metabolic mechanisms in obesity-associated low type-2 asthma. Allergy 2023; 78:2944-2958. [PMID: 37486026 DOI: 10.1111/all.15824] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023]
Abstract
RATIONALE AND OBJECTIVE Plasma extracellular vesicles (EVs) represent a vital source of molecular information about health and disease states. Due to their heterogenous cellular sources, EVs and their cargo may predict specific pathomechanisms behind disease phenotypes. Here we aimed to utilize EV microRNA (miRNA) signatures to gain new insights into underlying molecular mechanisms of obesity-associated low type-2 asthma. METHODS Obese low type-2 asthma (OA) and non-obese low type-2 asthma (NOA) patients were selected from an asthma cohort conjointly with healthy controls. Plasma EVs were isolated and characterised by nanoparticle tracking analysis. EV-associated small RNAs were extracted, sequenced and bioinformatically analysed. RESULTS Based on EV miRNA expression profiles, a clear distinction between the three study groups could be established using a principal component analysis. Integrative pathway analysis of potential target genes of the differentially expressed miRNAs revealed inflammatory cytokines (e.g., interleukin-6, transforming growth factor-beta, interferons) and metabolic factors (e.g., insulin, leptin) signalling pathways to be specifically associated with OA. The miR-17-92 and miR-106a-363 clusters were significantly enriched only in OA. These miRNA clusters exhibited discrete bivariate correlations with several key laboratory (e.g., C-reactive protein) and lung function parameters. Plasma EV miRNA signatures mirrored blood-derived CD4+ T-cell transcriptome data, but achieved an even higher sensitivity in identifying specifically affected biological pathways. CONCLUSION The identified plasma EV miRNA signatures and particularly the miR-17-92 and -106a-363 clusters were capable to disentangle specific mechanisms of the obesity-associated low type-2 asthma phenotype, which may serve as basis for stratified treatment development.
Collapse
Affiliation(s)
- Fahd Alhamdan
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Marburg, Germany
| | - Christian Daviaud
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, France
| | - Leigh M Marsh
- Division of Physiology and Pathophysiology, Ludwig Boltzmann Institute for Lung Vascular Research and Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Frauke Pedersen
- Lungen Clinic Großhansdorf GmbH, Member of the German Center for Lung Research (DZL), Airway Research Center North (ARCN), Großhansdorf, Germany
| | - Clemens Thölken
- Institute of Medical Bioinformatics and Biostatistics, Medical Faculty, Philipps University of Marburg, Marburg, Germany
| | - Petra Ina Pfefferle
- Comprehensive Biobank Marburg (CBBMR), Member of the German Biobank Alliance (GBA) and the German Center for Lung Research (DZL), Medical Faculty, Philipps University of Marburg, Marburg, Germany
| | - Thomas Bahmer
- Lungen Clinic Großhansdorf GmbH, Member of the German Center for Lung Research (DZL), Airway Research Center North (ARCN), Großhansdorf, Germany
- Department for Internal Medicine I, Campus Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniel P Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, Marburg, Germany
- Center for Infection and Genomics of the Lung (CIGL), Member of the German Center for Lung Research (DZL) and Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, Gießen, Germany
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, France
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
16
|
Koh JH, Lee BW, Kim WU. Changes in the cholesterol profile of patients with rheumatoid arthritis treated with biologics or Janus kinase inhibitors. JOURNAL OF RHEUMATIC DISEASES 2023; 30:234-242. [PMID: 37736594 PMCID: PMC10509638 DOI: 10.4078/jrd.2023.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 09/23/2023]
Abstract
Objective To assess the effects of biological and targeted synthetic disease-modifying antirheumatic drugs (DMARDs) on lipid profiles in patients with moderate-to-severe rheumatoid arthritis (RA). Methods This retrospective single-center observational study included patients with RA taking a tumor necrosis factor-α inhibitor (TNFi), abatacept, tocilizumab, or a Janus kinase inhibitor (JAKi) for at least 6 months. Changes in lipid profile were assessed at 6 months after the start of treatment, and associations between changes in lipid profiles and clinical efficacy, concomitant medications, and comorbidities were evaluated. Results This study included 114 patients treated with TNFi, 81 with abatacept, 103 with tocilizumab, and 89 with JAKi. The mean percentage change (from baseline to 6 months) in total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and non-HDL-C levels was higher in those taking tocilizumab and JAKi than in those taking TNFi and abatacept. A significant change in non-HDL-C was associated with JAKi (versus TNFi odds ratio [OR], 3.228; 95% confidence interval [CI], 1.536~6.785), tocilizumab (versus TNFi OR, 2.203; 95% CI, 1.035~4.689), and statins (OR, 0.487; 95% CI, 0.231~1.024). However, changes in disease activity in 28 joints were not associated with a significant change in non-HDL-C. Conclusion Tocilizumab- and JAKi-associated increases in serum non-HDL-C levels were observed regardless of changes in disease activity. Statins are recommended for RA patients showing a significant increase in cholesterol levels after initiating biological and targeted synthetic DMARDs.
Collapse
Affiliation(s)
- Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bong-Woo Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
17
|
Attiq A, Afzal S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol 2023; 14:1255727. [PMID: 37680708 PMCID: PMC10482416 DOI: 10.3389/fphar.2023.1255727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Unresolved inflammation is a pathological consequence of persistent inflammatory stimulus and perturbation in regulatory mechanisms. It increases the risk of tumour development and orchestrates all stages of tumorigenesis in selected organs. In certain cancers, inflammatory processes create the appropriate conditions for neoplastic transformation. While in other types, oncogenic changes pave the way for an inflammatory microenvironment that leads to tumour development. Of interest, hallmarks of tumour-promoting and cancer-associated inflammation are striking similar, sharing a complex network of stromal (fibroblasts and vascular cells) and inflammatory immune cells that collectively form the tumour microenvironment (TME). The cross-talks of signalling pathways initially developed to support homeostasis, change their role, and promote atypical proliferation, survival, angiogenesis, and subversion of adaptive immunity in TME. These transcriptional and regulatory pathways invariably contribute to cancer-promoting inflammation in chronic inflammatory disorders and foster "smouldering" inflammation in the microenvironment of various tumour types. Besides identifying common target sites of numerous cancer types, signalling programs and their cross-talks governing immune cells' plasticity and functional diversity can be used to develop new fate-mapping and lineage-tracing mechanisms. Here, we review the vital molecular mechanisms and pathways that establish the connection between inflammation and tumour development, progression, and metastasis. We also discussed the cross-talks between signalling pathways and devised strategies focusing on these interaction mechanisms to harness synthetic lethal drug combinations for targeted cancer therapy.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
18
|
You YL, Lee JY, Choi HS. S chisandra chinensis-derived gomisin C suppreses lipid accumulation by JAK2-STAT signaling in adipocyte. Food Sci Biotechnol 2023; 32:1225-1233. [PMID: 37362811 PMCID: PMC10290005 DOI: 10.1007/s10068-023-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Gomisin C is a lignan isolated from the fruit of Schisandra chinensis. The current study aimed to investigate the effect of gomisin C on lipid accumulation in adipocytes and its underlying mechanism. Gomisin C effectively inhibited lipid accumulation by downregulating adipogenic factors such as PPARγ and C/EBPα. Gomisin C-mediated suppression of lipid accumulation occurred in the early adipogenic stage; C/EBPβ was downregulated by 55%, while KLF2 was upregulated by 1.5-fold. Gomisin C significantly reduced the production of reactive oxygen species but upregulated antioxidant enzymes, including catalase, SOD1, and Gpx at the mRNA level. Gomisin C regulated NRF2-KEAP1 pathway by increasing NRF2 and decreasing KEAP1, in protein abundance. Furthermore, gomisin C suppressed the JAK2-STAT signaling pathway by decreasing phosphorylation. Taken together, gomisin C reduced early adipogenesis and ROS production by inhibiting the JAK2-STAT signaling pathway but activating the NRF2-KEAP1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01263-8.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Ji-Yeon Lee
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
19
|
Wang M, Yin X, Zeng Y, Hu C, Xue Y, Fang Q, Qiao X, Zhao X, Du C, Huang F, Lin Y. Extracts from Seseli mairei Wolff attenuate imiquimod-induced psoriasis-like inflammation by inhibiting Th17 cells. Heliyon 2023; 9:e17315. [PMID: 37539258 PMCID: PMC10394919 DOI: 10.1016/j.heliyon.2023.e17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Seseli mairei Wolff extracts (SMWE) are widely used to treat psoriasis as a Chinese medicine, but their effect and mechanism are unclear. This study verified the effect of SMWE on psoriasis by regulating Th17 cells. Methods HaCaT cells were treated with IL-17A in vitro to evaluate the effect of SMWE on psoriasis. In vivo, the mice psoriasis model was established using imiquimod (IMQ, 62.5 mg/d), and intragastrically treated with the different drugs for six days. The severity of skin inflammation was evaluated with Psoriasis Area and Severity Index (PASI) scores and pathology. The levels of inflammation cytokines were assessed with immunofluorescence, immunochemistry, ELISA, and real-time PCR. The number of Th17 cells was determined with flows. Results SMWE inhibited the proliferation of HaCaT cells and reduced the IL-17A-induced IL-6 production in vitro. In vivo, SMWE deduced the levels of IL-1β, IL-6, IL-8, IL-17A, IL-17F, IL-22, IL-23, and TNF-α, while increasing the level of IL-10 compared to the model group. SMWE also inhibited the levels of NF-κB, JAK2, and STAT3 proteins, while declining the expressions of Gr-1, and MPO. Interestingly, SMWE significantly decreased the number of Th17 cells. Conclusion SMWE inhibited the proliferation of HaCaT cells and attenuated the development of psoriasis lesions by inhibiting Th17 cells to regulate the levels of inflammation cytokines.
Collapse
|
20
|
Sardana K, Bathula S, Khurana A. Which is the Ideal JAK Inhibitor for Alopecia Areata - Baricitinib, Tofacitinib, Ritlecitinib or Ifidancitinib - Revisiting the Immunomechanisms of the JAK Pathway. Indian Dermatol Online J 2023; 14:465-474. [PMID: 37521227 PMCID: PMC10373824 DOI: 10.4103/idoj.idoj_452_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 08/01/2023] Open
Abstract
Alopecia areata (AA) is an immune-mediated condition, clinically manifesting as non-cicatricial patches of alopecia. It is often a self-limiting condition; however, regrowth of hair can take a long period of time, resulting in significant psychological comorbidity. With the recent advances in pathomechanisms of AA, the therapeutic approach to the condition has become more specific, and targeted therapy with small molecules is probably the ideal intervention. Many therapies exist for AA, but none of the systemic agents were approved, until recently, when baricitinib (Janus kinase (JAK1 and JAK2 inhibitor) gained FDA approval for the treatment of adult patients with severe AA. JAK inhibitors (JAKibs) target the γc cytokine and interferon-gamma (IFN-γ) signaling pathway, which is critical to the immunopathogenesis of AA and thus can reverse the hair loss in AA. Although JAKibs are emerging as a promising treatment modality for AA, the ideal JAKib is not yet settled, as there is scant data on H-2-H (head-to-head) comparisons of JAK inhibitors in AA. Moreover, the response achieved with JAKibs is not sustained after treatment discontinuation, with many studies showing a high recurrence rate with tofacitinib and ruxolitinib post-treatment. Also, recent studies have hypothesized that JAK2, with its ubiquitous expression, can cause adverse effects, unlike JAK1, which is associated with multiple major cytokine receptor families and JAK3, which is exclusively associated with the γc cytokine receptor. Thus, JAK3ibs may be associated with a better side effect profile and, in conjunction with their specificity, may replace other JAKibs as the treatment of choice for AA. We herein discuss the role of the JAK/STAT (signal transducer and activator of transcription) pathway in AA, the intricacies of various JAKibs in the management of AA, and emphasize the need for studies on tissue JAK and cytokine expression before arriving at the ideal JAKibs for AA.
Collapse
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Savitha Bathula
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
21
|
Zhang Y, Guo F, Yang X, Liu Y, Bao Y, Wang Z, Hu Z, Zhou Q. Insights into the mechanism of growth and fat deposition by feeding different levels of lipid provided by transcriptome analysis of swamp eel ( Monopterus albus, Zuiew 1793) liver. Front Immunol 2023; 14:1118198. [PMID: 37404827 PMCID: PMC10315655 DOI: 10.3389/fimmu.2023.1118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Lipid is an important source of energy in fish feeds, and the appropriate fat content can improve the efficiency of protein utilization. However, excessive lipid content in the feed can lead to abnormal fat deposition in fish, which has a negative effect on the growth of fish. Therefore, the effects of feed lipid levels on swamp eel were studied. Essential functional genes were screened using transcriptomics. We divided 840 fish into seven groups (four replicates). A mixture of fish and soybean oils (1:4), 0%, 2%, 4%, 6%, 8%, 10%, and 12% was added to the basic feed were named groups one to seven (L1-L7), respectively. Isonitrogenous diets were fed swamp eel for 10 weeks. Growth performance, visceral index, nutritional components, and biochemical indexes were measured and analyzed. Livers of the 0%, 6%, and 12% groups were subjected to transcriptome sequencing analysis. The results of our study showed that: the suitable lipid level for the growth of swamp eel was 7.03%; the crude fat content of whole fish, liver, intestine, muscle, and skin increased with the increase of lipid level, with some significant difference, and excess fat was deposited in skin tissue; triglyceride, total cholesterol, and free fatty acid contents increased with the increase of feed lipid level. High-density lipoprotein levels in the L3 and L4 groups were higher than in the other groups. Blood glucose concentrations in the L5, L6, and L7 groups increased; the liver tissue structure was damaged when the lipid level was too high. two-hundred-and-twenty-eight differentially expressed genes were found. Several critical pathways regulating glucose metabolism and energy balance (e.g., glycerolipid metabolism, glycolysis synthesis, degradation of ketone bodies, and Janus Kinase/Signal Transducer and Activator of Transcription signaling pathway) were enriched in swamp eel compared with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Suitable lipid levels (7.03%) can promote the growth of swamp eel, and excessive lipid levels can cause elevated blood lipids and lead to liver cell damage. Regulatory mechanisms may involve multiple metabolic pathways for glucose and lipid metabolism in eels. This study provides new insights to explain the mechanism of fat deposition due to high levels of lipid and provides a basis for the production of efficient and environmentally friendly feed for swamp eel.
Collapse
Affiliation(s)
- Yazhou Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Feng Guo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xin Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yihong Bao
- School of Economics and Management, Jiangxi Agricultural University, Nanchang, China
| | - Zirui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Zhonghua Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiubai Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| |
Collapse
|
22
|
Li Y, Wang J, Xu Y, Meng Q, Wu M, Su Y, Miao Y, Wang Y. The water extract of Potentilla discolor Bunge (PDW) ameliorates high-sugar diet-induced type II diabetes model in Drosophila melanogaster via JAK/STAT signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023:116760. [PMID: 37301307 DOI: 10.1016/j.jep.2023.116760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla discolor Bunge (PD) is a member of the Rosaceae family. It has been traditionally used in folk medicine for the treatment of diabetes. Additionally, people in folk also eat fresh and tender PD stems as vegetables or brew them as tea. AIM OF THE STUDY The aim of this study was to explore the antidiabetic effects and underlying mechanisms of the water extract of Potentilla discolor (PDW) in a fruit fly model of high-sugar diet-induced type 2 diabetes. MATERIALS AND METHODS The antidiabetic efficacy of PDW was evaluated in a fruit fly model of diabetes induced by a high-sugar diet (HSD). Various physiological parameters were tested to evaluate the anti-diabetic effect of PDW. Gene expression levels related to insulin signaling pathways, glucose metabolism, lipid metabolism, and JAK/STAT signaling pathways were primarily analyzed using RT-qPCR to investigate the therapeutic mechanisms. RESULTS In this study, we found that the water extract of Potentilla discolor (PDW) can ameliorate type II diabetes phenotypes induced by the HSD in fruit flies. These phenotypes include growth rate, body size, hyperglycemia, glycogen metabolism, fat storage, and intestinal microflora homeostasis. PDW also improved the body size of s6k and rheb knockdown flies, suggesting its potential to activate the downstream insulin pathway and alleviate insulin resistance. Furthermore, we demonstrated that PDW reduced the expression of two target genes of the JAK/STAT signaling pathway, namely the insulin antagonist Impl2 and insulin receptor inhibitor Socs36E, which act as regulators inhibiting the activation of the insulin signaling pathway. CONCLUSIONS This study provides evidence for the anti-diabetic activity of PDW and suggests that its underlying mechanism may involve the improvement of insulin resistance by inhibiting the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Junlin Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yidong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Mengdi Wu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
23
|
Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Biosci Rep 2023; 43:232519. [PMID: 36718668 PMCID: PMC10011338 DOI: 10.1042/bsr20220200] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Obesity, a major global health concern, is characterized by serious imbalance between energy intake and expenditure leading to excess accumulation of fat in adipose tissue (AT). A state of chronic low-grade AT inflammation is prevalent during obesity. The adipose tissue macrophages (ATM) with astounding heterogeneity and complex regulation play a decisive role in mediating obesity-induced insulin resistance. Adipose-derived macrophages were broadly classified as proinflammatory M1 and anti-inflammatory M2 subtypes but recent reports have proclaimed several novel and intermediate profiles, which are crucial in understanding the dynamics of macrophage phenotypes during development of obesity. Lipid-laden hypertrophic adipocytes release various chemotactic signals that aggravate macrophage infiltration into AT skewing toward mostly proinflammatory status. The ratio of M1-like to M2-like macrophages is increased substantially resulting in copious secretion of proinflammatory mediators such as TNFα, IL-6, IL-1β, MCP-1, fetuin-A (FetA), etc. further worsening insulin resistance. Several AT-derived factors could influence ATM content and activation. Apart from being detrimental, ATM exerts beneficial effects during obesity. Recent studies have highlighted the prime role of AT-resident macrophage subpopulations in not only effective clearance of excess fat and dying adipocytes but also in controlling vascular integrity, adipocyte secretions, and fibrosis within obese AT. The role of ATM subpopulations as friend or foe is determined by an intricate interplay of such factors arising within hyperlipidemic microenvironment of obese AT. The present review article highlights some of the key research advances in ATM function and regulation, and appreciates the complex dynamics of ATM in the pathophysiologic scenario of obesity-associated insulin resistance.
Collapse
|
24
|
Li YJ, Zhang C, Martincuks A, Herrmann A, Yu H. STAT proteins in cancer: orchestration of metabolism. Nat Rev Cancer 2023; 23:115-134. [PMID: 36596870 DOI: 10.1038/s41568-022-00537-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 01/04/2023]
Abstract
Reprogrammed metabolism is a hallmark of cancer. However, the metabolic dependency of cancer, from tumour initiation through disease progression and therapy resistance, requires a spectrum of distinct reprogrammed cellular metabolic pathways. These pathways include aerobic glycolysis, oxidative phosphorylation, reactive oxygen species generation, de novo lipid synthesis, fatty acid β-oxidation, amino acid (notably glutamine) metabolism and mitochondrial metabolism. This Review highlights the central roles of signal transducer and activator of transcription (STAT) proteins, notably STAT3, STAT5, STAT6 and STAT1, in orchestrating the highly dynamic metabolism not only of cancer cells but also of immune cells and adipocytes in the tumour microenvironment. STAT proteins are able to shape distinct metabolic processes that regulate tumour progression and therapy resistance by transducing signals from metabolites, cytokines, growth factors and their receptors; defining genetic programmes that regulate a wide range of molecules involved in orchestration of metabolism in cancer and immune cells; and regulating mitochondrial activity at multiple levels, including energy metabolism and lipid-mediated mitochondrial integrity. Given the central role of STAT proteins in regulation of metabolic states, they are potential therapeutic targets for altering metabolic reprogramming in cancer.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Sorrento Therapeutics, San Diego, CA, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
25
|
Identification and Functional Prediction of Long Non-Coding RNA in Longissimus Dorsi Muscle of Queshan Black and Large White Pigs. Genes (Basel) 2023; 14:genes14010197. [PMID: 36672938 PMCID: PMC9858627 DOI: 10.3390/genes14010197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNA (lncRNA) participates in the regulation of various biological processes, but its function and characteristics in intramuscular fat (IMF) deposition in different breeds of pigs have not been fully understood. IMF content is one of the important factors affecting pork quality. In the present study, the differentially expressed lncRNAs (DE lncRNAs) and their target genes were screened by comparing Queshan Black (QS) and Large White (LW) pigs based on RNA-seq. The results displayed 55 DE lncRNAs between QS and LW, 29 upregulated and 26 downregulated, with 172 co-located target genes, and 6203 co-expressed target genes. The results of GO and KEGG analysis showed that the target genes of DE lncRNAs were involved in multiple pathways related to lipogenesis and lipid metabolism, such as the lipid biosynthetic process, protein phosphorylation, activation of MAPK activity, and the Jak-STAT signaling pathway. By constructing regulatory networks, lincRNA-ZFP42-ACTC1, lincRNA-AMY2-STAT1, and/or lincRNA-AMY2/miR-204/STAT1 were sieved, and the results indicate that lncRNA could participate in IMF deposition through direct regulation or ceRNA. These findings provide a basis for analyzing the molecular mechanism of IMF deposition in pigs and lay a foundation for developing and utilizing high-quality resources of local pig breeds.
Collapse
|
26
|
Yang J, Zhang J, Yang Q, Huang X, Yan Z, Wang P, Gao X, Li J, Li N, Gao Y, Gun S. LncRNA EN-90756 promotes CPB2-induced proliferation and inhibits apoptosis in IPEC-J2 cells by affecting the JAK-STAT signaling pathway activation. Front Microbiol 2023; 13:1082025. [PMID: 36713226 PMCID: PMC9879603 DOI: 10.3389/fmicb.2022.1082025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs), as key regulators, are closely associated with the development of a variety of disease. However, the mechanisms by which lncRNAs regulate Clostridium perfringens type C induced piglet diarrhea are unclear. Methods In the present study, we explored the expression and characterization of lncRNAs in a C. perfringens beta2 (CPB2) toxin-treated intestinal porcine epithelial cell line-J2 (IPEC-J2) using RNA-sequencing (RNA-seq). Results A total of 6,558 lncRNAs were identified, of which 49 lncRNAs were significantly differentially expressed between the control and CPB2 groups. Functional enrichment analysis showed that the target genes of differentially expressed lncRNA EN-90756 were mainly associated with defense response to virus, and negative regulation of apoptotic process. LncRNA EN-90756 was significantly up-regulated in IPEC-J2 cells at different time points after CPB2 treatment. Functionally, knockdown of lncRNA EN-90756 might regulate the proliferation and apoptosis of IPEC-J2 cells by affecting the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. LncRNA EN-90756 may be involved in CPB2 toxin-induced piglet diarrhea by regulating the expression of its target gene MX1 (encoding MX dynamin like GTPase 1). Conclusion Long non-coding RNA EN-90756 affected the antiviral ability of IPEC-J2 cells by regulating the expression of MX1. Meanwhile, lncRNA EN-90756 might regulate cell proliferation and apoptosis by affecting JAK-STAT signaling pathway activation. These findings provide novel perspectives and directions for further exploration of the regulatory mechanisms of lncRNAs on CPB2 toxin-induced diarrhea in piglets.
Collapse
Affiliation(s)
- Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Juanli Zhang
- College of Life Sciences and Technology, Longdong University, Qingyang, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Na Li
- Jilin Rongtai Agricultural Development Co., Ltd., Changchun, China
| | - Yi Gao
- Jilin Rongtai Agricultural Development Co., Ltd., Changchun, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China,*Correspondence: Shuangbao Gun,
| |
Collapse
|
27
|
Banerjee S, Tiwari A, Kar A, Chanda J, Biswas S, Ulrich-Merzenich G, Mukherjee PK. Combining LC-MS/MS profiles with network pharmacology to predict molecular mechanisms of the hyperlipidemic activity of Lagenaria siceraria stand. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115633. [PMID: 36031104 DOI: 10.1016/j.jep.2022.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/24/2022] [Accepted: 08/06/2022] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lagenaria siceraria Stand. (Family: Cucurbitaceae), popularly known as bottle gourd, is traditionally used in Ayurvedic medicine as a food plant, especially in hypertension and obesity. AIM OF THE STUDY Investigations were undertaken to assign novel lead combinations from this common food plant to multi-molecular modes of actions in the complex disease networks of obesity and hypertension. LC-MS/MS based metabolite screening, in-vivo high fat diet induced hyperlipidemia animal study and network pharmacology explorations of the mechanism of action for lipid lowering effects including a neighbourhood community approach for molecular combinations were performed. MATERIAL AND METHODS Major chemical constituents of the fruits of LS (LSFE) were analysed by HPLC-DAD-MS/MS-QTOF. Wistar albino rats (n = 36), divided into 6 groups (n = 6) received either no treatment or a high-fat diet along with LSFE or Atorvastatin. Lipid profiles and biochemical parameters were evaluated. In silico cross-validated network analyses using different databases and Cytospace were applied. RESULTS Profiling of LSFE revealed 18 major constituents: phenolic acids like p-Coumaric acid and Ferulic acid, the monolignolconferyl alcohol, the flavonoid glycosides hesperidin and apigenin-7-glucoside. Hyperlipidemic animals treated with LSFE (200 mg/kg, 400 mg/kg, 600 mg/kg) showed a significant improvement of their lipid profiles after 30 days of treatment. Network pharmacology analyses for the major 18 compounds revealed enrichment of the insulin and the ErbB signalling pathway. Novel target node combinations (e.g. AKR1C1, AGXT) including their connection to different pathways were identified in silico. CONCLUSIONS The combined in vivo and bioinformatics analyses propose that lead compounds of LSFE act in combination on relevant targets of hyperlipidemia. Perturbations of the IRS→Akt→Foxo1 cascade are predicted which suggest further clinical investigation towards development of safe natural alternative to manage hyperlipidemia.
Collapse
Affiliation(s)
- Subhadip Banerjee
- School of Natural Product Studies, Dept. of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Amrendra Tiwari
- School of Natural Product Studies, Dept. of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal, 795001, India.
| | - Joydeb Chanda
- School of Natural Product Studies, Dept. of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sayan Biswas
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal, 795001, India.
| | - Gudrun Ulrich-Merzenich
- University Hospital Bonn (UKB), Medical Clinic III, AG Synergy Research and Experimental, Medicine, D 53127, Bonn, Germany.
| | - Pulok K Mukherjee
- School of Natural Product Studies, Dept. of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal, 795001, India.
| |
Collapse
|
28
|
Yao Y, Luo ZP, Li HW, Wang SX, Wu YC, Hu Y, Hu S, Yang CC, Yang JF, Wang JP, Peng L, Chen F, Pan LX, Xu T. P38γ modulates the lipid metabolism in non-alcoholic fatty liver disease by regulating the JAK-STAT signaling pathway. FASEB J 2023; 37:e22716. [PMID: 36527390 DOI: 10.1096/fj.202200939rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health problem in Western countries and has become the most common cause of chronic liver disease. Although NAFLD is closely associated with obesity, inflammation, and insulin resistance, its pathogenesis remains unclear. The disease begins with excessive accumulation of triglycerides in the liver, which in turn leads to liver cell damage, steatosis, inflammation, and so on. P38γ is one of the four isoforms of P38 mitogen-activated protein kinases (P38 MAPKs) that contributes to inflammation in different diseases. In this research, we investigated the role of P38γ in NAFLD. In vivo, a NAFLD model was established by feeding C57BL/6J mice with a methionine- and choline-deficient (MCD) diet and adeno-associated virus (AAV9-shRNA-P38γ) was injected into C57BL/6J mice by tail vein for knockdown P38γ. The results indicated that the expression level of P38γ was upregulated in MCD-fed mice. Furthermore, the downregulation of P38γ significantly attenuated liver injury and lipid accumulation in mice. In vitro, mouse hepatocytes AML-12 were treated with free fatty acid (FFA). We found that P38γ was obviously increased in FFA-treated AML-12 cells, whereas knockdown of P38γ significantly suppressed lipid accumulation in FFA-treated AML-12 cells. Furthermore, P38γ regulated the Janus Kinase-Signal transducers and activators of transcription (JAK-STAT) signaling pathway. Inhibition of P38γ can inhibit the JAK-STAT signaling pathway, thereby inhibiting lipid accumulation in FFA-treated AML-12 cells. In conclusion, our results suggest that targeting P38γ contributes to the suppression of lipid accumulation in fatty liver disease.
Collapse
Affiliation(s)
- Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Zhi-Pan Luo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hai-Wen Li
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu-Xian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yin-Cui Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Chen-Chen Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun-Fa Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jian-Peng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Li Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Fei Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Lin-Xin Pan
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Zhang YX, Ou MY, Yang ZH, Sun Y, Li QF, Zhou SB. Adipose tissue aging is regulated by an altered immune system. Front Immunol 2023; 14:1125395. [PMID: 36875140 PMCID: PMC9981968 DOI: 10.3389/fimmu.2023.1125395] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Adipose tissue is a widely distributed organ that plays a critical role in age-related physiological dysfunctions as an important source of chronic sterile low-grade inflammation. Adipose tissue undergoes diverse changes during aging, including fat depot redistribution, brown and beige fat decrease, functional decline of adipose progenitor and stem cells, senescent cell accumulation, and immune cell dysregulation. Specifically, inflammaging is common in aged adipose tissue. Adipose tissue inflammaging reduces adipose plasticity and pathologically contributes to adipocyte hypertrophy, fibrosis, and ultimately, adipose tissue dysfunction. Adipose tissue inflammaging also contributes to age-related diseases, such as diabetes, cardiovascular disease and cancer. There is an increased infiltration of immune cells into adipose tissue, and these infiltrating immune cells secrete proinflammatory cytokines and chemokines. Several important molecular and signaling pathways mediate the process, including JAK/STAT, NFκB and JNK, etc. The roles of immune cells in aging adipose tissue are complex, and the underlying mechanisms remain largely unclear. In this review, we summarize the consequences and causes of inflammaging in adipose tissue. We further outline the cellular/molecular mechanisms of adipose tissue inflammaging and propose potential therapeutic targets to alleviate age-related problems.
Collapse
Affiliation(s)
- Yi-Xiang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Ou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Han Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Tian S, Zhao H, Song H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit Rev Food Sci Nutr 2022; 64:5039-5056. [PMID: 36397728 DOI: 10.1080/10408398.2022.2148090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
31
|
Assessing Genetic Diversity and Searching for Selection Signatures by Comparison between the Indigenous Livni and Duroc Breeds in Local Livestock of the Central Region of Russia. DIVERSITY 2022. [DOI: 10.3390/d14100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Indigenous pig breeds are mainly associated with the adaptive capacity that is necessary to respond adequately to climate change, food security, and livelihood needs, and natural resources conservation. Livni pigs are an indigenous fat-type breed farmed in a single farm in the Orel region and located in the Central European part of the Russian Federation. To determine the genomic regions and genes that are affected by artificial selection, we conducted the comparative study of two pig breeds with different breeding histories and breeding objectives, i.e., the native fat-type Livni and meat-type Duroc breeds using the Porcine GGP HD BeadChip, which contains ~80,000 SNPs. To check the Livni pigs for possible admixture, the Landrace and the Large White breeds were included into the study of genetic diversity as these breeds participated in the formation of the Livni pigs. We observed the highest level of genetic diversity in Livni pigs compared to commercial breeds (UHE = 0.409 vs. 0.319–0.359, p < 0.001; AR = 1.995 vs. 1.894–1.964, p < 0.001). A slight excess of heterozygotes was found in all of the breeds. We identified 291 candidate genes, which were localized within the regions under putative selection, including 22 and 228 genes, which were specific for Livni and Duroc breeds, respectively, and 41 genes common for both breeds. A detailed analysis of the molecular functions identified the genes, which were related to the formation of meat and fat traits, and adaptation to environmental stress, including extreme temperatures, which were different between breeds. Our research results are useful for conservation and sustainable breeding of Livni breed, which shows a high level of genetic diversity. This makes Livni one of the valuable national pig genetic resources.
Collapse
|
32
|
PRL/PRLR Can Promote Insulin Resistance by Activating the JAK2/STAT5 Signaling Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1456187. [PMID: 36238467 PMCID: PMC9553348 DOI: 10.1155/2022/1456187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Objective Although prolactin (PRL) is known to affect food intake, weight gain, and insulin resistance, its effects on lipid metabolism and underlying mechanisms remain underinvestigated. This study aimed to investigate the effects of PRL and its receptor (PRLR) on fat metabolism in regulating the JAK2/STAT5 signaling pathway. Methods SW872 adipocytes were incubated with oleic acid to establish an insulin resistance (IR) model. Western blot was used to detect the expression of PRLR, JAK2, p-JAK2, STAT5, and p-STAT5. Triglyceride (TG) mass was detected by chemical colorimetry methods. Results Fat droplets in the high-dose and medium-dose PRL groups were significantly higher than in the IR model group. TG mass in the cells was increased significantly compared with the model group. Compared with the control group, the expression of PRLR, p-JAK2, and p-STAT5 were significantly decreased in the IR model group when PRL was intervened for 24 h and 48 h. The expression of PRLR, p-JAK2, and p-STAT5 in the high-dose PRL intervention group increased significantly compared with the model group. The PRLR overexpressing group had significantly increased TG content and PRLR, and JAK2, p-JAK2, STAT5, and p-STAT5 levels compared with the IR model. Conclusion PRL and PRLR are related to fat metabolism, and the PRL/PRLR signaling pathway can promote insulin resistance by activating the JAK2/STAT5 signaling pathway and increasing the deposition of TGs.
Collapse
|
33
|
Li T, Bai H, Fang H, Yang L, Yan P. Growth hormone inhibits adipogenic differentiation and induces browning in bovine subcutaneous adipocytes. Growth Horm IGF Res 2022; 66:101498. [PMID: 36007464 DOI: 10.1016/j.ghir.2022.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It is well established that growth hormone (GH) has the ability to stimulate lipolysis. The effects of GH on adipocyte differentiation and browning have not been clearly described. Therefore, the present study aimed to elucidate the role of GH in the differentiation and browning of bovine subcutaneous adipocytes as well as its underlying molecular mechanisms. METHODS We first treated bovine subcutaneous preadipocytes with different concentrations (0, 10, 100, and 500 ng/mL) of GH for 8 days and measured lipid accumulation and gene expression. Afterward, we treated preadipocytes and mature adipocytes with 500 ng/mL GH and determined differentiation and browning-related indicators. Finally, we investigated the expression of STAT5B in both preadipocytes and mature adipocytes after GH treatment. RESULTS We demonstrated that GH inhibited lipid accumulation and decreased the expression levels of adipogenic key genes (SCD1, SREBP1, PPARγ, and CEBPα) during adipocyte differentiation. Moreover, we observed that the inhibitory effect of GH on the early stage of adipocyte differentiation (0-2 days) was stronger than that on the later stage of adipocyte differentiation (2-8 days). We also found that GH promoted the expression levels of browning-related genes such as uncoupling protein 1 (UCP1) in mature adipocytes. Concurrently, GH promoted mitochondrial biogenesis and increased the expression levels of mitochondrial biogenesis-related genes. In addition, GH promoted phosphorylation of signal transducers and activator of transcription 5 b (STAT5B) and contributed to translocation of STAT5B to nucleus. After blocking the expression of STAT5B protein, GH weakened the inhibition of adipogenic key genes and reduced the promotion of browning-related genes in bovine subcutaneous adipocytes. CONCLUSIONS GH can inhibit adipocyte differentiation and promote adipocyte browning by regulating STAT5B in bovine subcutaneous adipocytes.
Collapse
Affiliation(s)
- Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoyuan Fang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
35
|
Fernández-Felipe J, Plaza A, Domínguez G, Pérez-Castells J, Cano V, Cioni F, Del Olmo N, Ruiz-Gayo M, Merino B. Effect of Lauric vs. Oleic Acid-Enriched Diets on Leptin Autoparacrine Signalling in Male Mice. Biomedicines 2022; 10:biomedicines10081864. [PMID: 36009410 PMCID: PMC9405789 DOI: 10.3390/biomedicines10081864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
High-fat diets enriched with lauric acid (SOLF) do not enhance leptin production despite expanding white adipose tissue (WAT). Our study aimed at identifying the influence of SOLF vs. oleic acid-enriched diets (UOLF) on the autoparacrine effect of leptin and was carried out on eight-week-old mice consuming control chow, UOLF or SOLF. Phosphorylation of kinases integral to leptin receptor (LepR) signalling pathways (705Tyr-STAT3, 473Ser-Akt, 172Thr-AMPK), adipocyte-size distribution, fatty acid content, and gene expression were analyzed in WAT. SOLF enhanced basal levels of phosphorylated proteins but reduced the ability of leptin to enhance kinase phosphorylation. In contrast, UOLF failed to increase basal levels of phosphorylated proteins and did not modify the effect of leptin. Both SOLF and UOLF similarly affected adipocyte-size distribution, and the expression of genes related with adipogenesis and inflammation. WAT composition was different between groups, with SOLF samples mostly containing palmitic, myristic and lauric acids (>48% w/w) and UOLF WAT containing more than 80% (w/w) of oleic acid. In conclusion, SOLF appears to be more detrimental than UOLF to the autoparacrine leptin actions, which may have an impact on WAT inflammation. The effect of SOLF and UOLF on WAT composition may affect WAT biophysical properties, which are able to condition LepR signaling.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Adrián Plaza
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Laboratory of Bioactive Products and Metabolic Syndrome (BIOPROMET), IMDEA Food Institute, 28049 Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28660 Madrid, Spain; (G.D.); (J.P.-C.)
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28660 Madrid, Spain; (G.D.); (J.P.-C.)
| | - Victoria Cano
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Francesco Cioni
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Nuria Del Olmo
- Departament of Psychobiology, Facultad de Psicología, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain;
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Correspondence: (M.R.-G.); (B.M.)
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Correspondence: (M.R.-G.); (B.M.)
| |
Collapse
|
36
|
Cao N, Li X, Zhang W, Wang Q, Liang Y, Zhou F, Xiao X. Research progress of signaling pathways of the natural substances intervene dyslipidemia (Review). Exp Ther Med 2022; 24:494. [PMID: 35813312 PMCID: PMC9257764 DOI: 10.3892/etm.2022.11421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Dyslipidemia is an umbrella term for a range of lipid metabolic disorders in the body. This condition has been widely reported to greatly increase the risk of cardiovascular diseases, threatening human health. In recent years, advances in molecular biology have deepened understanding of the dyslipidemia-related signaling pathways and specific mechanisms underlying dyslipidemia. Signaling pathways possess the ability to transmit an extracellular signal to the inside of the cell, leading to specific biological effects. Lipid metabolism disorders and lipid levels in the blood are frequently affected by aberrant alterations in the dyslipidemia-related signaling pathways. Therefore, further investigations into these pathways are required for the prevention and treatment of dyslipidemia. The present review summarizes the characteristics of six dyslipidemia-associated signaling pathways: Peroxisome proliferator-activated receptor, adenosine monophosphate-activated protein kinase, farnesoid X receptor, forkhead box O, adipocytokine and cyclic adenosine monophosphate signaling pathways. In particular, specific focus was placed on previous experimental studies and reports on the intervention effects of natural substances (compounds from animals, plants, marine organisms and microorganisms) on dyslipidemia.
Collapse
Affiliation(s)
- Ningning Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Xiaoxuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Wanjing Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Qingguo Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Yujuan Liang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| | - Fujun Zhou
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Binhai, Tianjin 300301, P.R. China
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, P.R. China
| |
Collapse
|
37
|
López-Ortega O, Moreno-Corona NC, Cruz-Holguin VJ, Garcia-Gonzalez LD, Helguera-Repetto AC, Romero-Valdovinos M, Arevalo-Romero H, Cedillo-Barron L, León-Juárez M. The Immune Response in Adipocytes and Their Susceptibility to Infection: A Possible Relationship with Infectobesity. Int J Mol Sci 2022; 23:ijms23116154. [PMID: 35682832 PMCID: PMC9181511 DOI: 10.3390/ijms23116154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
The current obesity pandemic has been expanding in both developing and developed countries. This suggests that the factors contributing to this condition need to be reconsidered since some new factors are arising as etiological causes of this disease. Moreover, recent clinical and experimental findings have shown an association between the progress of obesity and some infections, and the functions of adipose tissues, which involve cell metabolism and adipokine release, among others. Furthermore, it has recently been reported that adipocytes could either be reservoirs for these pathogens or play an active role in this process. In addition, there is abundant evidence indicating that during obesity, the immune system is exacerbated, suggesting an increased susceptibility of the patient to the development of several forms of illness or death. Thus, there could be a relationship between infection as a trigger for an increase in adipose cells and the impact on the metabolism that contributes to the development of obesity. In this review, we describe the findings concerning the role of adipose tissue as a mediator in the immune response as well as the possible role of adipocytes as infection targets, with both roles constituting a possible cause of obesity.
Collapse
Affiliation(s)
- Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015 Paris, France;
| | - Nidia Carolina Moreno-Corona
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France;
| | - Victor Javier Cruz-Holguin
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (A.C.H.-R.)
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City 07360, Mexico;
| | - Luis Didier Garcia-Gonzalez
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (A.C.H.-R.)
| | - Addy Cecilia Helguera-Repetto
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (A.C.H.-R.)
| | - Mirza Romero-Valdovinos
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Calzada de Tlalpan 4800, Col. Sección XVI, Ciudad de México 14080, Mexico;
| | - Haruki Arevalo-Romero
- Laboratorio de Inmunología y Microbiología Molecular, División Académica Multidisciplinaria de Jalpa de Méndez, Jalpa de Méndez 86205, Mexico;
| | - Leticia Cedillo-Barron
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City 07360, Mexico;
| | - Moisés León-Juárez
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (A.C.H.-R.)
- Correspondence:
| |
Collapse
|
38
|
Ashmawy AI, El-Abhar HS, Abdallah DM, Ali MA. Chloroquine modulates the sulforaphane anti-obesity mechanisms in a high-fat diet model: Role of JAK-2/ STAT-3/ SOCS-3 pathway. Eur J Pharmacol 2022; 927:175066. [PMID: 35643302 DOI: 10.1016/j.ejphar.2022.175066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
The phytochemical sulforaphane (SFN) has been studied for its potential anti-obesity effect, but neither its molecular targets nor its interaction with the antimalarial drug chloroquine (CQ) has been fully delineated. Therefore, high-fat diet (HFD) obese rats were randomly allocated into one of five groups and were left untreated or gavaged orally with SFN (0.5 or 1 mg/kg), CQ (5 mg/kg), or their combination (0.5/5 mg/kg) for six successive weeks to assess their potential interaction and the enrolled mechanisms. SFN effectively reduced the HFD-induced weight gain, blood glucose, and serum leptin levels, and improved lipid profile. On the molecular level, SFN inhibited the lipogenesis-related enzymes, namely sterol regulatory element-binding protein (SREBP)-1c, fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) in both liver and visceral white adipose tissue (vWAT) of HFD obese rats. SFN also turned off the inflammatory pathway conserved Janus kinase/signaling transducers and activators of transcription/suppressor of cytokine signaling (JAK-2/STAT-3/SOCS-3) in these tissues, as well as the inflammatory markers nuclear factor-kappa (NF-κ) B and interleukin (IL)-22 in serum. In contrast, SFN downregulated the gene expression of microRNA (miR-200a), while significantly increasing the autophagic parameters; viz., beclin-1, autophagy-related protein (ATG)-7, and microtubule-associated protein 2 light chain 3 (LC3-II) in both liver and vWAT. On most of the parameters mentioned above, treatment with CQ solely produced a satisfactory effect and intensified the low dose of SFN in the combination regimen. These findings demonstrated the beneficial effects of using CQ as an add-on anti-obesity medicine to SFN.
Collapse
Affiliation(s)
- Ahmed I Ashmawy
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology & Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mennatallah A Ali
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
39
|
Li J, Chen Y, Liu Q, Tian Z, Zhang Y. Mechanistic and therapeutic links between rheumatoid arthritis and diabetes mellitus. Clin Exp Med 2022; 23:287-299. [DOI: 10.1007/s10238-022-00816-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
|
40
|
Wang Q, Wei X, Hu L, Zhuang L, Zhang H, Chen Q. Hedgehog-Gli2 Signaling Promotes Chemoresistance in Ovarian Cancer Cells by Regulating MDR1. Front Oncol 2022; 11:794959. [PMID: 35059317 PMCID: PMC8763667 DOI: 10.3389/fonc.2021.794959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Cisplatin (DDP) resistance remains a key challenge in improving the clinical outcome of patients with ovarian cancer (OC). Gli2 overexpression can lead to DDP resistance in OC cells, but the specific underlying regulatory mechanism remains unclear. The membrane transporter encoding gene MDR1 positively regulates chemotherapy resistance in various cancer types. We evaluated MDR1 as a potential Gli2 downstream target and the contribution of the Gli2/MDR1 axis in promoting DDP resistance in OC cells. Methods To generate drug-resistant SKOV3/DDP cells, SKOV3 cells were grown for six months under continuous induction wherein the DDP concentration was steadily increased. Gli2 expression in OC cells with varying DDP sensitivities was detected using western blot. Cell counting kit-8 assays were used to assess the DDP sensitivity of SKOV3, SKOV3/DDP, A2780, and A2780/DDP cells and reversal of DDP resistance in SKOV3/DDP and A2780/DDP cells. Cell proliferation was analyzed using 5-ethynyl-2′-deoxyuridine (EdU) incorporation assays. The transcriptional regulation of MDR1 by Gli2 was determined using luciferase reporter assays. Finally, xenograft OC tumors were generated in nude mice, which were then treated with intraperitoneal DDP or phosphate-buffered saline (PBS) injections to investigate if Gli2 affected DDP resistance in OC in vivo. Results DDP-resistant SKOV3/DDP and A2780/DDP cells showed higher expression of Gli2 and MDR1 as compared with that in DDP-sensitive OC cells. Gli2 knockdown in SKOV3/DDP cells significantly reduced MDR1 expression, whereas it increased DNA damage, thereby sensitizing OC cells to DDP. Similar results were obtained after targeting Gli2 expression with the Gli-antagonist 61 inhibitor (GANT61) in SKOV3/DDP and A2780/DDP cells. In cells stably overexpressing Gli2, treatment with gradient concentrations of verapamil, an MDR1 inhibitor, significantly inhibited MDR1 expression. Our findings indicate that downregulation of MDR1 expression may reverse OC cell resistance to DDP. Moreover, dual-luciferase reporter gene assays confirmed that MDR1 is a direct downstream target of Gli2, with Gli2 positively regulating MDR1 expression. Finally, subcutaneous xenotransplantation in nude mice demonstrated that Gli2 plays a key role in regulating OC drug resistance. Conclusions We identified a mechanism by which Hedgehog-Gli signaling regulates OC chemoresistance by modulating MDR1 expression. Hence, Gli2 and MDR1 are potential biomarkers and therapeutic targets in patients with chemoresistant OC.
Collapse
Affiliation(s)
- Qian Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lanyan Hu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingling Zhuang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Interleukin 21 Receptor Affects Adipogenesis of Human Adipose-Derived Stem/Stromal Cells. Stem Cells Int 2022; 2022:4930932. [PMID: 35047041 PMCID: PMC8763493 DOI: 10.1155/2022/4930932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Dysfunctions in adipose tissue cells are responsible for several obesity-related metabolic diseases. Understanding the process of adipocyte formation is thus fundamental for understanding these diseases. The adipocyte differentiation of adipose-derived stem/stromal cells (ADSCs) showed a reduction in the mRNA level of the interleukin 21 receptor (IL21R) during this process. Although the receptor has been associated with metabolic diseases, few studies have examined its function in stem cells. In this study, we used confocal immunofluorescence assays to determine that IL21R colocalizes with mitochondrial protein ATP5B, ALDH4A1, and the nucleus of human ADSCs. We demonstrated that silencing and overexpression of IL21R did not affect the cell proliferation and mitochondrial activity of ADSCs. However, IL21R silencing did reduce ADSC adipogenic capacity. Further studies are needed to understand the mechanism involved between IL21R and the adipogenic differentiation process.
Collapse
|
42
|
Catellani C, Cirillo F, Graziano S, Montanini L, Marmiroli N, Gullì M, Street ME. MicroRNA global profiling in cystic fibrosis cell lines reveals dysregulated pathways related with inflammation, cancer, growth, glucose and lipid metabolism, and fertility: an exploratory study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022133. [PMID: 35775757 PMCID: PMC9335447 DOI: 10.23750/abm.v93i3.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND AIM Cystic fibrosis (CF), is due to CF transmembrane conductance regulator (CFTR) loss of function, and is associated with comorbidities. The increasing longevity of CF patients has been associated with increased cancer risk besides the other known comorbidities. The significant heterogeneity among patients, suggests potential epigenetic regulation. Little attention has been given to how CFTR influences microRNA (miRNA) expression and how this may impact on biological processes and pathways. METHODS We assessed the changes in miRNAs and subsequently identified the affected molecular pathways using CFBE41o-, and IB3 human immortalized cell lines since they reflect the most common genetic mutations in CF patients, and 16HBE14o- cells were used as controls. RESULTS In the CF cell lines, 41 miRNAs showed significant changes (FC (log2) ≥ +2 or FC (log2) ≤ -2 and p-value≤0.05). Gene target analysis evidenced 511 validated miRNA target genes. Gene Ontology analysis evidenced cancer, inflammation, body growth, glucose, and lipid metabolism as the biological processes most impacted by these miRNAs. Protein-protein interaction and pathway analysis highlighted 50 significantly enriched pathways among which RAS, TGF beta, JAK/STAT and insulin signaling. CONCLUSIONS CFTR loss of function is associated with changes in the miRNA network, which regulates genes involved in the major comorbidities that affect CF patients suggesting that further research is warranted.
Collapse
Affiliation(s)
- Cecilia Catellani
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy, PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy, These authors contributed equally to this work
| | - Francesca Cirillo
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy, These authors contributed equally to this work
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy
| | - Luisa Montanini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria E. Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
43
|
Richard AJ, Hang H, Allerton TD, Zhao P, Mendoza T, Ghosh S, Elks CM, Stephens JM. Loss of Adipocyte STAT5 Confers Increased Depot-Specific Adiposity in Male and Female Mice That Is Not Associated With Altered Adipose Tissue Lipolysis. Front Endocrinol (Lausanne) 2022; 13:812802. [PMID: 35464049 PMCID: PMC9022209 DOI: 10.3389/fendo.2022.812802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/24/2022] [Indexed: 01/05/2023] Open
Abstract
STATs (Signal Transducers and Activators of Transcription) 5A and 5B are induced during adipocyte differentiation and are primarily activated by growth hormone (GH) and prolactin in fat cells. Previous studies in mice lacking adipocyte GH receptor or STAT5 support their roles in lipolysis-mediated reduction of adipose tissue mass. Male and female mice harboring adipocyte-specific deletion of both STAT5 genes (STAT5AKO) exhibit increased subcutaneous or inguinal adipose tissue mass, but no changes in visceral or gonadal fat mass. Both depots display substantial increases in adipocyte size with no changes in lipolysis in adipose tissue explants. RNA sequencing analysis of subcutaneous adipose tissue and indirect calorimetry experiments reveal sex-dependent differences in adipose gene expression and whole-body energy expenditure, respectively, resulting from the loss of adipocyte STAT5.
Collapse
Affiliation(s)
- Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Hardy Hang
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Timothy D. Allerton
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Peng Zhao
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Tamra Mendoza
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disease Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Carrie M. Elks
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
44
|
Yousri NA, Engelke R, Sarwath H, McKinlay RD, Simper SC, Adams TD, Schmidt F, Suhre K, Hunt SC. Proteome-wide associations with short- and long-term weight loss and regain after Roux-en-Y gastric bypass surgery. Obesity (Silver Spring) 2022; 30:129-141. [PMID: 34796696 PMCID: PMC8692443 DOI: 10.1002/oby.23303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Gastric bypass surgery results in long-term weight loss. Small studies have examined protein changes during rapid weight loss (up to 1 or 2 years post surgery). This study tested whether short-term changes were maintained after 12 years. METHODS A 12-year follow-up, protein-wide association study of 1,297 SomaLogic aptamer-based plasma proteins compared short- (2-year) and long-term (12-year) protein changes in 234 individuals who had gastric bypass surgery with 144 nonintervened individuals with severe obesity. RESULTS There were 51 replicated 12-year protein changes that differed between the surgery and nonsurgery groups. Adjusting for change in BMI, only 12 proteins remained significant, suggesting that BMI change was the primary reason for most protein changes and not non-BMI-related surgical effects. Protein changes were related to BMI changes during both weight-loss and weight-regain periods. The significant proteins were associated primarily with lipid, uric acid, or resting energy expenditure clinical variables and metabolic pathways. Eight protein changes were associated with 12-year diabetes remission, including apolipoprotein M, sex hormone binding globulin, and adiponectin (p < 3.5 × 10-5 ). CONCLUSIONS This study showed that most short-term postsurgical changes in proteins were maintained at 12 years. Systemic protection pathways, including inflammation, complement, lipid, and adipocyte pathways, were related to the long-term benefits of gastric bypass surgery.
Collapse
Affiliation(s)
- Noha A. Yousri
- Department of Genetic MedicineWeill Cornell MedicineDohaQatar
- Computer and Systems EngineeringAlexandria UniversityAlexandriaEgypt
| | | | | | | | | | - Ted D. Adams
- Intermountain Live Well CenterIntermountain HealthcareSalt Lake CityUtahUSA
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Frank Schmidt
- Proteomics CoreWeill Cornell MedicineDohaQatar
- Department of BiochemistryWeill Cornell MedicineDohaQatar
| | - Karsten Suhre
- Department of Physiology and BiophysicsWeill Cornell MedicineDohaQatar
| | - Steven C. Hunt
- Department of Genetic MedicineWeill Cornell MedicineDohaQatar
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
45
|
Spontaneous Physical Activity in Obese Condition Favours Antitumour Immunity Leading to Decreased Tumour Growth in a Syngeneic Mouse Model of Carcinogenesis. Cancers (Basel) 2021; 14:cancers14010059. [PMID: 35008220 PMCID: PMC8750291 DOI: 10.3390/cancers14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary With aging, a deterioration of the immune system, termed immunosenescence, leads to a loss of innate and adaptive immunity in terms of number of cells and functionality. This results in an imbalance between pro- and anti-tumour immune response. The aim of the study was to explore the impact of physical activity on the tissue environment in a murine model of breast carcinogenesis. In this model, spontaneous physical activity slows tumour growth by decreasing low-grade inflammation and promotes antitumour immunity. Abstract Our goal was to evaluate the effect of spontaneous physical activity on tumour immunity during aging. Elderly (n = 10/group, 33 weeks) ovariectomized C57BL/6J mice fed a hyperlipidic diet were housed in standard (SE) or enriched (EE) environments. After 4 weeks, orthotopic implantation of syngeneic mammary cancer EO771 cells was performed to explore the immune phenotyping in the immune organs and the tumours, as well as the cytokines in the tumour and the plasma. EE lowered circulating myostatin, IL-6 and slowed down tumour growth. Spleen and inguinal lymph node weights reduced in relation to SE. Within the tumours, EE induced a lower content of lymphoid cells with a decrease in Th2, Treg and MDCS; and, conversely, a greater quantity of Tc and TAMs. While no change in tumour NKs cells occurred, granzyme A and B expression increased as did that of perforin 1. Spontaneous physical activity in obese conditions slowed tumour growth by decreasing low-grade inflammation, modulating immune recruitment and efficacy within the tumour.
Collapse
|
46
|
Mirzaeicheshmeh E, Zerrweck C, Centeno-Cruz F, Baca-Peynado P, Martinez-Hernandez A, García-Ortiz H, Contreras-Cubas C, Salas-Martínez MG, Saldaña-Alvarez Y, Mendoza-Caamal EC, Barajas-Olmos F, Orozco L. Alterations of DNA methylation during adipogenesis differentiation of mesenchymal stem cells isolated from adipose tissue of patients with obesity is associated with type 2 diabetes. Adipocyte 2021; 10:493-504. [PMID: 34699309 PMCID: PMC8555535 DOI: 10.1080/21623945.2021.1978157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Adipogenesis regulation is crucial for mature adipocyte function. In obesity, a major driver of type 2 diabetes (T2D), this process is disrupted and remains poorly characterized. Here we identified altered DNA methylation profiles in diabetic obese patients, during three adipocytes differentiation stages. We isolated mesenchymal cells from visceral adipose tissue of obese patients with and without T2D to analyse DNA methylation profiles at 0, 3, and 18 days of ex vivo differentiation and documented their impact on gene expression. Methylation and gene expression were analysed with EPIC and Clarion S arrays, respectively. Patients with T2D had epigenetic alterations in all the analysed stages, and these were mainly observed in genes important in adipogenesis, insulin resistance, cell death programming, and immune effector processes. Importantly, at 3 days, we found six-fold more methylated CpG alterations than in the other stages. This is the first study to document epigenetic markers that persist through all three adipogenesis stages and their impact on gene expression, which could be a cellular metabolic memory involved in T2D. Our data provided evidence that, throughout the adipogenesis process, alterations occur in methylation that might impact mature adipocyte function, cause tissue malfunction, and potentially, lead to the development of T2D.
Collapse
Affiliation(s)
- Elaheh Mirzaeicheshmeh
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Carlos Zerrweck
- Clínica de Obesidad del Hospital General Tláhuac, SSA, Mexico City, Mexico
- Facultad De Medicina, Alta Especialidad En Cirugía Bariatrica, Unam, Mexico City, Mexico
| | - Federico Centeno-Cruz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Paulina Baca-Peynado
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Angélica Martinez-Hernandez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | | | - Yolanda Saldaña-Alvarez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | | | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| |
Collapse
|
47
|
Lactobacillus plantarum K8-based paraprobiotics suppress lipid accumulation during adipogenesis by the regulation of JAK/STAT and AMPK signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
Local and Systemic Changes in Lipid Profile as Potential Biomarkers for Canine Atopic Dermatitis. Metabolites 2021; 11:metabo11100670. [PMID: 34677385 PMCID: PMC8541266 DOI: 10.3390/metabo11100670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Lipids play a critical role in the skin as components of the epidermal barrier and as signaling and antimicrobial molecules. Atopic dermatitis in dogs is associated with changes in the lipid composition of the skin, but whether these precede or follow the onset of dermatitis is unclear. We applied rapid lipid-profiling mass spectrometry to skin and blood of 30 control and 30 atopic dogs. Marked differences in lipid profiles were observed between control, nonlesional, and lesional skin. The lipid composition of blood from control and atopic dogs was different, indicating systemic changes in lipid metabolism. Female and male dogs differed in the degree of changes in the skin and blood lipid profiles. Treatment with oclacitinib or lokivetmab ameliorated the skin condition and caused changes in skin and blood lipids. A set of lipid features of the skin was selected as a biomarker that classified samples as control or atopic dermatitis with 95% accuracy, whereas blood lipids discriminated between control and atopic dogs with 90% accuracy. These data suggest that canine atopic dermatitis is a systemic disease and support the use of rapid lipid profiling to identify novel biomarkers.
Collapse
|
49
|
Painter JD, Akbari O. Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Front Immunol 2021; 12:727008. [PMID: 34489979 PMCID: PMC8416625 DOI: 10.3389/fimmu.2021.727008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2) are the innate counterparts of Th2 cells and are critically involved in the maintenance of homeostasis in a variety of tissues. Instead of expressing specific antigen receptors, ILC2s respond to external stimuli such as alarmins released from damage. These cells help control the delicate balance of inflammation in adipose tissue, which is a determinant of metabolic outcome. ILC2s play a key role in the pathogenesis of type 2 diabetes mellitus (T2DM) through their protective effects on tissue homeostasis. A variety of crosstalk takes place between resident adipose cells and ILC2s, with each interaction playing a key role in controlling this balance. ILC2 effector function is associated with increased browning of adipose tissue and an anti-inflammatory immune profile. Trafficking and maintenance of ILC2 populations are critical for tissue homeostasis. The metabolic environment and energy source significantly affect the number and function of ILC2s in addition to affecting their interactions with resident cell types. How ILC2s react to changes in the metabolic environment is a clear determinant of the severity of disease. Treating sources of metabolic instability via critical immune cells provides a clear avenue for modulation of systemic homeostasis and new treatments of T2DM.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
50
|
McLornan DP, Pope JE, Gotlib J, Harrison CN. Current and future status of JAK inhibitors. Lancet 2021; 398:803-816. [PMID: 34454676 DOI: 10.1016/s0140-6736(21)00438-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
An enhanced understanding of the importance of Janus kinase (JAK) and signal transducer and activator of transcription (STAT) signalling in multiple disease states has led to an increasing applicability of therapeutic intervention with JAK inhibitors. These agents have revolutionised treatments for a heterogeneous group of disorders, such as myeloproliferative neoplasms, rheumatoid arthritis, inflammatory bowel disease, and multiple immune-driven dermatological diseases, exemplifying rapid bench-to-bedside translation. In this Therapeutics paper, we summarise the currently available data concerning the successes and safety of an array of JAK inhibitors and hypothesise on how these fields could develop.
Collapse
Affiliation(s)
- Donal P McLornan
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Janet E Pope
- Department of Rheumatology, University of Western Ontario, London, ON, Canada
| | - Jason Gotlib
- Division of Hematology, Stanford University School of Medicine, Stanford Cancer Institute, Stanford, CA, USA
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|