1
|
Fontecha-Barriuso M, Villar-Gomez N, Guerrero-Mauvecin J, Martinez-Moreno JM, Carrasco S, Martin-Sanchez D, Rodríguez-Laguna M, Gómez MJ, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. Runt-related transcription factor 1 (RUNX1) is a mediator of acute kidney injury. J Pathol 2024; 264:396-410. [PMID: 39472111 DOI: 10.1002/path.6355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 11/09/2024]
Abstract
Treatment for acute kidney injury (AKI) is suboptimal. A better understanding of the pathogenesis of AKI may lead to new therapeutic approaches. Kidney transcriptomics of folic acid-induced AKI (FA-AKI) in mice identified Runx1 as the most upregulated RUNX family gene. We then examined the expression of RUNX1 in FA-AKI, in bacterial lipopolysaccharide (LPS)-induced cytokine storm-AKI (CS-AKI), and in human AKI. In cultured mouse tubule cells, we explored the expression and role of RUNX1 in response to the cytokine TWEAK or LPS. A chemical inhibitor of RUNX1 (Ro5-3335) was used in animal models of AKI to test its potential as a therapeutic target. RUNX1 overexpression in FA-AKI was validated at the mRNA and protein levels and localized mainly to tubule cell nuclei. CS-AKI also upregulated kidney RUNX1. Increased tubule and interstitial RUNX1 expression were also observed in human AKI. In cultured mouse tubule cells, the pro-inflammatory cytokine TWEAK and LPS increased RUNX1 and IL-6 expression. Mechanistically, RUNX1 bound to the Il6 gene promoter and RUNX1 targeting with the chemical inhibitor Ro5-3335, or a specific small interfering RNA (siRNA), prevented the TWEAK- and LPS-induced upregulation of IL6 through a RUNX1/NFκB1 p50 pathway. In vivo, preventive Ro5-3335 improved kidney function and reduced inflammation in FA-AKI and CS-AKI. However, Ro5-3335 administration after the insult only improved kidney function in CS-AKI. Kidney transcriptomics identified inflammatory genes and transcription factor mRNAs such as Yap1 and Trp53 as key targets of Ro5-3335 in CS-AKI. In conclusion, RUNX1 contributes to AKI by driving the expression of genes involved in inflammation and represents a novel therapeutic target in AKI. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Natalia Villar-Gomez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Julio M Martinez-Moreno
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Carrasco
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Diego Martin-Sanchez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | | | - Manuel J Gómez
- Unidad de Bioinformatica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María D Sanchez-Niño
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- IRSIN, Madrid, Spain
| | - Ana B Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| |
Collapse
|
2
|
Yan M, Zhang N, Quan L, Bin W, Xi J, Dou C, Liu Z, Gui Y, Yin LH. NF-κB/miR-455-5p/SOCS3 Axis Aggravates Sepsis-Induced Acute Kidney Injury through Promoting Renal Inflammation. Nephron Clin Pract 2024:1-12. [PMID: 39378861 DOI: 10.1159/000541727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Sepsis is the leading contributor to acute kidney injury (AKI), responsible for 45-70% of AKI occurrences. Despite this, septic AKI is a highly multifactorial and complex condition, and our grasp of its pathogenesis is still not fully developed. Consequently, there remains a significant gap in effective diagnostic and therapeutic strategies for septic AKI. METHODS In the in vitro experiments, BUMPT cells were exposed to lipopolysaccharides (LPS). In vivo experiments involved inducing sepsis in mice through administration of LPS injections. Additionally, in certain experiments, either a miR-455-5p mimic or an anti-miR-455-5p LAN was administered to the mice via injections into the tail vein. The mice were then sacrificed 24 h following LPS administration for subsequent analysis. RESULTS We observed a significant elevation in miR-455-5p levels within renal tubular cells following LPS-induced septic AKI. Our investigation revealed that NF-κB plays a crucial role in the upregulation of miR-455-5p. Inhibition of NF-κB using TPCA-1 prevented the rise in miR-455-5p levels in BUMPT cells (mouse proximal tubular cells from Boston University) cultured in vitro. Chromatin immunoprecipitation assays confirmed that NF-κB directly interacts with the promoter region of the miR-455-5p gene in response to LPS treatment. Functionally, introducing miR-455-5p mimics intensified cell apoptosis, kidney damage, and the production of inflammatory cytokines, while silencing miR-455-5p had protective effects in septic mice. Notably, administering anti-miR-455-5p enhanced SOCS3 expression, whereas miR-455-5p mimics reduced SOCS3 levels following LPS exposure. Furthermore, our luciferase reporter assays demonstrated that SOCS3 is a direct target of miR-455-5p. CONCLUSION This study indicates an NF-κB/miR-455-5p/SOCS3 axis which can exacerbate kidney damage by enhancing renal inflammation. This process highlights potential therapeutic targets for managing septic AKI.
Collapse
Affiliation(s)
- Mingjuan Yan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China,
| | - Ni Zhang
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Li Quan
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Wei Bin
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Jing Xi
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Caoshuai Dou
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Yongfeng Gui
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Liang-Hong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
de Sales-Neto JM, Rodrigues-Mascarenhas S. Immunosuppressive effects of the mycotoxin patulin in macrophages. Arch Microbiol 2024; 206:166. [PMID: 38485821 DOI: 10.1007/s00203-024-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil.
| |
Collapse
|
4
|
Chan MJ, Liu KD. Acute Kidney Injury and Subsequent Cardiovascular Disease: Epidemiology, Pathophysiology, and Treatment. Semin Nephrol 2024; 44:151515. [PMID: 38849258 DOI: 10.1016/j.semnephrol.2024.151515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Cardiovascular disease poses a significant threat to individuals with kidney disease, including those affected by acute kidney injury (AKI). In the short term, AKI has several physiological consequences that can impact the cardiovascular system. These include fluid and sodium overload, activation of the renin-angiotensin-aldosterone system and sympathetic nervous system, and inflammation along with metabolic complications of AKI (acidosis, electrolyte imbalance, buildup of uremic toxins). Recent studies highlight the role of AKI in elevating long-term risks of hypertension, thromboembolism, stroke, and major adverse cardiovascular events, though some of this increased risk may be due to the impact of AKI on the course of chronic kidney disease. Current management strategies involve avoiding nephrotoxic agents, optimizing hemodynamics and fluid balance, and considering renin-angiotensin-aldosterone system inhibition or sodium-glucose cotransporter 2 inhibitors. However, future research is imperative to advance preventive and therapeutic strategies for cardiovascular complications in AKI. This review explores the existing knowledge on the cardiovascular consequences of AKI, delving into epidemiology, pathophysiology, and treatment of various cardiovascular complications following AKI.
Collapse
Affiliation(s)
- Ming-Jen Chan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kathleen D Liu
- Divisions of Nephrology and Critical Care Medicine, Departments of Medicine and Anesthesia, University of California, San Francisco, CA.
| |
Collapse
|
5
|
Feng Y, Chen Z, Xu Y, Han Y, Jia X, Wang Z, Zhang N, Lv W. The central inflammatory regulator IκBζ: induction, regulation and physiological functions. Front Immunol 2023; 14:1188253. [PMID: 37377955 PMCID: PMC10291074 DOI: 10.3389/fimmu.2023.1188253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
IκBζ (encoded by NFKBIZ) is the most recently identified IkappaB family protein. As an atypical member of the IkappaB protein family, NFKBIZ has been the focus of recent studies because of its role in inflammation. Specifically, it is a key gene in the regulation of a variety of inflammatory factors in the NF-KB pathway, thereby affecting the progression of related diseases. In recent years, investigations into NFKBIZ have led to greater understanding of this gene. In this review, we summarize the induction of NFKBIZ and then elucidate its transcription, translation, molecular mechanism and physiological function. Finally, the roles played by NFKBIZ in psoriasis, cancer, kidney injury, autoimmune diseases and other diseases are described. NFKBIZ functions are universal and bidirectional, and therefore, this gene may exert a great influence on the regulation of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Yanpeng Feng
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Zhiyuan Chen
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yi Xu
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yuxuan Han
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiujuan Jia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zixuan Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nannan Zhang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Lv
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Cuarental L, Ribagorda M, Ceballos MI, Pintor-Chocano A, Carriazo SM, Dopazo A, Vazquez E, Suarez-Alvarez B, Cannata-Ortiz P, Sanz AB, Ortiz A, Sanchez-Niño MD. The transcription factor Fosl1 preserves Klotho expression and protects from acute kidney injury. Kidney Int 2023; 103:686-701. [PMID: 36565807 DOI: 10.1016/j.kint.2022.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Increased expression of AP-1 transcription factor components has been reported in acute kidney injury (AKI). However, the role of specific components, such as Fosl1, in tubular cells or AKI is unknown. Upstream regulator analysis of murine nephrotoxic AKI transcriptomics identified AP-1 as highly upregulated. Among AP-1 canonical components, Fosl1 was found to be upregulated in two transcriptomics datasets from nephrotoxic murine AKI induced by folic acid or cisplatin and from proximal tubular cells exposed to TWEAK, a cytokine mediator of AKI. Fosl1 was minimally expressed in the kidneys of control uninjured mice. Increased Fosl1 protein was localized to proximal tubular cell nuclei in AKI. In human AKI, FOSL1 was found present in proximal tubular cells in kidney sections and in urine along with increased urinary FOSL1 mRNA. Selective Fosl1 deficiency in proximal tubular cells (Fosl1Δtub) increased the severity of murine cisplatin- or folate-induced AKI as characterized by lower kidney function, more severe kidney inflammation and Klotho downregulation. Indeed, elevated AP-1 activity was observed after cisplatin-induced AKI in Fosl1Δtub mice compared to wild-type mice. More severe Klotho downregulation preceded more severe kidney dysfunction. The Klotho promoter was enriched in Fosl1 binding sites and Fosl1 bound to the Klotho promoter in cisplatin-AKI. In cultured proximal tubular cells, Fosl1 targeting increased the proinflammatory response and downregulated Klotho. In vivo, recombinant Klotho administration protected Fosl1Δtub mice from cisplatin-AKI. Thus, increased proximal tubular Fosl1 expression during AKI is an adaptive response, preserves Klotho, and limits the severity of tubular cell injury and AKI.
Collapse
Affiliation(s)
- Leticia Cuarental
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Marta Ribagorda
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Maria I Ceballos
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Sol M Carriazo
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Vazquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Cannata-Ortiz
- Department of Pathology, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Maria D Sanchez-Niño
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Farmacología, Universidad Autonoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
7
|
Chen Y, Zhou X, Wu Y. The miR-26a-5p/IL-6 axis alleviates sepsis-induced acute kidney injury by inhibiting renal inflammation. Ren Fail 2022; 44:551-561. [PMID: 35491874 PMCID: PMC9067948 DOI: 10.1080/0886022x.2022.2056486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) is a common and life-threatening complication in hospitalized and critically ill patients and has unacceptable morbidity and mortality rates. However, effective approaches for the diagnosis and treatment of septic AKI are still lacking. Here, we demonstrated significant increases in the miR-26a-5p levels in renal tubular cells of LPS-induced septic AKI models both in vivo and in vitro. Mechanistically, we provided evidence of the involvement of NF-κB in miR-26a-5p induction. LPS treatment of renal tubular cells led to the activation of NF-κB, and inhibition of NF-κB by TPCA-1 prevented the induction of miR-26a-5p. These results indicated that NF-κB was a key upstream factor for the induction of miR-26a-5p in septic AKI. Anti-miR-26a-5p enhanced the expression of IL-6 at both the protein and mRNA levels following LPS treatment. Furthermore, our luciferase microRNA target reporter assay verified that IL-6 is a direct target of miR-26a-5p. Blocking miR-26a-5p promoted renal inflammation and worsened kidney injury. Thus, our study indicated that the miR-26a-5p/IL-6 axis can alleviate sepsis-induced acute kidney injury by inhibiting renal inflammation. This mechanism may represent a therapeutic target for septic AKI.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Critical Care Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xu Zhou
- Department of Critical Care Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Yanhong Wu
- Department of Critical Care Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|
8
|
Martin-Sanchez D, Guerrero-Mauvecin J, Fontecha-Barriuso M, Mendez-Barbero N, Saiz ML, Lopez-Diaz AM, Sanchez-Niño MD, Carrasco S, Cannata-Ortiz P, Ruiz-Ortega M, Ortiz A, Sanz AB. Bone Marrow-Derived RIPK3 Mediates Kidney Inflammation in Acute Kidney Injury. J Am Soc Nephrol 2022; 33:357-373. [PMID: 35046131 PMCID: PMC8819996 DOI: 10.1681/asn.2021030383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/04/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Receptor-interacting protein kinase 3 (RIPK3), a component of necroptosis pathways, may have an independent role in inflammation. It has been unclear which RIPK3-expressing cells are responsible for the anti-inflammatory effect of overall Ripk3 deficiency and whether Ripk3 deficiency protects against kidney inflammation occurring in the absence of tubular cell death. METHODS We used chimeric mice with bone marrow from wild-type and Ripk3-knockout mice to explore RIPK3's contribution to kidney inflammation in the presence of folic acid-induced acute kidney injury AKI (FA-AKI) or absence of AKI and kidney cell death (as seen in systemic administration of the cytokine TNF-like weak inducer of apoptosis [TWEAK]). RESULTS Tubular and interstitial cell RIPK3 expressions were increased in murine AKI. Ripk3 deficiency decreased NF-κB activation and kidney inflammation in FA-AKI but did not prevent kidney failure. In the chimeric mice, RIPK3-expressing bone marrow-derived cells were required for early inflammation in FA-AKI. The NLRP3 inflammasome was not involved in RIPK3's proinflammatory effect. Systemic TWEAK administration induced kidney inflammation in wild-type but not Ripk3-deficient mice. In cell cultures, TWEAK increased RIPK3 expression in bone marrow-derived macrophages and tubular cells. RIPK3 mediated TWEAK-induced NF-κB activation and inflammatory responses in bone marrow-derived macrophages and dendritic cells and in Jurkat T cells; however, in tubular cells, RIPK3 mediated only TWEAK-induced Il-6 expression. Furthermore, conditioned media from TWEAK-exposed wild-type macrophages, but not from Ripk3-deficient macrophages, promoted proinflammatory responses in cultured tubular cells. CONCLUSIONS RIPK3 mediates kidney inflammation independently from tubular cell death. Specific targeting of bone marrow-derived RIPK3 may limit kidney inflammation without the potential adverse effects of systemic RIPK3 targeting.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain
| | - Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain
| | - Nerea Mendez-Barbero
- Laboratorio de Patologia Vascular, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Maria Laura Saiz
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ana M. Lopez-Diaz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria D. Sanchez-Niño
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain,Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Carrasco
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Pablo Cannata-Ortiz
- Department of Pathology, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain,Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain,Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain,Instituto Reina Sofia de Investigaciones Nefrologicas, Madrid, Spain
| | - Ana B. Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain
| |
Collapse
|
9
|
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529:111254. [PMID: 33798633 DOI: 10.1016/j.mce.2021.111254] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - María Dolores Sánchez-Niño
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain.
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
10
|
MicroRNAs in shaping the resolution phase of inflammation. Semin Cell Dev Biol 2021; 124:48-62. [PMID: 33934990 DOI: 10.1016/j.semcdb.2021.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Inflammation is a host defense mechanism orchestrated through imperative factors - acute inflammatory responses mediated by cellular and molecular events leading to activation of defensive immune subsets - to marginalize detrimental injury, pathogenic agents and infected cells. These potent inflammatory events, if uncontrolled, may cause tissue damage by perturbing homeostasis towards immune dysregulation. A parallel host mechanism operates to contain inflammatory pathways and facilitate tissue regeneration. Thus, resolution of inflammation is an effective moratorium on the pro-inflammatory pathway to avoid the tissue damage inside the host and leads to reestablishment of tissue homeostasis. Dysregulation of the resolution pathway can have a detrimental impact on tissue functionality and contribute to the diseased state. Multiple reports have suggested peculiar dynamics of miRNA expression during various pro- and anti-inflammatory events. The roles of miRNAs in the regulation of immune responses are well-established. However, understanding of miRNA regulation of the resolution phase of events in infection or wound healing models, which is sometimes misconstrued as anti-inflammatory signaling, remains limited. Due to the deterministic role of miRNAs in pro-inflammatory and anti-inflammatory pathways, in this review we have provided a broad perspective on the putative role of miRNAs in the resolution of inflammation and explored their imminent role in therapeutics.
Collapse
|
11
|
Poveda J, Vázquez-Sánchez S, Sanz AB, Ortiz A, Ruilope LM, Ruiz-Hurtado G. TWEAK-Fn14 as a common pathway in the heart and the kidneys in cardiorenal syndrome. J Pathol 2021; 254:5-19. [PMID: 33512736 DOI: 10.1002/path.5631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
There is a complex relationship between cardiac and renal disease, often referred to as the cardiorenal syndrome. Heart failure adversely affects kidney function, and both acute and chronic kidney disease are associated with structural and functional changes to the myocardium. The pathological mechanisms and contributing interactions that surround this relationship remain poorly understood, limiting the opportunities for therapeutic intervention. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed in injured kidneys and heart. The TWEAK-Fn14 axis promotes responses that drive tissue injury such as inflammation, proliferation, fibrosis, and apoptosis, while restraining the expression of tissue protective factors such as the anti-aging factor Klotho and the master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). High levels of TWEAK induce cardiac remodeling, and promote inflammation, tubular and podocyte injury and death, fibroblast proliferation, and, ultimately, renal fibrosis. Accordingly, targeting the TWEAK-Fn14 axis is protective in experimental kidney and heart disease. TWEAK has also emerged as a biomarker of kidney damage and cardiovascular outcomes and has been successfully targeted in clinical trials. In this review, we update our current knowledge of the roles of the TWEAK-Fn14 axis in cardiovascular and kidney disease and its potential contribution to the cardiorenal syndrome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jonay Poveda
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Vázquez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana B Sanz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
12
|
Liu Z, Tang C, He L, Yang D, Cai J, Zhu J, Shu S, Liu Y, Yin L, Chen G, Liu Y, Zhang D, Dong Z. The negative feedback loop of NF-κB/miR-376b/NFKBIZ in septic acute kidney injury. JCI Insight 2020; 5:142272. [PMID: 33328388 PMCID: PMC7819752 DOI: 10.1172/jci.insight.142272] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis is the leading cause of acute kidney injury (AKI). However, the pathogenesis of septic AKI remains largely unclear. Here, we demonstrate a significant decrease of microRNA-376b (miR-376b) in renal tubular cells in mice with septic AKI. Urinary miR-376b in these mice was also dramatically decreased. Patients with sepsis with AKI also had significantly lower urinary miR-376b than patients with sepsis without AKI, supporting its diagnostic value for septic AKI. LPS treatment of renal tubular cells led to the activation of NF-κB, and inhibition of NF-κB prevented a decrease of miR-376b. ChIP assay further verified NF-κB binding to the miR-376b gene promoter upon LPS treatment. Functionally, miR-376b mimics exaggerated tubular cell death, kidney injury, and intrarenal production of inflammatory cytokines, while inhibiting miR-376b afforded protective effects in septic mice. Interestingly, miR-376b suppressed the expression of NF-κB inhibitor ζ (NFKBIZ) in both in vitro and in vivo models of septic AKI. Luciferase microRNA target reporter assay further verified NFKBIZ as a direct target of miR-376b. Collectively, these results illustrate the NF-κB/miR-376b/NFKBIZ negative feedback loop that regulates intrarenal inflammation and tubular damage in septic AKI. Moreover, urinary miR-376b is a potential biomarker for the diagnosis of AKI in patients with sepsis.
Collapse
Affiliation(s)
| | | | - Liyu He
- Department of Nephrology and
| | | | | | | | | | | | | | | | - Yu Liu
- Department of Nephrology and
| | - Dongshan Zhang
- Department of Nephrology and.,Department of Emergency Medicine, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology and.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
13
|
Liu Z, Yang D, Gao J, Xiang X, Hu X, Li S, Wu W, Cai J, Tang C, Zhang D, Dong Z. Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis. Theranostics 2020; 10:11963-11975. [PMID: 33204323 PMCID: PMC7667674 DOI: 10.7150/thno.50093] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Rationale: Sepsis is the cause of nearly half of acute kidney injury (AKI) and, unfortunately, AKI in sepsis is associated with unacceptably high rates of mortality. Early detection of AKI would guide the timely intervention and care of sepsis patients. Currently, NephroCheck, based on urinary [TIMP2]*[IGFBP7], is the only FDA approved test for early detection of AKI, which has a relatively low sensitivity for sepsis patients. Methods:In vitro, BUMPT (Boston University mouse proximal tubular cell line) cells were treated with lipopolysaccharides (LPS). In vivo, sepsis was induced in mice by LPS injection or cecal ligation and puncture (CLP). To validate the biomarker potential of miR-452, serum and urinary samples were collected from 47 sepsis patients with AKI, 50 patients without AKI, and 10 healthy subjects. Results: miR-452 was induced in renal tubular cells in septic AKI, and the induction was shown to be mediated by NF-κB. Notably, serum and urinary miR-452 increased early in septic mice following LPS or CLP treatment, prior to detectable renal dysfunction or tissue damage. Sepsis patients with AKI had significantly higher levels of serum and urinary miR-452 than the patients without AKI. Spearman's test demonstrated a remarkable positive correlation between urinary miR-452 and serum creatinine in sepsis patients (r=0.8269). The area under the receiver operating characteristic curve (AUC) was 0.8985 for urinary miR-452. Logistic regression analysis showed a striking 72.48-fold increase of AKI risk for every 1-fold increase of urinary miR-452 in sepsis patients. The sensitivity of urinary miR-452 for AKI detection in sepsis patients reached 87.23%, which was notably higher than the 61.54% achieved by urinary [TIMP2]*[IGFBP7], while the specificity of urinary miR-452 (78.00%) was slightly lower than that of [TIMP2]*[IGFBP7] (87.18%). Conclusions: miR-452 is induced via NF-κB in renal tubular cells in septic AKI. The increase of miR-452, especially that in urine, may be an effective biomarker for early detection of AKI in sepsis patients.
Collapse
|
14
|
Albuminuria Downregulation of the Anti-Aging Factor Klotho: The Missing Link Potentially Explaining the Association of Pathological Albuminuria with Premature Death. Adv Ther 2020; 37:62-72. [PMID: 32236874 DOI: 10.1007/s12325-019-01180-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/17/2022]
Abstract
Ten percent of the adult population has chronic kidney disease (CKD), which is diagnosed when the glomerular filtration rate (GFR) is below 60 mL/min per 1.73 m2 or when albuminuria is above 30 mg/day. The numerical thresholds were chosen because they are associated with an increased risk of CKD progression or premature death within a wider scenario of accelerated aging. Indeed, CKD is one of the fastest growing causes of death worldwide. A decreased GFR is associated with the accumulation of uraemic toxins that may promote tissue and organ damage. However, CKD may be diagnosed when the GFR is completely normal, as long as there is pathological albuminuria. A key unanswered question to stem the rise of CKD-associated deaths is whether the association between isolated albuminuria (when the GFR is normal) and premature death is causal. The recent demonstration that albuminuria per se directly suppresses the production of the anti-aging factor Klotho by kidney tubular cells may be one of the first steps to address the causality of the albuminuria-premature death-accelerated aging association. This hypothesis should be tested in interventional studies that should draw from translational science advances. Thus, the observation that albuminuria decreases Klotho production through epigenetic mechanisms implies that Klotho downregulation may persist after the correction of albuminuria, and innovative therapeutic approaches are needed to restore Klotho production. On the basis of recent literature, these may include manipulation of NF-kappaB regulators such as B cell lymphoma 3 protein (BCL-3), and epigenetic regulators such as histone deacetylases, or the repurposing of drugs such as pentoxifylline.
Collapse
|
15
|
Valiño-Rivas L, Cuarental L, Agustin M, Husi H, Cannata-Ortiz P, Sanz AB, Mischak H, Ortiz A, Sanchez-Niño MD. MAGE genes in the kidney: identification of MAGED2 as upregulated during kidney injury and in stressed tubular cells. Nephrol Dial Transplant 2020; 34:1498-1507. [PMID: 30541139 DOI: 10.1093/ndt/gfy367] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in Melanoma Antigen-encoding Gene D2 (MAGED2) promote tubular dysfunction, suggesting that MAGE proteins may play a role in kidney pathophysiology. We have characterized the expression and regulation of MAGE genes in normal kidneys and during kidney disease. METHODS The expression of MAGE genes and their encoded proteins was explored by systems biology multi-omics (kidney transcriptomics and proteomics) in healthy adult murine kidneys and following induction of experimental acute kidney injury (AKI) by a folic acid overdose. Changes in kidney expression during nephrotoxic AKI were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry. Factors regulating gene expression were studied in cultured tubular cells. RESULTS Five MAGE genes (MAGED1, MAGED2, MAGED3, MAGEH1, MAGEE1) were expressed at the mRNA level in healthy adult mouse kidneys, as assessed by RNA-Seq. Additionally, MAGED2 was significantly upregulated during experimental AKI as assessed by array transcriptomics. Kidney proteomics also identified MAGED2 as upregulated during AKI. The increased kidney expression of MAGED2 mRNA and protein was confirmed by qRT-PCR and western blot, respectively, in murine folic acid- and cisplatin-induced AKI. Immunohistochemistry located MAGED2 to tubular cells in experimental and human kidney injury. Tubular cell stressors [serum deprivation and the inflammatory cytokine tumour necrosis factor-like weak inducer of apoptosis (TWEAK)] upregulated MAGED2 in cultured tubular cells. CONCLUSIONS MAGED2 is upregulated in tubular cells in experimental and human kidney injury and is increased by stressors in cultured tubular cells. This points to a role of MAGED2 in tubular cell injury during kidney disease that should be dissected by carefully designed functional approaches.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Leticia Cuarental
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Mateo Agustin
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Pablo Cannata-Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Ana B Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Harald Mischak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Mosaiques diagnostics GmbH, Hannover, Germany
| | - Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| |
Collapse
|
16
|
Ramos AM, Fernández-Fernández B, Pérez-Gómez MV, Carriazo Julio SM, Sanchez-Niño MD, Sanz A, Ruiz-Ortega M, Ortiz A. Design and optimization strategies for the development of new drugs that treat chronic kidney disease. Expert Opin Drug Discov 2019; 15:101-115. [PMID: 31736379 DOI: 10.1080/17460441.2020.1690450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Chronic kidney disease (CKD) is characterized by increased risks of progression to end-stage kidney disease requiring dialysis and cardiovascular mortality, predicted to be among the five top causes of death by 2040. Only the design and optimization of novel strategies to develop new drugs to treat CKD will contain this trend. Current therapy for CKD includes nonspecific therapy targeting proteinuria and/or hypertension and cause-specific therapies for diabetic kidney disease, autosomal dominant polycystic kidney disease, glomerulonephritides, Fabry nephropathy, hemolytic uremic syndrome and others.Areas covered: Herein, the authors review the literature on new drugs under development for CKD as well as novel design and development strategies.Expert opinion: New therapies for CKD have become a healthcare priority. Emerging therapies undergoing clinical trials are testing expanded renin-angiotensin system blockade with double angiotensin receptor/endothelin receptor blockers, SGLT2 inhibition, and targeting inflammation, the immune response, fibrosis and the Nrf2 transcription factor. Emerging therapeutic targets include cell senescence, complement activation, Klotho expression preservation and microbiota. Novel approaches include novel model systems that can be personalized (e.g. organoids), unbiased systems biology-based identification of new therapeutic targets, drug databases that speed up drug identification and repurposing, nanomedicines that improve drug delivery and RNA targeting to expand the number of targetable proteins.
Collapse
Affiliation(s)
- Adrián M Ramos
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Vanessa Pérez-Gómez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol María Carriazo Julio
- Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sanz
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Renal and Vascular Pathology and Diabetes, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid and Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Álvarez de Toledo IRSIN C/José Abascal, Madrid, Spain
| |
Collapse
|
17
|
Fernandez-Fernandez B, Izquierdo MC, Valiño-Rivas L, Nastou D, Sanz AB, Ortiz A, Sanchez-Niño MD. Albumin downregulates Klotho in tubular cells. Nephrol Dial Transplant 2019; 33:1712-1722. [PMID: 29425318 DOI: 10.1093/ndt/gfx376] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Background Kidney tubular cells are the main sources of Klotho, a protein with phosphaturic action. Genetic Klotho deficiency causes premature cardiovascular aging in mice. Human chronic kidney disease (CKD) is characterized by acquired Klotho deficiency. Despite the lack of uremic toxin accumulation, Category G1 CKD [(normal glomerular filtration rate (GFR)] is already associated with decreased Klotho and with premature cardiovascular aging. Methods We have explored whether albuminuria, a criterion to diagnose CKD when GFR is normal, may directly decrease Klotho expression in human CKD, preclinical models and cultured tubular cells. Results In a CKD cohort, albuminuria correlated with serum phosphate after adjustment for GFR, age and sex. In this regard, urinary Klotho was decreased in patients with pathological albuminuria but preserved GFR. Proteinuria induced in rats by puromycin aminonucleoside and in mice by albumin overload was associated with interstitial inflammation and reduced total kidney Klotho messenger ribonucleic acid (mRNA) expression. Western blot disclosed reduced kidney Klotho protein in proteinuric rats and mice and immunohistochemistry localized the reduced kidney Klotho expression to tubular cells in proteinuric animals. In cultured murine and human tubular cells, albumin directly decreased Klotho mRNA and protein expression. This was inhibited by trichostatin A, an inhibitor of histone deacetylases, but unlike cytokine-induced Klotho downregulation, not by inhibitors of nuclear factor kappa-light-chain-enhancer of activated B cells. Conclusions In conclusion, albumin directly decreases Klotho expression in cultured tubular cells. This may explain, or at least contribute to, the decrease in Klotho and promote fibroblast growth factor 23 resistance in early CKD categories, as observed in preclinical and clinical proteinuric kidney disease.
Collapse
Affiliation(s)
- Beatriz Fernandez-Fernandez
- Department of Nephrology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain and.,REDINREN, Madrid, Spain
| | - M Concepcion Izquierdo
- Department of Nephrology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain and.,REDINREN, Madrid, Spain
| | - Lara Valiño-Rivas
- Department of Nephrology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain and.,REDINREN, Madrid, Spain
| | - Dimitra Nastou
- Department of Nephrology, General Hospital of Syros, Syros, Greece
| | - Ana B Sanz
- Department of Nephrology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain and.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- Department of Nephrology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain and.,REDINREN, Madrid, Spain
| |
Collapse
|
18
|
Cuarental L, Sucunza-Sáenz D, Valiño-Rivas L, Fernandez-Fernandez B, Sanz AB, Ortiz A, Vaquero JJ, Sanchez-Niño MD. MAP3K kinases and kidney injury. Nefrologia 2019; 39:568-580. [PMID: 31196660 DOI: 10.1016/j.nefro.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAP kinases) are functionally connected kinases that regulate key cellular process involved in kidney disease such as all survival, death, differentiation and proliferation. The typical MAP kinase module is composed by a cascade of three kinases: a MAP kinase kinase kinase (MAP3K) that phosphorylates and activates a MAP kinase kinase (MAP2K) which phosphorylates a MAP kinase (MAPK). While the role of MAPKs such as ERK, p38 and JNK has been well characterized in experimental kidney injury, much less is known about the apical kinases in the cascade, the MAP3Ks. There are 24 characterized MAP3K (MAP3K1 to MAP3K21 plus RAF1, BRAF and ARAF). We now review current knowledge on the involvement of MAP3K in non-malignant kidney disease and the therapeutic tools available. There is in vivo interventional evidence clearly supporting a role for MAP3K5 (ASK1) and MAP3K14 (NIK) in the pathogenesis of experimental kidney disease. Indeed, the ASK1 inhibitor Selonsertib has undergone clinical trials for diabetic kidney disease. Additionally, although MAP3K7 (MEKK7, TAK1) is required for kidney development, acutely targeting MAP3K7 protected from acute and chronic kidney injury; and targeting MAP3K8 (TPL2/Cot) protected from acute kidney injury. By contrast MAP3K15 (ASK3) may protect from hypertension and BRAF inhibitors in clinical use may induced acute kidney injury and nephrotic syndrome. Given their role as upstream regulators of intracellular signaling, MAP3K are potential therapeutic targets in kidney injury, as demonstrated for some of them. However, the role of most MAP3K in kidney disease remains unexplored.
Collapse
Affiliation(s)
| | - David Sucunza-Sáenz
- REDINREN, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, (IRYCIS), Madrid, Spain
| | | | | | - Ana Belen Sanz
- IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain; REDINREN, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain; REDINREN, Spain
| | - Juan José Vaquero
- REDINREN, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, (IRYCIS), Madrid, Spain
| | | |
Collapse
|
19
|
TRAIL, OPG, and TWEAK in kidney disease: biomarkers or therapeutic targets? Clin Sci (Lond) 2019; 133:1145-1166. [PMID: 31097613 PMCID: PMC6526163 DOI: 10.1042/cs20181116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease.
Collapse
|
20
|
Jiang K, Guo S, Yang C, Yang J, Chen Y, Shaukat A, Zhao G, Wu H, Deng G. Barbaloin protects against lipopolysaccharide (LPS)-induced acute lung injury by inhibiting the ROS-mediated PI3K/AKT/NF-κB pathway. Int Immunopharmacol 2018; 64:140-150. [DOI: 10.1016/j.intimp.2018.08.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022]
|
21
|
|
22
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9:7204-7218. [PMID: 29467962 PMCID: PMC5805548 DOI: 10.18632/oncotarget.23208] [Citation(s) in RCA: 2473] [Impact Index Per Article: 353.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
23
|
Poveda J, Sanz AB, Carrasco S, Ruiz-Ortega M, Cannata-Ortiz P, Sanchez-Niño MD, Ortiz A. Bcl3: a regulator of NF-κB inducible by TWEAK in acute kidney injury with anti-inflammatory and antiapoptotic properties in tubular cells. Exp Mol Med 2017; 49:e352. [PMID: 28684863 PMCID: PMC5565957 DOI: 10.1038/emm.2017.89] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/21/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by tubular cell death and interstitial inflammation. TWEAK promotes experimental kidney injury and activates the transcription factor NF-κB, a key regulator of genes involved in cell survival and inflammatory response. In search of potential therapeutic targets for AKI, we compared a transcriptomics database of NF-κB-related genes from murine AKI-kidneys with a transcriptomics database of TWEAK-stimulated cultured tubular cells. Four out of twenty-four (17%) genes were significantly upregulated (false discovery rate, FDR<0.05), while nine out of twenty-four (37%) genes were significantly upregulated at FDR <0.1 in both databases. Bcl3 was the top upregulated NF-κB-related gene in experimental AKI and one of the most upregulated genes in TWEAK-stimulated tubular cells. Quantitative reverse transcription PCR (qRT-PCR), western blot and immunohistochemistry confirmed Bcl3 upregulation in both experimental conditions and localized increased Bcl3 expression to tubular cells in AKI. Transcriptomics database analysis revealed increased Bcl3 expression in numerous experimental and human kidney conditions. Furthermore, systemic TWEAK administration increased kidney Bcl3 expression. In cultured tubular cells, targeting Bcl3 by siRNA resulted in the magnification of TWEAK-induced NF-κB transcriptional activity, chemokine upregulation and Klotho downregulation, and in the sensitization to cell death induced by TWEAK/TNFα/interferon-γ. In contrast, Bcl3 overexpression decreased NF-κB transcriptional activity, inflammatory response and cell death while dampening the decrease in Klotho expression. In conclusion, Bcl3 expressed in response to TWEAK stimulation decreases TWEAK-induced inflammatory and lethal responses. Therefore, therapeutic upregulation of Bcl3 activity should be explored in kidney disease because it has advantages over chemical inhibitors of NF-κB that are known to prevent inflammatory responses but can also sensitize the cells to apoptosis.
Collapse
Affiliation(s)
- Jonay Poveda
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Ana B Sanz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Susana Carrasco
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Pablo Cannata-Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| |
Collapse
|
24
|
Ruiz-Andres O, Sanchez-Niño MD, Moreno JA, Ruiz-Ortega M, Ramos AM, Sanz AB, Ortiz A. Downregulation of kidney protective factors by inflammation: role of transcription factors and epigenetic mechanisms. Am J Physiol Renal Physiol 2016; 311:F1329-F1340. [PMID: 27760772 DOI: 10.1152/ajprenal.00487.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) is associated to an increased risk of death, CKD progression, and acute kidney injury (AKI) even from early stages, when glomerular filtration rate (GFR) is preserved. The link between early CKD and these risks is unclear, since there is no accumulation of uremic toxins. However, pathological albuminuria and kidney inflammation are frequent features of early CKD, and the production of kidney protective factors may be decreased. Indeed, Klotho expression is already decreased in CKD category G1 (normal GFR). Klotho has anti-aging and nephroprotective properties, and decreased Klotho levels may contribute to increase the risk of death, CKD progression, and AKI. In this review, we discuss the downregulation by mediators of inflammation of molecules with systemic and/or renal local protective functions, exemplified by Klotho and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a transcription factor that promotes mitochondrial biogenesis. Cytokines such as TWEAK, TNF-α, or transforming growth factor -β1 produced locally during kidney injury or released from inflammatory sites at other organs may decrease kidney expression of Klotho and PGC-1α or lead to suboptimal recruitment of these nephroprotective proteins. Transcription factors (e.g., Smad3 and NF-κB) and epigenetic mechanisms (e.g., histone acetylation or methylation) contribute to downregulate the expression of Klotho and/or PGC-1α, while histone crotonylation promotes PGC-1α expression. NF-κBiz facilitates the repressive effect of NF-κB on Klotho expression. A detailed understanding of these mediators may contribute to the development of novel therapeutic approaches to prevent CKD progression and its negative impact on mortality and AKI.
Collapse
Affiliation(s)
- Olga Ruiz-Andres
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Maria Dolores Sanchez-Niño
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Juan Antonio Moreno
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid
| | - Marta Ruiz-Ortega
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Adrian Mario Ramos
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Ana Belen Sanz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; .,REDINREN, Madrid, Spain; and.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| |
Collapse
|