1
|
Vanni E, Beauloye C, Horman S, Bertrand L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem 2024:EBC20240003. [PMID: 39319471 DOI: 10.1042/ebc20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Ettore Vanni
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
2
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Harold KM, Matsuzaki S, Pranay A, Loveland BL, Batushansky A, Mendez Garcia MF, Eyster C, Stavrakis S, Chiao YA, Kinter M, Humphries KM. Loss of Cardiac PFKFB2 Drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. J Am Heart Assoc 2024; 13:e033676. [PMID: 38533937 PMCID: PMC11179765 DOI: 10.1161/jaha.123.033676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.
Collapse
Affiliation(s)
- Kylene M. Harold
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Brooke L. Loveland
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Maria F. Mendez Garcia
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Craig Eyster
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Stavros Stavrakis
- Department of Medicine, Section of Cardiovascular MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
4
|
Jagannath S, Mallanna SH, Nandini CD. Diet-inducing hypercholesterolemia show decreased O-GlcNAcylation of liver proteins through modulation of AMPK. J Physiol Biochem 2024; 80:205-218. [PMID: 37996652 DOI: 10.1007/s13105-023-00997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
O-GlcNAcylation, a nutritionally driven, post-translational modification of proteins, is gaining importance because of its health implications. Changes in O-GlcNAcylation are observed in various disease conditions. Changes in O-GlcNAcylation by diet that causes hypercholesterolemia are not critically looked into in the liver. To address it, both in vitro and in vivo approaches were employed. Hypercholesterolemia was induced individually by feeding cholesterol (H)/high-fat (HF) diet. Global O-GlcNAcylation levels and modulation of AMPK activation in both preventive and curative approaches were looked into. Diet-induced hypercholesterolemia resulted in decreased O-GlcNAcylation of liver proteins which was associated with decreased O-linked N-acetylglucosaminyltransferase (OGT) and Glutamine fructose-6-phosphate amidotransferase-1 (GFAT1). Activation of AMPK by metformin in preventive mode restored the O-GlcNAcylation levels; however, metformin treatment of HepG2 cells in curative mode restored O-GlcNAcylation levels in HF but failed to in H condition (at 24 h). Further, maternal faulty diet resulted in decreased O-GlcNAcylation in pup liver despite feeding normal diet till adulthood. A faulty diet modulates global O-GlcNAcylation of liver proteins which is accompanied by decreased AMPK activation which could exacerbate metabolic syndromes through fat accumulation in the liver.
Collapse
Affiliation(s)
- Sanjana Jagannath
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smitha Honnalagere Mallanna
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Wei J, Duan X, Chen J, Zhang D, Xu J, Zhuang J, Wang S. Metabolic adaptations in pressure overload hypertrophic heart. Heart Fail Rev 2024; 29:95-111. [PMID: 37768435 DOI: 10.1007/s10741-023-10353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This review article offers a detailed examination of metabolic adaptations in pressure overload hypertrophic hearts, a condition that plays a pivotal role in the progression of heart failure with preserved ejection fraction (HFpEF) to heart failure with reduced ejection fraction (HFrEF). The paper delves into the complex interplay between various metabolic pathways, including glucose metabolism, fatty acid metabolism, branched-chain amino acid metabolism, and ketone body metabolism. In-depth insights into the shifts in substrate utilization, the role of different transporter proteins, and the potential impact of hypoxia-induced injuries are discussed. Furthermore, potential therapeutic targets and strategies that could minimize myocardial injury and promote cardiac recovery in the context of pressure overload hypertrophy (POH) are examined. This work aims to contribute to a better understanding of metabolic adaptations in POH, highlighting the need for further research on potential therapeutic applications.
Collapse
Affiliation(s)
- Jinfeng Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuefei Duan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaying Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dengwen Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jindong Xu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Sheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
6
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Harold KM, Matsuzaki S, Pranay A, Loveland BL, Batushansky A, Mendez Garcia MF, Eyster C, Stavrakis S, Chiao YA, Kinter M, Humphries KM. Loss of cardiac PFKFB2 drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568379. [PMID: 38045353 PMCID: PMC10690253 DOI: 10.1101/2023.11.22.568379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. Methods To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control (CON) mice, we characterized impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. Results cKO mice have a shortened lifespan of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase (PDH) activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to CON animals. Metabolomic, proteomic, and western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular (LV) dilation, represented by reduced fractional shortening and increased LV internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. Conclusions Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart. Clinical Perspective What is New?: We have generated a novel cardiomyocyte-specific knockout model of PFKFB2, the cardiac isoform of the primary glycolytic regulator Phosphofructokinase-2 (cKO).The cKO model demonstrates that loss of cardiac PFKFB2 drives metabolic reprogramming and shunting of glucose metabolites to ancillary metabolic pathways.The loss of cardiac PFKFB2 promotes electrophysiological and functional remodeling in the cKO heart.What are the Clinical Implications?: PFKFB2 is degraded in the absence of insulin signaling, making its loss particularly relevant to diabetes and the pathophysiology of diabetic cardiomyopathy.Changes which we observe in the cKO model are consistent with those often observed in diabetes and heart failure of other etiologies.Defining PFKFB2 loss as a driver of cardiac pathogenesis identifies it as a target for future investigation and potential therapeutic intervention.
Collapse
|
8
|
Zhi F, Zhang Q, Liu L, Chang X, Xu H. Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments. Cell Stress Chaperones 2023; 28:641-655. [PMID: 37405612 PMCID: PMC10746653 DOI: 10.1007/s12192-023-01361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Diabetic cardiomyopathy describes decreased myocardial function in diabetic patients in the absence of other heart diseases such as myocardial ischemia and hypertension. Recent studies have defined numerous molecular interactions and signaling events that may account for deleterious changes in mitochondrial dynamics and functions influenced by hyperglycemic stress. A metabolic switch from glucose to fatty acid oxidation to fuel ATP synthesis, mitochondrial oxidative injury resulting from increased mitochondrial ROS production and decreased antioxidant capacity, enhanced mitochondrial fission and defective mitochondrial fusion, impaired mitophagy, and blunted mitochondrial biogenesis are major signatures of mitochondrial pathologies during diabetic cardiomyopathy. This review describes the molecular alterations underlying mitochondrial abnormalities associated with hyperglycemia and discusses their influence on cardiomyocyte viability and function. Based on basic research findings and clinical evidence, diabetic treatment standards and their impact on mitochondrial function, as well as mitochondria-targeted therapies of potential benefit for diabetic cardiomyopathy patients, are also summarized.
Collapse
Affiliation(s)
- Fumin Zhi
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Qian Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Li Liu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, 100053, China.
| | - Hongtao Xu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
9
|
Zou L, Zhang D, Ha CM, Wende AR, Chatham JC. Best practices in assessing cardiac protein O-GlcNAcylation by immunoblot. Am J Physiol Heart Circ Physiol 2023; 325:H601-H616. [PMID: 37539459 PMCID: PMC10642998 DOI: 10.1152/ajpheart.00104.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The modification of serine and threonine amino acids of proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates the activity, stability, function, and subcellular localization of proteins. Dysregulation of O-GlcNAc homeostasis is well established as a hallmark of various cardiac diseases, including cardiac hypertrophy, heart failure, complications associated with diabetes, and responses to acute injuries such as oxidative stress and ischemia-reperfusion. Given the limited availability of site-specific O-GlcNAc antibodies, studies of changes in O-GlcNAcylation in the heart frequently use pan-O-GlcNAc antibodies for semiquantitative evaluation of overall O-GlcNAc levels. However, there is a high degree of variability in many published cardiac O-GlcNAc blots. For example, many blots often have regions that lack O-GlcNAc positive staining of proteins either below 50 or above 100 kDa. In some O-GlcNAc blots, only a few protein bands are detected, while in others, intense bands around 75 kDa dominate the gel due to nonspecific IgM band staining, making it difficult to visualize less intense bands. Therefore, the goal of this study was to develop a modifiable protocol that optimizes O-GlcNAc positive banding of proteins in cardiac tissue extracts. We showed that O-GlcNAc blots using CTD110.6 antibody of proteins ranging from <30 to ∼450 kDa could be obtained while also limiting nonspecific staining. We also show that some myofilament proteins are recognized by the CTD110.6 antibody. Therefore, by protocol optimization using the widely available CTD110.6 antibody, we found that it is possible to obtain pan-O-GlcNAc blots of cardiac tissue, which minimizes common limitations associated with this technique.NEW & NOTEWORTHY The post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is recognized as mediating cardiac pathophysiology. However, there is considerable variability in the quality of O-GlcNAc immunoblots used to evaluate changes in cardiac O-GlcNAc levels. Here we show that with relatively minor changes to a commonly used protocol it is possible to minimize the intensity of nonspecific bands while also reproducibly generating O-GlcNAc immunoblots covering a range of molecular weights from <30 to ∼450 kDa.
Collapse
Affiliation(s)
- Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Chae-Myeong Ha
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
10
|
Yoganathan T, Perez-Liva M, Balvay D, Le Gall M, Lallemand A, Certain A, Autret G, Mokrani Y, Guillonneau F, Bruce J, Nguyen V, Gencer U, Schmitt A, Lager F, Guilbert T, Bruneval P, Vilar J, Maissa N, Mousseaux E, Viel T, Renault G, Kachenoura N, Tavitian B. Acute stress induces long-term metabolic, functional, and structural remodeling of the heart. Nat Commun 2023; 14:3835. [PMID: 37380648 DOI: 10.1038/s41467-023-39590-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Takotsubo cardiomyopathy is a stress-induced cardiovascular disease with symptoms comparable to those of an acute coronary syndrome but without coronary obstruction. Takotsubo was initially considered spontaneously reversible, but epidemiological studies revealed significant long-term morbidity and mortality, the reason for which is unknown. Here, we show in a female rodent model that a single pharmacological challenge creates a stress-induced cardiomyopathy similar to Takotsubo. The acute response involves changes in blood and tissue biomarkers and in cardiac in vivo imaging acquired with ultrasound, magnetic resonance and positron emission tomography. Longitudinal follow up using in vivo imaging, histochemistry, protein and proteomics analyses evidences a continued metabolic reprogramming of the heart towards metabolic malfunction, eventually leading to irreversible damage in cardiac function and structure. The results combat the supposed reversibility of Takotsubo, point to dysregulation of glucose metabolic pathways as a main cause of long-term cardiac disease and support early therapeutic management of Takotsubo.
Collapse
Affiliation(s)
| | | | - Daniel Balvay
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France
| | - Morgane Le Gall
- Université Paris Cité, P53 proteom'IC facility, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Alice Lallemand
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Anais Certain
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Gwennhael Autret
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France
| | - Yasmine Mokrani
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - François Guillonneau
- Institut de Cancérologie de l'Ouest, CNRS UMR6075 INSERM U1307, 15 rue André Boquel, F-49055, Angers, France
| | - Johanna Bruce
- Université Paris Cité, P53 proteom'IC facility, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Vincent Nguyen
- Sorbonne Université, Laboratoire d'Imagerie Biomédicale, Inserm, CNRS, F-75006, Paris, France
| | - Umit Gencer
- Service de Radiologie, AP-HP, hôpital européen Georges Pompidou, F-75015, Paris, France
| | - Alain Schmitt
- Université Paris Cité, Cochin Imaging, Electron microscopy, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Franck Lager
- Université Paris Cité, Plateforme d'Imageries du Vivant, Institut Cochin, Inserm-CNRS, F-75014, Paris, France
| | - Thomas Guilbert
- Université Paris Cité, Cochin Imaging Photonic, IMAG'IC, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
| | | | - Jose Vilar
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Nawal Maissa
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Elie Mousseaux
- Service de Radiologie, AP-HP, hôpital européen Georges Pompidou, F-75015, Paris, France
| | - Thomas Viel
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France
| | - Gilles Renault
- Université Paris Cité, Plateforme d'Imageries du Vivant, Institut Cochin, Inserm-CNRS, F-75014, Paris, France
| | - Nadjia Kachenoura
- Sorbonne Université, Laboratoire d'Imagerie Biomédicale, Inserm, CNRS, F-75006, Paris, France
| | - Bertrand Tavitian
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France.
- Service de Radiologie, AP-HP, hôpital européen Georges Pompidou, F-75015, Paris, France.
| |
Collapse
|
11
|
Papanicolaou KN, Jung J, Ashok D, Zhang W, Modaressanavi A, Avila E, Foster DB, Zachara NE, O'Rourke B. Inhibiting O-GlcNAcylation impacts p38 and Erk1/2 signaling and perturbs cardiomyocyte hypertrophy. J Biol Chem 2023; 299:102907. [PMID: 36642184 PMCID: PMC9988579 DOI: 10.1016/j.jbc.2023.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The dynamic cycling of O-linked GlcNAc (O-GlcNAc) on and off Ser/Thr residues of intracellular proteins, termed O-GlcNAcylation, is mediated by the conserved enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase. O-GlcNAc cycling is important in homeostatic and stress responses, and its perturbation sensitizes the heart to ischemic and other injuries. Despite considerable progress, many molecular pathways impacted by O-GlcNAcylation in the heart remain unclear. The mitogen-activated protein kinase (MAPK) pathway is a central signaling cascade that coordinates developmental, physiological, and pathological responses in the heart. The developmental or adaptive arm of MAPK signaling is primarily mediated by Erk kinases, while the pathophysiologic arm is mediated by p38 and Jnk kinases. Here, we examine whether O-GlcNAcylation affects MAPK signaling in cardiac myocytes, focusing on Erk1/2 and p38 in basal and hypertrophic conditions induced by phenylephrine. Using metabolic labeling of glycans coupled with alkyne-azide "click" chemistry, we found that Erk1/2 and p38 are O-GlcNAcylated. Supporting the regulation of p38 by O-GlcNAcylation, the OGT inhibitor, OSMI-1, triggers the phosphorylation of p38, an event that involves the NOX2-Ask1-MKK3/6 signaling axis and also the noncanonical activator Tab1. Additionally, OGT inhibition blocks the phenylephrine-induced phosphorylation of Erk1/2. Consistent with perturbed MAPK signaling, OSMI-1-treated cardiomyocytes have a blunted hypertrophic response to phenylephrine, decreased expression of cTnT (key component of the contractile apparatus), and increased expression of maladaptive natriuretic factors Anp and Bnp. Collectively, these studies highlight new roles for O-GlcNAcylation in maintaining a balanced activity of Erk1/2 and p38 MAPKs during hypertrophic growth responses in cardiomyocytes.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jessica Jung
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenxi Zhang
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Modaressanavi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eddie Avila
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
Nabeebaccus AA, Reumiller CM, Shen J, Zoccarato A, Santos CXC, Shah AM. The regulation of cardiac intermediary metabolism by NADPH oxidases. Cardiovasc Res 2023; 118:3305-3319. [PMID: 35325070 PMCID: PMC9847558 DOI: 10.1093/cvr/cvac030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
NADPH oxidases (NOXs), enzymes whose primary function is to generate reactive oxygen species, are important regulators of the heart's physiological function and response to pathological insults. The role of NOX-driven redox signalling in pathophysiological myocardial remodelling, including processes such as interstitial fibrosis, contractile dysfunction, cellular hypertrophy, and cell survival, is well recognized. While the NOX2 isoform promotes many detrimental effects, the NOX4 isoform has attracted considerable attention as a driver of adaptive stress responses both during pathology and under physiological states such as exercise. Recent studies have begun to define some of the NOX4-modulated mechanisms that may underlie these adaptive responses. In particular, novel functions of NOX4 in driving cellular metabolic changes have emerged. Alterations in cellular metabolism are a recognized hallmark of the heart's response to physiological and pathological stresses. In this review, we highlight the emerging roles of NOX enzymes as important modulators of cellular intermediary metabolism in the heart, linking stress responses not only to myocardial energetics but also other functions. The novel interplay of NOX-modulated redox signalling pathways and intermediary metabolism in the heart is unravelling a new aspect of the fascinating biology of these enzymes which will inform a better understanding of how they drive adaptive responses. We also discuss the implications of these new findings for therapeutic approaches that target metabolism in cardiac disease.
Collapse
Affiliation(s)
- Adam A Nabeebaccus
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Christina M Reumiller
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jie Shen
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Anna Zoccarato
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
13
|
Zhu WZ, Palazzo T, Zhou M, Ledee D, Olson HM, Paša-Tolić L, Olson AK. First comprehensive identification of cardiac proteins with putative increased O-GlcNAc levels during pressure overload hypertrophy. PLoS One 2022; 17:e0276285. [PMID: 36288343 PMCID: PMC9605332 DOI: 10.1371/journal.pone.0276285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Protein posttranslational modifications (PTMs) by O-GlcNAc globally rise during pressure-overload hypertrophy (POH). However, a major knowledge gap exists on the specific proteins undergoing changes in O-GlcNAc levels during POH primarily because this PTM is low abundance and easily lost during standard mass spectrometry (MS) conditions used for protein identification. Methodologies have emerged to enrich samples for O-GlcNAcylated proteins prior to MS analysis. Accordingly, our goal was to identify the specific proteins undergoing changes in O-GlcNAc levels during POH. We used C57/Bl6 mice subjected to Sham or transverse aortic constriction (TAC) to create POH. From the hearts, we labelled the O-GlcNAc moiety with tetramethylrhodamine azide (TAMRA) before sample enrichment by TAMRA immunoprecipitation (IP). We used LC-MS/MS to identify and quantify the captured putative O-GlcNAcylated proteins. We identified a total of 700 putative O-GlcNAcylated proteins in Sham and POH. Two hundred thirty-three of these proteins had significantly increased enrichment in POH over Sham suggesting higher O-GlcNAc levels whereas no proteins were significantly decreased by POH. We examined two MS identified metabolic enzymes, CPT1B and the PDH complex, to validate by immunoprecipitation. We corroborated increased O-GlcNAc levels during POH for CPT1B and the PDH complex. Enzyme activity assays suggests higher O-GlcNAcylation increases CPT1 activity and decreases PDH activity during POH. In summary, we generated the first comprehensive list of proteins with putative changes in O-GlcNAc levels during POH. Our results demonstrate the large number of potential proteins and cellular processes affected by O-GlcNAc and serve as a guide for testing specific O-GlcNAc-regulated mechanisms during POH.
Collapse
Affiliation(s)
- Wei Zhong Zhu
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Teresa Palazzo
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Mowei Zhou
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Dolena Ledee
- Seattle Children’s Research Institute, Seattle, Washington, United States of America,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Heather M. Olson
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Aaron K. Olson
- Seattle Children’s Research Institute, Seattle, Washington, United States of America,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America,* E-mail:
| |
Collapse
|
14
|
Azam T, Zhang H, Zhou F, Wang X. Recent Advances on Drug Development and Emerging Therapeutic Agents Through Targeting Cellular Homeostasis for Ageing and Cardiovascular Disease. FRONTIERS IN AGING 2022; 3:888190. [PMID: 35821839 PMCID: PMC9261412 DOI: 10.3389/fragi.2022.888190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Ageing is a progressive physiological process mediated by changes in biological pathways, resulting in a decline in tissue and cellular function. It is a driving factor in numerous age-related diseases including cardiovascular diseases (CVDs). Cardiomyopathies, hypertension, ischaemic heart disease, and heart failure are some of the age-related CVDs that are the leading causes of death worldwide. Although individual CVDs have distinct clinical and pathophysiological manifestations, a disturbance in cellular homeostasis underlies the majority of diseases which is further compounded with aging. Three key evolutionary conserved signalling pathways, namely, autophagy, mitophagy and the unfolded protein response (UPR) are involved in eliminating damaged and dysfunctional organelle, misfolded proteins, lipids and nucleic acids, together these molecular processes protect and preserve cellular homeostasis. However, amongst the numerous molecular changes during ageing, a decline in the signalling of these key molecular processes occurs. This decline also increases the susceptibility of damage following a stressful insult, promoting the development and pathogenesis of CVDs. In this review, we discuss the role of autophagy, mitophagy and UPR signalling with respect to ageing and cardiac disease. We also highlight potential therapeutic strategies aimed at restoring/rebalancing autophagy and UPR signalling to maintain cellular homeostasis, thus mitigating the pathological effects of ageing and CVDs. Finally, we highlight some limitations that are likely hindering scientific drug research in this field.
Collapse
Affiliation(s)
- Tayyiba Azam
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongyuan Zhang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Fangchao Zhou
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Xiong X, Ma H, Ma J, Wang X, Li D, Xu L. αSMA-Cre-mediated Ogt deletion leads to heart failure and vascular smooth muscle cell dysfunction in mice. Biochem Biophys Res Commun 2022; 625:31-37. [DOI: 10.1016/j.bbrc.2022.07.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
|
16
|
Xue Q, Yan R, Ji S, Yu S. Regulation of mitochondrial network homeostasis by O-GlcNAcylation. Mitochondrion 2022; 65:45-55. [DOI: 10.1016/j.mito.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|
17
|
Dontaine J, Bouali A, Daussin F, Bultot L, Vertommen D, Martin M, Rathagirishnan R, Cuillerier A, Horman S, Beauloye C, Gatto L, Lauzier B, Bertrand L, Burelle Y. The intra-mitochondrial O-GlcNAcylation system rapidly modulates OXPHOS function and ROS release in the heart. Commun Biol 2022; 5:349. [PMID: 35414690 PMCID: PMC9005719 DOI: 10.1038/s42003-022-03282-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Protein O-GlcNAcylation is increasingly recognized as an important cellular regulatory mechanism, in multiple organs including the heart. However, the mechanisms leading to O-GlcNAcylation in mitochondria and the consequences on their function remain poorly understood. In this study, we use an in vitro reconstitution assay to characterize the intra-mitochondrial O-GlcNAc system without potential cytoplasmic confounding effects. We compare the O-GlcNAcylome of isolated cardiac mitochondria with that of mitochondria acutely exposed to NButGT, a specific inhibitor of glycoside hydrolase. Amongst the 409 O-GlcNAcylated mitochondrial proteins identified, 191 display increased O-GlcNAcylation in response to NButGT. This is associated with enhanced Complex I (CI) activity, increased maximal respiration in presence of pyruvate-malate, and a striking reduction of mitochondrial ROS release, which could be related to O-GlcNAcylation of specific subunits of ETC complexes (CI, CIII) and TCA cycle enzymes. In conclusion, our work underlines the existence of a dynamic mitochondrial O-GlcNAcylation system capable of rapidly modifying mitochondrial function. An in vitro assay in isolated heart mitochondria reveals that O-GlcNAcase inhibitor NButGT rapidly increases protein O-GlcNAcylation leading to increased respiratory capacity and complex I activity and decreased ROS release.
Collapse
Affiliation(s)
- Justine Dontaine
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Asma Bouali
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Frederic Daussin
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Laurent Bultot
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Didier Vertommen
- Pole of Protein phosphorylation (PHOS) and proteomic platform (MASSPROT), de Duve Institute (DDUV), UCLouvain, Brussels, Belgium
| | - Manon Martin
- Pole of Computational biology and bioinformatics (CBIO), de Duve Institute (DDUV), UCLouvain, Brussels, Belgium
| | - Raahulan Rathagirishnan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Alexanne Cuillerier
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sandrine Horman
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Laurent Gatto
- Pole of Computational biology and bioinformatics (CBIO), de Duve Institute (DDUV), UCLouvain, Brussels, Belgium
| | - Benjamin Lauzier
- Institute of Thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - Luc Bertrand
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.,WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Brussels, Belgium
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
dos Passos Junior RR, Bomfim GF, Giachini FR, Tostes RC, Lima VV. O-Linked β-N-Acetylglucosamine Modification: Linking Hypertension and the Immune System. Front Immunol 2022; 13:852115. [PMID: 35371030 PMCID: PMC8967968 DOI: 10.3389/fimmu.2022.852115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of proteins dynamically regulates protein function, localization, stability, and interactions. This post-translational modification is intimately linked to cardiovascular disease, including hypertension. An increasing number of studies suggest that components of innate and adaptive immunity, active players in the pathophysiology of hypertension, are targets for O-GlcNAcylation. In this review, we highlight the potential roles of O-GlcNAcylation in the immune system and discuss how those immune targets of O-GlcNAcylation may contribute to arterial hypertension.
Collapse
Affiliation(s)
- Rinaldo Rodrigues dos Passos Junior
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | | | - Fernanda R. Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Vitorino Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- *Correspondence: Victor Vitorino Lima,
| |
Collapse
|
19
|
Nellaiappan K, Preeti K, Khatri DK, Singh SB. Diabetic Complications: An Update on Pathobiology and Therapeutic Strategies. Curr Diabetes Rev 2022; 18:e030821192146. [PMID: 33745424 DOI: 10.2174/1573399817666210309104203] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Despite the advent of novel therapies which manage and control diabetes well, the increased risk of morbidity and mortality in diabetic subjects is associated with the devastating secondary complications it produces. Long-standing diabetes majorly drives cellular and molecular alterations, which eventually damage both small and large blood vessels. The complications are prevalent both in type I and type II diabetic subjects. The microvascular complications include diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, while the macrovascular complications include diabetic heart disease and stroke. The current therapeutic strategy alleviates the complications to some extent but does not cure or prevent them. Also, the recent clinical trial outcomes in this field are disappointing. Success in the drug discovery of diabetic complications may be achieved by a better understanding of the underlying pathophysiology and by recognising the crucial factors contributing to the development and progression of the disease. In this review, we discuss the well-studied cellular mechanisms leading to the development and progression of diabetic complications. In addition, we also highlight the various therapeutic paradigms currently in clinical practice.
Collapse
Affiliation(s)
- Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| |
Collapse
|
20
|
Ishikita A, Matsushima S, Ikeda S, Okabe K, Nishimura R, Tadokoro T, Enzan N, Yamamoto T, Sada M, Tsutsui Y, Miyake R, Ikeda M, Ide T, Kinugawa S, Tsutsui H. GFAT2 mediates cardiac hypertrophy through HBP-O-GlcNAcylation-Akt pathway. iScience 2021; 24:103517. [PMID: 34934932 DOI: 10.1016/j.isci.2021.103517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/25/2021] [Accepted: 11/23/2021] [Indexed: 01/14/2023] Open
Abstract
Molecular mechanisms mediating cardiac hypertrophy by glucose metabolism are incompletely understood. Hexosamine biosynthesis pathway (HBP), an accessory pathway of glycolysis, is known to be involved in the attachment of O-linked N-acetylglucosamine motif (O-GlcNAcylation) to proteins, a post-translational modification. We here demonstrate that glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2), a critical HBP enzyme, is a major isoform of GFAT in the heart and is increased in response to several hypertrophic stimuli, including isoproterenol (ISO). Knockdown of GFAT2 suppresses ISO-induced cardiomyocyte hypertrophy, accompanied by suppression of Akt O-GlcNAcylation and activation. Knockdown of GFAT2 does not affect anti-hypertrophic effect by Akt inhibition. Administration of glucosamine, a substrate of HBP, induces protein O-GlcNAcylation, Akt activation, and cardiomyocyte hypertrophy. In mice, 6-diazo-5-oxo-L-norleucine, an inhibitor of GFAT, attenuates ISO-induced protein O-GlcNAcylation, Akt activation, and cardiac hypertrophy. Our results demonstrate that GFAT2 mediates cardiomyocyte hypertrophy by HBP-O-GlcNAcylation-Akt pathway and could be a critical therapeutic target of cardiac hypertrophy.
Collapse
Affiliation(s)
- Akihito Ishikita
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichiro Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Okabe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryohei Nishimura
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuyuki Enzan
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taishi Yamamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masashi Sada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Miyake
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Zou L, Collins HE, Young ME, Zhang J, Wende AR, Darley-Usmar VM, Chatham JC. The Identification of a Novel Calcium-Dependent Link Between NAD + and Glucose Deprivation-Induced Increases in Protein O-GlcNAcylation and ER Stress. Front Mol Biosci 2021; 8:780865. [PMID: 34950703 PMCID: PMC8691773 DOI: 10.3389/fmolb.2021.780865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
The modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is associated with the regulation of numerous cellular processes. Despite the importance of O-GlcNAc in mediating cellular function our understanding of the mechanisms that regulate O-GlcNAc levels is limited. One factor known to regulate protein O-GlcNAc levels is nutrient availability; however, the fact that nutrient deficient states such as ischemia increase O-GlcNAc levels suggests that other factors also contribute to regulating O-GlcNAc levels. We have previously reported that in unstressed cardiomyocytes exogenous NAD+ resulted in a time and dose dependent decrease in O-GlcNAc levels. Therefore, we postulated that NAD+ and cellular O-GlcNAc levels may be coordinately regulated. Using glucose deprivation as a model system in an immortalized human ventricular cell line, we examined the influence of extracellular NAD+ on cellular O-GlcNAc levels and ER stress in the presence and absence of glucose. We found that NAD+ completely blocked the increase in O-GlcNAc induced by glucose deprivation and suppressed the activation of ER stress. The NAD+ metabolite cyclic ADP-ribose (cADPR) had similar effects on O-GlcNAc and ER stress suggesting a common underlying mechanism. cADPR is a ryanodine receptor (RyR) agonist and like caffeine, which also activates the RyR, both mimicked the effects of NAD+. SERCA inhibition, which also reduces ER/SR Ca2+ levels had similar effects to both NAD+ and cADPR on O-GlcNAc and ER stress responses to glucose deprivation. The observation that NAD+, cADPR, and caffeine all attenuated the increase in O-GlcNAc and ER stress in response to glucose deprivation, suggests a potential common mechanism, linked to ER/SR Ca2+ levels, underlying their activation. Moreover, we showed that TRPM2, a plasma membrane cation channel was necessary for the cellular responses to glucose deprivation. Collectively, these findings support a novel Ca2+-dependent mechanism underlying glucose deprivation induced increase in O-GlcNAc and ER stress.
Collapse
Affiliation(s)
- Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Helen E. Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,Birmingham VA Medical Center, Birmingham, AL, United States
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
22
|
Li Z, Xu J, Song Y, Xin C, Liu L, Hou N, Teng Y, Cheng X, Wang T, Yu Z, Song J, Zhang Y, Wang J, Yang X. PRMT5 Prevents Dilated Cardiomyopathy via Suppression of Protein O-GlcNAcylation. Circ Res 2021; 129:857-871. [PMID: 34503365 DOI: 10.1161/circresaha.121.319456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zhenhua Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Jingping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Yao Song
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, China (Y.S., Y.Z.)
| | - Chong Xin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Lantao Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Tianle Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Zhenyang Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), China (J.S.)
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, China (Y.S., Y.Z.)
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| |
Collapse
|
23
|
El Hayek MS, Ernande L, Benitah JP, Gomez AM, Pereira L. The role of hyperglycaemia in the development of diabetic cardiomyopathy. Arch Cardiovasc Dis 2021; 114:748-760. [PMID: 34627704 DOI: 10.1016/j.acvd.2021.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus is a metabolic disorder with a chronic hyperglycaemic state. Cardiovascular diseases are the primary cause of mortality in patients with diabetes. Increasing evidence supports the existence of diabetic cardiomyopathy, a cardiac dysfunction with impaired cardiac contraction and relaxation, independent of coronary and/or valvular complications. Diabetic cardiomyopathy can lead to heart failure. Several preclinical and clinical studies have aimed to decipher the underlying mechanisms of diabetic cardiomyopathy. Among all the co-factors, hyperglycaemia seems to play an important role in this pathology. Hyperglycaemia has been shown to alter cardiac metabolism and function through several deleterious mechanisms, such as oxidative stress, inflammation, accumulation of advanced glycated end-products and upregulation of the hexosamine biosynthesis pathway. These mechanisms are responsible for the activation of hypertrophic pathways, epigenetic modifications, mitochondrial dysfunction, cell apoptosis, fibrosis and calcium mishandling, leading to cardiac stiffness, as well as contractile and relaxation dysfunction. This review aims to describe the hyperglycaemic-induced alterations that participate in diabetic cardiomyopathy, and their correlation with the severity of the disease and patient mortality, and to provide an overview of cardiac outcomes of glucose-lowering therapy.
Collapse
Affiliation(s)
| | - Laura Ernande
- INSERM U955, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Department of Cardiology, Institut Mondor de Recherche Biomédicale, INSERM U955-Équipe 8, Faculté de Médecine de Créteil, 94010 Créteil, France
| | | | - Ana-Maria Gomez
- Université Paris-Saclay, INSERM, UMR-S 1180, 92296 Châtenay-Malabry, France
| | - Laetitia Pereira
- Université Paris-Saclay, INSERM, UMR-S 1180, 92296 Châtenay-Malabry, France.
| |
Collapse
|
24
|
Denis M, Dupas T, Persello A, Dontaine J, Bultot L, Betus C, Pelé T, Dhot J, Erraud A, Maillard A, Montnach J, Leroux AA, Bigot-Corbel E, Vertommen D, Rivière M, Lebreton J, Tessier A, Waard MD, Bertrand L, Rozec B, Lauzier B. An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. Int J Mol Sci 2021; 22:9236. [PMID: 34502162 PMCID: PMC8430499 DOI: 10.3390/ijms22179236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.
Collapse
Affiliation(s)
- Manon Denis
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
- Pediatric Intensive Care Unit, CHU de Nantes, F-44000 Nantes, France
| | - Thomas Dupas
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Antoine Persello
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
- InFlectis BioScience, F-44000 Nantes, France
| | - Justine Dontaine
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, B-1200 Brussels, Belgium; (J.D.); (L.B.); (L.B.)
| | - Laurent Bultot
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, B-1200 Brussels, Belgium; (J.D.); (L.B.); (L.B.)
| | - Charlotte Betus
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Thomas Pelé
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Justine Dhot
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
- Sanofi R&D, 1 Avenue Pierre Brossolette, F-44000 Chilly Mazarin, France
| | - Angélique Erraud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Anaïs Maillard
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Jérôme Montnach
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Aurélia A. Leroux
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
- University Animal Hospital, Oniris Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes Atlantique, F-44000 Nantes, France
| | | | - Didier Vertommen
- Université Catholique de Louvain, de Duve Institute, Mass Spectrometry Platform, B-1200 Brussels, Belgium;
| | - Matthieu Rivière
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, Faculté des Sciences et des Techniques, F-44000 Nantes, France; (M.R.); (J.L.); (A.T.)
| | - Jacques Lebreton
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, Faculté des Sciences et des Techniques, F-44000 Nantes, France; (M.R.); (J.L.); (A.T.)
| | - Arnaud Tessier
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, Faculté des Sciences et des Techniques, F-44000 Nantes, France; (M.R.); (J.L.); (A.T.)
| | - Michel De Waard
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, B-1200 Brussels, Belgium; (J.D.); (L.B.); (L.B.)
- WELBIO, B-1200 Brussels, Belgium
| | - Bertrand Rozec
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Benjamin Lauzier
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| |
Collapse
|
25
|
Zhu WZ, Ledee D, Olson AK. Temporal regulation of protein O-GlcNAc levels during pressure-overload cardiac hypertrophy. Physiol Rep 2021; 9:e14965. [PMID: 34337900 PMCID: PMC8326887 DOI: 10.14814/phy2.14965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
Protein posttranslational modifications (PTMs) by O-linked β-N-acetylglucosamine (O-GlcNAc) rise during pressure-overload hypertrophy (POH) to affect hypertrophic growth. The hexosamine biosynthesis pathway (HBP) branches from glycolysis to make the moiety for O-GlcNAcylation. It is speculated that greater glucose utilization during POH augments HBP flux to increase O-GlcNAc levels; however, recent results suggest glucose availability does not primarily regulate cardiac O-GlcNAc levels. We hypothesize that induction of key enzymes augment protein O-GlcNAc levels primarily during active myocardial hypertrophic growth and remodeling with early pressure overload. We further speculate that downregulation of protein O-GlcNAcylation inhibits ongoing hypertrophic growth during prolonged pressure overload with established hypertrophy. We used transverse aortic constriction (TAC) to create POH in C57/Bl6 mice. Experimental groups were sham, 1-week TAC (1wTAC) for early hypertrophy, or 6-week TAC (6wTAC) for established hypertrophy. We used western blots to determine O-GlcNAc regulation. To assess the effect of increased protein O-GlcNAcylation with established hypertrophy, mice received thiamet-g (TG) starting 4 weeks after TAC. Protein O-GlcNAc levels were significantly elevated in 1wTAC versus Sham with a fall in 6wTAC. OGA, which removes O-GlcNAc from proteins, fell in 1wTAC versus sham. GFAT is the rate-limiting HBP enzyme and the isoform GFAT1 substantially rose in 1wTAC. With established hypertrophy, TG increased protein O-GlcNAc levels but did not affect cardiac mass. In summary, protein O-GlcNAc levels vary during POH with elevations occurring during active hypertrophic growth early after TAC. O-GlcNAc levels appear to be regulated by changes in key enzyme levels. Increasing O-GlcNAc levels during established hypertrophy did not restart hypertrophic growth.
Collapse
Affiliation(s)
| | - Dolena Ledee
- Seattle Children’s Research InstituteSeattleWAUSA
- Division of CardiologyDepartment of PediatricsUniversity of WashingtonSeattleWAUSA
| | - Aaron K. Olson
- Seattle Children’s Research InstituteSeattleWAUSA
- Division of CardiologyDepartment of PediatricsUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
26
|
Geraets IME, Coumans WA, Strzelecka A, Schönleitner P, Antoons G, Schianchi F, Willemars MMA, Kapsokalyvas D, Glatz JFC, Luiken JJFP, Nabben M. Metabolic Interventions to Prevent Hypertrophy-Induced Alterations in Contractile Properties In Vitro. Int J Mol Sci 2021; 22:ijms22073620. [PMID: 33807195 PMCID: PMC8037191 DOI: 10.3390/ijms22073620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: The exact mechanism(s) underlying pathological changes in a heart in transition to hypertrophy and failure are not yet fully understood. However, alterations in cardiac energy metabolism seem to be an important contributor. We characterized an in vitro model of adrenergic stimulation-induced cardiac hypertrophy for studying metabolic, structural, and functional changes over time. Accordingly, we investigated whether metabolic interventions prevent cardiac structural and functional changes; (2) Methods: Primary rat cardiomyocytes were treated with phenylephrine (PE) for 16 h, 24 h, or 48 h, whereafter hypertrophic marker expression, protein synthesis rate, glucose uptake, and contractile function were assessed; (3) Results: 24 h PE treatment increased expression of hypertrophic markers, phosphorylation of hypertrophy-related signaling kinases, protein synthesis, and glucose uptake. Importantly, the increased glucose uptake preceded structural and functional changes, suggesting a causal role for metabolism in the onset of PE-induced hypertrophy. Indeed, PE treatment in the presence of a PAN-Akt inhibitor or of a GLUT4 inhibitor dipyridamole prevented PE-induced increases in cellular glucose uptake and ameliorated PE-induced contractile alterations; (4) Conclusions: Pharmacological interventions, forcing substrate metabolism away from glucose utilization, improved contractile properties in PE-treated cardiomyocytes, suggesting that targeting glucose uptake, independent from protein synthesis, forms a promising strategy to prevent hypertrophy and hypertrophy-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Ilvy M. E. Geraets
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200-MD Maastricht, The Netherlands; (I.M.E.G.); (W.A.C.); (A.S.); (F.S.); (M.M.A.W.); (D.K.); (J.F.C.G.); (J.J.F.P.L.)
| | - Will A. Coumans
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200-MD Maastricht, The Netherlands; (I.M.E.G.); (W.A.C.); (A.S.); (F.S.); (M.M.A.W.); (D.K.); (J.F.C.G.); (J.J.F.P.L.)
| | - Agnieszka Strzelecka
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200-MD Maastricht, The Netherlands; (I.M.E.G.); (W.A.C.); (A.S.); (F.S.); (M.M.A.W.); (D.K.); (J.F.C.G.); (J.J.F.P.L.)
| | - Patrick Schönleitner
- Departments of Physiology, Maastricht University, 6200-MD Maastricht, The Netherlands; (P.S.); (G.A.)
- CARIM School for Cardiovascular Diseases, Maastricht University, 6200-MD Maastricht, The Netherlands
| | - Gudrun Antoons
- Departments of Physiology, Maastricht University, 6200-MD Maastricht, The Netherlands; (P.S.); (G.A.)
- CARIM School for Cardiovascular Diseases, Maastricht University, 6200-MD Maastricht, The Netherlands
| | - Francesco Schianchi
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200-MD Maastricht, The Netherlands; (I.M.E.G.); (W.A.C.); (A.S.); (F.S.); (M.M.A.W.); (D.K.); (J.F.C.G.); (J.J.F.P.L.)
| | - Myrthe M. A. Willemars
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200-MD Maastricht, The Netherlands; (I.M.E.G.); (W.A.C.); (A.S.); (F.S.); (M.M.A.W.); (D.K.); (J.F.C.G.); (J.J.F.P.L.)
| | - Dimitrios Kapsokalyvas
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200-MD Maastricht, The Netherlands; (I.M.E.G.); (W.A.C.); (A.S.); (F.S.); (M.M.A.W.); (D.K.); (J.F.C.G.); (J.J.F.P.L.)
| | - Jan F. C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200-MD Maastricht, The Netherlands; (I.M.E.G.); (W.A.C.); (A.S.); (F.S.); (M.M.A.W.); (D.K.); (J.F.C.G.); (J.J.F.P.L.)
- CARIM School for Cardiovascular Diseases, Maastricht University, 6200-MD Maastricht, The Netherlands
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200-MD Maastricht, The Netherlands; (I.M.E.G.); (W.A.C.); (A.S.); (F.S.); (M.M.A.W.); (D.K.); (J.F.C.G.); (J.J.F.P.L.)
- Department of Clinical Genetics, Maastricht University Medical Center, 6200-MD Maastricht, The Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200-MD Maastricht, The Netherlands; (I.M.E.G.); (W.A.C.); (A.S.); (F.S.); (M.M.A.W.); (D.K.); (J.F.C.G.); (J.J.F.P.L.)
- CARIM School for Cardiovascular Diseases, Maastricht University, 6200-MD Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, 6200-MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3881998
| |
Collapse
|
27
|
Hardy E, Fernandez-Patron C. Targeting MMP-Regulation of Inflammation to Increase Metabolic Tolerance to COVID-19 Pathologies: A Hypothesis. Biomolecules 2021; 11:biom11030390. [PMID: 33800947 PMCID: PMC7998259 DOI: 10.3390/biom11030390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Many individuals infected with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) develop no or only mild symptoms, but some can go on onto develop a spectrum of pathologies including pneumonia, acute respiratory distress syndrome, respiratory failure, systemic inflammation, and multiorgan failure. Many pathogens, viral and non-viral, can elicit these pathologies, which justifies reconsidering whether the target of therapeutic approaches to fight pathogen infections should be (a) the pathogen itself, (b) the pathologies elicited by the pathogen interaction with the human host, or (c) a combination of both. While little is known about the immunopathology of SARS-CoV-2, it is well-established that the above-mentioned pathologies are associated with hyper-inflammation, tissue damage, and the perturbation of target organ metabolism. Mounting evidence has shown that these processes are regulated by endoproteinases (particularly, matrix metalloproteinases (MMPs)). Here, we review what is known about the roles played by MMPs in the development of COVID-19 and postulate a mechanism by which MMPs could influence energy metabolism in target organs, such as the lung. Finally, we discuss the suitability of MMPs as therapeutic targets to increase the metabolic tolerance of the host to damage inflicted by the pathogen infection, with a focus on SARS-CoV-2.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center for Molecular Immunology, 16040 Havana, Cuba
- Correspondence: (E.H.); (C.F.-P.)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence: (E.H.); (C.F.-P.)
| |
Collapse
|
28
|
Dupas T, Denis M, Dontaine J, Persello A, Bultot L, Erraud A, Vertommen D, Bouchard B, Tessier A, Rivière M, Lebreton J, Bigot‐Corbel E, Montnach J, De Waard M, Gauthier C, Burelle Y, Olson AK, Rozec B, Des Rosiers C, Bertrand L, Issad T, Lauzier B. Protein O-GlcNAcylation levels are regulated independently of dietary intake in a tissue and time-specific manner during rat postnatal development. Acta Physiol (Oxf) 2021; 231:e13566. [PMID: 33022862 PMCID: PMC7988603 DOI: 10.1111/apha.13566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Aim Metabolic sources switch from carbohydrates in utero, to fatty acids after birth and then a mix once adults. O‐GlcNAcylation (O‐GlcNAc) is a post‐translational modification considered as a nutrient sensor. The purpose of this work was to assess changes in protein O‐GlcNAc levels, regulatory enzymes and metabolites during the first periods of life and decipher the impact of O‐GlcNAcylation on cardiac proteins. Methods Heart, brain and liver were harvested from rats before and after birth (D‐1 and D0), in suckling animals (D12), after weaning with a standard (D28) or a low‐carbohydrate diet (D28F), and adults (D84). O‐GlcNAc levels and regulatory enzymes were evaluated by western blots. Mass spectrometry (MS) approaches were performed to quantify levels of metabolites regulating O‐GlcNAc and identify putative cardiac O‐GlcNAcylated proteins. Results Protein O‐GlcNAc levels decrease drastically and progressively from D‐1 to D84 (13‐fold, P < .05) in the heart, whereas the changes were opposite in liver and brain. O‐GlcNAc levels were unaffected by weaning diet in any tissues. Changes in expression of enzymes and levels of metabolites regulating O‐GlcNAc were tissue‐dependent. MS analyses identified changes in putative cardiac O‐GlcNAcylated proteins, namely those involved in the stress response and energy metabolism, such as ACAT1, which is only O‐GlcNAcylated at D0. Conclusion Our results demonstrate that protein O‐GlcNAc levels are not linked to dietary intake and regulated in a time and tissue‐specific manner during postnatal development. We have identified by untargeted MS putative proteins with a particular O‐GlcNAc signature across the development process suggesting specific role of these proteins.
Collapse
Affiliation(s)
- Thomas Dupas
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Manon Denis
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Justine Dontaine
- Université catholique de LouvainInstitut de Recherche Expérimentale et CliniquePole of Cardiovascular Research Brussels Belgium
| | - Antoine Persello
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
- InFlectis BioScience Nantes France
| | - Laurent Bultot
- Université catholique de LouvainInstitut de Recherche Expérimentale et CliniquePole of Cardiovascular Research Brussels Belgium
| | - Angélique Erraud
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Didier Vertommen
- Université catholique de Louvainde Duve InstituteMass Spectrometry Platform Brussels Belgium
| | - Bertrand Bouchard
- Montreal Heart Institute Research Center and Department of Nutrition Université de Montréal Montreal Québec Canada
| | - Arnaud Tessier
- Faculté des Sciences et des Techniques Université de NantesCNRSChimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)UMR CNRS 6230 Nantes France
| | - Matthieu Rivière
- Faculté des Sciences et des Techniques Université de NantesCNRSChimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)UMR CNRS 6230 Nantes France
| | - Jacques Lebreton
- Faculté des Sciences et des Techniques Université de NantesCNRSChimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)UMR CNRS 6230 Nantes France
| | | | - Jérôme Montnach
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Michel De Waard
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Chantal Gauthier
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Yan Burelle
- Interdisciplinary School of Health Sciences Faculty of Health Sciences and Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ottawa ON Canada
| | - Aaron K. Olson
- Division of Cardiology Department of Pediatrics University of Washington Seattle WA98105USA
- Seattle Children’s Research Institute Seattle WA98101USA
| | - Bertrand Rozec
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center and Department of Nutrition Université de Montréal Montreal Québec Canada
| | - Luc Bertrand
- Université catholique de LouvainInstitut de Recherche Expérimentale et CliniquePole of Cardiovascular Research Brussels Belgium
- WELBIO Brussels Belgium
| | - Tarik Issad
- Université de ParisINSERM U1016CNRS UMR 8104 Paris France
| | - Benjamin Lauzier
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| |
Collapse
|
29
|
Umbarawan Y, Kawakami R, Syamsunarno MRAA, Koitabashi N, Obinata H, Yamaguchi A, Hanaoka H, Hishiki T, Hayakawa N, Sunaga H, Matsui H, Kurabayashi M, Iso T. Reduced fatty acid uptake aggravates cardiac contractile dysfunction in streptozotocin-induced diabetic cardiomyopathy. Sci Rep 2020; 10:20809. [PMID: 33257783 PMCID: PMC7705707 DOI: 10.1038/s41598-020-77895-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is an independent risk factor for the development of heart failure. Increased fatty acid (FA) uptake and deranged utilization leads to reduced cardiac efficiency and accumulation of cardiotoxic lipids, which is suggested to facilitate diabetic cardiomyopathy. We studied whether reduced FA uptake in the heart is protective against streptozotocin (STZ)-induced diabetic cardiomyopathy by using mice doubly deficient in fatty acid binding protein 4 (FABP4) and FABP5 (DKO mice). Cardiac contractile dysfunction was aggravated 8 weeks after STZ treatment in DKO mice. Although compensatory glucose uptake was not reduced in DKO-STZ hearts, total energy supply, estimated by the pool size in the TCA cycle, was significantly reduced. Tracer analysis with 13C6-glucose revealed that accelerated glycolysis in DKO hearts was strongly suppressed by STZ treatment. Levels of ceramides, cardiotoxic lipids, were similarly elevated by STZ treatment. These findings suggest that a reduction in total energy supply by reduced FA uptake and suppressed glycolysis could account for exacerbated contractile dysfunction in DKO-STZ hearts. Thus, enhanced FA uptake in diabetic hearts seems to be a compensatory response to reduced energy supply from glucose, and therefore, limited FA use could be detrimental to cardiac contractile dysfunction due to energy insufficiency.
Collapse
Affiliation(s)
- Yogi Umbarawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Internal Medicine, Faculty of Medicine Universitas Indonesia, Jl. Salemba Raya no. 6, Jakarta, 10430, Indonesia
| | - Ryo Kawakami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Mas Rizky A A Syamsunarno
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Biochemistry and Molecular Biology, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, West Java, 45363, Indonesia
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Aiko Yamaguchi
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hirofumi Hanaoka
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noriyo Hayakawa
- Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Center for Liberal Arts and Sciences, Ashikaga University, 268-1 Omae-machi, Ashikaga, Tochigi, 326-8558, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
30
|
Battault S, Renguet E, Van Steenbergen A, Horman S, Beauloye C, Bertrand L. Myocardial glucotoxicity: Mechanisms and potential therapeutic targets. Arch Cardiovasc Dis 2020; 113:736-748. [PMID: 33189592 DOI: 10.1016/j.acvd.2020.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Besides coronary artery disease, which remains the main cause of heart failure in patients with diabetes, factors independent of coronary artery disease are involved in the development of heart failure in the onset of what is called diabetic cardiomyopathy. Among them, hyperglycaemia - a hallmark of type 2 diabetes - has both acute and chronic deleterious effects on myocardial function, and clearly participates in the establishment of diabetic cardiomyopathy. In the present review, we summarize the cellular and tissular events that occur in a heart exposed to hyperglycaemia, and depict the complex molecular mechanisms proposed to be involved in glucotoxicity. Finally, from a more translational perspective, different therapeutic strategies targeting hyperglycaemia-mediated molecular mechanisms will be detailed.
Collapse
Affiliation(s)
- Sylvain Battault
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Edith Renguet
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Anne Van Steenbergen
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Sandrine Horman
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Christophe Beauloye
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium; Division of cardiology, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium.
| | - Luc Bertrand
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium; WELBIO, B-1300 Wavre, Belgium.
| |
Collapse
|
31
|
Bertrand L, Auquier J, Renguet E, Angé M, Cumps J, Horman S, Beauloye C. Glucose transporters in cardiovascular system in health and disease. Pflugers Arch 2020; 472:1385-1399. [PMID: 32809061 DOI: 10.1007/s00424-020-02444-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Glucose transporters are essential for the heart to sustain its function. Due to its nature as a high energy-consuming organ, the heart needs to catabolize a huge quantity of metabolic substrates. For optimized energy production, the healthy heart constantly switches between various metabolites in accordance with substrate availability and hormonal status. This metabolic flexibility is essential for the maintenance of cardiac function. Glucose is part of the main substrates catabolized by the heart and its use is fine-tuned via complex molecular mechanisms that include the regulation of the glucose transporters GLUTs, mainly GLUT4 and GLUT1. Besides GLUTs, glucose can also be transported by cotransporters of the sodium-glucose cotransporter (SGLT) (SLC5 gene) family, in which SGLT1 and SMIT1 were shown to be expressed in the heart. This SGLT-mediated uptake does not seem to be directly linked to energy production but is rather associated with intracellular signalling triggering important processes such as the production of reactive oxygen species. Glucose transport is markedly affected in cardiac diseases such as cardiac hypertrophy, diabetic cardiomyopathy and heart failure. These alterations are not only fingerprints of these diseases but are involved in their onset and progression. The present review will depict the importance of glucose transport in healthy and diseased heart, as well as proposed therapies targeting glucose transporters.
Collapse
Affiliation(s)
- Luc Bertrand
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.
| | - Julien Auquier
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Edith Renguet
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Marine Angé
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Julien Cumps
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
32
|
O-GlcNAcylation Is Essential for Autophagy in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5602396. [PMID: 32850000 PMCID: PMC7439163 DOI: 10.1155/2020/5602396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/21/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Since both O-GlcNAcylation and autophagy sense intracellular nutrient level, the alteration of those two pathways plays substantial roles in the progression of heart failure. Hence, determining the relationship between O-GlcNAcylation and autophagy is imperative to understand, prevent, and treat heart failure. However, the mechanism on how O-GlcNAcylation regulates autophagy in the heart is poorly investigated. In this study, we demonstrated that O-GlcNAcylation is required for autophagy in cardiomyocytes by utilizing an O-linked β-N-acetylglucosamine transferase (OGT) cardiomyocyte-specific knockout mouse model for the first time. We also identified that OGT might regulate the initiation of autophagy in cardiomyocytes through promoting the activity of ULK1 by O-GlcNAcylation. In conclusion, our findings provide new insights into the molecular mechanisms underlying heart dysfunction and benefit the development of treatments for heart failure.
Collapse
|
33
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
34
|
Xiang K, Qin Z, Zhang H, Liu X. Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy. Front Pharmacol 2020; 11:1133. [PMID: 32848751 PMCID: PMC7403221 DOI: 10.3389/fphar.2020.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Physiologic hypertrophy of the heart preserves or enhances systolic function without interstitial fibrosis or cell death. As a unique form of physiological stress, regular exercise training can trigger the adaptation of cardiac muscle to cause physiological hypertrophy, partly due to its ability to improve cardiac metabolism. In heart failure (HF), cardiac dysfunction is closely associated with early initiation of maladaptive metabolic remodeling. A large amount of clinical and experimental evidence shows that metabolic homeostasis plays an important role in exercise training, which is conducive to the treatment and recovery of cardiovascular diseases. Potential mechanistic targets for modulation of cardiac metabolism have become a hot topic at present. Thus, exploring the energy metabolism mechanism in exercise-induced physiologic cardiac hypertrophy may produce new therapeutic targets, which will be helpful to design novel effective strategies. In this review, we summarize the changes of myocardial metabolism (fatty acid metabolism, carbohydrate metabolism, and mitochondrial adaptation), metabolically-related signaling molecules, and probable regulatory mechanism of energy metabolism during exercise-induced physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Kefa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
35
|
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz‐Meana M, Jespersen NR, Kula‐Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954. [PMID: 32384583 PMCID: PMC7294140 DOI: 10.1111/jcmm.15180] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
Collapse
Affiliation(s)
- Coert J. Zuurbier
- Department of AnesthesiologyLaboratory of Experimental Intensive Care and AnesthesiologyAmsterdam Infection & ImmunityAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc Bertrand
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Christoph R. Beauloye
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
- Cliniques Universitaires Saint‐LucBrusselsBelgium
| | - Ioanna Andreadou
- Laboratory of PharmacologyFaculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Marisol Ruiz‐Meana
- Department of CardiologyHospital Universitari Vall d’HebronVall d’Hebron Institut de Recerca (VHIR)CIBER‐CVUniversitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red‐CVMadridSpain
| | | | | | - Hiran A. Prag
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Hans Eric Botker
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Maija Dambrova
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Christophe Montessuit
- Department of Pathology and ImmunologyUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Tuuli Kaambre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Edgars Liepinsh
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Paul S. Brookes
- Department of AnesthesiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
36
|
Cao H, Hu Y, Zhu X, Yao N, Gu J, Wang Y, Zhu W. O-GlcNAc transferase affects the signal transduction of β1 adrenoceptor in adult rat cardiomyocytes by increasing the O-GlcNAcylation of β1 adrenoceptor. Biochem Biophys Res Commun 2020; 528:71-77. [PMID: 32471715 DOI: 10.1016/j.bbrc.2020.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
O-GlcNAcylation was first found by Torres and Hart in monocytes. It is a dynamic and reversible post-translational modification catalyzed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation is increased in diabetic cardiomyopathy (DCM) patients and it has been reported that OGT plays an important role in the regulation of cardiac gene transcription, cell cycle and calcium homeostasis. The purpose of this study is to investigate the effects of OGT on signal transduction and function of β1-adrenoceptor (β1AR) in adult rat cardiomyocytes. We found that after overexpressing OGT by adenovirus vector in adult rat cardiomyocytes, cAMP formation and phosphorylation of phospholamban (PLB) at Ser16 (p16-PLB) were decreased under isoprenaline (ISO) stimulation. Over expression of OGT increased the intracellular [Ca2+]i and deteriorated the death of cardiomyocytes induced by prolonged stimulation with ISO. β1-adrenoceptor was overexpressed using a plasmid vector and then co-immunoprecipitation (co-IP) followed by Western blot was employed to define the O-GlcNAcylation of β1-adrenoceptor. The results showed that O-GlcNAcylation of β1-adrenoceptor was increased in OGT overexpressed cells, and there was no significant change in the formation of cAMP and phosphorylation of PLB after β1-adrenoceptor was blocked by CGP20712A. Given that OGT affects the signal transduction of β1-adrenoceptor in adult rat cardiomyocytes by increasing the O-GlcNAcylation of β1-adrenoceptor, the mechanism revealed in this study indicates that OGT and β1AR may be therapeutic targets in patients undergoing diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hong Cao
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Ying Hu
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Xiaofang Zhu
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Na Yao
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Jiaona Gu
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yuhang Wang
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Weizhong Zhu
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| |
Collapse
|
37
|
Collins HE, Chatham JC. Regulation of cardiac O-GlcNAcylation: More than just nutrient availability. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165712. [PMID: 32014551 PMCID: PMC7703857 DOI: 10.1016/j.bbadis.2020.165712] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
The post-translational modification of serine and threonine residues of nuclear, cytosolic, and mitochondrial proteins by O-linked β-N-acetyl glucosamine (O-GlcNAc) has long been seen as an important regulatory mechanism in the cardiovascular system. O-GlcNAcylation of cardiac proteins has been shown to contribute to the regulation of transcription, metabolism, mitochondrial function, protein quality control and turnover, autophagy, and calcium handling. In the heart, acute increases in O-GlcNAc have been associated with cardioprotection, such as those observed during ischemia/reperfusion. Conversely, chronic increases in O-GlcNAc, often associated with diabetes and nutrient excess, have been shown to contribute to cardiac dysfunction. Traditionally, many studies have linked changes in O-GlcNAc with nutrient availability and as such O-GlcNAcylation is often seen as a nutrient driven process. However, emerging evidence suggests that O-GlcNAcylation may also be regulated by non-nutrient dependent mechanisms, such as transcriptional and post-translational regulation. Therefore, the goals of this review are to provide an overview of the impact of O-GlcNAcylation in the cardiovascular system, how this is regulated and to discuss the emergence of regulatory mechanisms other than nutrient availability.
Collapse
Affiliation(s)
- Helen E Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
38
|
Diabetic Cardiomyopathy and Ischemic Heart Disease: Prevention and Therapy by Exercise and Conditioning. Int J Mol Sci 2020; 21:ijms21082896. [PMID: 32326182 PMCID: PMC7215312 DOI: 10.3390/ijms21082896] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome, diabetes, and ischemic heart disease are among the leading causes of death and disability in Western countries. Diabetic cardiomyopathy is responsible for the most severe signs and symptoms. An important strategy for reducing the incidence of cardiovascular disease is regular exercise. Remote ischemic conditioning has some similarity with exercise and can be induced by short periods of ischemia and reperfusion of a limb, and it can be performed in people who cannot exercise. There is abundant evidence that exercise is beneficial in diabetes and ischemic heart disease, but there is a need to elucidate the specific cardiovascular effects of emerging and unconventional forms of exercise in people with diabetes. In addition, remote ischemic conditioning may be considered among the options to induce beneficial effects in these patients. The characteristics and interactions of diabetes and ischemic heart disease, and the known effects of exercise and remote ischemic conditioning in the presence of metabolic syndrome and diabetes, are analyzed in this brief review.
Collapse
|
39
|
Mu Y, Yu H, Wu T, Zhang J, Evans SM, Chen J. O-linked β-N-acetylglucosamine transferase plays an essential role in heart development through regulating angiopoietin-1. PLoS Genet 2020; 16:e1008730. [PMID: 32251422 PMCID: PMC7182263 DOI: 10.1371/journal.pgen.1008730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/24/2020] [Accepted: 03/20/2020] [Indexed: 01/28/2023] Open
Abstract
O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only enzyme catalyzing O-GlcNAcylation. Although it has been shown that OGT plays an essential role in maintaining postnatal heart function, its role in heart development remains unknown. Here we showed that loss of OGT in early fetal cardiomyocytes led to multiple heart developmental defects including hypertrabeculation, biventricular dilation, atrial septal defects, ventricular septal defects, and defects in coronary vessel development. In addition, RNA sequencing revealed that Angiopoietin-1, required within cardiomyocytes for both myocardial and coronary vessel development, was dramatically downregulated in cardiomyocyte-specific OGT knockout mouse hearts. In conclusion, our data demonstrated that OGT plays an essential role in regulating heart development through activating expression of cardiomyocyte Angiopoietin-1.
Collapse
Affiliation(s)
- Yongxin Mu
- Department of Medicine-Cardiology, University of California San Diego,Gilman Drive, Mail Code, La Jolla, California, United States of America
| | - Houzhi Yu
- Department of Medicine-Cardiology, University of California San Diego,Gilman Drive, Mail Code, La Jolla, California, United States of America
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Tongbin Wu
- Department of Medicine-Cardiology, University of California San Diego,Gilman Drive, Mail Code, La Jolla, California, United States of America
| | - Jianlin Zhang
- Department of Medicine-Cardiology, University of California San Diego,Gilman Drive, Mail Code, La Jolla, California, United States of America
| | - Sylvia M. Evans
- Department of Medicine-Cardiology, University of California San Diego,Gilman Drive, Mail Code, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, United States of America
| | - Ju Chen
- Department of Medicine-Cardiology, University of California San Diego,Gilman Drive, Mail Code, La Jolla, California, United States of America
| |
Collapse
|
40
|
Circular RNA expression in isoproterenol hydrochloride-induced cardiac hypertrophy. Aging (Albany NY) 2020; 12:2530-2544. [PMID: 32023551 PMCID: PMC7041747 DOI: 10.18632/aging.102761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
Circular RNA (circRNA) is a novel class of noncoding RNAs, and the roles of circRNAs in the development of cardiac hypertrophy remain to be explored. Here, we investigate the potential roles of circRNAs in cardiac hypertrophy. By circRNA sequencing in left ventricular specimens collected from 8-week-old mice with isoproterenol hydrochloride-induced cardiac hypertrophy, we found 401 out of 3323 total circRNAs were dysregulated in the hypertrophic hearts compared with the controls. Of these, 303 circRNAs were upregulated and 98 were downregulated. Moreover, the GO and KEGG analyses revealed that the majority of parental gene of differentially expressed circRNAs were not only related to biological process such as metabolic process and response to stimulus, but also related to pathway such as circulatory system and cardiovascular diseases. On the other hand, total 1974 miRNAs were predicted to binding to these differentially expressed circRNAs, and the possible target mRNAs of those miRNAs were also predicted and analyzed in terms of functional annotation. Finally, we identified that ANF and miR-23a are downstream targets of circRNA wwp1, suggesting that circRNA wwp1 exerts inhibitory roles of cardiac hypertrophy via down-regulation of ANF and miR-23a, which underlying the potential mechanisms whereby circRNA regulates cardiac hypertrophy.
Collapse
|
41
|
Olson AK, Bouchard B, Zhu WZ, Chatham JC, Des Rosiers C. First characterization of glucose flux through the hexosamine biosynthesis pathway (HBP) in ex vivo mouse heart. J Biol Chem 2020; 295:2018-2033. [PMID: 31915250 PMCID: PMC7029105 DOI: 10.1074/jbc.ra119.010565] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
The hexosamine biosynthesis pathway (HBP) branches from glycolysis and forms UDP-GlcNAc, the moiety for O-linked β-GlcNAc (O-GlcNAc) post-translational modifications. An inability to directly measure HBP flux has hindered our understanding of the factors regulating protein O-GlcNAcylation. Our goals in this study were to (i) validate a LC-MS method that assesses HBP flux as UDP-GlcNAc (13C)-molar percent enrichment (MPE) and concentration and (ii) determine whether glucose availability or workload regulate cardiac HBP flux. For (i), we perfused isolated murine working hearts with [U-13C6]glucosamine (1, 10, 50, or 100 μm), which bypasses the rate-limiting HBP enzyme. We observed a concentration-dependent increase in UDP-GlcNAc levels and MPE, with the latter reaching a plateau of 56.3 ± 2.9%. For (ii), we perfused isolated working hearts with [U-13C6]glucose (5.5 or 25 mm). Glycolytic efflux doubled with 25 mm [U-13C6]glucose; however, the calculated HBP flux was similar among the glucose concentrations at ∼2.5 nmol/g of heart protein/min, representing ∼0.003–0.006% of glycolysis. Reducing cardiac workload in beating and nonbeating Langendorff perfusions had no effect on the calculated HBP flux at ∼2.3 and 2.5 nmol/g of heart protein/min, respectively. To the best of our knowledge, this is the first direct measurement of glucose flux through the HBP in any organ. We anticipate that these methods will enable foundational analyses of the regulation of HBP flux and protein O-GlcNAcylation. Our results suggest that in the healthy ex vivo perfused heart, HBP flux does not respond to acute changes in glucose availability or cardiac workload.
Collapse
Affiliation(s)
- Aaron K Olson
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington 98105; Seattle Children's Research Institute, Seattle, Washington 98101.
| | - Bertrand Bouchard
- Montreal Heart Institute Research Center and Department of Nutrition, Université de Montréal, Montreal, Québec H1T 1C8, Canada
| | - Wei Zhong Zhu
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center and Department of Nutrition, Université de Montréal, Montreal, Québec H1T 1C8, Canada
| |
Collapse
|
42
|
Zhao L, Li M, Wei T, Feng C, Wu T, Shah JA, Liu H, Wang F, Cai Y, Jin J. O-GlcNAc-Modification of NSL3 at Thr755 Site Maintains the Holoenzyme Activity of MOF/NSL Histone Acetyltransfease Complex. Int J Mol Sci 2019; 21:ijms21010173. [PMID: 31881804 PMCID: PMC6981688 DOI: 10.3390/ijms21010173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Both OGT1 (O-linked β-N-acetylglucosamine (O-GlcNAc) transferase isoform 1) and NSL3 (nonspecific lethal protein 3) are crucial components of the MOF (males absent on the first)/NSL histone acetyltransferase complex. We previously described how global histone H4 acetylation levels were modulated by OGT1/O-GlcNAcylation-mediated NSL3 stability. However, the specific modification site of NSL3 and its molecular mechanism of protein stability remain unknown. Here, we present evidence from biochemical experiments arguing that O-GlcNAcylation of NSL3 at Thr755 is tightly associated with holoenzyme activity of the MOF/NSL complex. Using in vitro O-GlcNAc-transferase assays combined with mass spectrometry, we suppose that the residue Thr755 on NSL3 C-terminus is the major site O-GlcNAc-modified by OGT1. Importantly, O-GlcNAcylation of this site is involved in the regulation of the ubiquitin-degradation of NSL3, because this site mutation (T755A) promotes the ubiquitin-mediated degradation of NSL3. Further in-depth research found that ubiquitin conjugating enzyme E2 S (UBE2S) accelerated the degradation of NSL3 via direct binding to it. Interestingly, OGT1 and UBE2S competitively bind to NSL3, suggesting the coordination of OGT1-UBE2S in regulating NSL3 stability. Furthermore, O-GlcNAcylation of NSL3 Thr755 site regulates the histone H4 acetylation levels at lysine 5, 8, and 16, suggesting that the O-GlcNAcylation of NSL3 at Thr755 is required for maintaining the integrity and holoenzyme activity of the MOF/NSL complex. In colony formation assays, we found that the integrity of the complex impacts the proliferation of the lung carcinoma type II epithelium-like A549 cells. Taken together, our results provide new insight into the elucidation of the molecular mechanism of the MOF/NSL complex.
Collapse
Affiliation(s)
- Linhong Zhao
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
| | - Min Li
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
| | - Tao Wei
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
| | - Chang Feng
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
| | - Tingting Wu
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
| | - Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
| | - Hongsen Liu
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
| | - Fei Wang
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun City, Jilin 130117, China
- Correspondence: (Y.C.); (J.J.); Tel.: +86-431-8515-5475 (Y.C. & J.J.)
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; (L.Z.); (M.L.); (T.W.); (C.F.); (T.W.); (J.A.S.); (H.L.); (F.W.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun City, Jilin 130117, China
- Correspondence: (Y.C.); (J.J.); Tel.: +86-431-8515-5475 (Y.C. & J.J.)
| |
Collapse
|
43
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
44
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
45
|
Levine AR, Bain W, Bednash JS, Gladwin MT, McVerry BJ. AMP Kinase Activation Attenuates Cardiac Remodeling in Pulmonary Hypertension due to Heart Failure with Preserved Ejection Fraction; Lung Epithelial Progenitor Cells in Alveolar Regeneration; and Drug Discovery and Novel Therapies for Lung Cancer. Am J Respir Cell Mol Biol 2019; 60:244-247. [PMID: 30476436 DOI: 10.1165/rcmb.2018-0280ro] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Andrea R Levine
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - William Bain
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Joseph S Bednash
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Mark T Gladwin
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and.,2 Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Bryan J McVerry
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and.,2 Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Affiliation(s)
- Diem H Tran
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Zhao V Wang
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| |
Collapse
|
47
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
48
|
Nie H, Yi W. O-GlcNAcylation, a sweet link to the pathology of diseases. J Zhejiang Univ Sci B 2019; 20:437-448. [PMID: 31090269 PMCID: PMC6568225 DOI: 10.1631/jzus.b1900150] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic post-translational modification occurring on myriad proteins in the cell nucleus, cytoplasm, and mitochondria. The donor sugar for O-GlcNAcylation, uridine-diphosphate N-acetylglucosamine (UDP-GlcNAc), is synthesized from glucose through the hexosamine biosynthetic pathway (HBP). The recycling of O-GlcNAc on proteins is mediated by two enzymes in cells-O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and removal of O-GlcNAc, respectively. O-GlcNAcylation is involved in a number of important cell processes including transcription, translation, metabolism, signal transduction, and apoptosis. Deregulation of O-GlcNAcylation has been reported to be associated with various human diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular diseases. A better understanding of the roles of O-GlcNAcylation in physiopathological processes would help to uncover novel avenues for therapeutic intervention. The aim of this review is to discuss the recent updates on the mechanisms and impacts of O-GlcNAcylation on these diseases, and its potential as a new clinical target.
Collapse
|
49
|
Simsek Papur O, Sun A, Glatz JFC, Luiken JJFP, Nabben M. Acute and Chronic Effects of Protein Kinase-D Signaling on Cardiac Energy Metabolism. Front Cardiovasc Med 2018; 5:65. [PMID: 29930945 PMCID: PMC5999788 DOI: 10.3389/fcvm.2018.00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/17/2018] [Indexed: 02/05/2023] Open
Abstract
Protein kinase-D (PKD) is increasingly recognized as a key regulatory signaling hub in cardiac glucose uptake and also a major player in the development of hypertrophy. Glucose is one of the predominant energy substrates for the heart to support contraction. However, a cardiac substrate switch toward glucose over-usage is associated with the development of cardiac hypertrophy. Hence, regulation of PKD activity must be strictly coordinated. This review provides mechanistic insights into the acute and chronic regulatory functions of PKD signaling in the healthy and hypertrophied heart. First an overview of the activation pathways of PKD1, the most abundant isoform in the heart, is provided. Then the various regulatory roles of the PKD isoforms in the heart in relation to cardiac glucose and fatty acid metabolism, contraction, morphology, function, and the development of cardiac hypertrophy are described. Finally, these findings are integrated and the possibility of targeting this kinase as a novel strategy to combat cardiac diseases is discussed.
Collapse
Affiliation(s)
- Ozlenen Simsek Papur
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Medicine, Institute of Health Science, Dokuz Eylul University, Izmir, Turkey
| | - Aomin Sun
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
50
|
Yu P, Hu L, Xie J, Chen S, Huang L, Xu Z, Liu X, Zhou Q, Yuan P, Yan X, Jin J, Shen Y, Zhu W, Fu L, Chen Q, Yu J, Hu J, Cao Q, Wan R, Hong K. O-GlcNAcylation of cardiac Nav1.5 contributes to the development of arrhythmias in diabetic hearts. Int J Cardiol 2018; 260:74-81. [PMID: 29530619 DOI: 10.1016/j.ijcard.2018.02.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cardiovascular complications are major causes of mortality and morbidity in diabetic patients. The mechanisms underlying the progression of diabetic heart (DH) to ventricular arrhythmias are unclear. O-linked GlcNAcylation (O-GlcNAc) is a reversible post-translational modification for the regulation of diverse cellular processes. The purpose of this study was to assess whether the cardiac voltage-gated sodium channel (Nav1.5) is subjected to O-linked GlcNAcylation (O-GlcNAc), which plays an essential role in DH-induced arrhythmias. METHODS AND RESULTS In this study, Sprague-Dawley rats (male, 200-230 g) were treated with a single high-dose of streptozotocin (STZ, 80 mg/kg) to generate a rat model of diabetes. STZ-induced 3-month diabetic rats displayed increased susceptibility to ventricular arrhythmias. The elevated O-GlcNAc modification was correlated with decreases in both total and cytoplasmic Nav1.5 expression in vivo and in vitro. In addition, both co-immunoprecipitation and immunostaining assays demonstrated that hyperglycemia could increase the O-GlcNAc-modified Nav1.5 levels and decrease the interaction between Nav1.5 and Nav1.5-binding proteins Nedd4-2/SAP-97. Furthermore, patch-clamp measurements in HEK-293 T cells showed that Nav1.5 current densities decreased by 30% after high-glucose treatment, and the sodium currents increased via O-GlcNAc inhibition. CONCLUSION Our data suggested that hyperglycemia increased the O-GlcNAc modification of Nav1.5 expression and decreased the interaction between Nav1.5 and Nedd4-2/SAP-97, which led to the abnormal expression and distribution of Nav1.5, loss of function of the sodium channel, and prolongation of the PR/QT interval. Excessive O-GlcNAc modification of Nav1.5 is a novel signaling event, which may be an underlying contributing factor for the development of the arrhythmogenesis in DH.
Collapse
Affiliation(s)
- Peng Yu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Lili Hu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Sisi Chen
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lin Huang
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Zixuan Xu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Xiao Liu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Qiongqiong Zhou
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Ping Yuan
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Xia Yan
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Jiejin Jin
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Wengen Zhu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Linghua Fu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Qi Chen
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jianxin Hu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qing Cao
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China
| | - Rong Wan
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China.
| | - Kui Hong
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China.
| |
Collapse
|