1
|
Gong Z, Yang H, Gao L, Liu Y, Chu Q, Luo C, Kang L, Zhai H, Xu Q, Wu W, Li N, Li R. Mechanisms of wogonoside in the treatment of atherosclerosis based on network pharmacology, molecular docking, and experimental validation. BMC Complement Med Ther 2025; 25:28. [PMID: 39871254 PMCID: PMC11770944 DOI: 10.1186/s12906-025-04760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Atherosclerosis serves as the fundamental pathology for a variety of cardiovascular disorders, with its pathogenesis being closely tied to the complex interplay among lipid metabolism, oxidative stress, and inflammation. Wogonoside is a natural flavonoid extracted from Scutellaria baicalensis with a variety of biological activities, including anti-inflammatory, hypolipidemic, and cardiac function improvement properties. Despite these known effects, the specific role of wogonoside in the context of atherosclerosis remains to be elucidated. PURPOSE To validate the efficacy of wogonoside in the treatment of atherosclerosis and to investigate its possible therapeutic mechanisms. METHODS Network pharmacology was used to obtain the core targets and signaling pathways that may be efficacious in the treatment of atherosclerosis with wogonoside, which were validated using molecular docking and molecular dynamics simulations. To further validate the core targets in the signaling pathway, we performed in vivo experiments using apolipoprotein E (ApoE)-/- mice. This included pathological morphology and lipid deposition analysis of mouse aorta, serum lipid level analysis, Elisa analysis, oxidative stress analysis, reactive oxygen species (ROS) fluorescence assay, immunohistochemical analysis and protein blot analysis. RESULTS Predictions were obtained that wogonoside treatment of atherosclerosis has 31 core targets, which are mainly focused on pathways such as Toll-like receptor (TLR) signaling pathway and NF-kappa B (NF-κB ) signaling pathway. Molecular docking and molecular dynamics simulations showed that wogonoside has good binding properties to the core targets. In vivo experimental results showed that wogonoside significantly inhibited aortic inflammatory response and lipid deposition, significantly reduced the release levels of total cholesterol (TC), triglycerides (TG), low-density-lipoprotein cholesterol (LDL-C), oxidized low density (ox-LDL) and free fatty acid (FFA), and significantly inhibited the release of inflammatory factors TNF-α, IL-1β, IL-6 and oxidative stress in ApoE-/- mice. Further molecular mechanism studies showed that wogonoside significantly inhibited the activation of TLR4/NF-κB signaling pathway in ApoE-/- mice. CONCLUSION Wogonoside may be an effective drug monomer for the treatment of atherosclerosis, and its mechanism of action is closely related to the inhibition of the activation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhaohui Gong
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Haixin Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Li Gao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yi Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Qingmin Chu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuanjin Luo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Liang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiqi Zhai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Rong Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
2
|
Tonphu K, Mueangaun S, Lerkdumnernkit N, Sengking J, Tocharus J, Benjakul S, Mittal A, Tocharus C. Chitooligosaccharide-epigallocatechin gallate conjugate ameliorates lipid accumulation and promotes browning of white adipose tissue in high fat diet fed rats. Chem Biol Interact 2025; 406:111316. [PMID: 39577827 DOI: 10.1016/j.cbi.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The prevalence of obesity has increased progressively worldwide. Obesity is characterized by excessive accumulation of fat in adipose tissues, leading to metabolic impairment. The anti-obese effects of chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) have been extensively clarified. This study aimed to investigate the effects and potential mechanisms of the COS-EGCG conjugate (CE) on anti-obesity, specifically by alleviating lipid accumulation and promoting the browning of white adipose tissue (WAT) in obese rats. Obesity as a consequence of a high-fat diet (HFD) was induced in male Wistar rats. The HFD was given for 16 weeks and the rats were then randomly subdivided into five groups namely: vehicle (control group), HFD plus CE at 150 mg/kg/day, HFD plus CE at 600 mg/kg/day, HFD plus COS at 600 mg/kg/day, and HFD plus atorvastatin at 10 mg/kg/day for 4 weeks. CE could reduce body weight, improve serum lipid profiles, and promote lipid metabolism via activation of AMP-activated protein kinase (AMPK) in WAT and enhance the processes of WAT browning by activating sirtuin 1 (Sirt 1), peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), and uncoupling the protein 1 (UCP1) signaling pathway. CE reduced obesity and promoted WAT browning in HFD-fed rats. Therefore, CE might be a new therapy for metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Kanokrada Tonphu
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirikul Mueangaun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natcha Lerkdumnernkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Yu Z, You G. Recent Advances on the Regulations of Organic Anion Transporters. Pharmaceutics 2024; 16:1355. [PMID: 39598479 PMCID: PMC11597148 DOI: 10.3390/pharmaceutics16111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The organic anion transporter (OAT) family of over 10 members within the solute carrier (SLC) superfamily of membrane proteins plays critical roles in facilitating the flux of negatively charged molecules in and out of cell membranes. These anionic molecules include various endogenous and exogenous compounds such as signaling molecules, nutrients, metabolites, toxins, and drugs. Therefore, OATs actively contribute to the systemic homeostasis and efficacy of therapeutics. This article provides a brief overview on recent advances in the understanding of the regulatory mechanisms that control the expression and activity of OATs in both health and diseases.
Collapse
Affiliation(s)
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
4
|
Ozbek L, Abdel-Rahman SM, Unlu S, Guldan M, Copur S, Burlacu A, Covic A, Kanbay M. Exploring Adiposity and Chronic Kidney Disease: Clinical Implications, Management Strategies, Prognostic Considerations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1668. [PMID: 39459455 PMCID: PMC11509396 DOI: 10.3390/medicina60101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Obesity poses a significant and growing risk factor for chronic kidney disease (CKD), requiring comprehensive evaluation and management strategies. This review explores the intricate relationship between obesity and CKD, emphasizing the diverse phenotypes of obesity, including sarcopenic obesity and metabolically healthy versus unhealthy obesity, and their differential impact on kidney function. We discuss the epidemiological evidence linking elevated body mass index (BMI) with CKD risk while also addressing the paradoxical survival benefits observed in obese CKD patients. Various measures of obesity, such as BMI, waist circumference, and visceral fat assessment, are evaluated in the context of CKD progression and outcomes. Mechanistic insights into how obesity promotes renal dysfunction through lipid metabolism, inflammation, and altered renal hemodynamics are elucidated, underscoring the role of adipokines and the renin-angiotensin-aldosterone system. Furthermore, the review examines current strategies for assessing kidney function in obese individuals, including the strengths and limitations of filtration markers and predictive equations. The management of obesity and associated comorbidities like arterial hypertension, type 2 diabetes mellitus, and non-alcoholic fatty liver disease in CKD patients is discussed. Finally, gaps in the current literature and future research directions aimed at optimizing the management of obesity-related CKD are highlighted, emphasizing the need for personalized therapeutic approaches to mitigate the growing burden of this intertwined epidemic.
Collapse
Affiliation(s)
- Lasin Ozbek
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Sidar Copur
- Department of Internal Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
| | - Alexandru Burlacu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Adrian Covic
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
- Nephrology Clinic, Dialysis, and Renal Transplant Center “C.I. Parhon” University Hospital, 700503 Iasi, Romania
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul 34450, Turkey
| |
Collapse
|
5
|
Pengrattanachot N, Thongnak L, Promsan S, Phengpol N, Sutthasupha P, Tocharus J, Lungkaphin A. Fructooligosaccharides Ameliorate Renal Injury and Dysfunction Through the Modulation of Gut Dysbiosis, Inhibition of Renal Inflammation, Oxidative Stress, Fibrosis, and Improve Organic Anion Transporter 3 Function in an Obese Rat Model. Mol Nutr Food Res 2024; 68:e2400191. [PMID: 39021322 DOI: 10.1002/mnfr.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Indexed: 07/20/2024]
Abstract
SCOPE High-fat diet (HFD) consumption causes obesity and gut dysbiosis which induces kidney injury. It has been reported that prebiotics improve gut dysbiosis and insulin sensitivity and decelerate the progression of kidney disease. This study investigates the impact of fructooligosaccharides (FOS) on renoprotection and the prevention of gut dysbiosis and intestinal barrier injury in obese rats. METHODS AND RESULTS Wistar rats are treated with HFD for 16 weeks. Then, the HFD fed rats (HF) are given FOS 1 g day-1 (HFFOS1), 2 g day-1 (HFFOS2), or metformin 30 mg kg-1 day-1 (HFMET), by intragastric feeding for 8 weeks. Blood, urine, feces, kidney, and intestine are collected to determine the metabolic changes, gut dysbiosis, and the expression of proteins involved in kidney and intestinal injury. FOS can attenuate insulin resistance and hypercholesterolemia concomitant with the inhibition of renal inflammation, oxidative stress, fibrosis, and apoptosis, which are related to the deceleration of the overexpression of renal Toll-like receptor 4 (TLR4) and NADPH oxidase (NOX4). Moreover, FOS shows a greater efficacy than metformin in the reduction of the intestinal injury and loss of tight junction proteins induced by HFD. CONCLUSION FOS may be used as a supplement for therapeutic purposes in an obese condition to improve intestinal integrity and prevent renal complications.
Collapse
Affiliation(s)
| | - Laongdao Thongnak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Multidisciplinary Research Institute Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Multidisciplinary Research Institute Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Mohamed HE, Abdelhady MA, Elmaghraby AM, Elrashidy RA. Empagliflozin and pirfenidone confer renoprotection through suppression of glycogen synthase kinase-3β and promotion of tubular regeneration in rats with induced metabolic syndrome. Toxicol Appl Pharmacol 2024; 485:116892. [PMID: 38492675 DOI: 10.1016/j.taap.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Metabolic syndrome (MetS) is largely coupled with chronic kidney disease (CKD). Glycogen synthase kinase-3β (GSK-3β) pathway drives tubular injury in animal models of acute kidney injury; but its contribution in CKD is still elusive. This study investigated the effect empagliflozin and/or pirfenidone against MetS-induced kidney dysfunction, and to clarify additional underpinning mechanisms particularly the GSK-3β signaling pathway. Adult male rats received 10%w/v fructose in drinking water for 20 weeks to develop MetS, then treated with either drug vehicle, empagliflozin (30 mg/kg/day) and/or pirfenidone (100 mg/kg/day) via oral gavage for subsequent 4 weeks, concurrently with the high dietary fructose. Age-matched rats receiving normal drinking water were used as controls. After 24 weeks, blood and kidneys were harvested for subsequent analyses. Rats with MetS showed signs of kidney dysfunction, structural changes and interstitial fibrosis. Activation of GSK-3β, decreased cyclinD1 expression and enhanced apoptotic signaling were found in kidneys of MetS rats. There was abundant alpha-smooth muscle actin (α-SMA) expression along with up-regulation of TGF-β1/Smad3 in kidneys of MetS rats. These derangements were almost alleviated by empagliflozin or pirfenidone, with evidence that the combined therapy was more effective than either individual drug. This study emphasizes a novel mechanism underpinning the beneficial effects of empagliflozin and pirfenidone on kidney dysfunction associated with MetS through targeting GSK-3β signaling which can mediate the regenerative capacity, anti-apoptotic effects and anti-fibrotic properties of such drugs. These findings recommend the possibility of using empagliflozin and pirfenidone as promising therapies for management of CKD in patients with MetS.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Merna A Abdelhady
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa M Elmaghraby
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt
| | - Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
7
|
Pereira RO, Correia LA, Farah D, Komoni G, Farah V, Fiorino P. Wistar rat as an animal model to study high-fat induced kidney damage: a systematic review. Arch Physiol Biochem 2024; 130:205-214. [PMID: 34915796 DOI: 10.1080/13813455.2021.2017462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 12/09/2022]
Abstract
The effects of high-fat-associated kidney damage in humans are not completely elucidated. Animal experiments are essential to understanding the mechanisms underlying human diseases. This systematic review aimed to compile evidence of the role of a high-fat diet during the development of renal lipotoxicity and fibrosis of Wistar rats to understand whether this is a satisfactory model for the study of high fat-induced kidney damage. We conducted systematic searches in PUBMED, EMBASE, Lilacs, and Web of Science databases from inception until May 2021. The risk of bias was assessed using SYRCLE toll. Two reviewers independently screened abstracts and reviewed full-text articles. A total of 11 studies were included. The damage varied depending on the age and sex of the animals, time of protocol, and amount of fat in the diet. In conclusion, the Wistar rat is an adequate animal model to assess the effects of a high-fat diet on the kidneys.HighlightsA high-fat diet may promote kidney damage in Wistar rats.Wistar rat is efficient as an animal model to study high-fat-induced kidney damage.The effect of the diet depends on the fat amount, consumption time, and animal age.
Collapse
Affiliation(s)
- Renata O Pereira
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Luana A Correia
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Daniela Farah
- Women's Health Technology Assessment Center, Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
| | - Geovana Komoni
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Vera Farah
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Patricia Fiorino
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| |
Collapse
|
8
|
Elbaset MA, Mohamed BMSA, Moustafa PE, Esatbeyoglu T, Afifi SM, Hessin AF, Abdelrahman SS, Fayed HM. Renoprotective Effect of Pitavastatin against TAA-Induced Renal Injury: Involvement of the miR-93/PTEN/AKT/mTOR Pathway. Adv Pharmacol Pharm Sci 2024; 2024:6681873. [PMID: 38293706 PMCID: PMC10827367 DOI: 10.1155/2024/6681873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/17/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
This research investigated if pitavastatin (Pita) might protect rats' kidneys against thioacetamide (TAA). By altering the PTEN/AKT/mTOR pathway, pitavastatin may boost kidney antioxidant capacity and minimize oxidative damage. Statins have several benefits, including antioxidant and anti-inflammatory characteristics. The principal hypothesis of this study was that Pita can regulate the miR-93/PTEN/AKT/mTOR pathways, which is thought to be responsible for its renoprotective effects. The experiment divided male rats into four groups. Group 1 included untreated rats as the control. Group 2 included rats which received TAA (100 mg/kg intraperitoneally thrice a week for two weeks) to destroy their kidneys. Groups 3 and 4 included rats which received Pita orally at 0.4 and 0.8 mg/kg for 14 days after TAA injections. Renal injury increased BUN, creatinine, and MDA levels and decreased glutathione (GSH) levels. Pitavastatin prevented these alterations. TAA decreased PTEN and increased miR-93, Akt, p-Akt, mTOR, and Stat3 in the kidneys. Pitavastatin also regulated the associated culprit pathway, miR-93/PTEN/Akt/mTOR. In addition, TAA induced adverse effects on the kidney tissue, which were significantly ameliorated by pitavastatin treatment. The findings suggest that pitavastatin can attenuate renal injury, likely by regulating the miR-93/PTEN/Akt/mTOR pathway. This modulation of the pathway appears to contribute to the protective effects of pitavastatin against TAA-induced renal injury, adding to the growing evidence of the pleiotropic benefits of statins in renal health.
Collapse
Affiliation(s)
- Marawan A. Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Bassim M. S. A. Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Passant E. Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Alyaa F. Hessin
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Sahar S. Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hany M. Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
9
|
Balan AI, Halațiu VB, Scridon A. Oxidative Stress, Inflammation, and Mitochondrial Dysfunction: A Link between Obesity and Atrial Fibrillation. Antioxidants (Basel) 2024; 13:117. [PMID: 38247541 PMCID: PMC10812976 DOI: 10.3390/antiox13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The adipose tissue has long been thought to represent a passive source of triglycerides and fatty acids. However, extensive data have demonstrated that the adipose tissue is also a major endocrine organ that directly or indirectly affects the physiological functions of almost all cell types. Obesity is recognized as a risk factor for multiple systemic conditions, including metabolic syndrome, type 2 diabetes mellitus, sleep apnea, cardiovascular disorders, and many others. Obesity-related changes in the adipose tissue induce functional and structural changes in cardiac myocytes, promoting a wide range of cardiovascular disorders, including atrial fibrillation (AF). Due to the wealth of epidemiologic data linking AF to obesity, the mechanisms underlying AF occurrence in obese patients are an area of rich ongoing investigation. However, progress has been somewhat slowed by the complex phenotypes of both obesity and AF. The triad inflammation, oxidative stress, and mitochondrial dysfunction are critical for AF pathogenesis in the setting of obesity via multiple structural and functional proarrhythmic changes at the level of the atria. The aim of this paper is to provide a comprehensive view of the close relationship between obesity-induced oxidative stress, inflammation, and mitochondrial dysfunction and the pathogenesis of AF. The clinical implications of these mechanistic insights are also discussed.
Collapse
Affiliation(s)
- Alkora Ioana Balan
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Vasile Bogdan Halațiu
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Alina Scridon
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
10
|
Cui JJ, Li R, Ma XL, Yu HY, Luo ZG, Du P, Ren L, Ding X, Guo XP, Zheng WS, Jiang JD, Che Y, Wang LL. Prebiotic‐Based Nanoamorphous Atorvastatin Attenuates Nonalcoholic Fatty Liver Disease by Retrieving Gut and Liver Health. SMALL STRUCTURES 2023; 4. [DOI: 10.1002/sstr.202200312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The pathogenesis of nonalcoholic fatty liver disease (NAFLD) is multifactorial and composite, with the disorder of lipid metabolism‐induced lipotoxicity being one of the main risk factors. Atorvastatin (AT), the most widely prescribed lipid‐lowering drug, has pleiotropic actions benefiting NAFLD treatment. However, low absorption rate in the gut and potential disruption of AT on gut flora hindered its further applications. Notably, gut dysbiosis is involved in and is thus a promising management strategy for NAFLD. In this study, we constructed a prebiotic‐based AT nanoamorphous (PANA) to improve the efficacy of AT against NAFLD by retrieving liver and gut health. After oral administration, PANA showed superior drug accumulation in the liver tissue compared with pure AT. Moreover, PANA intervention effectively restored gut healthiness, indicated by reconstructed gut flora, and improved intestinal immunity, barrier integrity, and inflammation. Consequently, compared with AT, PANA treatment caused profound inhibition of weight gain and fat deposition, decreased plasma lipid levels, and alleviated hepatic steatosis and liver inflammation. The transcriptome analysis in the gut and liver tissues identified improved immunity and inflammation as potential mechanisms. This study suggests a promising strategy to treat NAFLD, assisted with nanotechnology in synergy with functional biomaterials.
Collapse
Affiliation(s)
- Jin-Jin Cui
- Institute of Medicinal Biotechnology Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Rui Li
- Institute of Medicinal Biotechnology Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Xiao-Lei Ma
- Institute of Materia Medica Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Hao-Yang Yu
- Institute of Medicinal Biotechnology Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Zhi-Gang Luo
- Institute of Materia Medica Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Peng Du
- Institute of Materia Medica Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Ling Ren
- Institute of Medicinal Biotechnology Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resource in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Xiu-Ping Guo
- Institute of Medicinal Biotechnology Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Wen-Sheng Zheng
- Institute of Materia Medica Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
- Institute of Materia Medica Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Yongsheng Che
- Institute of Medicinal Biotechnology Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Lu-Lu Wang
- Institute of Medicinal Biotechnology Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| |
Collapse
|
11
|
Zheng P, Ma W, Gu Y, Wu H, Bian Z, Liu N, Yang D, Chen X. High-fat diet causes mitochondrial damage and downregulation of mitofusin-2 and optic atrophy-1 in multiple organs. J Clin Biochem Nutr 2023; 73:61-76. [PMID: 37534099 PMCID: PMC10390808 DOI: 10.3164/jcbn.22-73] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/19/2023] [Indexed: 08/04/2023] Open
Abstract
High-fat consumption promotes the development of obesity, which is associated with various chronic illnesses. Mitochondria are the energy factories of eukaryotic cells, maintaining self-stability through a fine-tuned quality-control network. In the present study, we evaluated high-fat diet (HFD)-induced changes in mitochondrial ultrastructure and dynamics protein expression in multiple organs. C57BL/6J male mice were fed HFD or normal diet (ND) for 24 weeks. Compared with ND-fed mice, HFD-fed mice exhibited increased body weight, cardiomyocyte enlargement, pulmonary fibrosis, hepatic steatosis, renal and splenic structural abnormalities. The cellular apoptosis of the heart, liver, and kidney increased. Cellular lipid droplet deposition and mitochondrial deformations were observed. The proteins related to mitochondrial biogenesis (TFAM), fission (DRP1), autophagy (LC3 and LC3-II: LC3-I ratio), and mitophagy (PINK1) presented different changes in different organs. The mitochondrial fusion regulators mitofusin-2 (MFN2) and optic atrophy-1 (OPA1) were consistently downregulated in multiple organs, even the spleen. TOMM20 and ATP5A protein were enhanced in the heart, skeletal muscle, and spleen, and attenuated in the kidney. These results indicated that high-fat feeding caused pathological changes in multiple organs, accompanied by mitochondrial ultrastructural damage, and MFN2 and OPA1 downregulation. The mitochondrial fusion proteins may become promising targets and/or markers for treating metabolic disease.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Wenjing Ma
- Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Yilu Gu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Hengfang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Zhiping Bian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Nannan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
- Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Xiangjian Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
12
|
Yang D, Fan Y, Xiong M, Chen Y, Zhou Y, Liu X, Yuan Y, Wang Q, Zhang Y, Petersen RB, Su H, Yue J, Zhang C, Chen H, Huang K, Zheng L. Loss of renal tubular G9a benefits acute kidney injury by lowering focal lipid accumulation via CES1. EMBO Rep 2023; 24:e56128. [PMID: 37042626 PMCID: PMC10240209 DOI: 10.15252/embr.202256128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Surgery-induced renal ischemia and reperfusion (I/R) injury and nephrotoxic drugs like cisplatin can cause acute kidney injury (AKI), for which there is no effective therapy. Lipid accumulation is evident following AKI in renal tubules although the mechanisms and pathological effects are unclear. Here, we report that Ehmt2-encoded histone methyltransferase G9a is upregulated in patients and mouse kidneys after AKI. Renal tubular specific knockout of G9a (Ehmt2Ksp ) or pharmacological inhibition of G9a alleviates lipid accumulation associated with AKI. Mechanistically, G9a suppresses transcription of the lipolytic enzyme Ces1; moreover, G9a and farnesoid X receptor (FXR) competitively bind to the same promoter regions of Ces1. Ces1 is consistently observed to be downregulated in the kidney of AKI patients. Pharmacological inhibition of Ces1 increases lipid accumulation, exacerbates renal I/R-injury and eliminates the beneficial effects on AKI observed in Ehmt2Ksp mice. Furthermore, lipid-lowering atorvastatin and an FXR agonist alleviate AKI by activating Ces1 and reducing renal lipid accumulation. Together, our results reveal a G9a/FXR-Ces1 axis that affects the AKI outcome via regulating renal lipid accumulation.
Collapse
Affiliation(s)
- Dong Yang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yihao Zhou
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Qing Wang
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Yu Zhang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Robert B Petersen
- Foundational SciencesCentral Michigan University College of MedicineMt. PleasantMIUSA
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Junqiu Yue
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Chen
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kun Huang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
13
|
Thongnak L, Pengrattanachot N, Promsan S, Phengpol N, Sutthasupha P, Jaikumkao K, Lungkaphin A. Metformin mitigates renal dysfunction in obese insulin-resistant rats via activation of the AMPK/PPARα pathway. Arch Pharm Res 2023; 46:408-422. [PMID: 36966452 DOI: 10.1007/s12272-023-01439-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 03/27/2023]
Abstract
Insulin signaling and lipid metabolism are disrupted by long-term consumption of a high-fat diet (HFD). This disruption can lead to insulin resistance, dyslipidemia and subsequently renal dysfunction as a consequence of the inactivation of the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPARα) or AMPK/PPARα pathways. We investigated the impact of metformin on the prevention of renal dysfunction through the modulation of AMPK-regulated PPARα-dependent pathways in insulin-resistant rats induced by a HFD. Male Wistar rats were fed a HFD for 16 weeks to induce insulin resistance. After insulin resistance had been confirmed, metformin (30 mg/kg) or gemfibrozil (50 mg/kg) was given orally for 8 weeks. Evidence of insulin resistance, dyslipidemia, lipid accumulation and kidney injury were observed in HF rats. Impairment of lipid oxidation, energy metabolism and renal organic anion transporter 3 (Oat3) expression and function were demonstrated in HF rats. Metformin can stimulate the AMPK/PPARα pathways and suppress sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase (FAS) signaling (SREBP1/FAS) to enable the regulation of lipid metabolism. Renal inflammatory markers and renal fibrosis expression induced by a HFD were more effectively reduced after metformin treatment than after gemfibrozil treatment. Interestingly, renal Oat3 function and expression and kidney injury were improved following metformin and gemfibrozil treatment. Renal cluster of differentiation 36 (CD36) or sodium glucose cotransporter type 2 (SGLT2) expression did not differ after treatment with metformin or gemfibrozil. Metformin and gemfibrozil could reduce the impairment of renal injury in obese conditions induced by a HFD through the AMPK/PPARα-dependent pathway. Interestingly, metformin demonstrated greater efficacy than gemfibrozil in attenuating renal lipotoxicity through the AMPK-regulated SREBP1/FAS signaling pathway.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Intravaroros Road, 50200, Chiang Mai, Thailand.
- Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
14
|
Wang X, Yang L, Wang J, Lu K, Zhou Y, Zhao L, Peng J. Silica Cross-Linked Micelle-Based Theranostic System for the Imaging and Treatment of Acute and Chronic Kidney Injury. ACS APPLIED BIO MATERIALS 2023; 6:1213-1220. [PMID: 36786440 DOI: 10.1021/acsabm.2c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Acute kidney injury (AKI) is a common and serious disease with high mortality and morbidity, and the persistent inflammatory environment brought about by AKI promotes its deterioration into chronic kidney disease (CKD). An efficient and timely targeted drug delivery to the renal tubules is crucial for AKI treatment. Here, we prepared silica cross-linked micelles (SCLMs) with different sizes and studied their targeting ability to the injured kidney. It is found that the SCLMs with a size of 13 nm could rapidly accumulate and remain in the damaged kidney. Immunofluorescence results confirmed that SCLMs are selectively located in the damaged tubular cells but cannot be found in healthy renal tissue. Therefore, fluorescent dye-labeled SCLMs were used for the imaging of the injured kidney, which could reflect the status of the kidney injury. Furthermore, atorvastatin, an antioxidative and anti-inflammatory drug, was loaded in SCLMs as the therapeutic agents for the treatment of ischemia/reperfusion-induced AKI and CKD. Renal function indexes, such as tubular necrosis, collagen deposition, and inflammation, were effectively improved after the treatment.
Collapse
Affiliation(s)
- Xueshen Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lulu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jian Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
15
|
Yue RZ, Li YJ, Su BH, Li CJ, Zeng R. Atorvastatin reduces contrast media-induced pyroptosis of renal tubular epithelial cells by inhibiting the TLR4/MyD88/NF-κB signaling pathway. BMC Nephrol 2023; 24:25. [PMID: 36732683 PMCID: PMC9893683 DOI: 10.1186/s12882-023-03066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital-acquired renal failure. However, there is no effective treatment of CI-AKI, and its mechanism is unknown. Interestingly, atorvastatin has been reported to be effective in renal injury. Therefore, the aim of this study was to explore the effect and possible molecular mechanism of atorvastatin in CI-AKI. METHODS On the CI-AKI in vitro model, rat tubular epithelial cells (NRK-52E) were treated with 18 mg I/ml meglumine diatrizoate (MEG) and then pretreated with atorvastatin. pcDNA3.1-TLR4 treatment was performed to overexpress toll-like receptor 4 (TLR4) in NRK-52E cells. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) kits were used to detect NRK-52E cell viability as well as LDH release in each group, respectively; qRT-PCR to determine mRNA expression of TLR4 in cells; western blot to detect protein expression levels of pyroptosis-related proteins (NLRP3, caspase-1, ASC, and GSDMD) and TLR4/MyD88/NF-κB signaling pathway-related proteins (TLR4, MyD88, NF-κBp65, and p-NF-κB p65) in cells. RESULTS MEG treatment significantly inhibited the viability of NRK-52E cells, increased pro-inflammatory factor levels and promoted pyroptosis, representing successful establishment of a rat tubular epithelial cell (NRK-52E) CI-AKI in vitro model. Notably, atorvastatin increased the activity of MEG-treated NRK-52E cells and alleviated cell injury in a concentration-dependent manner. In addition, atorvastatin significantly down-regulated the expression of TLR4 in MEG-treated NRK-52E cells. However, overexpression of TLR4 inhibited the effects of atorvastatin on increasing cell viability, alleviating cell injury, reducing pro-inflammatory factors (IL-1β, IL-6, and TNF-α) levels, and inhibiting apoptosis (by down-regulating the expression of NLRP3, caspase-1, ASC, and GSDMD). Furthermore, atorvastatin also inhibited the expression of TLR4/MyD88/NF-κB pathway-related proteins (TLR4, MyD88, and p-NF-κB p65). CONCLUSION Atorvastatin can attenuate CI-AKI through increasing the activity of MEG-treated renal tubular epithelial cells, relieving cell injury, as well as inhibiting pyroptosis and inflammation. More importantly, the mechanism was achieved by inhibiting the TLR4//MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rong-zheng Yue
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Ya-juan Li
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Bai-hai Su
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Cong-jun Li
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Rui Zeng
- Department of Cardiovascular diseases, West China Hospital, School of Clinic Medicine, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Mohamad HE, Abdelhady MA, Abdel Aal SM, Elrashidy RA. Dulaglutide mitigates high dietary fructose-induced renal fibrosis in rats through suppressing epithelial-mesenchymal transition mediated by GSK-3β/TGF-β1/Smad3 signaling pathways. Life Sci 2022; 309:120999. [PMID: 36182846 DOI: 10.1016/j.lfs.2022.120999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS High dietary fructose consumption has been linked to the development of renal fibrosis. Dulaglutide is a long acting glucagon like peptide-1 (GLP-1) analog, showing some renoprotective properties; however its action on renal fibrosis remains uncertain. We investigated the effect of dulaglutide on fructose-induced renal fibrosis in comparison to pirfenidone, as well-established anti-fibrotic drug, and the contribution of epithelial-mesenchymal transition (EMT) process and its upstream signaling. MAIN METHODS Six week-old male Wistar albino rats received 10%w/v fructose solution in drinking water for 24 weeks and co-treated with either pirfenidone (100 mg/kg/day, orally) or dulaglutide (0.2 mg/kg/week, s.c) for the last four weeks. Lipid profile, glucose homeostasis, kidney functions were assessed. Kidneys were harvested for biochemical and histological analyses. KEY FINDINGS High dietary fructose consumption for 24 weeks induced insulin resistance, dyslipidemia and renal dysfunction that were ameliorated by dulaglutide and pirfenidone to lesser extent. Histological examination revealed histological lesions and interstitial fibrosis in renal sections of high fructose-fed rats, which were reversed by dulaglutide or pirfenidone treatment. Both drugs modulated the EMT-related proteins by increasing the epithelial marker, E-cadherin, while suppressing the mesenchymal markers, vimentin and alpha-smooth muscle actin (α-SMA) in renal tissue. Moreover, both drugs attenuated fructose-induced upregulation of GSK-3β/TGF-β1/Smad3 signaling. SIGNIFICANCE These findings suggest that dulaglutide can emerge as a promising therapeutic agent for fructose-induced renal fibrosis. These results add mechanistic insights into the anti-fibrotic action of dulaglutide through suppressing EMT and the upstream GSK-3β/TGF-β1/Smad3 signaling.
Collapse
Affiliation(s)
- Hoda E Mohamad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Merna A Abdelhady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sara M Abdel Aal
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rania A Elrashidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
17
|
Yang M, Wang J, Wang Q. Hederagenin Exerts Potential Antilipemic Effect via p38MAPK Pathway in Oleic Acid-induced HepG2 cells and in Hyperlipidemic Rats. AN ACAD BRAS CIENC 2022; 94:e20201909. [PMID: 36102390 DOI: 10.1590/0001-3765202220201909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 11/22/2022] Open
Abstract
Hederagenin, a natural compound distributed in many medicinal plants, has a variety of pharmacological properties including anti-bacteria, anti-inflammation, anti-oxidation, and anti- apoptosis.. The aim of this study was to evaluate the effects of hederagenin on decreasing blood lipid and anti-oxidative stress in oleic acid-induced HepG2 cells and hyperlipidemic rats, and explore underlying mechanisms. In vitro, TG was used as the index to verify the lipid-lowering effect of hederagenin in oleic acid-induced HepG2 cells. In vivo, TC, TG, LDL-C, and HDL-C were used as direct indicators to study the antilipemic effect of hederagenin in hyperlipidemic rats. MDA, SOD, and GSH-PX were measured to analyze the anti-oxidative effect of hederagenin. The signaling pathways of anti-oxidation were evaluated using Western blot. Our results showed that hederagenin (250μmol/L) increased significantly TG clearance rate. In addition, treatment with hederagenin, XZK and simvastatin reduced effectively TC, TG, LDL-C and MDA content, and increased HDL-C, SOD and GSH-PX in HFD rats. Moreover, the phosphorylation level of p38 MAPK was inhibited after administration of hederagenin, XZK and simvastatin. Our results revealed that hederagenin possessed beneficial potentials for hypolipidemic effects, especially in TG clearance. The mechanism might be associated with inhibition of lipid absorption, reduction of lipid oxidation, and down-regulation of p38MAPK phosphorylation.
Collapse
Affiliation(s)
- Meng Yang
- School of Pharmaceutical Engineering, Jiang Su Food & pharmaceutical science college, China, 4, Meicheng Road, Huaian 223003, PR China
| | - Jing Wang
- School of Pharmaceutical Engineering, Jiang Su Food & pharmaceutical science college, China, 4, Meicheng Road, Huaian 223003, PR China
| | - Qiaoling Wang
- School of Pharmaceutical Engineering, Jiang Su Food & pharmaceutical science college, China, 4, Meicheng Road, Huaian 223003, PR China
| |
Collapse
|
18
|
Sutthasupha P, Promsan S, Thongnak L, Pengrattanachot N, Phengpol N, Jaruan O, Jaikumkao K, Muanprasat C, Pichyangkura R, Chatsudthipong V, Lungkaphin A. Chitosan oligosaccharide mitigates kidney injury in prediabetic rats by improving intestinal barrier and renal autophagy. Carbohydr Polym 2022; 288:119405. [PMID: 35450657 DOI: 10.1016/j.carbpol.2022.119405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Consumption of a high-fat diet (HFD) not only increases the risk of metabolic syndrome but also initiates kidney injury. Lipid accumulation-induced systemic low-grade inflammation is an upstream mechanism of kidney injury associated with prediabetes. Chitosan oligosaccharide (COS) provides potent anti-obesity effects through several mechanisms including fecal lipid excretion. In this study, we investigated the effects of COS on the prevention of obesity-related complications and its ability to confer renoprotection in a prediabetic model. Rats fed on a HFD developed obesity, glucose intolerance and kidney dysfunction. COS intervention successfully ameliorated these conditions (p < 0.05) by attenuating intestinal lipid absorption and the renal inflammation-autophagy-apoptosis axis. A novel anti-inflammatory effect of COS had been demonstrated by the strengthening of intestinal barrier integrity via calcium-sensing receptor (p < 0.05). The use of COS as a supplement may be useful in reducing prediabetic complications especially renal injury and the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Onanong Jaruan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
19
|
Alanyl-Glutamine Protects against Lipopolysaccharide-Induced Liver Injury in Mice via Alleviating Oxidative Stress, Inhibiting Inflammation, and Regulating Autophagy. Antioxidants (Basel) 2022; 11:antiox11061070. [PMID: 35739966 PMCID: PMC9220087 DOI: 10.3390/antiox11061070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Acute liver injury is a worldwide problem with a high rate of morbidity and mortality, and effective pharmacological therapies are still urgently needed. Alanyl-glutamine (Ala-Gln), a dipeptide formed from L-alanine and L-glutamine, is known as a protective compound that is involved in various tissue injuries, but there are limited reports regarding the effects of Ala-Gln in acute liver injury. This present study aimed to investigate the protective effects of Ala-Gln in lipopolysaccharide (LPS)-induced acute liver injury in mice, with a focus on inflammatory responses and oxidative stress. The acute liver injury induced using LPS (50 μg/kg) and D-galactosamine (D-Gal) (400 mg/kg) stimulation in mice was significantly attenuated after Ala-Gln treatment (500 and 1500 mg/kg), as evidenced by reduced plasma alanine transaminase (ALT) (p < 0.01, p < 0.001), aspartate transaminase (AST) (p < 0.05, p < 0.001), and lactate dehydrogenase (LDH) (p < 0.01, p < 0.001) levels, and accompanied by improved histopathological changes. In addition, LPS/D-Gal-induced hepatic apoptosis was also alleviated by Ala-Gln administration, as shown by a greatly decreased ratio of TUNEL-positive hepatocytes, from approximately 10% to 2%, and markedly reduced protein levels of cleaved caspase-3 (p < 0.05, p < 0.001) in liver. Moreover, we found that LPS/D-Gal-triggered oxidative stress was suppressed after Ala-Gln treatment, the effect of which might be dependent on the elevation of SOD and GPX activities, and on GSH levels in liver. Interestingly, we observed that Ala-Gln clearly inhibited LPS/D-Gal exposure-induced macrophage accumulation and the production of proinflammatory factors in the liver. Furthermore, Ala-Gln greatly regulated autophagy in the liver in LPS/D-Gal-treated mice. Using RAW264.7 cells, we confirmed the anti-inflammatory role of Ala-Gln-targeting macrophages.
Collapse
|
20
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
21
|
Yin R, Xu Y, Wang X, Yang L, Zhao D. Role of Dipeptidyl Peptidase 4 Inhibitors in Antidiabetic Treatment. Molecules 2022; 27:3055. [PMID: 35630534 PMCID: PMC9147686 DOI: 10.3390/molecules27103055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, important changes have occurred in the field of diabetes treatment. The focus of the treatment of diabetic patients has shifted from the control of blood glucose itself to the overall management of risk factors, while adjusting blood glucose goals according to individualization. In addition, regulators need to approve new antidiabetic drugs which have been tested for cardiovascular safety. Thus, the newest class of drugs has been shown to reduce major adverse cardiovascular events, including sodium-glucose transporter 2 (SGLT2) and some glucagon like peptide 1 receptor (GLP1) analog. As such, they have a prominent place in the hyperglycemia treatment algorithms. In recent years, the role of DPP4 inhibitors (DPP4i) has been modified. DPP4i have a favorable safety profile and anti-inflammatory profile, do not cause hypoglycemia or weight gain, and do not require dose escalation. In addition, it can also be applied to some types of chronic kidney disease patients and elderly patients with diabetes. Overall, DPP4i, as a class of safe oral hypoglycemic agents, have a role in the management of diabetic patients, and there is extensive experience in their use.
Collapse
Affiliation(s)
| | | | | | | | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China; (R.Y.); (Y.X.); (X.W.); (L.Y.)
| |
Collapse
|
22
|
Liu P, Zhang J, Wang Y, Wang C, Qiu X, Chen DQ. Natural Products Against Renal Fibrosis via Modulation of SUMOylation. Front Pharmacol 2022; 13:800810. [PMID: 35308200 PMCID: PMC8931477 DOI: 10.3389/fphar.2022.800810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Renal fibrosis is the common and final pathological process of kidney diseases. As a dynamic and reversible post-translational modification, SUMOylation and deSUMOylation of transcriptional factors and key mediators significantly affect the development of renal fibrosis. Recent advances suggest that SUMOylation functions as the promising intervening target against renal fibrosis, and natural products prevent renal fibrosis via modulating SUMOylation. Here, we introduce the mechanism of SUMOylation in renal fibrosis and therapeutic effects of natural products. This process starts by summarizing the key mediators and enzymes during SUMOylation and deSUMOylation and its regulation role in transcriptional factors and key mediators in renal fibrosis, then linking the mechanism findings of SUMOylation and natural products to develop novel therapeutic candidates for treating renal fibrosis, and concludes by commenting on promising therapeutic targets and candidate natural products in renal fibrosis via modulating SUMOylation, which highlights modulating SUMOylation as a promising strategy for natural products against renal fibrosis.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Yun Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chen Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Xinping Qiu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dan-Qian Chen,
| |
Collapse
|
23
|
Cheng T, Li C, Shen L, Wang S, Li X, Fu C, Li T, Liu B, Gu Y, Wang W, Feng B. The Intestinal Effect of Atorvastatin: Akkermansia muciniphila and Barrier Function. Front Microbiol 2022; 12:797062. [PMID: 35185821 PMCID: PMC8847773 DOI: 10.3389/fmicb.2021.797062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Studies have shown that the cholesterol-lowering medicine statins alter the gut microbiome, induce chronic metabolic inflammation, and disrupt glycemic homeostasis. In this study, we aimed to investigate whether effects of atorvastatin (Ator) on gut microbiome and metabolic inflammation could be causally correlated. Mice at 8-week age were fed with high-fat diet (HFD) or HFD with Ator (HFD+Ator) for 16 weeks. 16S rRNA sequencing of stool and RNA sequencing of colon tissue were employed to analyze the intestinal alterations that could be induced by Ator. A human colon carcinoma cell line (Caco2) was used for in vitro experiments on barrier function. Compared to HFD, HFD+Ator induced more weight gain, impaired glucose tolerance, and led to gut microbiota dysbiosis, such as suppressing Akkermansia muciniphila in mice. The expressions of tight junction (TJ) proteins were attenuated in the colon, and the serum LPS-binding-protein (LBP) level was elevated in HFD+Ator mice, so as to transcriptionally activate the intestinal nuclear factor-k-gene binding (NF-κB) signaling pathway. Consistently, Ator impaired the barrier function of Caco2, and treatment of supernatant of A. Muciniphila culture could decrease the intestinal permeability and recover the attenuated expression of TJ proteins induced by Ator. In conclusion, long-term use of Ator with HFD may alter gut microbiota, induce intestinal barrier dysfunction, and hence promote chronic inflammation that contributes to disrupted glycemic homeostasis.
Collapse
Affiliation(s)
- Tingting Cheng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changkun Li
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linyan Shen
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shujie Wang
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelin Li
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Fu
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Liu
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Feng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Thongnak L, Pengrattanachot N, Promsan S, Phengpol N, Sutthasupha P, Chatsudthipong V, Lungkaphin A. The combination of dapagliflozin and statins ameliorates renal injury through attenuating the activation of inflammasome-mediated autophagy in insulin-resistant rats. J Biochem Mol Toxicol 2021; 36:e22978. [PMID: 34939712 DOI: 10.1002/jbt.22978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Long-term use of a high-fat diet with high-fructose (HFF) intake could promote insulin resistance and induce lipid accumulation leading to kidney injury possibly via impairment of the autophagy process and enhancement of the inflammasome pathway. We investigated whether dapagliflozin as a monotherapy or combined with atorvastatin could restore kidney autophagy impairment and reduce inflammasome activation associated with kidney injury induced by HFF consumption. Male Wistar rats were given an HFF for 16 weeks and then treated with dapagliflozin with or without atorvastatin for 4 weeks. Impaired glucose tolerance, dyslipidemia, renal lipid accumulation along with impaired renal autophagy and activated inflammasome pathway promoted renal injury were exhibited in HFF rats. Dapagliflozin with or without atorvastatin treatment could partially restore disrupted metabolic parameters and reduce kidney injury. In particular, the combination treatment group showed significant amelioration of inflammasome activation and autophagy impairment. In conclusion, the combination therapy of dapagliflozin and atorvastatin has a positive effect on renal injury associated with autophagy and inflammasome activation induced by HFF in insulin-resistant rats. This study is the first report demonstrating the underlying mechanism associated with a combination treatment of dapagliflozin and atorvastatin on autophagy and inflammasome pathways in an insulin-resistant condition. Therefore, dapagliflozin in combination with atorvastatin may be a further preventive or therapeutic strategy for chronic kidney disease in an insulin-resistant or diabetic condition.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Jaikumkao K, Promsan S, Thongnak L, Swe MT, Tapanya M, Htun KT, Kothan S, Intachai N, Lungkaphin A. Dapagliflozin ameliorates pancreatic injury and activates kidney autophagy by modulating the AMPK/mTOR signaling pathway in obese rats. J Cell Physiol 2021; 236:6424-6440. [PMID: 33559163 DOI: 10.1002/jcp.30316] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/30/2020] [Accepted: 01/27/2021] [Indexed: 02/05/2023]
Abstract
Chronic consumption of a high-fat diet induces obesity and impairs the ultra-structure of organs and tissues. We examined the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor-dapagliflozin on renal and pancreatic injuries in obese condition. Rats were fed a high-fat diet for 16 weeks to induce obesity. After that, dapagliflozin or vildagliptin, 1.0 or 3.0 mg/kg/day, respectively, was administered by oral gavage for 4 weeks. The effects of dapagliflozin on insulin resistance, kidney autophagy, pancreatic oxidative stress, endoplasmic reticulum (ER) stress, inflammation, and apoptosis in high-fat diet-induced obese rats were elucidated. High-fat-diet fed rats demonstrated metabolic abnormalities including increased body weight, visceral fat weight, plasma insulin, plasma cholesterol, homeostasis model assessment (HOMA) index, and TAUCg, indicating the obese-insulin resistant and glucose intolerance conditions. Also, high-fat-diet fed rats exhibited significant pancreatic injury accompanied by decreased kidney autophagy. Dapagliflozin or vildagliptin treatment for 4 weeks ameliorated pancreatic oxidative stress, ER stress, inflammation, and apoptosis and restored kidney autophagy in obese rats. Moreover, the morphology changes of the pancreas and kidney were improved in the treated groups. Interestingly, dapagliflozin showed higher efficacy than vildagliptin in improving body weight, visceral fat weight, plasma cholesterol level, and pancreatic oxidative stress in our model. Taken together, the present study demonstrated that the therapeutic effects of dapagliflozin attenuated pancreatic injury, pancreatic oxidative stress, ER stress, inflammation, apoptosis, and exerted renoprotective effects by restoring autophagic signaling in obese rats.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Radiation Research and Medical Imaging, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Myat T Swe
- Department of Physiology, University of Medicine 2, Yangon, Yangon, Myanmar
| | - Monruedee Tapanya
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Khin T Htun
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Radiation Research and Medical Imaging, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawadee Intachai
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
26
|
Zhang XB, Cheng HJ, Yuan YT, Chen Y, Chen YY, Chiu KY, Zeng HQ. Atorvastatin attenuates intermittent hypoxia-induced myocardial oxidative stress in a mouse obstructive sleep apnea model. Aging (Albany NY) 2021; 13:18870-18878. [PMID: 34289453 PMCID: PMC8351704 DOI: 10.18632/aging.203339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Chronic intermittent hypoxia (CIH), a hallmark of obstructive sleep apnea (OSA), is associated with various cardiovascular diseases. In the present study, we assessed the effect of the lipid reducing agent atorvastatin on CIH-induced myocardial oxidative stress and apoptosis in a mouse OSA model. Forty-eight C57BL/6J mice were evenly divided among normoxia + vehicle, normoxia + atorvastatin, CIH + vehicle, and CIH + atorvastatin groups. CIH consisted of a hypoxia-reoxygenation cycle in which oxygen concentrations fluctuated from 21% to 6% and back over two minutes for 8 hours each day (30 events/hour). CIH exposure continued for 12 weeks. Atorvastatin (5 mg/kg) was administered from week 6 through the end of the experiment. CIH increased malondialdehyde levels and decreased superoxide dismutase activity, total antioxidant capacity, and nuclear factor erythroid 2-related factor 2 levels in cardiac tissue, indicating a reduction in antioxidant activity. Atorvastatin significantly reversed those effects (p < 0.05). CIH also increased B-cell lymphoma 2-associated protein X and cleaved caspased-3 levels as well as the myocardial apoptotic rate, as indicated by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Atorvastatin had no effect on those changes (p > 0.05). Thus, atorvastatin administration exerts antioxidant but not anti-apoptotic effects after CIH and may therefore have therapeutic potential in OSA patients with cardiovascular comorbidities.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Hui-Juan Cheng
- Department of Medical Affairs, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Ya-Ting Yuan
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Yi-Yuan Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Kam Yu Chiu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Hui-Qing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
27
|
Zhang Y, Ma L, Lu E, Huang W. Atorvastatin Upregulates microRNA-186 and Inhibits the TLR4-Mediated MAPKs/NF-κB Pathway to Relieve Steroid-Induced Avascular Necrosis of the Femoral Head. Front Pharmacol 2021; 12:583975. [PMID: 33995003 PMCID: PMC8115218 DOI: 10.3389/fphar.2021.583975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is caused by the death of active components of the femoral head owing to hormone overdoses. The use of lipid-lowering drugs to prevent SANFH in animals inspired us to identify the mechanisms involving Atorvastatin (Ato) in SANFH. However, it is still not well understood how and to what extent Ato affects SANFH. This study aimed to figure out the efficacy of Ato in SANFH and the underlying molecular mechanisms. After establishment of the SANFH model, histological evaluation, lipid metabolism, inflammatory cytokines, oxidative stress, apoptosis, and autophagy of the femoral head were evaluated. The differentially expressed microRNAs (miRs) after Ato treatment were screened out using microarray analysis. The downstream gene and pathway of miR-186 were predicted and their involvement in SANFH rats was analyzed. OB-6 cells were selected to simulate SANFH in vitro. Cell viability, cell damage, inflammation responses, apoptosis, and autophagy were assessed. Ato alleviated SANFH, inhibited apoptosis, and promoted autophagy. miR-186 was significantly upregulated after Ato treatment. miR-186 targeted TLR4 and inactivated the MAPKs/NF-κB pathway. Inhibition of miR-186 reversed the protection of Ato on SANFH rats, while inhibition of TLR4 restored the protective effect of Ato. Ato reduced apoptosis and promoted autophagy of OB-6 cells by upregulating miR-186 and inhibiting the TLR4/MAPKs/NF-κB pathway. In conclusion, Ato reduced apoptosis and promoted autophagy, thus alleviating SANFH via miR-186 and the TLR4-mediated MAPKs/NF-κB pathway.
Collapse
Affiliation(s)
- Yusong Zhang
- Department of Orthopedics, Xinhui People's Hospital of Southern Medical University, Jiangmen, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Limin Ma
- Department of Orthopedics, Xinhui People's Hospital of Southern Medical University, Jiangmen, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Erhai Lu
- Department of Orthopedics, Xinhui People's Hospital of Southern Medical University, Jiangmen, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
28
|
Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol Ther 2020; 217:107647. [PMID: 32758646 DOI: 10.1016/j.pharmthera.2020.107647] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.
Collapse
|
29
|
Thongnak L, Chatsudthipong V, Lungkaphin A. Mitigation of renal inflammation and endoplasmic reticulum stress by vildagliptin and statins in high-fat high-fructose diet-induced insulin resistance and renal injury in rats. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158755. [PMID: 32534015 DOI: 10.1016/j.bbalip.2020.158755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 01/16/2023]
Abstract
Dyslipidemia and insulin resistance in obesity can lead to lipotoxicity and cellular damage. Renal lipotoxicity in association with an impairment of lipid metabolism induces renal damage through the activation of inflammation, ER stress, fibrosis and apoptosis. We investigated the effects of a combination treatment of the DPP-4 inhibitor vildagliptin and atorvastatin on renal lipotoxicity related to renal dysfunction and injury in a high-fat high-fructose diet (HFF)-induced insulin resistant condition. Male Wistar rats were fed on a high-fat diet and were given drinking water with 10% fructose for 16 weeks. After that, rats were divided into: no treatment (HFF), treatment with vildagliptin, atorvastatin and vildagliptin plus atorvastatin for 4 weeks. The results demonstrated that the combination treatment prominently improved insulin resistance, dyslipidemia and kidney morphological changes induced by HFF. These changes correlated well with the increased expression of nephrin and podocin and decreased urine protein. Notably, the combined treatment produced greater improvement in renal lipid metabolism through increasing fatty acid oxidation with the decreases in fatty acid transporters and fatty acid synthesis, thereby reducing renal lipid accumulation in HFF rats. The reduction in renal lipotoxicity via diminishing renal inflammation, ER stress, fibrosis and apoptosis was also more significant in the combined treatment group than in the other groups in which the drug was used as a monotherapy. In conclusion, the combination therapy produced synergistic beneficial effects on metabolic parameters, lipid metabolism and accumulation related to renal lipid accumulation-induced lipotoxicity and kidney injury in the HFF-induced insulin resistant model with improved outcomes.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
30
|
Effects of dapagliflozin and statins attenuate renal injury and liver steatosis in high-fat/high-fructose diet-induced insulin resistant rats. Toxicol Appl Pharmacol 2020; 396:114997. [DOI: 10.1016/j.taap.2020.114997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
|