1
|
Karmakar S, Patra S, Pramanik K, Adhikary A, Dey A, Majumdar A. Reactivity of Thiolate and Hydrosulfide with a Mononuclear {FeNO} 7 Complex Featuring a Very High N-O Stretching Frequency. Inorg Chem 2024; 63:8537-8555. [PMID: 38679874 DOI: 10.1021/acs.inorgchem.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Synthesis, characterization, electronic structure, and redox reactions of a mononuclear {FeNO}7 complex with a very high N-O stretching frequency in solution are presented. Nitrosylation of [(LKP)Fe(DMF)]2+ (1) (LKP = tris((1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methyl)amine) produced a five-coordinate {FeNO}7 complex, [(LKP)Fe(NO)]2+ (2). While complex 2 could accommodate an additional water molecule to generate a six-coordinate {FeNO}7 complex, [(LKP)Fe(NO)(H2O)]2+ (3), the coordinated H2O in 3 dissociates to generate 2 in solution. The molecular structure of 2 features a nearly linear Fe-N-O unit with an Fe-N distance of 1.744(4) Å, N-O distance of 1.162(5) Å, and
Collapse
Affiliation(s)
- Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Koushik Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Adhikary
- Department of Chemistry, Technology Campus, University of Calcutta, JD Block, Sector III, Salt Lake, Kolkata 700098, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Havrylyuk D, Heidary DK, Glazer EC. The Impact of Inorganic Systems and Photoactive Metal Compounds on Cytochrome P450 Enzymes and Metabolism: From Induction to Inhibition. Biomolecules 2024; 14:441. [PMID: 38672458 PMCID: PMC11048704 DOI: 10.3390/biom14040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.
Collapse
Affiliation(s)
| | - David K. Heidary
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| | - Edith C. Glazer
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| |
Collapse
|
3
|
Wang WJ, Li XP, Shen WH, Huang QY, Cong RP, Zheng LP, Wang JW. Nitric oxide mediates red light-induced perylenequinone production in Shiraia mycelium culture. BIORESOUR BIOPROCESS 2024; 11:2. [PMID: 38647587 PMCID: PMC10991179 DOI: 10.1186/s40643-023-00725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/24/2023] [Indexed: 04/25/2024] Open
Abstract
Perylenequinones (PQs) from bambusicolous Shiraia fungi serve as excellent photosensitizers for photodynamic therapy. However, the lower yield of PQ production in mycelium cultures is an important bottleneck for their clinical application. Light has long been recognized as a pivotal regulatory signal for fungal secondary metabolite biosynthesis. In this study, we explored the role of nitric oxide (NO) in the growth and PQ biosynthesis in mycelium cultures of Shiraia sp. S9 exposed to red light. The continuous irradiation with red light (627 nm, 200 lx) suppressed fungal conidiation, promoted hyphal branching, and elicited a notable increase in PQ accumulation. Red light exposure induced NO generation, peaking to 81.7 μmol/g FW on day 8 of the culture, with the involvement of nitric oxide synthase (NOS)- or nitrate reductase (NR)-dependent pathways. The application of a NO donor sodium nitroprusside (SNP) restored conidiation of Shiraia sp. S9 under red light and stimulated PQ production, which was mitigated upon the introduction of NO scavenger carboxy-PTIO or soluble guanylate cyclase inhibitor NS-2028. These results showed that red light-induced NO, as a signaling molecule, was involved in the regulation of growth and PQ production in Shiraia sp. S9 through the NO-cGMP-PKG signaling pathway. While mycelial H2O2 content exhibited no significant alternations, a transient increase of intracellular Ca2+ and extracellular ATP (eATP) content was detected upon exposure to red light. The generation of NO was found to be interdependent on cytosolic Ca2+ and eATP concentration. These signal molecules cooperated synergistically to enhance membrane permeability and elevate the transcript levels of PQ biosynthetic genes in Shiraia sp. S9. Notably, the combined treatment of red light with 5 μM SNP yielded a synergistic effect, resulting in a substantially higher level of hypocrellin A (HA, 254 mg/L), about 3.0-fold over the dark control. Our findings provide valuable insights into the regulation of NO on fungal secondary metabolite biosynthesis and present a promising strategy involving the combined elicitation with SNP for enhanced production of photoactive PQs and other valuable secondary metabolites in fungi.
Collapse
Affiliation(s)
- Wen Juan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Peng Cong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China.
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Xu C, Lin W, Chen Y, Gao B, Zhang Z, Zhu D. Heat stress enhanced perylenequinones biosynthesis of Shiraia sp. Slf14(w) through nitric oxide formation. Appl Microbiol Biotechnol 2023; 107:3745-3761. [PMID: 37126084 DOI: 10.1007/s00253-023-12554-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
Perylenequinones (PQs) are a class of natural polyketides used as photodynamic therapeutics. Heat stress (HS) is an important environmental factor affecting secondary metabolism of fungi. This study investigated the effects of HS treatment on PQs biosynthesis of Shiraia sp. Slf14(w) and the underlying molecular mechanism. After the optimization of HS treatment conditions, the total PQs amount reached 577 ± 34.56 mg/L, which was 20.89-fold improvement over the control. Also, HS treatment stimulated the formation of intracellular nitric oxide (NO). Genome-wide analysis of Shiraia sp. Slf14(w) revealed iNOSL and cNOSL encoding inducible and constitutive NOS-like proteins (iNOSL and cNOSL), respectively. Cloned iNOSL in Escherichia coli BL21 showed higher nitric oxide synthase (NOS) activity than cNOSL, and the expression level of iNOSL under HS treatment was observably higher than that of cNOSL, suggesting that iNOSL is more responsible for NO production in the HS-treated strain Slf14(w) and may play an important role in regulating PQs biosynthesis. Moreover, the putative biosynthetic gene clusters for PQs and genes encoding iNOSL and nitrate reductase (NR) in the HS-treated strain Slf14(w) were obviously upregulated. PQs biosynthesis and efflux stimulated by HS treatment were significantly inhibited upon the addition of NO scavenger, NOS inhibitor, and NR inhibitor, indicating that HS-induced NO, as a signaling molecule, triggered promoted PQs biosynthesis and efflux. Our results provide an effective strategy for PQs production and contribute to the understanding of heat shock signal transduction studies of other fungi.Key points• PQs titer of Shiraia sp. Slf14(w) was significantly enhanced by HS treatment.• HS-induced NO was first reported to participate in PQs biosynthetic regulation.• Novel inducible and constitutive NOS-like proteins (iNOSL and cNOSL) were obtained and their NOS activities were determined.
Collapse
Affiliation(s)
- Chenglong Xu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Wenxi Lin
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yunni Chen
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Boliang Gao
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China.
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
5
|
Innovative Hybrid-Alignment Annotation Method for Bioinformatics Identification and Functional Verification of a Novel Nitric Oxide Synthase in Trichomonas vaginalis. BIOLOGY 2022; 11:biology11081210. [PMID: 36009837 PMCID: PMC9404748 DOI: 10.3390/biology11081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Both the annotation and identification of genes in pathogenic parasites remain challenging. As a survival factor, nitric oxide (NO) has been proven to be synthesized in Trichomonas vaginalis (TV). However, nitric oxide synthase (NOS) has not yet been annotated in the TV genome. By aligning whole coding sequences of TV against a thousand sequences of known proteins from other organisms via the Smith–Waterman and Needleman–Wunsch algorithms, we developed a witness-to-suspect strategy to identify incorrectly annotated genes in TV. A novel NOS of TV (TV NOS) with a high witness-to-suspect ratio, which was originally annotated as a hydrogenase in the NCBI database, was successfully identified. We then performed in silico modeling of the protein structure and the molecular docking of all cofactors (NADPH, tetrahydrobiopterin (BH4), heme and flavin adenine dinucleotide (FAD)), cloned the gene, expressed and purified the protein, and ultimately performed mass spectrometry analysis and enzymatic activity assays. We clearly showed that although the predicted structure of TV NOS is not similar to that of NOS proteins of other species, all cofactor-binding motifs can interact with their ligands with high affinities. Most importantly, the purified protein is a functional NOS, as it has a high enzymatic activity for generating NO in vitro. This study provides an innovative approach to identify incorrectly annotated genes. Abstract Both the annotation and identification of genes in pathogenic parasites are still challenging. Although, as a survival factor, nitric oxide (NO) has been proven to be synthesized in Trichomonas vaginalis (TV), nitric oxide synthase (NOS) has not yet been annotated in the TV genome. We developed a witness-to-suspect strategy to identify incorrectly annotated genes in TV via the Smith–Waterman and Needleman–Wunsch algorithms through in-depth and repeated alignment of whole coding sequences of TV against thousands of sequences of known proteins from other organisms. A novel NOS of TV (TV NOS), which was annotated as hydrogenase in the NCBI database, was successfully identified; this TV NOS had a high witness-to-suspect ratio and contained all the NOS cofactor-binding motifs (NADPH, tetrahydrobiopterin (BH4), heme and flavin adenine dinucleotide (FAD) motifs). To confirm this identification, we performed in silico modeling of the protein structure and cofactor docking, cloned the gene, expressed and purified the protein, performed mass spectrometry analysis, and ultimately performed an assay to measure enzymatic activity. Our data showed that although the predicted structure of the TV NOS protein was not similar to the structure of NOSs of other species, all cofactor-binding motifs could interact with their ligands with high affinities. We clearly showed that the purified protein had high enzymatic activity for generating NO in vitro. This study provides an innovative approach to identify incorrectly annotated genes in TV and highlights a novel NOS that might serve as a virulence factor of TV.
Collapse
|
6
|
Ito A, Choi JH, Yokoyama-Maruyama W, Kotajima M, Wu J, Suzuki T, Terashima Y, Suzuki H, Hirai H, Nelson DC, Tsunematsu Y, Watanabe K, Asakawa T, Ouchi H, Inai M, Dohra H, Kawagishi H. 1,2,3-Triazine formation mechanism of the fairy chemical 2-azahypoxanthine in the fairy ring-forming fungus Lepista sordida. Org Biomol Chem 2022; 20:2636-2642. [PMID: 35293930 DOI: 10.1039/d2ob00328g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Azahypoxanthine (AHX) was first isolated from the culture broth of the fungus Lepista sordida as a fairy ring-inducing compound. It has since been found that a large number of plants and mushrooms produce AHX endogenously and that AHX has beneficial effects on plant growth. The AHX molecule has an unusual, nitrogen-rich 1,2,3-triazine moiety of unknown biosynthetic origin. Here, we establish the biosynthetic pathway for AHX formation in L. sordida. Our results reveal that the key nitrogen sources that are responsible for the 1,2,3-triazine formation are reactive nitrogen species (RNS), which are derived from nitric oxide (NO) produced by NO synthase (NOS). Furthermore, RNS are also involved in the biochemical conversion of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5'-monophosphate (AICAR) to AHX-ribotide (AHXR), suggesting that a novel biosynthetic route that produces AHX exists in the fungus. These findings demonstrate a physiological role for NOS in AHX biosynthesis as well as in biosynthesis of other natural products containing a nitrogen-nitrogen bond.
Collapse
Affiliation(s)
- Akinobu Ito
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Waki Yokoyama-Maruyama
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Mihaya Kotajima
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Tochigi 321-8505, Japan
| | - Yurika Terashima
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hyogo Suzuki
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asakawa
- Marine Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan
| | - Hitoshi Ouchi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideo Dohra
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
7
|
Chavda V, Chaurasia B, Garg K, Deora H, Umana GE, Palmisciano P, Scalia G, Lu B. Molecular mechanisms of oxidative stress in stroke and cancer. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
9
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Franco-Cano A, Marcos AT, Strauss J, Cánovas D. Evidence for an arginine-dependent route for the synthesis of NO in the model filamentous fungus Aspergillus nidulans. Environ Microbiol 2021; 23:6924-6939. [PMID: 34448331 DOI: 10.1111/1462-2920.15733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a signalling molecule in eukaryotic and prokaryotic organisms. NO levels transiently boost upon induction of conidiation in Aspergillus nidulans. Only one pathway for NO synthesis involving nitrate reductase has been reported in filamentous fungi so far, but this does not satisfy all the NO produced in fungal cells. Here we provide evidence for at least one additional biosynthetic pathway in A. nidulans involving l-arginine or an intermediate metabolite as a substrate. Under certain growth conditions, the addition of l-arginine to liquid media elicited a burst of NO that was not dependent on any of the urea cycle genes. The NO levels were controlled by the metabolically available arginine, which was regulated by mobilization from the vacuoles and during development. In vitro assays with protein extracts and amino acid profiling strongly suggested the existence of an arginine-dependent NO pathway analogous to the mammalian NO synthase. Addition of polyamines induced NO synthesis, and mutations in the polyamine synthesis genes puA and spdA reduced the production of NO. In conclusion, here we report an additional pathway for the synthesis of NO in A. nidulans using urea cycle intermediates.
Collapse
Affiliation(s)
- Antonio Franco-Cano
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Ana T Marcos
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University of Natural Resources and Life Science, Campus Tulln, Tulln/Donau, Austria
| | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain.,Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University of Natural Resources and Life Science, Campus Tulln, Tulln/Donau, Austria
| |
Collapse
|
11
|
Seckler JM, Shen J, Lewis THJ, Abdulameer MA, Zaman K, Palmer LA, Bates JN, Jenkins MW, Lewis SJ. NADPH diaphorase detects S-nitrosylated proteins in aldehyde-treated biological tissues. Sci Rep 2020; 10:21088. [PMID: 33273578 PMCID: PMC7713249 DOI: 10.1038/s41598-020-78107-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
NADPH diaphorase is used as a histochemical marker of nitric oxide synthase (NOS) in aldehyde-treated tissues. It is thought that the catalytic activity of NOS promotes NADPH-dependent reduction of nitro-blue tetrazolium (NBT) to diformazan. However, it has been argued that a proteinaceous factor other than NOS is responsible for producing diformazan in aldehyde-treated tissues. We propose this is a NO-containing factor such as an S-nitrosothiol and/or a dinitrosyl-iron (II) cysteine complex or nitrosated proteins including NOS. We now report that (1) S-nitrosothiols covalently modify both NBT and TNBT, but only change the reduction potential of NBT after modification, (2) addition of S-nitrosothiols or β- or α-NADPH to solutions of NBT did not elicit diformazan, (3) addition of S-nitrosothiols to solutions of NBT plus β- or α-NADPH elicited rapid formation of diformazan in the absence or presence of paraformaldehyde, (4) addition of S-nitrosothiols to solutions of NBT plus β- or α-NADP did not produce diformazan, (5) S-nitrosothiols did not promote NADPH-dependent reduction of tetra-nitro-blue tetrazolium (TNBT) in which all four phenolic rings are nitrated, (6) cytoplasmic vesicles in vascular endothelial cells known to stain for NADPH diaphorase were rich in S-nitrosothiols, and (7) procedures that accelerate decomposition of S-nitrosothiols, markedly reduced NADPH diaphorase staining in tissue sections subsequently subjected to paraformaldehyde fixation. Our results suggest that NADPH diaphorase in aldehyde-fixed tissues is not enzymatic but is due to the presence of NO-containing factors (free SNOs or nitrosated proteins such as NOS), which promote NADPH-dependent reduction of NBT to diformazan.
Collapse
Affiliation(s)
- James M Seckler
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinshan Shen
- Department of Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Tristan H J Lewis
- Department of Pharmacology and Physiology, University of Georgia, Athens, GA, 30602, USA
| | - Mohammed A Abdulameer
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lisa A Palmer
- Department of Pediatrics, University of Virginia, Charlottesville, VA, 801366, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Bioengineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
12
|
Proteome-wide modulation of S-nitrosylation in Trypanosoma cruzi trypomastigotes upon interaction with the host extracellular matrix. J Proteomics 2020; 231:104020. [PMID: 33096306 DOI: 10.1016/j.jprot.2020.104020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/20/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Trypanosoma cruzi trypomastigotes adhere to extracellular matrix (ECM) to invade mammalian host cells regulating intracellular signaling pathways. Herein, resin-assisted enrichment of thiols combined with mass spectrometry were employed to map site-specific S-nitrosylated (SNO) proteins from T. cruzi trypomastigotes incubated (MTy) or not (Ty) with ECM. We confirmed the reduction of S-nitrosylation upon incubation with ECM, associated with a rewiring of the subcellular distribution and intracellular signaling pathways. Forty, 248 and 85 SNO-peptides were identified only in MTy, Ty or in both conditions, respectively. SNO proteins were enriched in ribosome, transport, carbohydrate and lipid metabolisms. Nitrosylation of histones H2B and H3 on Cys64 and Cys126, respectively, is described. Protein-protein interaction networks revealed ribosomal proteins, proteins involved in carbon and fatty acid metabolism to be among the enriched protein complexes. Kinases, phosphatases and enzymes involved in the metabolism of carbohydrates, lipids and amino acids were identified as nitrosylated and phosphorylated, suggesting a post-translational modifications crosstalk. In silico mapping of nitric oxide synthase (NOS) genes, previously uncharacterized, matched to four putative T. cruzi proteins expressing C-terminal NOS domain. Our results provide the first site-specific characterization of S-nitrosylated proteins in T. cruzi and their modulation upon ECM incubation before infection of the mammalian hosts. SIGNIFICANCE: Protein S-nitrosylation represents a major molecular mechanism for signal transduction by nitric oxide. We present for the first time a proteomic profile of S-nitrosylated proteins from infective forms of T. cruzi, showing a decrease in SNO proteins after incubation of the parasite with the extracellular matrix, a necessary step for the parasite invasion of the host mammalian cells. We also show for the first time nitrosylation of H2B (Cys64) and H3 (Cys126) histones, sites not conserved in higher eukaryotic cells, and suggest that some specific histone isoforms are sensitive to NO signaling. S-nitrosylation in H2B and H3 histones are more abundant in MTy. Moreover, proteins involved in translation, glycolytic pathway and fatty acid metabolism are enriched in the present dataset. Comparison of the SNO proteome and the phosphoproteome, obtained previously under the same experimental conditions, show that most of the proteins sharing both modifications are involved in metabolic pathways, transport and ribosome function. The data suggest that both PTMs are involved in reprogramming the metabolism of T. cruzi in response to environmental changes. Although NO synthesis was detected in T. cruzi, the identification of NOS remains elusive. Analysis in silico showed two genes similar in domains to NADPH-dependent cytochrome-P450 reductase and two putative oxidoreductases, but no oxygenase domain of NOS was mapped in the T. cruzi genome. It is tempting to speculate that NO synthase-like from T. cruzi and its early NO-mediated pathways triggered in response to host interaction constitute potential diagnostic and therapeutic targets.
Collapse
|
13
|
Nitrate reductase-dependent nitric oxide plays a key role on MeJA-induced ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2020; 104:10737-10753. [PMID: 33064185 DOI: 10.1007/s00253-020-10951-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Ganoderma lucidum, which contains numerous biologically active compounds, is known worldwide as a medicinal basidiomycete. Because of its application for the prevention and treatment of various diseases, most of artificially cultivated G. lucidum is output to many countries as food, tea, and dietary supplements for further processing. Methyl jasmonate (MeJA) has been reported as a compound that can induce ganoderic acid (GA) biosynthesis, an important secondary metabolite of G. lucidum. Herein, MeJA was found to increase the intracellular level of nitric oxide (NO). In addition, upregulation of GA biosynthesis in the presence of MeJA was abolished when NO was depleted from the culture. This result demonstrated that MeJA-regulated GA biosynthesis might occur via NO signaling. To elucidate the underlying mechanism, we used gene-silenced strains of nitrate reductase (NR) and the inhibitor of NR to illustrate the role of NO in MeJA induction. The results indicated that the increase in GA biosynthesis induced by MeJA was activated by NR-generated NO. Furthermore, the findings indicated that the reduction of NO could induce GA levels in the control group, but NO could also activate GA biosynthesis upon MeJA treatment. Further results indicated that NR silencing reversed the increased enzymatic activity of NOX to generate ROS due to MeJA induction. Importantly, our results highlight the NR-generated NO functions in signaling crosstalk between reactive oxygen species and MeJA. These results provide a good opportunity to determine the potential pathway linking NO to the ROS signaling pathway in fungi treated with MeJA. KEY POINTS: • MeJA increased the intracellular level of nitric oxide (NO) in G. lucidum. • The increase in GA biosynthesis induced by MeJA is activated by NR-generated NO. • NO acts as a signaling molecule between reactive oxygen species (ROS) and MeJA.
Collapse
|
14
|
Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020; 34:101550. [PMID: 32438317 PMCID: PMC7235643 DOI: 10.1016/j.redox.2020.101550] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthases are the major sources of nitric oxide, a critical signaling molecule involved in a wide range of cellular and physiological processes. These enzymes comprise a family of genes that are highly conserved across all eukaryotes. The three family members found in mammals are important for inter- and intra-cellular signaling in tissues that include the nervous system, the vasculature, the gut, skeletal muscle, and the immune system, among others. We summarize major advances in the understanding of biochemical and tissue-specific roles of nitric oxide synthases, with a focus on how these mechanisms enable tissue adaptation and health or dysfunction and disease. We highlight the unique mechanisms and processes of neuronal nitric oxide synthase, or NOS1. This was the first of these enzymes discovered in mammals, and yet much remains to be understood about this highly conserved and complex gene. We provide examples of two areas that will likely be of increasing importance in nitric oxide biology. These include the mechanisms by which these critical enzymes promote adaptation or disease by 1) coordinating communication by diverse cell types within a tissue and 2) directing cellular differentiation/activation decisions processes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA.
| | - Katy M LaFond
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA; Feinberg School of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, USA
| |
Collapse
|
15
|
Nejamkin A, Foresi N, Mayta ML, Lodeyro AF, Castello FD, Correa-Aragunde N, Carrillo N, Lamattina L. Nitrogen Depletion Blocks Growth Stimulation Driven by the Expression of Nitric Oxide Synthase in Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:312. [PMID: 32265964 PMCID: PMC7100548 DOI: 10.3389/fpls.2020.00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is a messenger molecule widespread studied in plant physiology. Latter evidence supports the lack of a NO-producing system involving a NO synthase (NOS) activity in higher plants. However, a NOS gene from the unicellular marine alga Ostreococcus tauri (OtNOS) was characterized in recent years. OtNOS is a genuine NOS, with similar spectroscopic fingerprints to mammalian NOSs and high NO producing capacity. We are interested in investigating whether OtNOS activity alters nitrogen metabolism and nitrogen availability, thus improving growth promotion conditions in tobacco. Tobacco plants were transformed with OtNOS under the constitutive CaMV 35S promoter. Transgenic tobacco plants expressing OtNOS accumulated higher NO levels compared to siblings transformed with the empty vector, and displayed accelerated growth in different media containing sufficient nitrogen availability. Under conditions of nitrogen scarcity, the growth promoting effect of the OtNOS expression is diluted in terms of total leaf area, protein content and seed production. It is proposed that OtNOS might possess a plant growth promoting effect through facilitating N remobilization and nitrate assimilation with potential to improve crop plants performance.
Collapse
Affiliation(s)
- Andrés Nejamkin
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Martín L. Mayta
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella F. Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
16
|
Zhao Y, Lim J, Xu J, Yu J, Zheng W. Nitric oxide as a developmental and metabolic signal in filamentous fungi. Mol Microbiol 2020; 113:872-882. [DOI: 10.1111/mmi.14465] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| | - Jieyin Lim
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jianyang Xu
- Department of Traditional Chinese Medicine General Hospital of Shenzhen University Shenzhen China
| | - Jae‐Hyuk Yu
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Systems Biotechnology Konkuk University Seoul Republic of Korea
| | - Weifa Zheng
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| |
Collapse
|
17
|
Marcos AT, Ramos MS, Schinko T, Strauss J, Cánovas D. Nitric oxide homeostasis is required for light-dependent regulation of conidiation in Aspergillus. Fungal Genet Biol 2020; 137:103337. [PMID: 31991229 DOI: 10.1016/j.fgb.2020.103337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) can be biologically synthesized from nitrite or from arginine. Although NO is involved as a signal in many biological processes in bacteria, plants, and mammals, still little is known about the role of NO in fungi. Here we show that NO levels are regulated by light as an environmental signal in Aspergillus nidulans. The flavohaemoglobin-encoding fhbB gene involved in NO oxidation to nitrate, and the arginine-regulated arginase encoded by agaA, which controls the intracellular concentration of arginine, are both up-regulated by light. The phytochrome fphA is required for the light-dependent induction of fhbB and agaA, while the white-collar gene lreA acts as a repressor when arginine is present in the media. The intracellular arginine pools increase upon induction of both developmental programs (conidiation and sexual development), and the increase is higher under conditions promoting sexual development. The presence of low concentrations of arginine does not affect the light-dependent regulation of conidiation, but high concentrations of arginine overrun the light signal. Deletion of fhbB results in the partial loss of the light regulation of conidiation on arginine and on nitrate media, while deletion of fhbA only affects the light regulation of conidiation on nitrate media. Our working model considers a cross-talk between environmental cues and intracellular signals to regulate fungal reproduction.
Collapse
Affiliation(s)
- Ana T Marcos
- Department of Genetics, Faculty of Biology, University of Seville, Spain
| | - María S Ramos
- Department of Genetics, Faculty of Biology, University of Seville, Spain
| | - Thorsten Schinko
- Department of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Science, University and Research Center - Campus Tulln, Tulln - Donau, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Science, University and Research Center - Campus Tulln, Tulln - Donau, Austria
| | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Spain; Department of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Science, University and Research Center - Campus Tulln, Tulln - Donau, Austria.
| |
Collapse
|
18
|
Lehnert N, Fujisawa K, Camarena S, Dong HT, White CJ. Activation of Non-Heme Iron-Nitrosyl Complexes: Turning Up the Heat. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kiyoshi Fujisawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Stephanie Camarena
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Hai T. Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Corey J. White
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
19
|
Gebhart V, Reiß K, Kollau A, Mayer B, Gorren ACF. Site and mechanism of uncoupling of nitric-oxide synthase: Uncoupling by monomerization and other misconceptions. Nitric Oxide 2019; 89:14-21. [PMID: 31022534 DOI: 10.1016/j.niox.2019.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 01/20/2023]
Abstract
Nitric oxide synthase (NOS) catalyzes the transformation of l-arginine, molecular oxygen (O2), and NADPH-derived electrons to nitric oxide (NO) and l-citrulline. Under some conditions, however, NOS catalyzes the reduction of O2 to superoxide (O2-) instead, a phenomenon that is generally referred to as uncoupling. In principle, both the heme in the oxygenase domain and the flavins in the reductase domain could catalyze O2- formation. In the former case the oxyferrous (Fe(II)O2) complex that is formed as an intermediate during catalysis would dissociate to heme and O2-; in the latter case the reduced flavins would reduce O2 to O2-. The NOS cofactor tetrahydrobiopterin (BH4) is indispensable for coupled catalysis. In the case of uncoupling at the heme this is explained by the essential role of BH4 as an electron donor to the oxyferrous complex; in the case of uncoupling at the flavins it is assumed that the absence of BH4 results in NOS monomerization, with the monomers incapable to sustain NO synthesis but still able to support uncoupled catalysis. In spite of little supporting evidence, uncoupling at the reductase after NOS monomerization appears to be the predominant hypothesis at present. To set the record straight we extended prior studies by determining under which conditions uncoupling of the neuronal and endothelial isoforms (nNOS and eNOS) occurred and if a correlation exists between uncoupling and the monomer/dimer equilibrium. We determined the rates of coupled/uncoupled catalysis by measuring NADPH oxidation spectrophotometrically at 340 nm and citrulline synthesis as the formation of [3H]-citrulline from [3H]-Arg. The monomer/dimer equilibrium was determined by FPLC and, for comparison, by low-temperature polyacrylamide gel electrophoresis. Uncoupling occurred in the absence of Arg and/or BH4, but not in the absence of Ca2+ or calmodulin (CaM). Since omission of Ca2+/CaM will completely block heme reduction while still allowing substantial FMN reduction, this argues against uncoupling by the reductase domain. In the presence of heme-directed NOS inhibitors uncoupling occurred to the extent that these compound allowed heme reduction, again arguing in favor of uncoupling at the heme. The monomer/dimer equilibrium showed no correlation with uncoupling. We conclude that uncoupling by BH4 deficiency takes place exclusively at the heme, with virtually no contribution from the flavins and no role for NOS monomerization.
Collapse
Affiliation(s)
- Verena Gebhart
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Katja Reiß
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Alexander Kollau
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Antonius C F Gorren
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria.
| |
Collapse
|
20
|
Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1949-1967. [DOI: 10.1016/j.bbadis.2018.11.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
|
21
|
Tejero J, Hunt AP, Santolini J, Lehnert N, Stuehr DJ. Mechanism and regulation of ferrous heme-nitric oxide (NO) oxidation in NO synthases. J Biol Chem 2019; 294:7904-7916. [PMID: 30926606 DOI: 10.1074/jbc.ra119.007810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) synthases (NOSs) catalyze the formation of NO from l-arginine. We have shown previously that the NOS enzyme catalytic cycle involves a large number of reactions but can be characterized by a global model with three main rate-limiting steps. These are the rate of heme reduction by the flavin domain (kr ), of dissociation of NO from the ferric heme-NO complex (kd ), and of oxidation of the ferrous heme-NO complex (k ox). The reaction of oxygen with the ferrous heme-NO species is part of a futile cycle that does not directly contribute to NO synthesis but allows a population of inactive enzyme molecules to return to the catalytic cycle, and thus, enables a steady-state NO synthesis rate. Previously, we have reported that this reaction does involve the reaction of oxygen with the NO-bound ferrous heme complex, but the mechanistic details of the reaction, that could proceed via either an inner-sphere or an outer-sphere mechanism, remained unclear. Here, we present additional experiments with neuronal NOS (nNOS) and inducible NOS (iNOS) variants (nNOS W409F and iNOS K82A and V346I) and computational methods to study how changes in heme access and electronics affect the reaction. Our results support an inner-sphere mechanism and indicate that the particular heme-thiolate environment of the NOS enzymes can stabilize an N-bound FeIII-N(O)OO- intermediate species and thereby catalyze this reaction, which otherwise is not observed or favorable in proteins like globins that contain a histidine-coordinated heme.
Collapse
Affiliation(s)
- Jesús Tejero
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Andrew P Hunt
- the Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Jérôme Santolini
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Nicolai Lehnert
- the Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| |
Collapse
|
22
|
Bignon E, Rizza S, Filomeni G, Papaleo E. Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Comput Struct Biotechnol J 2019; 17:415-429. [PMID: 30996821 PMCID: PMC6451115 DOI: 10.1016/j.csbj.2019.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule in the regulation of multiple cellular processes. It is endogenously synthesized by NO synthase (NOS) as the product of L-arginine oxidation to L-citrulline, requiring NADPH, molecular oxygen, and a pterin cofactor. Two NOS isoforms are constitutively present in cells, nNOS and eNOS, and a third is inducible (iNOS). Despite their biological relevance, the details of their complex structural features and reactivity mechanisms are still unclear. In this review, we summarized the contribution of computational biochemistry to research on NOS molecular mechanisms. We described in detail its use in studying aspects of structure, dynamics and reactivity. We also focus on the numerous outstanding questions in the field that could benefit from more extensive computational investigations.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
25
|
Speelman AL, White CJ, Zhang B, Alp EE, Zhao J, Hu M, Krebs C, Penner-Hahn J, Lehnert N. Non-heme High-Spin {FeNO} 6-8 Complexes: One Ligand Platform Can Do It All. J Am Chem Soc 2018; 140:11341-11359. [PMID: 30107126 DOI: 10.1021/jacs.8b06095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heme and non-heme iron-nitrosyl complexes are important intermediates in biology. While there are numerous examples of low-spin heme iron-nitrosyl complexes in different oxidation states, much less is known about high-spin (hs) non-heme iron-nitrosyls in oxidation states other than the formally ferrous NO adducts ({FeNO}7 in the Enemark-Feltham notation). In this study, we present a complete series of hs-{FeNO}6-8 complexes using the TMG3tren coligand. Redox transformations from the hs-{FeNO}7 complex [Fe(TMG3tren)(NO)]2+ to its {FeNO}6 and {FeNO}8 analogs do not alter the coordination environment of the iron center, allowing for detailed comparisons between these species. Here, we present new MCD, NRVS, XANES/EXAFS, and Mössbauer data, demonstrating that these redox transformations are metal based, which allows us to access hs-Fe(II)-NO-, Fe(III)-NO-, and Fe(IV)-NO- complexes. Vibrational data, analyzed by NCA, directly quantify changes in Fe-NO bonding along this series. Optical data allow for the identification of a "spectator" charge-transfer transition that, together with Mössbauer and XAS data, directly monitors the electronic changes of the Fe center. Using EXAFS, we are also able to provide structural data for all complexes. The magnetic properties of the complexes are further analyzed (from magnetic Mössbauer). The properties of our hs-{FeNO}6-8 complexes are then contrasted to corresponding, low-spin iron-nitrosyl complexes where redox transformations are generally NO centered. The hs-{FeNO}8 complex can further be protonated by weak acids, and the product of this reaction is characterized. Taken together, these results provide unprecedented insight into the properties of biologically relevant non-heme iron-nitrosyl complexes in three relevant oxidation states.
Collapse
Affiliation(s)
- Amy L Speelman
- Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Corey J White
- Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Bo Zhang
- Department of Chemistry and Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - E Ercan Alp
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jiyong Zhao
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Michael Hu
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - James Penner-Hahn
- Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| |
Collapse
|
26
|
Shamovsky I, Belfield G, Lewis R, Narjes F, Ripa L, Tyrchan C, Öberg L, Sjö P. Theoretical studies of the second step of the nitric oxide synthase reaction: Electron tunneling prevents uncoupling. J Inorg Biochem 2018; 181:28-40. [PMID: 29407906 DOI: 10.1016/j.jinorgbio.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO·) is a messenger molecule with diverse physiological roles including host defense, neurotransmission and vascular function. The synthesis of NO· from l-arginine is catalyzed by NO-synthases and occurs in two steps through the intermediary Nω-hydroxy-l-arginine (NHA). In both steps the P450-like reaction cycle is coupled with the redox cycle of the cofactor tetrahydrobiopterin (H4B). The mechanism of the second step is studied by Density Functional Theory calculations to ascertain the canonical sequence of proton and electron transfer (PT and ET) events. The proposed mechanism is controlled by the interplay of two electron donors, H4B and NHA. Consistent with experimental data, the catalytic cycle proceeds through the ferric-hydroperoxide complex (Cpd 0) and the following aqua-ferriheme resting state, and involves interim partial oxidation of H4B. The mechanism starts with formation of Cpd 0 from the ferrous-dioxy reactant complex by PT from the C-ring heme propionate coupled with hole transfer to H4B through the highest occupied π-orbital of NHA as a bridge. This enables PT from NHA+· to the proximal oxygen leading to the shallow ferriheme-H2O2 oxidant. Subsequent Fenton-like peroxide bond cleavage triggered by ET from the NHA-derived iminoxy-radical leads to the protonated Cpd II diradicaloid singlet stabilized by spin delocalization in H4B, and the closed-shell coordination complex of HO- with iminoxy-cation. The complex is converted to the transient C-adduct, which releases intended products upon PT to the ferriheme-HO- complex coupled with ET to the H4B+·. Deferred ET from the substrate or undue ET from/to the cofactor leads to side products.
Collapse
Affiliation(s)
- Igor Shamovsky
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden.
| | - Graham Belfield
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Richard Lewis
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Frank Narjes
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Christian Tyrchan
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Lisa Öberg
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Peter Sjö
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|
27
|
Carriero MM, Henrique-Silva F, Caetano AR, Lobo FP, Alves AL, Varela ES, Del Collado M, Moreira GSA, Maia AAM. Characterization and gene expression analysis of pacu (Piaractus mesopotamicus) inducible nitric oxide synthase (iNOS) following Aeromonas dhakensis infection. FISH & SHELLFISH IMMUNOLOGY 2018; 74:94-100. [PMID: 29277697 DOI: 10.1016/j.fsi.2017.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/01/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Nitric oxide (NO) is an important effector molecule which is involved in a myriad of biological processes, including immune responses against pathogens such as parasites, virus and bacteria. During the inflammatory processes in vertebrates, NO is produced by the inducible nitric oxide synthase (iNOS) enzyme in practically all nucleated cells to suppress or kill intracellular pathogens. The aim of the present study was to characterize the full coding region of the iNOS gene of pacu (Piaractus mesopotamicus), an economically and ecologically important South American fish species, and to analyze mRNA expression levels following intraperitoneal infection with the pathogenic bacterium Aeromonas dhakensis by means of quantitative real time PCR (qPCR). The results showed that the pacu iNOS transcript is 3237 bp in length, encoding a putative protein composed of 1078 amino acid residues. The amino acid sequence showed similarities ranging from 69.03% to 94.34% with other teleost fish and 57.70% with the human iNOS, with all characteristic domains and cofactor binding sites of the enzyme detected. Phylogenetic analysis showed that the iNOS from the red-bellied piranha, another South American characiform, was the closest related sequence to the pacu iNOS. iNOS transcripts were constitutively detected in the liver, spleen and head kidney, and there was a significant upregulation in the liver and spleen at 12, 24 and 48 h after infection with A. dhakensis. No significant variations were observed in the head kidney during the periods analyzed. These results show that iNOS expression was induced by A. dhakensis infection and suggest that this enzyme may be involved in the response to this bacterium in pacu.
Collapse
Affiliation(s)
- Mateus M Carriero
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil; Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Flávio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | - Maite Del Collado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Gabriel S A Moreira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Antonio A M Maia
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
28
|
Hutfless EH, Chaudhari SS, Thomas VC. Emerging Roles of Nitric Oxide Synthase in Bacterial Physiology. Adv Microb Physiol 2018; 72:147-191. [PMID: 29778214 DOI: 10.1016/bs.ampbs.2018.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is a potent inhibitor of diverse cellular processes in bacteria. Therefore, it was surprising to discover that several bacterial species, primarily Gram-positive organisms, harboured a gene encoding nitric oxide synthase (NOS). Recent attempts to characterize bacterial NOS (bNOS) have resulted in the discovery of structural features that may allow it to function as a NO dioxygenase and produce nitrate in addition to NO. Consistent with this characterization, investigations into the biological function of bNOS have also emphasized a role for NOS-dependent nitrate and nitrite production in aerobic and microaerobic respiration. In this review, we aim to compare, contrast, and summarize the structure, biochemistry, and biological role of bNOS with mammalian NOS and discuss how recent advances in our understanding of bNOS have enabled efforts at designing inhibitors against it.
Collapse
Affiliation(s)
| | | | - Vinai C Thomas
- University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
29
|
Pérez-Del Palacio J, Díaz C, Vergara N, Algieri F, Rodríguez-Nogales A, de Pedro N, Rodríguez-Cabezas ME, Genilloud O, Gálvez J, Vicente F. Exploring the Role of CYP3A4 Mediated Drug Metabolism in the Pharmacological Modulation of Nitric Oxide Production. Front Pharmacol 2017; 8:202. [PMID: 28446877 PMCID: PMC5388737 DOI: 10.3389/fphar.2017.00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/28/2017] [Indexed: 11/15/2022] Open
Abstract
Nitric-oxide synthase, the enzyme responsible for mammalian nitric oxide generation, and cytochrome P450, the major enzymes involved in drug metabolism, share striking similarities. Therefore, it makes sense that cytochrome P450 drug mediated biotransformations might play an important role in the pharmacological modulation of nitric oxide synthase. In this work, we have undertaken an integrated in vitro assessment of the hepatic metabolism and nitric oxide modulation of previously described dual inhibitors (imidazoles and macrolides) of these enzymes in order assess the implication of CYP450 activities over production of nitric oxide. In vitro systems based in human liver microsomes and activated mouse macrophages were developed for these purposes. Additionally in vitro production the hepatic metabolites of dual inhibitor, roxithromycin, was investigated achieving the identification and isolation of main hepatic biotransformation products. Our results suggested that for some macrolide compounds, the cytochrome P450 3A4 derived drug metabolites have an important effect on nitric oxide production and might critically contribute to the pharmacological immunomodulatory activity observed.
Collapse
Affiliation(s)
- José Pérez-Del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| | - Noemí Vergara
- Calcium Metabolism and Vascular Calcification Unit, Maimonides Institute for Biomedical Research, University Hospital Reina Sofia, Nephrology Service, University of CórdobaCordoba, Spain
| | - Francesca Algieri
- Department of Pharmacology, ibs, CIBER-EHD, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, ibs, CIBER-EHD, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| | - M Elena Rodríguez-Cabezas
- Department of Pharmacology, ibs, CIBER-EHD, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| | - Julio Gálvez
- Department of Pharmacology, ibs, CIBER-EHD, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| |
Collapse
|
30
|
Ramasamy S, Haque MM, Gangoda M, Stuehr DJ. Tetrahydrobiopterin redox cycling in nitric oxide synthase: evidence supports a through-heme electron delivery. FEBS J 2016; 283:4491-4501. [PMID: 27760279 PMCID: PMC5387691 DOI: 10.1111/febs.13933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
The nitric oxide synthases (NOS) catalyze a two-step oxidation of l-arginine (Arg) to generate NO. In the first step, O2 activation involves one electron being provided to the heme by an enzyme-bound 6R-tetrahydro-l-biopterin cofactor (H4 B), and the H4 B radical must be reduced back to H4 B in order for NOS to continue catalysis. Although an NADPH-derived electron is used to reduce the H4 B radical, how this occurs is unknown. We hypothesized that the NOS flavoprotein domain might reduce the H4 B radical by utilizing the NOS heme porphyrin as a conduit to deliver the electron. This model predicts that factors influencing NOS heme reduction should also influence the extent and rate of H4 B radical reduction in kind. To test this, we utilized single catalytic turnover and stop-freeze methods, along with electron paramagnetic resonance spectroscopy, to measure the rate and extent of reduction of the 5-methyl-H4 B radical formed in neuronal NOS (nNOS) during Arg hydroxylation. We used several nNOS variants that supported either a slower or faster than normal rate of ferric heme reduction. We found that the rates and extents of nNOS heme reduction correlated well with the rates and extents of 5-methyl-H4 B radical reduction among the various nNOS enzymes. This supports a model where the heme porphyrin transfers an electron from the NOS flavoprotein to the H4 B radical formed during catalysis, revealing that the heme plays a dual role in catalyzing O2 activation or electron transfer at distinct points in the reaction cycle.
Collapse
Affiliation(s)
- Somasundaram Ramasamy
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Mahinda Gangoda
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
31
|
McQuarters AB, Speelman AL, Chen L, Elmore BO, Fan W, Feng C, Lehnert N. Exploring second coordination sphere effects in nitric oxide synthase. J Biol Inorg Chem 2016; 21:997-1008. [PMID: 27686338 DOI: 10.1007/s00775-016-1396-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022]
Abstract
Second coordination sphere (SCS) effects in proteins are modulated by active site residues and include hydrogen bonding, electrostatic/dipole interactions, steric interactions, and π-stacking of aromatic residues. In Cyt P450s, extended H-bonding networks are located around the proximal cysteinate ligand of the heme, referred to as the 'Cys pocket'. These hydrogen bonding networks are generally believed to regulate the Fe-S interaction. Previous work identified the S(Cys) → Fe σ CT transition in the high-spin (hs) ferric form of Cyt P450cam and corresponding Cys pocket mutants by low-temperature (LT) MCD spectroscopy [Biochemistry 50:1053, 2011]. In this work, we have investigated the effect of the hydrogen bond from W409 to the axial Cys ligand of the heme in the hs ferric state (with H4B and L-Arg bound) of rat neuronal nitric oxide synthase oxygenase construct (nNOSoxy) using MCD spectroscopy. For this purpose, wt enzyme and W409 mutants were investigated where the H-bonding network with the axial Cys ligand is perturbed. Overall, the results are similar to Cyt P450cam and show the intense S(Cys) → Fe σ CT band in the LT MCD spectrum at about 27,800 cm-1, indicating that this feature is a hallmark of {heme-thiolate} active sites. The discovery of this MCD feature could constitute a new approach to classify {heme-thiolate} sites in hs ferric proteins. Finally, the W409 mutants show that the hydrogen bond from this group only has a small effect on the Fe-S(Cys) bond strength, at least in the hs ferric form of the protein studied here. Low-temperature MCD spectroscopy is used to investigate the effect of the hydrogen bond from W409 to the axial Cys ligand of the heme in neuronal nitric oxide synthase. The intense S(Cys) → Fe σ-CT band is monitored to identify changes in the Fe-S(Cys) bond in wild-type protein and W409 mutants.
Collapse
Affiliation(s)
- Ashley B McQuarters
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy L Speelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Chen
- College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Bradley O Elmore
- College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Weihong Fan
- College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Lavandera J, Rodríguez J, Ruspini S, Meiss R, Zuccoli JR, Martínez MDC, Gerez E, Batlle A, Buzaleh AM. Pleiotropic effects of 5-aminolevulinic acid in mouse brain. Biochem Cell Biol 2016; 94:297-305. [DOI: 10.1139/bcb-2015-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage.
Collapse
Affiliation(s)
- Jimena Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Rodríguez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - Silvina Ruspini
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - Roberto Meiss
- Departamento de Patología, Instituto de Estudios Oncológicos, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Johanna Romina Zuccoli
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - María del Carmen Martínez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Esther Gerez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - Ana María Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
33
|
Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GKS, Wendehenne D. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci Signal 2016; 9:re2. [DOI: 10.1126/scisignal.aad4403] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Nitric oxide in fungi: is there NO light at the end of the tunnel? Curr Genet 2016; 62:513-8. [PMID: 26886232 PMCID: PMC4929157 DOI: 10.1007/s00294-016-0574-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is a remarkable gaseous molecule with multiple and important roles in different organisms, including fungi. However, the study of the biology of NO in fungi has been hindered by the lack of a complete knowledge on the different metabolic routes that allow a proper NO balance, and the regulation of these routes. Fungi have developed NO detoxification mechanisms to combat nitrosative stress, which have been mainly characterized by their connection to pathogenesis or nitrogen metabolism. However, the progress on the studies of NO anabolic routes in fungi has been hampered by efforts to disrupt candidate genes that gave no conclusive data until recently. This review summarizes the different roles of NO in fungal biology and pathogenesis, with an emphasis on the alternatives to explain fungal NO production and the recent findings on the involvement of nitrate reductase in the synthesis of NO and its regulation during fungal development.
Collapse
|
35
|
Marcos AT, Ramos MS, Marcos JF, Carmona L, Strauss J, Cánovas D. Nitric oxide synthesis by nitrate reductase is regulated during development in Aspergillus. Mol Microbiol 2015; 99:15-33. [PMID: 26353949 PMCID: PMC4982101 DOI: 10.1111/mmi.13211] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a signalling molecule involved in many biological processes in bacteria, plants and mammals. However, little is known about the role and biosynthesis of NO in fungi. Here we show that NO production is increased at the early stages of the transition from vegetative growth to development in Aspergillus nidulans. Full NO production requires a functional nitrate reductase (NR) gene (niaD) that is upregulated upon induction of conidiation, even under N‐repressing conditions in the presence of ammonium. At this stage, NO homeostasis is achieved by balancing biosynthesis (NR) and catabolism (flavohaemoglobins). niaD and flavohaemoglobin fhbA are transiently upregulated upon induction of conidiation, and both regulators AreA and NirA are necessary for this transcriptional response. The second flavohaemoglobin gene fhbB shows a different expression profile being moderately expressed during the early stages of the transition phase from vegetative growth to conidiation, but it is strongly induced 24 h later. NO levels influence the balance between conidiation and sexual reproduction because artificial strong elevation of NO levels reduced conidiation and induced the formation of cleistothecia. The nitrate‐independent and nitrogen metabolite repression‐insensitive transcriptional upregulation of niaD during conidiation suggests a novel role for NR in linking metabolism and development.
Collapse
Affiliation(s)
- Ana T Marcos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - María S Ramos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Jose F Marcos
- Department of Food Science, Institute of Agrochemistry and Food Technology (IATA), Valencia, Spain
| | - Lourdes Carmona
- Department of Food Science, Institute of Agrochemistry and Food Technology (IATA), Valencia, Spain
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria.,Department of Health and Environment, Bioresources, Austrian Institute of Technology (AIT), Vienna, Austria
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
36
|
Suvorava T, Nagy N, Pick S, Lieven O, Rüther U, Dao VTV, Fischer JW, Weber M, Kojda G. Impact of eNOS-Dependent Oxidative Stress on Endothelial Function and Neointima Formation. Antioxid Redox Signal 2015; 23:711-23. [PMID: 25764009 PMCID: PMC4580305 DOI: 10.1089/ars.2014.6059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
AIMS Vascular oxidative stress generated by endothelial NO synthase (eNOS) was observed in experimental and clinical cardiovascular disease, but its relative importance for vascular pathologies is unclear. We investigated the impact of eNOS-dependent vascular oxidative stress on endothelial function and on neointimal hyperplasia. RESULTS A dimer-destabilized mutant of bovine eNOS where cysteine 101 was replaced by alanine was cloned and introduced into an eNOS-deficient mouse strain (eNOS-KO) in an endothelial-specific manner. Destabilization of mutant eNOS in cells and eNOS-KO was confirmed by the reduced dimer/monomer ratio. Purified mutant eNOS and transfected cells generated less citrulline and NO, respectively, while superoxide generation was enhanced. In eNOS-KO, introduction of mutant eNOS caused a 2.3-3.7-fold increase in superoxide and peroxynitrite formation in the aorta and myocardium. This was completely blunted by an NOS inhibitor. Nevertheless, expression of mutant eNOS in eNOS-KO completely restored maximal aortic endothelium-dependent relaxation to acetylcholine. Neointimal hyperplasia induced by carotid binding was much larger in eNOS-KO than in mutant eNOS-KO and C57BL/6, while the latter strains showed comparable hyperplasia. Likewise, vascular remodeling was blunted in eNOS-KO only. INNOVATION Our results provide the first in vivo evidence that eNOS-dependent oxidative stress is unlikely to be an initial cause of impaired endothelium-dependent vasodilation and/or a pathologic factor promoting intimal hyperplasia. These findings highlight the importance of other sources of vascular oxidative stress in cardiovascular disease. CONCLUSION eNOS-dependent oxidative stress is unlikely to induce functional vascular damage as long as concomitant generation of NO is preserved. This underlines the importance of current and new therapeutic strategies in improving endothelial NO generation.
Collapse
Affiliation(s)
- Tatsiana Suvorava
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nadine Nagy
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephanie Pick
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Oliver Lieven
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vu Thao-Vi Dao
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens W. Fischer
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martina Weber
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Georg Kojda
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
37
|
Heine CL, Schmidt R, Geckl K, Schrammel A, Gesslbauer B, Schmidt K, Mayer B, Gorren ACF. Selective Irreversible Inhibition of Neuronal and Inducible Nitric-oxide Synthase in the Combined Presence of Hydrogen Sulfide and Nitric Oxide. J Biol Chem 2015; 290:24932-44. [PMID: 26296888 PMCID: PMC4599001 DOI: 10.1074/jbc.m115.660316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 11/06/2022] Open
Abstract
Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5m at pH 6.0 and increased to ∼8.3·10−5m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation.
Collapse
Affiliation(s)
| | | | - Kerstin Geckl
- From the Departments of Pharmacology and Toxicology and
| | | | - Bernd Gesslbauer
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl Franzens University Graz, A-8010 Graz, Austria
| | - Kurt Schmidt
- From the Departments of Pharmacology and Toxicology and
| | - Bernd Mayer
- From the Departments of Pharmacology and Toxicology and
| | | |
Collapse
|
38
|
Zhao Y, Xi Q, Xu Q, He M, Ding J, Dai Y, Keller NP, Zheng W. Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in Inonotus obliquus cocultured with Phellinus morii. Appl Microbiol Biotechnol 2015; 99:4361-72. [PMID: 25582560 DOI: 10.1007/s00253-014-6367-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/23/2014] [Accepted: 12/25/2014] [Indexed: 11/25/2022]
Abstract
Fungal interspecific interactions enhance biosynthesis of phenylpropanoid metabolites (PM), and production of nitric oxide (NO) is known to be involved in this process. However, it remains unknown which signaling pathway(s) or regulator(s) mediate fungal PM biosynthesis. In this study, we cocultured two white-rot fungi, Inonotus obliquus and Phellinus morii, to examine NO production, expression of the genes involved in phenylpropanoid metabolism and accumulation of phenylpropanoid-derived polyphenols by I. obliquus. Coculture of the two fungi caused an enhanced NO biosynthesis followed by increased transcription of the genes encoding phenylalanine ammonia lyase (PAL) and 4-coumarate CoA ligase (4CL), as well as an upregulated biosynthesis of styrylpyrone polyphenols in I. obliquus. Addition of the NO synthase (NOS) selective inhibitor aminoguanidine (AG) inhibited NO production by more than 90% followed by cease in transcription of PAL and 4Cl. Treatment of guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one did not affect NO production but suppressed transcription of PAL and 4CL and reduced accumulation of total phenolic constituents. Genome-wide analysis of I. obliquus revealed two genes encoding a constitutive and an inducible NOS-like protein, respectively (cNOSL and iNOSL). Coculture of the two fungi did not increase the expression of the cNOSL gene but triggered expression of the iNOSL gene. Cloned iNOSL from Escherichia coli shows higher activity in transferring L-arginine to NO, and this activity is lost upon AG addition. Thus, iNOSL is more responsible for NO production in I. obliquus and may act as an important regulator governing PM production during fungal interspecific interactions.
Collapse
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology on Medicinal Plants, Jiangsu Normal University, Xuzhou, 221116, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Schmidt K, Kolesnik B, Gorren ACF, Werner ER, Mayer B. Cell type-specific recycling of tetrahydrobiopterin by dihydrofolate reductase explains differential effects of 7,8-dihydrobiopterin on endothelial nitric oxide synthase uncoupling. Biochem Pharmacol 2014; 90:246-53. [PMID: 24863258 PMCID: PMC4099517 DOI: 10.1016/j.bcp.2014.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 11/26/2022]
Abstract
(6R)-5,6,7,8-Tetrahydro-L-biopterin (BH4) availability regulates nitric oxide and superoxide formation by endothelial nitric oxide synthase (eNOS). At low BH4 or low BH4 to 7,8-dihydrobiopterin (BH2) ratios the enzyme becomes uncoupled and generates superoxide at the expense of NO. We studied the effects of exogenously added BH2 on intracellular BH4/BH2 ratios and eNOS activity in different types of endothelial cells. Incubation of porcine aortic endothelial cells with BH2 increased BH4/BH2 ratios from 8.4 (controls) and 0.5 (BH4-depleted cells) up to ~20, demonstrating efficient reduction of BH2. Uncoupled eNOS activity observed in BH4-depleted cells was prevented by preincubation with BH2. Recycling of BH4 was much less efficient in human endothelial cells isolated from umbilical veins or derived from dermal microvessels (HMEC-1 cells), which exhibited eNOS uncoupling and low BH4/BH2 ratios under basal conditions and responded to exogenous BH2 with only moderate increases in BH4/BH2 ratios. The kinetics of dihydrofolate reductase-catalyzed BH4 recycling in endothelial cytosols showed that the apparent BH2 affinity of the enzyme was 50- to 300-fold higher in porcine than in human cell preparations. Thus, the differential regulation of eNOS uncoupling in different types of endothelial cells may be explained by striking differences in the apparent BH2 affinity of dihydrofolate reductase.
Collapse
Affiliation(s)
- Kurt Schmidt
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria.
| | - Bernd Kolesnik
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | - Antonius C F Gorren
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| |
Collapse
|
40
|
Chaudhury A. Molecular handoffs in nitrergic neurotransmission. Front Med (Lausanne) 2014; 1:8. [PMID: 25705621 PMCID: PMC4335390 DOI: 10.3389/fmed.2014.00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/27/2014] [Indexed: 12/26/2022] Open
Abstract
Postsynaptic density (PSD) proteins in excitatory synapses are relatively immobile components, while there is a structured organization of mobile scaffolding proteins lying beneath the PSDs. For example, shank proteins are located further away from the membrane in the cytosolic faces of the PSDs, facing the actin cytoskeleton. The rationale of this organization may be related to important roles of these proteins as “exchange hubs” for the signaling proteins for their migration from the subcortical cytosol to the membrane. Notably, PSD95 have also been demonstrated in prejunctional nerve terminals of nitrergic neuronal varicosities traversing the gastrointestinal smooth muscles. It has been recently reported that motor proteins like myosin Va play important role in transcytosis of nNOS. In this review, the hypothesis is forwarded that nNOS delivered to subcortical cytoskeleton requires interactions with scaffolding proteins prior to docking at the membrane. This may involve significant role of “shank,” named for SRC-homology (SH3) and multiple ankyrin repeat domains, in nitric oxide synthesis. Dynein light chain LC8–nNOS from acto-myosin Va is possibly exchanged with shank, which thereafter facilitates transposition of nNOS for binding with palmitoyl-PSD95 at the nerve terminal membrane. Shank knockout mice, which present with features of autism spectrum disorders, may help delineate the role of shank in enteric nitrergic neuromuscular transmission. Deletion of shank3 in humans is a monogenic cause of autism called Phelan–McDermid syndrome. One fourth of these patients present with cyclical vomiting, which may be explained by junctionopathy resulting from shank deficit in enteric nitrergic nerve terminals.
Collapse
Affiliation(s)
- Arun Chaudhury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School and VA Boston Healthcare System , Boston, MA , USA
| |
Collapse
|
41
|
Heine C, Kolesnik B, Schmidt R, Werner ER, Mayer B, Gorren ACF. Interaction between neuronal nitric-oxide synthase and tetrahydrobiopterin revisited: studies on the nature and mechanism of tight pterin binding. Biochemistry 2014; 53:1284-95. [PMID: 24512289 PMCID: PMC3944803 DOI: 10.1021/bi401307r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/10/2014] [Indexed: 01/06/2023]
Abstract
Recombinant neuronal nitric-oxide synthase (nNOS) expressed in baculovirus-infected Sf9 cells contains approximately 1 equiv of tightly bound tetrahydrobiopterin (BH4) per dimer and binds a second equivalent with a dissociation constant in the 10(-7)-10(-6) M range. Less is known about the pterin-binding properties of nNOS originating from expression systems such as Escherichia coli that do not produce BH4. We determined the binding properties of E. coli-expressed nNOS for BH4 and several inhibitory pterins by monitoring their effects on enzyme activity. E. coli-expressed nNOS as isolated was activated by BH4 monophasically with EC50 ≈ 2 × 10(-7) M, demonstrating a lack of tight pterin binding. However, overnight incubation with BH4 resulted in tight binding of one BH4 per dimer, yielding an enzyme that resembled Sf9-expressed nNOS. Tight pterin binding was also induced by preincubation with 4-amino-tetrahydrobiopterin, but not by 7,8-dihydrobiopterin or 4-amino-dihydrobiopterin, suggesting that tight-binding site formation requires preincubation with a fully reduced pteridine. Kinetic experiments showed that tight-binding site formation takes approximately 10 min with 1 μM BH4 (2 min with 1 μM 4-amino-BH4) at 4 °C. Anaerobic preincubation experiments demonstrated that O2 is not involved in the process. Gel electrophoretic studies suggest that tight-binding site formation is accompanied by an increase in the strength of the NOS dimer. We propose that incubation of pterin-free nNOS with BH4 creates one tight pterin-binding site per dimer, leaving the other site unaffected, in a reaction that involves redox chemistry.
Collapse
Affiliation(s)
- Christian
L. Heine
- Department
of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Bernd Kolesnik
- Department
of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Renate Schmidt
- Department
of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Ernst R. Werner
- Division
of Biological Chemistry, Biocenter, Innsbruck
Medical University, A-6020, Innsbruck, Austria
| | - Bernd Mayer
- Department
of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Antonius C. F. Gorren
- Department
of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| |
Collapse
|
42
|
Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 2013; 65:1174-1194. [PMID: 24036104 DOI: 10.1016/j.freeradbiomed.2013.09.001] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 02/07/2023]
Abstract
Production of minute concentrations of superoxide (O2(*-)) and nitrogen monoxide (nitric oxide, NO*) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance-a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2(*-), hydrogen peroxide (H2O2), and NO*. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2(*-), H2O2, NO*, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us develop better tolerated and more efficient therapies for various dysfunctions of iron metabolism.
Collapse
Affiliation(s)
- Taija S Koskenkorva-Frank
- Chemical and Preclinical Research and Development, Vifor (International) Ltd., CH-9001 St. Gallen, Switzerland
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Willem H Koppenol
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Susanna Burckhardt
- Chemical and Preclinical Research and Development, Vifor (International) Ltd., CH-9001 St. Gallen, Switzerland; Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Wu CH, Siva VS, Song YL. An evolutionarily ancient NO synthase (NOS) in shrimp. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1483-1500. [PMID: 23994281 DOI: 10.1016/j.fsi.2013.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 07/11/2013] [Accepted: 08/18/2013] [Indexed: 06/02/2023]
Abstract
Nitric oxide (NO) is a well known essential molecule that is involved in multiple functions such as neuron transduction, cardiac disease, immune responses, etc.; nitric oxide synthase (NOS) is a critical enzyme that catalyzes the synthesis of it. A very few crustacean NOS molecules were biochemically characterized so far. In the present study, we cloned and characterized a NOS cDNA from haemocytes of tiger shrimp (Penaeus monodon) (PmNOS). The full-length of PmNOS cDNA contained 3997 bp, including a 5'UTR of 249 bp, ORF of 3582 bp and a 3'UTR of 166 bp. The putative peptide was 1193 amino acid residues in length, with an estimated molecular weight of 134.7 kDa and pI 6.7. Structurally, PmNOS contained oxygenase and reductase domains at N-terminal and C-terminal, respectively, and connected with a calmodulin binding motif. The deduced amino acid sequence of PmNOS shared 98% identical to the Chinese shrimp (Fenneropenaeus chinensis) NOS. Phylogenetically, PmNOS clustered with invertebrate NOS, but not clustered with iNOS, eNOS or nNOS found in vertebrates. PmNOS mRNA was expressed in many tissues or organs including thoracic and ventral nerves, midgut, gill, eyestalk, haemocytes, subcuticular epithelium and heart, but not found in hepatopancreas, muscle and lymphoid organ. But there was no significant difference in PmNOS mRNA expression after stimulation with LPS either by different concentration or time course or against CpG-ODN 2006. The enzyme activities of rPmNOS or crude homogenates from different tissues were detected, and were shown its highest activity in thoracic and ventral nerves, moderate in midgut and haemocytes but the lowest activity were seen in muscle. The addition of NOS antibody against NADPH binding domain leads to less activity which suggested that NADPH was an essential cofactor for PmNOS catalytic activity. The calcium dependency of PmNOS was ascertained using calmodulin inhibitor, Trifluroperazine. To confirm the population of haemocyte which produce NOS, the florescence test was assayed, and it implicated that the production of NO was catalyzed by subset of granulocytic NOS. Since the MW range, inducible/noninducible transcript, calcium-dependent activity and tissue distribution, we suggest that PmNOS may recognize as an ancient NOS evolutionarily.
Collapse
Affiliation(s)
- Chun-Hung Wu
- Institute of Zoology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | | | | |
Collapse
|
44
|
Jansen Labby K, Li H, Roman LJ, Martásek P, Poulos TL, Silverman RB. Methylated N(ω)-hydroxy-L-arginine analogues as mechanistic probes for the second step of the nitric oxide synthase-catalyzed reaction. Biochemistry 2013; 52:3062-73. [PMID: 23586781 DOI: 10.1021/bi301571v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide synthase (NOS) catalyzes the conversion of L-arginine to L-citrulline through the intermediate N(ω)-hydroxy-L-arginine (NHA), producing nitric oxide, an important mammalian signaling molecule. Several disease states are associated with improper regulation of nitric oxide production, making NOS a therapeutic target. The first step of the NOS reaction has been well-characterized and is presumed to proceed through a compound I heme species, analogous to the cytochrome P450 mechanism. The second step, however, is enzymatically unprecedented and is thought to occur via a ferric peroxo heme species. To gain insight into the details of this unique second step, we report here the synthesis of NHA analogues bearing guanidinium methyl or ethyl substitutions and their investigation as either inhibitors of or alternate substrates for NOS. Radiolabeling studies reveal that N(ω)-methoxy-L-arginine, an alternative NOS substrate, produces citrulline, nitric oxide, and methanol. On the basis of these results, we propose a mechanism for the second step of NOS catalysis in which a methylated nitric oxide species is released and is further metabolized by NOS. Crystal structures of our NHA analogues bound to nNOS have been determined, revealing the presence of an active site water molecule only in the presence of singly methylated analogues. Bulkier analogues displace this active site water molecule; a different mechanism is proposed in the absence of the water molecule. Our results provide new insights into the steric and stereochemical tolerance of the NOS active site and substrate capabilities of NOS.
Collapse
Affiliation(s)
- Kristin Jansen Labby
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | | | | | | | |
Collapse
|
45
|
Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. ENTROPY 2013. [DOI: 10.3390/e15041416] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Tejero J, Stuehr D. Tetrahydrobiopterin in nitric oxide synthase. IUBMB Life 2013; 65:358-65. [PMID: 23441062 DOI: 10.1002/iub.1136] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 12/25/2012] [Indexed: 11/10/2022]
Abstract
SUMMARY Nitric oxide synthase (NOS) is a critical enzyme for the production of the messenger molecule nitric oxide (NO) from L-arginine. NOS enzymes require tetrahydrobiopterin as a cofactor for NO synthesis. Besides being one of the few enzymes to use this cofactor, the role of tetrahydrobiopterin in NOS catalytic mechanism is different from other enzymes: during the catalytic cycle of NOS, tetrahydrobiopterin forms a radical species that is again reduced, thus effectively regenerating after each NO synthesis cycle. In this review, we summarize our current knowledge about the role of tetrahydrobiopterin in the structure, function, and catalytic mechanism of NOS enzymes.
Collapse
Affiliation(s)
- Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
47
|
Samalova M, Johnson J, Illes M, Kelly S, Fricker M, Gurr S. Nitric oxide generated by the rice blast fungus Magnaporthe oryzae drives plant infection. THE NEW PHYTOLOGIST 2013; 197:207-222. [PMID: 23072575 DOI: 10.1111/j.1469-8137.2012.04368.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/31/2012] [Indexed: 05/10/2023]
Abstract
Plant-derived nitric oxide (NO) triggers defence, priming the onset of the hypersensitive response and restricting pathogen ingress during incompatibility. However, little is known about the role of pathogen-produced NO during pre-infection development and infection. We sought evidence for NO production by the rice blast fungus during early infection. NO production was measured using fluorescence of DAR-4M and the role of NO assessed using NO scavengers. The synthesis of NO was investigated by targeted knockout of genes potentially involved in NO synthesis, including nitric oxide synthase-like genes (NOL2 and NOL3) and nitrate (NIA1) and nitrite reductase (NII1), generating single and double Δnia1Δnii1, Δnia1Δnol3, and Δnol2Δnol3 mutants. We demonstrate that Magnaporthe oryzae generates NO during germination and in early development. Removal of NO delays germling development and reduces disease lesion numbers. NO is not generated by the candidate proteins tested, nor by other arginine-dependent NO systems, by polyamine oxidase activity or non-enzymatically by low pH. Furthermore, we show that, while NIA1 and NII1 are essential for nitrate assimilation, NIA1, NII1, NOL2 and NOL3 are all dispensable for pathogenicity. Development of M. oryzae and initiation of infection are critically dependent on fungal NO synthesis, but its mode of generation remains obscure.
Collapse
Affiliation(s)
- Marketa Samalova
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jasper Johnson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Mary Illes
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Sarah Gurr
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
48
|
Mur LAJ, Hebelstrup KH, Gupta KJ. Striking a balance: does nitrate uptake and metabolism regulate both NO generation and scavenging? FRONTIERS IN PLANT SCIENCE 2013; 4:288. [PMID: 23908662 PMCID: PMC3726862 DOI: 10.3389/fpls.2013.00288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 05/04/2023]
Affiliation(s)
- Luis A. J. Mur
- Institute of Biological, Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
- *Correspondence: ;
| | - Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus UniversitySlagelse, Denmark
| | - Kapuganti J. Gupta
- Department of Plant Sciences, University of OxfordOxford, UK
- *Correspondence: ;
| |
Collapse
|
49
|
Lehnert N, Scheidt WR, Wolf MW. Structure and Bonding in Heme–Nitrosyl Complexes and Implications for Biology. NITROSYL COMPLEXES IN INORGANIC CHEMISTRY, BIOCHEMISTRY AND MEDICINE II 2013. [DOI: 10.1007/430_2013_92] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Schmidt K, Neubauer A, Kolesnik B, Stasch JP, Werner ER, Gorren ACF, Mayer B. Tetrahydrobiopterin protects soluble guanylate cyclase against oxidative inactivation. Mol Pharmacol 2012; 82:420-7. [PMID: 22648973 DOI: 10.1124/mol.112.079855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is a major endogenous vasoprotective agent that improves endothelial function by increasing nitric oxide (NO) synthesis and scavenging of superoxide and peroxynitrite. Therefore, administration of BH4 is considered a promising therapy for cardiovascular diseases associated with endothelial dysfunction and oxidative stress. Here we report on a novel function of BH4 that might contribute to the beneficial vascular effects of the pteridine. Treatment of cultured porcine aortic endothelial cells with nitroglycerin (GTN) or 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) resulted in heme oxidation of soluble guanylate cyclase (sGC), as evident from diminished NO-induced cGMP accumulation that was paralleled by increased cGMP response to a heme- and NO-independent activator of soluble guanylate cyclase [4-([(4-carboxybutyl)[2-(5-fluoro-2-([4'-(trifluoromethyl)biphenyl-4-yl]methoxy)phenyl)ethyl]amino]methyl)benzoic acid (BAY 60-2770)]. Whereas scavenging of superoxide and/or peroxynitrite with superoxide dismutase, tiron, Mn(III)tetrakis(4-benzoic acid)porphyrin, and urate had no protective effects, supplementation of the cells with BH4, either by application of BH4 directly or of its precursors dihydrobiopterin or sepiapterin, completely prevented the inhibition of NO-induced cGMP accumulation by GTN and ODQ. Tetrahydroneopterin had the same effect, and virtually identical results were obtained with RFL-6 fibroblasts, suggesting that our observation reflects a general feature of tetrahydropteridines that is unrelated to NO synthase function and not limited to endothelial cells. Protection of sGC against oxidative inactivation may contribute to the known beneficial effects of BH4 in cardiovascular disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Kurt Schmidt
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|