1
|
Jin GT, Xu YC, Hou XH, Jiang J, Li XX, Xiao JH, Bian YT, Gong YB, Wang MY, Zhang ZQ, Zhang YE, Zhu WS, Liu YX, Guo YL. A de novo Gene Promotes Seed Germination Under Drought Stress in Arabidopsis. Mol Biol Evol 2025; 42:msae262. [PMID: 39719058 PMCID: PMC11721784 DOI: 10.1093/molbev/msae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
The origin of genes from noncoding sequences is a long-term and fundamental biological question. However, how de novo genes originate and integrate into the existing pathways to regulate phenotypic variations is largely unknown. Here, we selected 7 genes from 782 de novo genes for functional exploration based on transcriptional and translational evidence. Subsequently, we revealed that Sun Wu-Kong (SWK), a de novo gene that originated from a noncoding sequence in Arabidopsis thaliana, plays a role in seed germination under osmotic stress. SWK is primarily expressed in dry seed, imbibing seed and silique. SWK can be fully translated into an 8 kDa protein, which is mainly located in the nucleus. Intriguingly, SWK was integrated into an extant pathway of hydrogen peroxide content (folate synthesis pathway) via the upstream gene cytHPPK/DHPS, an Arabidopsis-specific gene that originated from the duplication of mitHPPK/DHPS, and downstream gene GSTF9, to improve seed germination in osmotic stress. In addition, we demonstrated that the presence of SWK may be associated with drought tolerance in natural populations of Arabidopsis. Overall, our study highlights how a de novo gene originated and integrated into the existing pathways to regulate stress adaptation.
Collapse
Affiliation(s)
- Guang-Teng Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Xin Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Hui Xiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Tao Bian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Bo Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yu Wang
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents and Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang-Sheng Zhu
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yong-Xiu Liu
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Unêda-Trevisoli SH, Dirk LMA, Carlos Bezerra Pereira FE, Chakrabarti M, Hao G, Campbell JM, Bassetti Nayakwadi SD, Morrison A, Joshi S, Perry SE, Sharma V, Mensah C, Willard B, de Lorenzo L, Afroza B, Hunt AG, Kawashima T, Vaillancourt L, Pinheiro DG, Downie AB. Dehydrin Client Proteins Identified Using Phage Display Affinity Selected Libraries Processed With Paired-End Phage Sequencing. Mol Cell Proteomics 2024; 23:100867. [PMID: 39442694 PMCID: PMC11612773 DOI: 10.1016/j.mcpro.2024.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
The late embryogenesis abundant proteins (LEAPs) are a class of noncatalytic, intrinsically disordered proteins with a malleable structure. Some LEAPs exhibit a protein and/or membrane binding capacity and LEAP binding to various targets has been positively correlated with abiotic stress tolerance. Regarding the LEAPs' presumptive role in protein protection, identifying client proteins (CtPs) to which LEAPs bind is one practicable means of revealing the mechanism by which they exert their function. To this end, we used phage display affinity selection to screen libraries derived from Arabidopsis thaliana seed mRNA with recombinant orthologous LEAPs from Arabidopsis and soybean (Glycine max). Subsequent high-throughput sequencing of DNA from affinity-purified phage was performed to characterize the entire subpopulation of phage retained by each LEAP ortholog. This entailed cataloging in-frame fusions, elimination of false positives, and aligning the hits on the CtP scaffold to reveal domains of respective CtPs that bound to orthologous LEAPs. This approach (paired-end phage sequencing) revealed a subpopulation of the proteome constituting the CtP repertoire in common between the two dehydrin orthologs (LEA14 and GmPm12) compared to bovine serum albumin (unrelated binding control). The veracity of LEAP:CtP binding for one of the CtPs (LEA14 and GmPM12 self-association) was independently assessed using temperature-related intensity change analysis. Moreover, LEAP:CtP interactions for four other CtPs were confirmed in planta using bimolecular fluorescence complementation assays. The results provide insights into the involvement of the dehydrin Y-segments and K-domains in protein binding.
Collapse
Affiliation(s)
- Sandra Helena Unêda-Trevisoli
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; Department of Crop Production, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, São Paulo, Brazil
| | - Lynnette M A Dirk
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA
| | - Francisco Elder Carlos Bezerra Pereira
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; Department of Crop Production, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, São Paulo, Brazil; Pastotech Pasture Seeds, Campo Grande, Mato Grosso do Sul, Brazil
| | - Manohar Chakrabarti
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Guijie Hao
- Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Catalent Pharma Solution, Baltimore, Maryland, USA
| | - James M Campbell
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; University of Kentucky Agricultural and Medical Biotechnology Program, Lexington, Kentucky, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Sai Deepshikha Bassetti Nayakwadi
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; University of Kentucky Agricultural and Medical Biotechnology Program, Lexington, Kentucky, USA
| | - Ashley Morrison
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; University of Kentucky Agricultural and Medical Biotechnology Program, Lexington, Kentucky, USA
| | - Sanjay Joshi
- Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Kentucky Tobacco Research and Development Center, Lexington, Kentucky, USA
| | - Sharyn E Perry
- Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Vijyesh Sharma
- Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Caleb Mensah
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; Carter G. Woodson Academy, Fayette County Public Schools (FCPS), Lexington, Kentucky, USA
| | - Barbara Willard
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA
| | - Laura de Lorenzo
- Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
| | - Baseerat Afroza
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; Division of Vegetable Science, SKUAST- Kashmir, Srinagar, Kashmir, India
| | - Arthur G Hunt
- Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Tomokazu Kawashima
- Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA; Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa Vaillancourt
- Department of Plant Pathology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Daniel Guariz Pinheiro
- Department of Crop Production, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, São Paulo, Brazil; Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, São Paulo, Brazil
| | - A Bruce Downie
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA; Seed Biology Program, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
3
|
Wu G, Tian N, She F, Cao A, Wu W, Zheng S, Yang N. Characteristics analysis of Early Responsive to Dehydration genes in Arabidopsis thaliana ( AtERD). PLANT SIGNALING & BEHAVIOR 2023; 18:2105021. [PMID: 35916255 PMCID: PMC10730211 DOI: 10.1080/15592324.2022.2105021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Early Responsive to Dehydration (ERD) genes are rapidly induced in response to various biotic and abiotic stresses, such as bacteria, drought, light, temperature and high salt in Arabidopsis thaliana. Sixteen ERD of Arabidopsis thaliana (AtERD) genes have been previously identified. The lengths of the coding region of the genes are 504-2838 bp. They encode 137-745 amino acids. In this study, the AtERD genes structure and promoter are analyzed through bioinformatics, and a overall function is summarized and a systematic signal pathway involving AtERD genes is mapped. AtERD9, AtERD11 and AtERD13 have the GST domain. AtERD10 and AtERD14 have the Dehyd domain. The promoters regions contain 32 light responsive elements, 23 ABA responsive elements, 5 drought responsive elements, 5 meristem expression related elements and 132 core promoter elements. The study provides a theoretical guidance for subsequent studies of AtERD genes.
Collapse
Affiliation(s)
- Guofan Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Nongfu Tian
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Fawen She
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Aohua Cao
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Wangze Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Sheng Zheng
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Ning Yang
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| |
Collapse
|
4
|
Chen X, Chen H, Shen T, Luo Q, Xu M, Yang Z. The miRNA-mRNA Regulatory Modules of Pinus massoniana Lamb. in Response to Drought Stress. Int J Mol Sci 2023; 24:14655. [PMID: 37834103 PMCID: PMC10572226 DOI: 10.3390/ijms241914655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Masson pine (Pinus massoniana Lamb.) is a major fast-growing woody tree species and pioneer species for afforestation in barren sites in southern China. However, the regulatory mechanism of gene expression in P. massoniana under drought remains unclear. To uncover candidate microRNAs, their expression profiles, and microRNA-mRNA interactions, small RNA-seq was used to investigate the transcriptome from seedling roots under drought and rewatering in P. massoniana. A total of 421 plant microRNAs were identified. Pairwise differential expression analysis between treatment and control groups unveiled 134, 156, and 96 differential expressed microRNAs at three stages. These constitute 248 unique microRNAs, which were subsequently categorized into six clusters based on their expression profiles. Degradome sequencing revealed that these 248 differentially expressed microRNAs targeted 2069 genes. Gene Ontology enrichment analysis suggested that these target genes were related to translational and posttranslational regulation, cell wall modification, and reactive oxygen species scavenging. miRNAs such as miR482, miR398, miR11571, miR396, miR166, miRN88, and miRN74, along with their target genes annotated as F-box/kelch-repeat protein, 60S ribosomal protein, copper-zinc superoxide dismutase, luminal-binding protein, S-adenosylmethionine synthase, and Early Responsive to Dehydration Stress may play critical roles in drought response. This study provides insights into microRNA responsive to drought and rewatering in Masson pine and advances the understanding of drought tolerance mechanisms in Pinus.
Collapse
Affiliation(s)
- Xinhua Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China;
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Tengfei Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| |
Collapse
|
5
|
Sárkány Z, Rocha F, Bratek‐Skicki A, Tompa P, Macedo‐Ribeiro S, Martins PM. Quantification of Surface Tension Effects and Nucleation-and-Growth Rates during Self-Assembly of Biological Condensates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301501. [PMID: 37279376 PMCID: PMC10427409 DOI: 10.1002/advs.202301501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Liquid-solid and liquid-liquid phase separation (PS) drives the formation of functional and disease-associated biological assemblies. Principles of phase equilibrium are here employed to derive a general kinetic solution that predicts the evolution of the mass and size of biological assemblies. Thermodynamically, protein PS is determined by two measurable concentration limits: the saturation concentration and the critical solubility. Due to surface tension effects, the critical solubility can be higher than the saturation concentration for small, curved nuclei. Kinetically, PS is characterized by the primary nucleation rate constant and a combined rate constant accounting for growth and secondary nucleation. It is demonstrated that the formation of a limited number of large condensates is possible without active mechanisms of size control and in the absence of coalescence phenomena. The exact analytical solution can be used to interrogate how the elementary steps of PS are affected by candidate drugs.
Collapse
Affiliation(s)
- Zsuzsa Sárkány
- IBMC − Instituto de Biologia Molecular e CelularUniversidade do PortoPorto4150–180Portugal
- i3S − Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPorto4150–180Portugal
| | - Fernando Rocha
- LEPABE − Laboratory for Process Engineering Environment Biotechnology and EnergyFaculdade de Engenharia da Universidade do PortoPorto4200‐465Portugal
| | - Anna Bratek‐Skicki
- Jerzy Haber Institute of Catalysis and Surface ChemistryPolish Academy of SciencesNiezapominajek 8KrakowPL30239Poland
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor BiotechnologyBrussels1050 IxellesBelgium
- Structural Biology Brussels (SBB)Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsB‐1050Belgium
| | - Peter Tompa
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor BiotechnologyBrussels1050 IxellesBelgium
- Structural Biology Brussels (SBB)Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsB‐1050Belgium
- Institute of EnzymologyResearch Centre for Natural SciencesBudapest1117Hungary
| | - Sandra Macedo‐Ribeiro
- IBMC − Instituto de Biologia Molecular e CelularUniversidade do PortoPorto4150–180Portugal
- i3S − Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPorto4150–180Portugal
| | - Pedro M. Martins
- IBMC − Instituto de Biologia Molecular e CelularUniversidade do PortoPorto4150–180Portugal
- i3S − Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPorto4150–180Portugal
| |
Collapse
|
6
|
Zhao C, Teng X, Yue W, Suo A, Zhou W, Ding D. The effect of acute toxicity from tributyltin on Liza haematocheila liver: Energy metabolic disturbance, oxidative stress, and apoptosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106506. [PMID: 36989927 DOI: 10.1016/j.aquatox.2023.106506] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Tributyltin (TBT), a highly toxic and persistent organic pollutant, is widely distributed in coastal waters. Liza haematocheila (L. haematocheila) is one of bony fish distributing coincident with TBT, and exposure risk of TBT to this fish is unknown. In this study, L. haematocheila was exposed to TBT of 0, 3.4, 6.8, and 17.2 μg/L for 48 h to explore hepatic response mechanism. Our results showed that Sn content in livers increased after 48 h of exposure. HSI and histological changes indicated that TBT suppressed liver development of L. haematocheila. TBT reduced ATPase activities. The increased RB in blood and the reduced TBC were measured after exposure to TBT. T-AOC and antioxidant enzymes SOD, CAT, and GPx activities were inhibited while MDA content was increased. Liver cells showed apoptosis characteristics after TBT exposure. Furthermore, transcriptome analysis of livers was performed and the results showed energy metabolism-related GO term (such as ATPase complex and ATPase dependent transmembrance transport complex), oxidative stress-related GO term (such as Celllular response to oxidative stress and Antioxidant activity), and apoptosis-related GO term (such as Regulation of cysteine-type endopeptidase activity involved in apoptosic signaling pathway). Moreover, we found six energy metabolism-related differentially expressed genes (DEGs) including three up-regulated DEGs (atnb233, cftr, and prkag2) and three down-regulated DEGs (acss1, abcd2, and smarcb1); five oxidative stress-related DEGs including one up-regulated DEG (mmp9) and four down-regulated DEG (prdx5, hsp90, hsp98, and gstf9); as well as six apoptosis-related DEGs including five up-regulated DEGs (casp8, cyc, apaf1, hccs, and dapk3) and one down-regulated DEG (bcl2l1). Our transcriptome data above further confirmed that acute stress of TBT led energy metabolic disturbance, oxidative stress, and apoptosis in L. haematocheila livers.
Collapse
Affiliation(s)
- Changsheng Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Weizhong Yue
- Marine Environmental Engineering Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Anning Suo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Dewen Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
7
|
Musallam A, Abu-Romman S, Sadder MT. Molecular Characterization of Dehydrin in Azraq Saltbush among Related Atriplex Species. BIOTECH 2023; 12:biotech12020027. [PMID: 37092471 PMCID: PMC10123722 DOI: 10.3390/biotech12020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Atriplex spp. (saltbush) is known to survive extremely harsh environmental stresses such as salinity and drought. It mitigates such conditions based on specialized physiological and biochemical characteristics. Dehydrin genes (DHNs) are considered major players in this adaptation. In this study, a novel DHN gene from Azrak (Jordan) saltbush was characterized along with other Atriplex species from diverse habitats. Intronless DHN-expressed sequence tags (495-761 bp) were successfully cloned and sequenced. Saltbush dehydrins contain one S-segment followed by three K-segments: an arrangement called SK3-type. Two substantial insertions were detected including three copies of the K2-segemnet in A. canescens. New motif variants other than the six-serine standard were evident in the S-segment. AhaDHN1 (A. halimus) has a cysteine residue (SSCSSS), while AgaDHN1 (A. gardneri var. utahensis) has an isoleucine residue (SISSSS). In contrast to the conserved K1-segment, both the K2- and K3-segment showed several substitutions, particularly in AnuDHN1 (A. nummularia). In addition, a parsimony phylogenetic tree based on homologs from related genera was constructed. The phylogenetic tree resolved DHNs for all of the investigated Atriplex species in a superclade with an 85% bootstrap value. Nonetheless, the DHN isolated from Azraq saltbush was uniquely subclustred with a related genera Halimione portulacoides. The characterized DHNs revealed tremendous diversification among the Atriplex species, which opens a new venue for their functional analysis.
Collapse
Affiliation(s)
- Anas Musallam
- Biotechnology Research Directorate, National Agricultural Research Center, Baq'a 19381, Jordan
| | - Saeid Abu-Romman
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Monther T Sadder
- Plant Biotechnology Lab, Department of Horticulture and Crop Science, School of Agriculture, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
8
|
Chen N, Fan X, Wang C, Jiao P, Jiang Z, Ma Y, Guan S, Liu S. Overexpression of ZmDHN15 Enhances Cold Tolerance in Yeast and Arabidopsis. Int J Mol Sci 2022; 24:480. [PMID: 36613921 PMCID: PMC9820458 DOI: 10.3390/ijms24010480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Maize (Zea mays L.) originates from the subtropical region and is a warm-loving crop affected by low-temperature stress. Dehydrin (DHN) protein, a member of the Group 2 LEA (late embryogenesis abundant proteins) family, plays an important role in plant abiotic stress. In this study, five maize DHN genes were screened based on the previous transcriptome sequencing data in our laboratory, and we performed sequence analysis and promoter analysis on these five DHN genes. The results showed that the promoter region has many cis-acting elements related to cold stress. The significantly upregulated ZmDHN15 gene has been further screened by expression pattern analysis. The subcellular localization results show that ZmDHN15 fusion protein is localized in the cytoplasm. To verify the role of ZmDHN15 in cold stress, we overexpressed ZmDHN15 in yeast and Arabidopsis. We found that the expression of ZmDHN15 can significantly improve the cold resistance of yeast. Under cold stress, ZmDHN15-overexpressing Arabidopsis showed lower MDA content, lower relative electrolyte leakage, and less ROS (reactive oxygen species) when compared to wild-type plants, as well as higher seed germination rate, seedling survival rate, and chlorophyll content. Furthermore, analysis of the expression patterns of ROS-associated marker genes and cold-response-related genes indicated that ZmDHN15 genes play an important role in the expression of these genes. In conclusion, the overexpression of the ZmDHN15 gene can effectively improve the tolerance to cold stress in yeast and Arabidopsis. This study is important for maize germplasm innovation and the genetic improvement of crops.
Collapse
Affiliation(s)
- Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences, Changchun 130118, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
10
|
Bi Y, Wang P. Exploring drought-responsive crucial genes in Sorghum. iScience 2022; 25:105347. [PMID: 36325072 PMCID: PMC9619295 DOI: 10.1016/j.isci.2022.105347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 12/11/2022] Open
Abstract
Drought severely affects global food production. Sorghum is a typical drought-resistant model crop. Based on RNA-seq data for Sorghum with multiple time points and the gray correlation coefficient, this paper firstly selects candidate genes via mean variance test and constructs weighted gene differential co-expression networks (WGDCNs); then, based on guilt-by-rewiring principle, the WGDCNs and the hidden Markov random field model, drought-responsive crucial genes are identified for five developmental stages respectively. Enrichment and sequence alignment analysis reveal that the screened genes may play critical functional roles in drought responsiveness. A multilayer differential co-expression network for the screened genes reveals that Sorghum is very sensitive to pre-flowering drought. Furthermore, a crucial gene regulatory module is established, which regulates drought responsiveness via plant hormone signal transduction, MAPK cascades, and transcriptional regulations. The proposed method can well excavate crucial genes through RNA-seq data, which have implications in breeding of new varieties with improved drought tolerance. We design a method that unites gene rewiring network and Markov random field model Drought-responsive genes for five developmental stages of Sorghum are explored A multilayer network reveals that Sorghum is very sensitive to pre-flowering drought A drought-responsive crucial gene regulatory module is established for Sorghum
Collapse
|
11
|
Shojaee S, Ravash R, Shiran B, Ebrahimie E. Meta-analysis highlights the key drought responsive genes in genes: PEPC and TaSAG7 are hubs response networks. J Genet Eng Biotechnol 2022; 20:127. [PMID: 36053361 PMCID: PMC9468207 DOI: 10.1186/s43141-022-00395-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Background Wheat is the most important cereal. One of the environmental stresses is drought that harm the production of many cereals and every year due to low rainfall and frequent droughts, the need to produce plants resistant to this stress is felt. Therefore, identification and evaluation of the genes involved in the production of this resistance in plants are of great importance. By identifying these genes and changing their expression, it is possible to produce resistant plants that can tolerate dehydration and drought, with at least a qualitative and quantitative reduction in yield. Results Based on the meta-analysis results obtained in this study, in resistant cultivars ~ 4% (2394/61290) of the probe IDs decreased and ~ 4.5% (2670/61290) increased expression, furthermore in susceptible cultivars ~ 7% (4183/61290) of probe IDs decreased and ~ 6% (3591/61290) increased expression (P value ≤ 0.05). List of up- and downregulated genes was revealed, among the expressed genes of transcription factors Myb3, ethylene-responsive 5a, MIKC-type MADS-box WM24B, and salinity inducible ERF4 in resistant cultivars and transcription factors WRKY15, MADS-box TaAGL8, WRKY39, and Myb in susceptible cultivars, they showed a significant increase in expression, these transcription factors are of great importance in drought stress. Among them, ethylene responsive 5a in resistant cultivars by 3 times and Myb in susceptible cultivars by 2.6 times have shown the highest expression change. Using Cytoscape Hub software, the Phosphoenolpyruvate carboxylase (PEPC) and lyase isocitrate (TaSAG7) genes, which have significantly different expressions in resistant and susceptible wheat cultivars. PEPC and TaSAG7 genes were upregulated in resistant wheat cultivars as well as down regulated in susceptible cultivars. Also, the qPCR results of selected genes were consistent with the outcomes of the meta-analysis. Conclusions All microarray data were collected from the NCBI Gene Expression Omnibus site. Libraries with drought-tolerant and susceptible cultivars for wheat were considered under the stress and control conditions from whole leaf tissue. By meta-analysis combined the purposeful results of multiple experiments, and found list of genes expressed in reverse between the two cultivars. These genes can distinguish between different susceptible and resistant wheat cultivars. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00395-4.
Collapse
Affiliation(s)
- Sahar Shojaee
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahr-e Kord, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology Faculty of Agriculture, Shahrekord University, Shahr-e Kord, Iran.
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology Faculty of Agriculture, Shahrekord University, Shahr-e Kord, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, Melbourne, La Trobe University, Victoria, 3086, Australia.,Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia
| |
Collapse
|
12
|
Liu Y, Cai Y, Li Y, Zhang X, Shi N, Zhao J, Yang H. Dynamic changes in the transcriptome landscape of Arabidopsis thaliana in response to cold stress. FRONTIERS IN PLANT SCIENCE 2022; 13:983460. [PMID: 36110360 PMCID: PMC9468617 DOI: 10.3389/fpls.2022.983460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Plants must reprogram gene expression to adapt constantly changing environmental temperatures. With the increased occurrence of extremely low temperatures, the negative effects on plants, especially on growth and development, from cold stress are becoming more and more serious. In this research, strand-specific RNA sequencing (ssRNA-seq) was used to explore the dynamic changes in the transcriptome landscape of Arabidopsis thaliana exposed to cold temperatures (4°C) at different times. In total, 7,623 differentially expressed genes (DEGs) exhibited dynamic temporal changes during the cold treatments. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were enriched in cold response, secondary metabolic processes, photosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction pathways. Meanwhile, long non-coding RNAs (lncRNAs) were identified after the assembly of the transcripts, from which 247 differentially expressed lncRNAs (DElncRNAs) and their potential target genes were predicted. 3,621 differentially alternatively spliced (DAS) genes related to RNA splicing and spliceosome were identified, indicating enhanced transcriptome complexity due to the alternative splicing (AS) in the cold. In addition, 739 cold-regulated transcription factors (TFs) belonging to 52 gene families were identified as well. This research analyzed the dynamic changes of the transcriptome landscape in response to cold stress, which reveals more complete transcriptional patterns during short- and long-term cold treatment and provides new insights into functional studies of that how plants are affected by cold stress.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jingze Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- RNA Institute, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Drira M, Ghanmi S, Zaidi I, Brini F, Miled N, Hanin M. The heat stable protein fraction from
Opuntia ficus indica
seeds exhibits an enzyme protective effect against thermal denaturation and an antibacterial activity. Biotechnol Appl Biochem 2022; 70:593-602. [PMID: 35789501 DOI: 10.1002/bab.2382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022]
Abstract
Desiccation tolerance in developing seeds occurs through several mechanisms among which, a common group of proteins named dehydrins has received considerable attention. So far, there is no information dealing with the accumulation of dehydrins in seeds of Opuntia ficus-indica. We have initiated here an extraction protocol based on two critical steps: heat and acid treatments, and the purity of this fraction was analyzed by FTIR spectroscopy. Western blot analysis of the heat-stable protein fraction (HSF) revealed two main bands of approximately 45 and 44 kDa, while three others of ∼40, 32, and 31 kDa were faintly visible, which were recognized by anti-dehydrin antibodies. This fraction exhibited a Cu2+ -dependent resistance to protease treatments. Next, we performed a series of assays to compare the functional properties of the HSF with those of the previously characterized wheat dehydrin (DHN-5). Antibacterial assays revealed that HSF exhibits only moderate antibacterial activities against gram-negative and gram-positive bacteria, with a minimum inhibition concentration ranging from 0.25 to 1 mg/ml. However, in vitro assays revealed that compared to DHN-5, HSF exhibits higher protective activities of the lactate dehydrogenase (LDH) when exposed to heat, freezing, and dehydration stresses. The protective role of HSF seems to be linked to its best ability to minimize protein aggregation.
Collapse
Affiliation(s)
- Marwa Drira
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures Faculty of Sciences of Sfax University of Sfax B.P. 1171, 3000 Sfax 3029 Tunisia
| | - Siwar Ghanmi
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
| | - Ikram Zaidi
- Biotechnology and Plant Improvement Laboratory Center of Biotechnology of Sfax (CBS)‐University of Sfax Sfax 3018 Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory Center of Biotechnology of Sfax (CBS)‐University of Sfax Sfax 3018 Tunisia
| | - Nabil Miled
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
- Department of Biological Sciences College of Science. University of Jeddah Asfan Road Saudi Arabia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
| |
Collapse
|
14
|
Riyazuddin R, Nisha N, Singh K, Verma R, Gupta R. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. PLANT CELL REPORTS 2022; 41:519-533. [PMID: 34057589 DOI: 10.1007/s00299-021-02720-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Drought stress-induced crop loss has been considerably increased in recent years because of global warming and changing rainfall pattern. Natural drought-tolerant plants entail the recruitment of a variety of metabolites and low molecular weight proteins to negate the detrimental effects of drought stress. Dehydrin (DHN) proteins are one such class of proteins that accumulate in plants during drought and associated stress conditions. These proteins are highly hydrophilic and perform multifaceted roles in the protection of plant cells during drought stress conditions. Evidence gathered over the years suggests that DHN proteins impart drought stress tolerance by enhancing the water retention capacity, elevating chlorophyll content, maintaining photosynthetic machinery, activating ROS detoxification, and promoting the accumulation of compatible solutes, among others. Overexpression studies have indicated that these proteins can be effectively targeted to mitigate the negative effects of drought stress and for the development of drought stress-tolerant crops to feed the ever-growing population in the near future. In this review, we describe the mechanism of DHNs mediated drought stress tolerance in plants and their interaction with several phytohormones to provide an in-depth understanding of DHNs function.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Sciences, Szent István University, Gödöllő, Hungary
| | - Kalpita Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Radhika Verma
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, West Bengal, 731235, India
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
15
|
The Halophyte Dehydrin Sequence Landscape. Biomolecules 2022; 12:biom12020330. [PMID: 35204830 PMCID: PMC8869203 DOI: 10.3390/biom12020330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Dehydrins (DHNs) belong to the LEA (late embryogenesis abundant) family group II, that comprise four conserved motifs (the Y-, S-, F-, and K-segments) and are known to play a multifunctional role in plant stress tolerance. Based on the presence and order of these segments, dehydrins are divided into six subclasses: YnSKn, FnSKn, YnKn, SKn, Kn, and KnS. DHNs are rarely studied in halophytes, and their contribution to the mechanisms developed by these plants to survive in extreme conditions remains unknown. In this work, we carried out multiple genomic analyses of the conservation of halophytic DHN sequences to discover new segments, and examine their architectures, while comparing them with their orthologs in glycophytic plants. We performed an in silico analysis on 86 DHN sequences from 10 halophytic genomes. The phylogenetic tree showed that there are different distributions of the architectures among the different species, and that FSKn is the only architecture present in every plant studied. It was found that K-, F-, Y-, and S-segments are highly conserved in halophytes and glycophytes with a few modifications, mainly involving charged amino acids. Finally, expression data collected for three halophytic species (Puccinillia tenuiflora, Eutrema salsugenium, and Hordeum marinum) revealed that many DHNs are upregulated by salt stress, and the intensity of this upregulation depends on the DHN architecture.
Collapse
|
16
|
Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. Int J Mol Sci 2021; 22:ijms222312619. [PMID: 34884426 PMCID: PMC8657568 DOI: 10.3390/ijms222312619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydrins, also known as Group II late embryogenesis abundant (LEA) proteins, are classic intrinsically disordered proteins, which have high hydrophilicity. A wide range of hostile environmental conditions including low temperature, drought, and high salinity stimulate dehydrin expression. Numerous studies have furnished evidence for the protective role played by dehydrins in plants exposed to abiotic stress. Furthermore, dehydrins play important roles in seed maturation and plant stress tolerance. Hence, dehydrins might also protect plasma membranes and proteins and stabilize DNA conformations. In the present review, we discuss the regulatory networks of dehydrin gene expression including the abscisic acid (ABA), mitogen-activated protein (MAP) kinase cascade, and Ca2+ signaling pathways. Crosstalk among these molecules and pathways may form a complex, diverse regulatory network, which may be implicated in regulating the same dehydrin.
Collapse
|
17
|
Abdul Aziz M, Sabeem M, Mullath SK, Brini F, Masmoudi K. Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules 2021; 11:1662. [PMID: 34827660 PMCID: PMC8615533 DOI: 10.3390/biom11111662] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
In response to various environmental stresses, plants have evolved a wide range of defense mechanisms, resulting in the overexpression of a series of stress-responsive genes. Among them, there is certain set of genes that encode for intrinsically disordered proteins (IDPs) that repair and protect the plants from damage caused by environmental stresses. Group II LEA (late embryogenesis abundant) proteins compose the most abundant and characterized group of IDPs; they accumulate in the late stages of seed development and are expressed in response to dehydration, salinity, low temperature, or abscisic acid (ABA) treatment. The physiological and biochemical characterization of group II LEA proteins has been carried out in a number of investigations because of their vital roles in protecting the integrity of biomolecules by preventing the crystallization of cellular components prior to multiple stresses. This review describes the distribution, structural architecture, and genomic diversification of group II LEA proteins, with some recent investigations on their regulation and molecular expression under various abiotic stresses. Novel aspects of group II LEA proteins in Phoenix dactylifera and in orthodox seeds are also presented. Genome-wide association studies (GWAS) indicated a ubiquitous distribution and expression of group II LEA genes in different plant cells. In vitro experimental evidence from biochemical assays has suggested that group II LEA proteins perform heterogenous functions in response to extreme stresses. Various investigations have indicated the participation of group II LEA proteins in the plant stress tolerance mechanism, spotlighting the molecular aspects of group II LEA genes and their potential role in biotechnological strategies to increase plants' survival in adverse environments.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Miloofer Sabeem
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Sangeeta Kutty Mullath
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India;
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, Sfax 3018, Tunisia;
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| |
Collapse
|
18
|
Chen X, Börner A, Xin X, Nagel M, He J, Li J, Li N, Lu X, Yin G. Comparative Proteomics at the Critical Node of Vigor Loss in Wheat Seeds Differing in Storability. FRONTIERS IN PLANT SCIENCE 2021; 12:707184. [PMID: 34527008 PMCID: PMC8435634 DOI: 10.3389/fpls.2021.707184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The critical node (CN, 85% germination) of seed viability is an important threshold for seed regeneration decisions after long-term conservation. Dependent on the germplasm, the storage period until CN is reached varies and information on the divergence of the proteomic profiles is limited. Therefore, the study aims to identify key proteins and mechanisms relevant for a long plateau phase and a late CN during artificial seed aging of wheat. Seeds of the storage-tolerant genotype (ST) TRI 23248, and the storage-sensitive genotype (SS) TRI 10230 were exposed to artificial ageing (AA) and extracted embryos of imbibed seeds were analyzed using an iTRAQ-based proteomic technique. ST and SS required AA for 24 and 18 days to reach the CN, respectively. Fifty-seven and 165 differentially abundant proteins (DAPs) were observed in the control and aged groups, respectively. Interestingly, a higher activity in metabolic processes, protein synthesis, transcription, cell growth/division, and signal transduction were already found in imbibed embryos of control ST seeds. After AA, 132 and 64 DAPs were accumulated in imbibed embryos of both aged ST and SS seeds, respectively, which were mainly associated with cell defense, rescue, and metabolism. Moreover, 78 DAPs of ST appeared before CN and were mainly enriched in biological pathways related to the maintenance of redox and carbon homeostasis and they presented a stronger protein translation ability. In contrast, in SS, only 3 DAPs appeared before CN and were enriched only in the structural constituents of the cytoskeleton. In conclusion, a longer span of plateau phase might be obtained in seeds when proteins indicate an intense stress response before CN and include the effective maintenance of cellular homeostasis, and avoidance of excess accumulation of cytotoxic compounds. Although key proteins, inherent factors and the precise regulatory mechanisms need to be further investigated, the found proteins may also have functional potential roles during long-term seed conservation.
Collapse
Affiliation(s)
- Xiuling Chen
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Andreas Börner
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manuela Nagel
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jisheng Li
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Na Li
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Murvai N, Kalmar L, Szabo B, Schad E, Micsonai A, Kardos J, Buday L, Han KH, Tompa P, Tantos A. Cellular Chaperone Function of Intrinsically Disordered Dehydrin ERD14. Int J Mol Sci 2021; 22:6190. [PMID: 34201246 PMCID: PMC8230022 DOI: 10.3390/ijms22126190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/04/2022] Open
Abstract
Disordered plant chaperones play key roles in helping plants survive in harsh conditions, and they are indispensable for seeds to remain viable. Aside from well-known and thoroughly characterized globular chaperone proteins, there are a number of intrinsically disordered proteins (IDPs) that can also serve as highly effective protecting agents in the cells. One of the largest groups of disordered chaperones is the group of dehydrins, proteins that are expressed at high levels under different abiotic stress conditions, such as drought, high temperature, or osmotic stress. Dehydrins are characterized by the presence of different conserved sequence motifs that also serve as the basis for their categorization. Despite their accepted importance, the exact role and relevance of the conserved regions have not yet been formally addressed. Here, we explored the involvement of each conserved segment in the protective function of the intrinsically disordered stress protein (IDSP) A. thaliana's Early Response to Dehydration (ERD14). We show that segments that are directly involved in partner binding, and others that are not, are equally necessary for proper function and that cellular protection emerges from the balanced interplay of different regions of ERD14.
Collapse
Grants
- G.0029.12 Research Foundation Flanders
- 2010-88343 Korea Research Council of Fundamental Science and Technology
- NTM2231712 National Research Council of Science and Technology
- K124670 National Research, Development and Innovation Office, Hungary
- K131702 National Research, Development and Innovation Office, Hungary
- K125340 National Research, Development and Innovation Office, Hungary
- K120391 National Research, Development and Innovation Office, Hungary
- KH125597 National Research, Development and Innovation Office, Hungary
- PD135510 National Research, Development and Innovation Office, Hungary
- Bolyai János Scholarship Hungarian Academy of Sciences
- 20171582 SOLEIL Synchrotron, France
- 20180805 SOLEIL Synchrotron, France
- 20181890 SOLEIL Synchrotron, France
- Lendület Grant Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Nikoletta Murvai
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Lajos Kalmar
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Beata Szabo
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
| | - Eva Schad
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - László Buday
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
| | - Kyou-Hoon Han
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Gene Editing Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Peter Tompa
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Agnes Tantos
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
| |
Collapse
|
20
|
CaDHN3, a Pepper ( Capsicum annuum L.) Dehydrin Gene Enhances the Tolerance against Salt and Drought Stresses by Reducing ROS Accumulation. Int J Mol Sci 2021; 22:ijms22063205. [PMID: 33809823 PMCID: PMC8004091 DOI: 10.3390/ijms22063205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/24/2023] Open
Abstract
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.
Collapse
|
21
|
Tiwari P, Chakrabarty D. Dehydrin in the past four decades: From chaperones to transcription co-regulators in regulating abiotic stress response. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Allagulova C, Avalbaev A, Fedorova K, Shakirova F. Methyl jasmonate alleviates water stress-induced damages by promoting dehydrins accumulation in wheat plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:676-682. [PMID: 32861034 DOI: 10.1016/j.plaphy.2020.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 05/25/2023]
Abstract
The investigation of dehydrins participation in MeJA-induced protection of wheat plants (Triticum aestivum L.) from drought stress was performed. The dehydration was designed by the presence of mannitol in increasing concentration (3, 4, and 5%) in the growth medium of wheat seedlings. Pre-treatment of 3-days-old seedlings with 0.1 μM MeJA reduced the level of drought-induced growth retardation as well as membrane structures lesions. Exogenous MeJA enhanced accumulation of the TADHN dehydrin transcripts and dehydrin proteins with Mw 28 and 55 kDa in wheat seedlings under normal conditions and additionally increased their expression during dehydration. The obtained data may indicate the dehydrins involvement in MeJA protective effect on wheat plants from the damages caused by water deficit.
Collapse
Affiliation(s)
- Chulpan Allagulova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia.
| | - Azamat Avalbaev
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Farida Shakirova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| |
Collapse
|
23
|
Dirk LMA, Abdel CG, Ahmad I, Neta ICS, Pereira CC, Pereira FECB, Unêda-Trevisoli SH, Pinheiro DG, Downie AB. Late Embryogenesis Abundant Protein-Client Protein Interactions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E814. [PMID: 32610443 PMCID: PMC7412488 DOI: 10.3390/plants9070814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
The intrinsically disordered proteins belonging to the LATE EMBRYOGENESIS ABUNDANT protein (LEAP) family have been ascribed a protective function over an array of intracellular components. We focus on how LEAPs may protect a stress-susceptible proteome. These examples include instances of LEAPs providing a shield molecule function, possibly by instigating liquid-liquid phase separations. Some LEAPs bind directly to their client proteins, exerting a holdase-type chaperonin function. Finally, instances of LEAP-client protein interactions have been documented, where the LEAP modulates (interferes with) the function of the client protein, acting as a surreptitious rheostat of cellular homeostasis. From the examples identified to date, it is apparent that client protein modulation also serves to mitigate stress. While some LEAPs can physically bind and protect client proteins, some apparently bind to assist the degradation of the client proteins with which they associate. Documented instances of LEAP-client protein binding, even in the absence of stress, brings to the fore the necessity of identifying how the LEAPs are degraded post-stress to render them innocuous, a first step in understanding how the cell regulates their abundance.
Collapse
Affiliation(s)
- Lynnette M. A. Dirk
- Department of Horticulture, University of Kentucky Seed Biology Program, Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA;
| | - Caser Ghaafar Abdel
- Agriculture College, Al-Muthanna University, Samawah, Al-Muthanna 66001, Iraq;
| | - Imran Ahmad
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan;
| | | | - Cristiane Carvalho Pereira
- Departamento de Agricultura—Setor de Sementes, Federal University of Lavras, Lavras, Minas Gerais CEP: 37200-000, Brazil;
| | | | - Sandra Helena Unêda-Trevisoli
- Department of Vegetable Production, (UNESP) National University of São Paulo, Jaboticabal, São Paulo CEP: 14884-900, Brazil;
| | - Daniel Guariz Pinheiro
- Department of Biology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo CEP: 14040-901, Brazil;
| | - Allan Bruce Downie
- Department of Horticulture, University of Kentucky Seed Biology Program, Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA;
| |
Collapse
|