1
|
He Y, Nong Y, Qin J, Feng L, Qin J, Wang Q, Deng L, Tang S, Zhang M, Fan X, Dong M, Wei J, Pan S, Su Z. Protective effects of oyster polypeptide on cyclophosphamide-induced immunosuppressed rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7143-7158. [PMID: 38629663 DOI: 10.1002/jsfa.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 02/26/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Oyster polypeptide (OP) is a mixture of oligopeptides extracted from oysters through enzyme lysis, separation, and purification. It is associated with immunomodulatory effects, but the underlying mechanisms are not known. This study therefore combined proton nuclear magnetic resonance (1H-NMR) urinary metabolomics and 16S rRNA gene sequencing of the gut microbiome to determine the immunoprotective mechanisms of OP in rats subjected to cyclophosphamide-induced immunosuppression. RESULTS Oyster polypeptide restored the body weight and the structure of spleen and thymus in rats with cyclophosphamide-induced immunosuppression. It upregulated the levels of white blood cells (WBCs), hemoglobin (HGB), platelets (PLT), red blood cells (RBCs), immunoglobulin G (IgG), immunoglobulin M (IgM), cytokines such as interleukin‑6 (IL-6) and tumor necrosis factor-α (TNF-α), and increased the numbers of CD3+ and CD4+ T cells in the immunosuppressed rats. The 1H-NMR metabolomics results showed that OP significantly reversed the levels of ten metabolites in urine, including 2-oxoglutarate, citrate, dimethylamine, taurine, N-phenylacetylglycine, alanine, betaine, creatinine, uracil, and benzoate. The 16S rRNA gene sequencing results showed that OP restored the gut microbiome homeostasis by increasing the abundance of beneficial bacteria and reducing the abundance of pathogenic bacteria. Finally, a combination of metabolomics and microbiomics found that the metabolism of taurine and hypotaurine, and the metabolism of alanine, aspartate, and glutamate were disturbed, but these metabolic pathways were restored by OP. CONCLUSION This study demonstrated that OP had immunoprotective effects in rats with cyclophosphamide-induced immunosuppression by restoring key metabolic pathways and the gut microbiome homeostasis. Our findings provide a framework for further research into the immunoregulatory mechanisms of OP and its potential use in drugs and nutritional supplements. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying He
- First clinical medical college, Guangxi Medical University, Nanning, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Junliang Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinghua Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Qianyi Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Siqi Tang
- First clinical medical college, Guangxi Medical University, Nanning, China
| | - Meiling Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xiaofeng Fan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Min Dong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Shihan Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Nanning, China
| |
Collapse
|
2
|
Kim HY, Lee JD, Kim H, Kim Y, Park JJ, Oh SB, Goo H, Cho KJ, Kim KB. Mass spectrometry (MS)-based metabolomics of plasma and urine in dry eye disease (DED)-induced rat model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-14. [PMID: 39185961 DOI: 10.1080/15287394.2024.2393770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Dry eye disease (DED) is an ophthalmic disease associated with poor quality and quantity of tears, and the number of patients is steadily increasing. The aim of this study was to determine plasma and urine metabolites obtained from DED scopolamine animal model where dry eye conditions (DRY) are induced. It was also of interest to examine whether DED (scopolamine) rat model was exacerbated by treatment with benzalkonium chloride (BAC). Subsequently, plasma and urine metabolites were analyzed using liquid chromatography (LC) and gas chromatography (GC)-mass spectrometry (MS), respectively. Data demonstrated that DED indicators such as tear volume, tear breakup time (TBUT), and corneal damage in the DED groups (DRY and BAC group) differed from those of control (CON). Similar results were noted in inflammatory factors such as interleukin (IL-1β), IL-6, and tumor necrosis factor (TNF)-α. In the partial least squares-discriminant analysis (PLS-DA) score plots, the three groups were distinctly separated from each other. In addition, the related metabolites were also associated with these distinct separations as evidenced by 9 and 14 in plasma and urine, respectively. Almost all of the selected metabolites were decreased in the DRY group compared to CON, and the BAC group was lower than the DRY. In plasma and urine, lysophosphatidylcholine/lysophosphatidylethanolamine, organic acids, amino acids, and sugars varied between three groups, and these metabolites were related to inflammation and oxidative stress. Data suggest that treatment with scopolamine with/without BAC-induced DED and affected the level of systemic metabolites involved in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jung Dae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - HongYoon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - YuJin Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jin Ju Park
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Soo Bean Oh
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Hyeyoon Goo
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Kyong Jin Cho
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| |
Collapse
|
3
|
Ge Z, Chen Y, Ma L, Hu F, Xie L. Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1444964. [PMID: 39131154 PMCID: PMC11310026 DOI: 10.3389/fimmu.2024.1444964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease that worsens over time, causing fibrosis in the lungs and ultimately resulting in respiratory failure and a high risk of death. Macrophages play a crucial role in the immune system, showing flexibility by transforming into either pro-inflammatory (M1) or anti-inflammatory (M2) macrophages when exposed to different stimuli, ultimately impacting the development of IPF. Recent research has indicated that the polarization of macrophages is crucial in the onset and progression of IPF. M1 macrophages secrete inflammatory cytokines and agents causing early lung damage and fibrosis, while M2 macrophages support tissue healing and fibrosis by releasing anti-inflammatory cytokines. Developing novel treatments for IPF relies on a thorough comprehension of the processes involved in macrophage polarization in IPF. The review outlines the regulation of macrophage polarization and its impact on the development of IPF, with the goal of investigating the possible therapeutic benefits of macrophage polarization in the advancement of IPF.
Collapse
Affiliation(s)
- Zhouling Ge
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Leikai Ma
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangjun Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Lubin Xie
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Loggia D, O’Flaherty C. Citrate Promotes Nitric Oxide Production during Human Sperm Capacitation. Antioxidants (Basel) 2024; 13:885. [PMID: 39199131 PMCID: PMC11352016 DOI: 10.3390/antiox13080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/08/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Sperm capacitation is a complex process essential for the spermatozoon to recognize and fertilize the oocyte. For capacitation to occur, human spermatozoa require low levels of reactive oxygen species (ROS), increased protein tyrosine phosphorylation, and sufficient levels of energy metabolites such as citrate. Human spermatozoa are exposed to high concentrations of citrate from the seminal plasma, yet the role of citrate in sperm capacitation is largely unknown. We report that citrate can support capacitation in human spermatozoa incubated with no other energy metabolites in the capacitation medium. Reduced capacitation levels were observed in spermatozoa incubated with inhibitors of mitochondrial citrate transporter (CIC), cytosolic ATP-citrate lyase (ACLY), malic enzyme (ME), and nitric oxide synthase (NOS). The role of citrate metabolism in ROS production was further elucidated as citrate increased NO● production in capacitated spermatozoa, whereas inhibition of ACLY reduced NO● production. This research characterizes a novel metabolic pathway for citrate to produce NO● in the process of human sperm capacitation.
Collapse
Affiliation(s)
- Diego Loggia
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Cristian O’Flaherty
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
5
|
Tran N, Mills EL. Redox regulation of macrophages. Redox Biol 2024; 72:103123. [PMID: 38615489 PMCID: PMC11026845 DOI: 10.1016/j.redox.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions that remain.
Collapse
Affiliation(s)
- Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Kumar V, Stewart Iv JH. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J Innate Immun 2024; 16:295-323. [PMID: 38740018 PMCID: PMC11250681 DOI: 10.1159/000539278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Yurakova TR, Gorshkova EA, Nosenko MA, Drutskaya MS. Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:817-838. [PMID: 38880644 DOI: 10.1134/s0006297924050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 06/18/2024]
Abstract
In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.
Collapse
Affiliation(s)
- Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Nosenko
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02F306, Ireland
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| |
Collapse
|
8
|
Di Martino E, Ambikan A, Ramsköld D, Umekawa T, Giatrellis S, Vacondio D, Romero AL, Galán MG, Sandberg R, Ådén U, Lauschke VM, Neogi U, Blomgren K, Kele J. Inflammatory, metabolic, and sex-dependent gene-regulatory dynamics of microglia and macrophages in neonatal hippocampus after hypoxia-ischemia. iScience 2024; 27:109346. [PMID: 38500830 PMCID: PMC10945260 DOI: 10.1016/j.isci.2024.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of perinatal death and long-term disabilities worldwide. Post-ischemic neuroinflammation plays a pivotal role in HI pathophysiology. In the present study, we investigated the temporal dynamics of microglia (CX3CR1GFP/+) and infiltrating macrophages (CCR2RFP/+) in the hippocampi of mice subjected to HI at postnatal day 9. Using inflammatory pathway and transcription factor (TF) analyses, we identified a distinct post-ischemic response in CCR2RFP/+ cells characterized by differential gene expression in sensome, homeostatic, matrisome, lipid metabolic, and inflammatory molecular signatures. Three days after injury, transcriptomic signatures of CX3CR1GFP/+ and CCR2RFP/+ cells isolated from hippocampi showed a partial convergence. Interestingly, microglia-specific genes in CX3CR1GFP/+ cells showed a sexual dimorphism, where expression returned to control levels in males but not in females during the experimental time frame. These results highlight the importance of further investigations on metabolic rewiring to pave the way for future interventions in asphyxiated neonates.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Anoop Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Daniel Ramsköld
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Takashi Umekawa
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sarantis Giatrellis
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Davide Vacondio
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Marta Gómez Galán
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Ulrika Ådén
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Klas Blomgren
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Julianna Kele
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
- Team Neurovascular Biology and Health, Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| |
Collapse
|
9
|
Zwierzchowski G, Haxhiaj K, Wójcik R, Wishart DS, Ametaj BN. Identifying Predictive Biomarkers of Subclinical Mastitis in Dairy Cows through Urinary Metabotyping. Metabolites 2024; 14:205. [PMID: 38668333 PMCID: PMC11051925 DOI: 10.3390/metabo14040205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Mastitis is a significant infectious disease in dairy cows, resulting in milk yield loss and culling. Early detection of mastitis-prone cows is crucial for implementing effective preventive measures before disease onset. Current diagnosis of subclinical mastitis (SCM) relies on somatic cell count assessment post-calving, lacking predictive capabilities. This study aimed to identify metabolic changes in pre-SCM cows through targeted metabolomic analysis of urine samples collected 8 wks and 4 wks before calving, using mass spectrometry. A nested case-control design was employed, involving a total of 145 multiparous dairy cows, with disease occurrence monitored pre- and postpartum. Among them, 15 disease-free cows served as healthy controls (CON), while 10 cows exclusively had SCM, excluding those with additional diseases. Urinary metabolite profiling revealed multiple alterations in acylcarnitines, amino acids, and organic acids in pre-SCM cows. Metabotyping identified 27 metabolites that distinguished pre-SCM cows from healthy CON cows at both 8 and 4 wks before parturition. However, only four metabolites per week showed significant alterations (p < 0.005). Notably, a panel of four serum metabolites (asymmetric dimethylarginine, proline, leucine, and homovanillate) at 8 wks prepartum, and another panel (asymmetric dimethylarginine, methylmalonate, citrate, and spermidine) at 4 wks prepartum, demonstrated predictive ability as urinary biomarkers for SCM risk (AUC = 0.88; p = 0.02 and AUC = 0.88; p = 0.03, respectively). In conclusion, our findings indicate that metabolite testing can identify cows at risk of SCM as early as 8 and 4 wks before parturition. Validation of the two identified metabolite panels is warranted to implement these predictive biomarkers, facilitate early intervention strategies, and improve dairy cow management to mitigate the impact of SCM. Further research is needed to confirm the efficacy and applicability of these biomarkers in practical farm settings.
Collapse
Affiliation(s)
- Grzegorz Zwierzchowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 1a Oczapowskiego Str., 10-719 Olsztyn, Poland
| | - Klevis Haxhiaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
| | - Roman Wójcik
- Faculty of Veterinary Medicine, University of Warmia and Mazury, 1a Oczapowskiego Str., 10-719 Olsztyn, Poland;
| | - David S. Wishart
- Department of Biological and Computer Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Burim N. Ametaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
| |
Collapse
|
10
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
11
|
Zhang F, Lv T, Li J, Lian J, Wu H, Jin Y, Jia F, Zhang X. Citrate synthase lysine K215 hypoacetylation contributes to microglial citrate accumulation and pro-inflammatory functions after traumatic brain injury. CNS Neurosci Ther 2024; 30:e14567. [PMID: 38421106 PMCID: PMC10851320 DOI: 10.1111/cns.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS This study aimed to investigate the relationship between microglial metabolism and neuroinflammation by examining the impact of citrate accumulation in microglia and its potential regulation through Cs K215 hypoacetylation. METHODS Experimental approaches included assessing Cs enzyme activity through Cs K215Q mutation and investigating the inhibitory effects of hesperidin, a natural flavanone glycoside, on citrate synthase. Microglial phagocytosis and expression of pro-inflammatory cytokines were also examined in relation to Cs K215Q mutation and hesperidin treatment. RESULTS Cs K215Q mutation and hesperidin exhibited significant inhibitory effects on Cs enzyme activity, microglial citrate accumulation, phagocytosis, and pro-inflammatory cytokine expression. Interestingly, Sirt3 knockdown aggravated microglial pro-inflammatory functions during neuroinflammation, despite its proven role in Cs deacetylation. CONCLUSION Cs K215Q mutation and hesperidin effectively inhibited microglial pro-inflammatory functions without reversing the metabolic reprogramming. These findings suggest that targeting Cs K215 hypoacetylation and utilizing hesperidin may hold promise for modulating neuroinflammation in microglia.
Collapse
Affiliation(s)
- Fengchen Zhang
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tao Lv
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Li
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Lian
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wu
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yichao Jin
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Jia
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of NeurosurgeryNantong First People's Hospital, Affiliated Hospital 2 of Nantong UniversityNantongChina
| | - Xiaohua Zhang
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Zhang Y, Ye F, Fu X, Li S, Wang L, Chen Y, Li H, Hao S, Zhao K, Feng Q, Li P. Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation. Neurosci Bull 2024; 40:255-267. [PMID: 37391607 PMCID: PMC10838870 DOI: 10.1007/s12264-023-01085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 07/02/2023] Open
Abstract
Macrophages are essential components of the innate immune system and constitute a non-specific first line of host defense against pathogens and inflammation. Mitochondria regulate macrophage activation and innate immune responses in various inflammatory diseases, including cochlear inflammation. The distribution, number, and morphological characteristics of cochlear macrophages change significantly across different inner ear regions under various pathological conditions, including noise exposure, ototoxicity, and age-related degeneration. However, the exact mechanism underlying the role of mitochondria in macrophages in auditory function remains unclear. Here, we summarize the major factors and mitochondrial signaling pathways (e.g., metabolism, mitochondrial reactive oxygen species, mitochondrial DNA, and the inflammasome) that influence macrophage activation in the innate immune response. In particular, we focus on the properties of cochlear macrophages, activated signaling pathways, and the secretion of inflammatory cytokines after acoustic injury. We hope this review will provide new perspectives and a basis for future research on cochlear inflammation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaolong Fu
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250000, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaojuan Hao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kun Zhao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| | - Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Elsayed NS, Wolfe AJ, Burk RD. Urine microbiome in individuals with an impaired immune system. Front Cell Infect Microbiol 2024; 13:1308665. [PMID: 38274734 PMCID: PMC10808152 DOI: 10.3389/fcimb.2023.1308665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
With the advent of next generation sequencing, it is now appreciated that human urine is not sterile. Recent investigations of the urinary microbiome (urobiome) have provided insights into several urological diseases. Urobiome dysbiosis, defined as non-optimal urine microbiome composition, has been observed in many disorders; however, it is not clear whether this dysbiosis is the cause of urinary tract disorders or a consequence. In addition, immunologically altered disorders are associated with higher rates of urinary tract infections. These disorders include immunoproliferative and immunodeficiency diseases, cancer, and immunosuppressant therapy in transplant recipients. In this review, we examine the current state of knowledge of the urobiome in immunologically altered diseases, its composition and metabolomic consequences. We conclude that more data are required to describe the urobiome in immune altered states, knowledge that could facilitate understanding the role of the urobiome and its pathophysiological effects on urinary tract infections and other disorders of the urinary tract.
Collapse
Affiliation(s)
- Noha S. Elsayed
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Robert D. Burk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
- Departments of Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
14
|
Moorlag SJCFM, Folkman L, Ter Horst R, Krausgruber T, Barreca D, Schuster LC, Fife V, Matzaraki V, Li W, Reichl S, Mourits VP, Koeken VACM, de Bree LCJ, Dijkstra H, Lemmers H, van Cranenbroek B, van Rijssen E, Koenen HJPM, Joosten I, Xu CJ, Li Y, Joosten LAB, van Crevel R, Netea MG, Bock C. Multi-omics analysis of innate and adaptive responses to BCG vaccination reveals epigenetic cell states that predict trained immunity. Immunity 2024; 57:171-187.e14. [PMID: 38198850 DOI: 10.1016/j.immuni.2023.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.
Collapse
Affiliation(s)
- Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lukas Folkman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Rob Ter Horst
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Fife
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wenchao Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Stephan Reichl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Bandim Health Project, OPEN, Institute of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther van Rijssen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria.
| |
Collapse
|
15
|
Ni D, Zhou H, Wang P, Xu F, Li C. Visualizing Macrophage Phenotypes and Polarization in Diseases: From Biomarkers to Molecular Probes. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:613-638. [PMID: 38223685 PMCID: PMC10781933 DOI: 10.1007/s43657-023-00129-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024]
Abstract
Macrophage is a kind of immune cell and performs multiple functions including pathogen phagocytosis, antigen presentation and tissue remodeling. To fulfill their functionally distinct roles, macrophages undergo polarization towards a spectrum of phenotypes, particularly the classically activated (M1) and alternatively activated (M2) subtypes. However, the binary M1/M2 phenotype fails to capture the complexity of macrophages subpopulations in vivo. Hence, it is crucial to employ spatiotemporal imaging techniques to visualize macrophage phenotypes and polarization, enabling the monitoring of disease progression and assessment of therapeutic responses to drug candidates. This review begins by discussing the origin, function and diversity of macrophage under physiological and pathological conditions. Subsequently, we summarize the identified macrophage phenotypes and their specific biomarkers. In addition, we present the imaging probes locating the lesions by visualizing macrophages with specific phenotype in vivo. Finally, we discuss the challenges and prospects associated with monitoring immune microenvironment and disease progression through imaging of macrophage phenotypes.
Collapse
Affiliation(s)
- Dan Ni
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
| | - Heqing Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Pengwei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
| | - Fulin Xu
- Minhang Hospital, Fudan University, Shanghai, 201199 China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203 China
- Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, 201203 China
| |
Collapse
|
16
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
17
|
Zhang R, Peng X, Du JX, Boohaker R, Estevao IL, Grajeda BI, Cox MB, Almeida IC, Lu W. Oncogenic KRASG12D Reprograms Lipid Metabolism by Upregulating SLC25A1 to Drive Pancreatic Tumorigenesis. Cancer Res 2023; 83:3739-3752. [PMID: 37695315 PMCID: PMC10840918 DOI: 10.1158/0008-5472.can-22-2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/24/2022] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Pancreatic cancer is a highly lethal disease with obesity as one of the risk factors. Oncogenic KRAS mutations are prevalent in pancreatic cancer and can rewire lipid metabolism by altering fatty acid (FA) uptake, FA oxidation (FAO), and lipogenesis. Identification of the underlying mechanisms could lead to improved therapeutic strategies for treating KRAS-mutant pancreatic cancer. Here, we observed that KRASG12D upregulated the expression of SLC25A1, a citrate transporter that is a key metabolic switch to mediate FAO, fatty acid synthesis, glycolysis, and gluconeogenesis. In genetically engineered mouse models and human pancreatic cancer cells, KRASG12D induced SLC25A1 upregulation via GLI1, which directly stimulated SLC25A1 transcription by binding its promoter. The enhanced expression of SLC25A1 increased levels of cytosolic citrate, FAs, and key enzymes in lipid metabolism. In addition, a high-fat diet (HFD) further stimulated the KRASG12D-GLI1-SLC25A1 axis and the associated increase in citrate and FAs. Pharmacologic inhibition of SLC25A1 and upstream GLI1 significantly suppressed pancreatic tumorigenesis in KrasG12D/+ mice on a HFD. These results reveal a KRASG12D-GLI1-SLC25A1 regulatory axis, with SLC25A1 as an important node that regulates lipid metabolism during pancreatic tumorigenesis, thus indicating an intervention strategy for oncogenic KRAS-driven pancreatic cancer. SIGNIFICANCE Upregulation of SLC25A1 induced by KRASG12D-GLI1 signaling rewires lipid metabolism and is exacerbated by HFD to drive the development of pancreatic cancer, representing a targetable metabolic axis to suppress pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Ruowen Zhang
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Xiaogang Peng
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | - James Xianxing Du
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | - Rebecca Boohaker
- Oncology Department, Southern Research Institute, Birmingham, Alabama, USA
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Marc B Cox
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Weiqin Lu
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
18
|
Bamgbose TT, Schilke RM, Igiehon OO, Nkadi EH, Custis D, Bharrhan S, Schwarz B, Bohrnsen E, Bosio CM, Scott RS, Yurdagul A, Finck BN, Woolard MD. Lipin-1 restrains macrophage lipid synthesis to promote inflammation resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563587. [PMID: 37961352 PMCID: PMC10634750 DOI: 10.1101/2023.10.23.563587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function, but a deeper understanding of how lipid metabolism is regulated in pro-resolving macrophage responses is needed. Lipin-1 is a phosphatidic acid phosphatase with a transcriptional coregulatory activity (TC) that regulates lipid metabolism. We previously demonstrated that lipin-1 supports pro-resolving macrophage responses, and here, myeloid-associated lipin-1 is required for inflammation resolution, yet how lipin-1-regulated cellular mechanisms promote macrophage pro-resolution responses is unknown. We demonstrated that the loss of lipin-1 in macrophages led to increased free fatty acid, neutral lipid, and ceramide content and increased phosphorylation of acetyl-CoA carboxylase. The inhibition of the first step of lipid synthesis and transport of citrate from the mitochondria in macrophages reduced lipid content and restored efferocytosis and inflammation resolution in lipin-1mKO macrophages and mice. Our findings suggest macrophage-associated lipin-1 restrains lipid synthesis, promoting pro-resolving macrophage function in response to pro-resolving stimuli.
Collapse
Affiliation(s)
- Temitayo T. Bamgbose
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Robert M. Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Oluwakemi O. Igiehon
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - David Custis
- Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Sushma Bharrhan
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Benjamin Schwarz
- Proteins & Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Eric Bohrnsen
- Proteins & Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Brian N. Finck
- Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew D. Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
19
|
Russo M, Pileri F, Ghisletti S. Novel insights into the role of acetyl-CoA producing enzymes in epigenetic regulation. Front Endocrinol (Lausanne) 2023; 14:1272646. [PMID: 37842307 PMCID: PMC10570720 DOI: 10.3389/fendo.2023.1272646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Inflammation-dependent changes in gene expression programs in innate immune cells, such as macrophages, involve extensive reprogramming of metabolism. This reprogramming is essential for the production of metabolites required for chromatin modifications, such as acetyl-CoA, and regulate their usage and availability impacting the macrophage epigenome. One of the most transcriptionally induced proinflammatory mediator is nitric oxide (NO), which has been shown to inhibit key metabolic enzymes involved in the production of these metabolites. Recent evidence indicates that NO inhibits mitochondrial enzymes such as pyruvate dehydrogenase (PDH) in macrophages induced by inflammatory stimulus. PDH is involved in the production of acetyl-CoA, which is essential for chromatin modifications in the nucleus, such as histone acetylation. In addition, acetyl-CoA levels in inflamed macrophages are regulated by ATP citrate lyase (ACLY) and citrate transporter SLC25A1. Interestingly, acetyl-CoA producing enzymes, such as PDH and ACLY, have also been reported to be present in the nucleus and to support the local generation of cofactors such as acetyl-CoA. Here, we will discuss the mechanisms involved in the regulation of acetyl-CoA production by metabolic enzymes, their inhibition by prolonged exposure to inflammation stimuli, their involvement in dynamic inflammatory expression changes and how these emerging findings could have significant implications for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| |
Collapse
|
20
|
Höper T, Karkossa I, Dumit VI, von Bergen M, Schubert K, Haase A. A comparative proteomics analysis of four contact allergens in THP-1 cells shows distinct alterations in key metabolic pathways. Toxicol Appl Pharmacol 2023; 475:116650. [PMID: 37541627 DOI: 10.1016/j.taap.2023.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Allergic contact dermatitis (ACD) is the predominant form of immunotoxicity in humans. The sensitizing potential of chemicals can be assessed in vitro. However, a better mechanistic understanding could improve the current OECD-validated test battery. The aim of this study was to get insights into toxicity mechanisms of four contact allergens, p-benzoquinone (BQ), 2,4-dinitrochlorobenzene (DNCB), p-nitrobenzyl bromide (NBB) and NiSO4, by analyzing differential proteome alterations in THP-1 cells using two common proteomics workflows, stable isotope labeling by amino acids in cell culture (SILAC) and label-free quantification (LFQ). Here, SILAC was found to deliver more robust results. Overall, the four allergens induced similar responses in THP-1 cells, which underwent profound metabolic reprogramming, including a striking upregulation of the TCA cycle accompanied by pronounced induction of the Nrf2 oxidative stress response pathway. The magnitude of induction varied between the allergens with DNCB and NBB being most potent. A considerable overlap between transcriptome-based signatures of the GARD assay and the proteins identified in our study was found. When comparing the results of this study to a previous proteomics study in human primary monocyte-derived dendritic cells, we found a rather low share in regulated proteins. However, on pathway level, the overlap was high, indicating that affected pathways rather than single proteins are more eligible to investigate proteomic changes induced by contact allergens. Overall, this study confirms the potential of proteomics to obtain a profound mechanistic understanding, which may help improving existing in vitro assays for skin sensitization.
Collapse
Affiliation(s)
- Tessa Höper
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany; Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Verónica I Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
21
|
Li M, Yang Y, Xiong L, Jiang P, Wang J, Li C. Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol 2023; 16:80. [PMID: 37491279 PMCID: PMC10367370 DOI: 10.1186/s13045-023-01478-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Tumour-associated macrophages (TAMs) are crucial components of the tumour microenvironment and play a significant role in tumour development and drug resistance by creating an immunosuppressive microenvironment. Macrophages are essential components of both the innate and adaptive immune systems and contribute to pathogen resistance and the regulation of organism homeostasis. Macrophage function and polarization are closely linked to altered metabolism. Generally, M1 macrophages rely primarily on aerobic glycolysis, whereas M2 macrophages depend on oxidative metabolism. Metabolic studies have revealed that the metabolic signature of TAMs and metabolites in the tumour microenvironment regulate the function and polarization of TAMs. However, the precise effects of metabolic reprogramming on tumours and TAMs remain incompletely understood. In this review, we discuss the impact of metabolic pathways on macrophage function and polarization as well as potential strategies for reprogramming macrophage metabolism in cancer treatment.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
22
|
Uhde M, Indart AC, Green PH, Yolken RH, Cook DB, Shukla SK, Vernon SD, Alaedini A. Suppressed immune and metabolic responses to intestinal damage-associated microbial translocation in myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav Immun Health 2023; 30:100627. [PMID: 37396339 PMCID: PMC10308215 DOI: 10.1016/j.bbih.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 07/04/2023] Open
Abstract
The etiology and mechanism of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are poorly understood and no biomarkers have been established. Specifically, the relationship between the immunologic, metabolic, and gastrointestinal abnormalities associated with ME/CFS and their relevance to established symptoms of the condition remain unclear. Relying on data from two independent pairs of ME/CFS and control cohorts, one at rest and one undergoing an exercise challenge, we identify a state of suppressed acute-phase innate immune response to microbial translocation in conjunction with a compromised gut epithelium in ME/CFS. This immunosuppression, along with observed enhancement of compensatory antibody responses to counter the microbial translocation, was associated with and may be mediated by alterations in glucose and citrate metabolism and an IL-10 immunoregulatory response. Our findings provide novel insights into mechanistic pathways, biomarkers, and potential therapeutic targets in ME/CFS, including in the context of exertion, with relevance to both intestinal and extra-intestinal symptoms.
Collapse
Affiliation(s)
- Melanie Uhde
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Alyssa C. Indart
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Peter H.R. Green
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
- Celiac Disease Center, Columbia University, New York, NY, USA
| | - Robert H. Yolken
- The Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, Baltimore, MD, USA
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Sanjay K. Shukla
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | | | - Armin Alaedini
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Celiac Disease Center, Columbia University, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
23
|
Jin J, Li J, Hou M, Ding X, Zhong Y, He J, Sun X, Ye H, Li R, Wu L, Wang J, Guo J, Li Z. A Shifted Urinary Microbiota Associated with Disease Activity and Immune Responses in Rheumatoid Arthritis. Microbiol Spectr 2023; 11:e0366222. [PMID: 37227288 PMCID: PMC10269647 DOI: 10.1128/spectrum.03662-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Recent evidence emphasized the role of the microbiota in the etiopathogenesis of rheumatoid arthritis (RA). Indeed, it has been demonstrated that urinary tract infections are implicated in RA pathogenesis. However, a definitive association between the urinary tract microbiota and RA remains to be investigated. Urine samples from 39 patients affected by RA, including treatment-naive patients, and 37 age- and sex-matched healthy individuals were collected. In RA patients, the urinary microbiota showed an increase in microbial richness and a decrease in microbial dissimilarity, especially in treatment-naive patients. A total of 48 altered genera with different absolute quantities were detected in patients with RA. The 37 enriched genera included Proteus, Faecalibacterium, and Bacteroides, while the 11 deficient genera included Gardnerella, Ruminococcus, Megasphaera, and Ureaplasma. Notably, the more abundant genera in RA patients were correlated with the disease activity score of 28 joints-erythrocyte sedimentation rates (DAS28-ESR) and an increase in plasma B cells. Furthermore, the altered urinary metabolites, such as proline, citric acid, and oxalic acid, were positively associated with RA patients, and they were closely correlated with urinary microbiota. These findings suggested a strong association between the altered urinary microbiota and metabolites with disease severity and dysregulated immune responses in RA patients. IMPORTANCE We revealed that the profile of the urinary tract microbiota in RA featured with increased microbial richness and shifted taxa, associated with immunological and metabolic changes of the disease, underlining the interplay between urinary microbiota and host autoimmunity.
Collapse
Affiliation(s)
- Jiayang Jin
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Meiling Hou
- TinyGene Bio-Tech (Shanghai) Co., Ltd., Shanghai, China
| | - Xu Ding
- TinyGene Bio-Tech (Shanghai) Co., Ltd., Shanghai, China
| | - Yan Zhong
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Rheumatology and Immunology, The People’s Hospital of Xin Jiang Uygur Autonomous Region, Urumqi, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ru Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lijun Wu
- Department of Rheumatology and Immunology, The People’s Hospital of Xin Jiang Uygur Autonomous Region, Urumqi, China
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
24
|
Feth M, Hainline RV, Barrera G, Meledeo MA, Ross E. Pyrophosphate as a novel anticoagulant for storage of whole blood: A proof-of-concept study. Transfusion 2023. [PMID: 37247407 DOI: 10.1111/trf.17420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Citrate is the only anticoagulant currently Food and Drug Administration (FDA)-approved for the long-term storage of blood for transfusion. Citrate inhibits phosphofructokinase and may play a pro-inflammatory role, suggesting that there may be an advantage to using alternative anticoagulants. Here, we examine the use of pyrophosphate as an anticoagulant. STUDY DESIGN AND METHODS Whole blood samples from healthy donors were anticoagulated either with citrate-phosphate-adenine-dextrose (CPDA-1) or our novel anticoagulant mixture pyrophosphate-phosphate-adenine-dextrose (PPDA-1). Samples were assessed for coagulation capacity by thromboelastography immediately after anticoagulation (T0) with and without recalcification, as well as 5 hours after anticoagulation (T1) with recalcification. Complete blood counts were taken at both timepoints. Flow cytometry to evaluate platelet activation as well as blood smears to evaluate cellular morphology were performed at T1. RESULTS No clotting was detected in samples anticoagulated with either solution without recalcification. After recalcification, clotting function was restored in both groups. R-Time in recalcified PPDA-1 samples was shorter than in CPDA-1 samples. A reduction in platelet count at T1 compared to T0 was observed in both groups. No significant platelet activation was observed in either group at T1. Blood smear indicated platelet clumping in PPDA-1. CONCLUSION We have shown initial proof of concept that pyrophosphate functions as an anticoagulant at the dose used in this study, though there is an associated loss of platelets over time that may limit its usefulness for blood storage. Further dose optimization of pyrophosphate may limit or reduce the loss of platelets.
Collapse
Affiliation(s)
- Maximilian Feth
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
- Department of Anesthesiology, Critical Care, Emergency Medicine and Pain Therapy, Military Hospital Ulm, Ulm, Germany
| | - Robert V Hainline
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Gema Barrera
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Michael Adam Meledeo
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Evan Ross
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| |
Collapse
|
25
|
Iacobazzi D, Convertini P, Todisco S, Santarsiero A, Iacobazzi V, Infantino V. New Insights into NF-κB Signaling in Innate Immunity: Focus on Immunometabolic Crosstalks. BIOLOGY 2023; 12:776. [PMID: 37372061 DOI: 10.3390/biology12060776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The nuclear factor kappa B (NF-κB) is a family of transcription factors that, beyond their numberless functions in various cell processes, play a pivotal role in regulating immune cell activation. Two main pathways-canonical and non-canonical-are responsible for NF-κB activation and heterodimer translocation into the nucleus. A complex crosstalk between NF-κB signaling and metabolism is emerging in innate immunity. Metabolic enzymes and metabolites regulate NF-κB activity in many cases through post-translational modifications such as acetylation and phosphorylation. On the other hand, NF-κB affects immunometabolic pathways, including the citrate pathway, thereby building an intricate network. In this review, the emerging findings about NF-κB function in innate immunity and the interplay between NF-κB and immunometabolism have been discussed. These outcomes allow for a deeper comprehension of the molecular mechanisms underlying NF-κB function in innate immune cells. Moreover, the new insights are important in order to perceive NF-κB signaling as a potential therapeutic target for inflammatory/immune chronic diseases.
Collapse
Affiliation(s)
- Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
26
|
Pani S, Pappalardo I, Santarsiero A, Vassallo A, Radice RP, Martelli G, Siano F, Todisco S, Convertini P, Caddeo C, Infantino V. Immunometabolism Modulation by Extracts from Pistachio Stalks Formulated in Phospholipid Vesicles. Pharmaceutics 2023; 15:pharmaceutics15051540. [PMID: 37242782 DOI: 10.3390/pharmaceutics15051540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Several studies have demonstrated the effectiveness of plant extracts against various diseases, especially skin disorders; namely, they exhibit overall protective effects. The Pistachio (Pistacia vera L.) is known for having bioactive compounds that can effectively contribute to a person's healthy status. However, these benefits may be limited by the toxicity and low bioavailability often inherent in bioactive compounds. To overcome these problems, delivery systems, such as phospholipid vesicles, can be employed. In this study, an essential oil and a hydrolate were produced from P. vera stalks, which are usually discarded as waste. The extracts were characterized by liquid and gas chromatography coupled with mass spectrometry and formulated in phospholipid vesicles intended for skin application. Liposomes and transfersomes showed small size (<100 nm), negative charge (approximately -15 mV), and a longer storage stability for the latter. The entrapment efficiency was determined via the quantification of the major compounds identified in the extracts and was >80%. The immune-modulating activity of the extracts was assayed in macrophage cell cultures. Most interestingly, the formulation in transfersomes abolished the cytotoxicity of the essential oil while increasing its ability to inhibit inflammatory mediators via the immunometabolic citrate pathway.
Collapse
Affiliation(s)
- Simone Pani
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff TNcKILLERS s.r.l., Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosa Paola Radice
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Francesco Siano
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carla Caddeo
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
27
|
Zara V, Assalve G, Ferramosca A. Insights into the malfunctioning of the mitochondrial citrate carrier: Implications for cell pathology. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166758. [PMID: 37209873 DOI: 10.1016/j.bbadis.2023.166758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
The mitochondrial citrate carrier (CIC) is a member of the mitochondrial carrier family and is responsible for the transit of tricarboxylates and dicarboxylates across the inner membrane. By modulating the flux of these molecules, it represents the molecular link between catabolic and anabolic reactions that take place in distinct cellular sub-compartments. Therefore, this transport protein represents an important element of investigation both in physiology and in pathology. In this review we critically analyze the involvement of the mitochondrial CIC in several human pathologies, which can be divided into two subgroups, one characterized by a decrease and the other by an increase in the flux of citrate across the inner mitochondrial membrane. In particular, a decrease in the activity of the mitochondrial CIC is responsible for several congenital diseases of different severity, which are also characterized by the increase in urinary levels of L-2- and D-2-hydroxyglutaric acids. On the other hand, an increase in the activity of the mitochondrial CIC is involved, in various ways, in the onset of inflammation, autoimmune diseases, and cancer. Then, understanding the role of CIC and the mechanisms driving the flux of metabolic intermediates between mitochondria and cytosol would potentially allow for manipulation and control of metabolism in pathological conditions.
Collapse
Affiliation(s)
- Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy
| | - Graziana Assalve
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy.
| |
Collapse
|
28
|
Wang L, Wang D, Zhang T, Ma Y, Tong X, Fan H. The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome. Front Immunol 2023; 14:1117548. [PMID: 37020557 PMCID: PMC10067752 DOI: 10.3389/fimmu.2023.1117548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Lung macrophages constitute the first line of defense against airborne particles and microbes and are key to maintaining pulmonary immune homeostasis. There is increasing evidence suggesting that macrophages also participate in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), including the modulation of inflammatory responses and the repair of damaged lung tissues. The diversity of their functions may be attributed to their polarized states. Classically activated or inflammatory (M1) macrophages and alternatively activated or anti-inflammatory (M2) macrophages are the two main polarized macrophage phenotypes. The precise regulatory mechanism of macrophage polarization is a complex process that is not completely understood. A growing body of literature on immunometabolism has demonstrated the essential role of immunometabolism and its metabolic intermediates in macrophage polarization. In this review, we summarize macrophage polarization phenotypes, the role of immunometabolism, and its metabolic intermediates in macrophage polarization and ALI/ARDS, which may represent a new target and therapeutic direction.
Collapse
Affiliation(s)
- Lian Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tianli Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Ma
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Metabolomics in Corneal Diseases: A Narrative Review from Clinical Aspects. Metabolites 2023; 13:metabo13030380. [PMID: 36984820 PMCID: PMC10055016 DOI: 10.3390/metabo13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Corneal pathologies may have subtle manifestations in the initial stages, delaying diagnosis and timely treatment. This can lead to irreversible visual loss. Metabolomics is a rapidly developing field that allows the study of metabolites in a system, providing a complementary tool in the early diagnosis and management of corneal diseases. Early identification of biomarkers is key to prevent disease progression. The advancement of nuclear magnetic resonance and mass spectrometry allows the identification of new biomarkers in the analysis of tear, cornea, and aqueous humor. Novel perspectives on disease mechanisms are identified, which provide vital information for potential targeted therapies in the future. Current treatments are analyzed at a molecular level to offer further information regarding their efficacy. In this article, we provide a comprehensive review of the metabolomic studies undertaken in the cornea and various pathologies such as dry eye disease, Sjogren’s syndrome, keratoconus, post-refractive surgery, contact lens wearers, and diabetic corneas. Lastly, we discuss the exciting future that metabolomics plays in cornea research.
Collapse
|
30
|
Michaels M, Madsen KL. Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunol 2023; 16:72-85. [PMID: 36642380 DOI: 10.1016/j.mucimm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
The concept of immunometabolism has emerged recently whereby the repolarizing of inflammatory immune cells toward anti-inflammatory profiles by manipulating cellular metabolism represents a new potential therapeutic approach to controlling inflammation. Metabolic pathways in immune cells are tightly regulated to maintain immune homeostasis and appropriate functional specificity. Because effector and regulatory immune cell populations have different metabolic requirements, this allows for cellular selectivity when regulating immune responses based on metabolic pathways. Gut microbes have a major role in modulating immune cell metabolic profiles and functional responses through extensive interactions involving metabolic products and crosstalk between gut microbes, intestinal epithelial cells, and mucosal immune cells. Developing strategies to target metabolic pathways in mucosal immune cells through the modulation of gut microbial metabolism has the potential for new therapeutic approaches for human autoimmune and inflammatory diseases, such as inflammatory bowel disease. This review will give an overview of the relationship between metabolic reprogramming and immune responses, how microbial metabolites influence these interactions, and how these pathways could be harnessed in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Margret Michaels
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada
| | - Karen L Madsen
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada; IMPACTT: Integrated Microbiome Platforms for Advancing Causation Testing & Translation, Edmonton, Alberta, Canada.
| |
Collapse
|
31
|
Pappas G, Wilkinson ML, Gow AJ. Nitric oxide regulation of cellular metabolism: Adaptive tuning of cellular energy. Nitric Oxide 2023; 131:8-17. [PMID: 36470373 PMCID: PMC9839556 DOI: 10.1016/j.niox.2022.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide can interact with a wide range of proteins including many that are involved in metabolism. In this review we have summarized the effects of NO on glycolysis, fatty acid metabolism, the TCA cycle, and oxidative phosphorylation with reference to skeletal muscle. Low to moderate NO concentrations upregulate glucose and fatty acid oxidation, while higher NO concentrations shift cellular reliance toward a fully glycolytic phenotype. Moderate NO production directly inhibits pyruvate dehydrogenase activity, reducing glucose-derived carbon entry into the TCA cycle and subsequently increasing anaploretic reactions. NO directly inhibits aconitase activity, increasing reliance on glutamine for continued energy production. At higher or prolonged NO exposure, citrate accumulation can inhibit multiple ATP-producing pathways. Reduced TCA flux slows NADH/FADH entry into the ETC. NO can also inhibit the ETC directly, further limiting oxidative phosphorylation. Moderate NO production improves mitochondrial efficiency while improving O2 utilization increasing whole-body energy production. Long-term bioenergetic capacity may be increased because of NO-derived ROS, which participate in adaptive cellular redox signaling through AMPK, PCG1-α, HIF-1, and NF-κB. However, prolonged exposure or high concentrations of NO can result in membrane depolarization and opening of the MPT. In this way NO may serve as a biochemical rheostat matching energy supply with demand for optimal respiratory function.
Collapse
Affiliation(s)
- Gregory Pappas
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Melissa L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Andrew J Gow
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| |
Collapse
|
32
|
Natarajaseenivasan K, Garcia A, Velusamy P, Shanmughapriya S, Langford D. Citrate shuttling in astrocytes is required for processing cocaine-induced neuron-derived excess peroxidated fatty acids. iScience 2022; 25:105407. [PMID: 36389000 PMCID: PMC9646946 DOI: 10.1016/j.isci.2022.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Disturbances in lipid metabolism in the CNS contribute to neurodegeneration and cognitive impairments. Through tight metabolic coupling, astrocytes provide energy to neurons by delivering lactate and cholesterol and by taking up and processing neuron-derived peroxidated fatty acids (pFA). Disruption of CNS lipid homeostasis is observed in people who use cocaine and in several neurodegenerative disorders, including HIV. The brain's main source of energy is aerobic glycolysis, but numerous studies report a switch to β-oxidation of FAs in response to cocaine. Unlike astrocytes, in response to cocaine, neurons cannot efficiently consume excess pFAs for energy. Accumulation of pFA in neurons induces autophagy and release of pFA. Astrocytes endocytose the pFA for oxidation as an energy source. Our data show that blocking mitochondrial/cytosolic citrate transport reduces the neurotrophic capacity of astrocytes, leading to decreased neuronal fitness.
Collapse
Affiliation(s)
- Kalimuthusamy Natarajaseenivasan
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Department of Microbiology, Bharathidasan University, Tiruchirapalli, India
| | - Alvaro Garcia
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
33
|
Yoo HJ, Choi DW, Roh YJ, Lee YM, Lim JH, Eo S, Lee HJ, Kim NY, Kim S, Cho S, Im G, Lee BC, Kim JH. MsrB1-regulated GAPDH oxidation plays programmatic roles in shaping metabolic and inflammatory signatures during macrophage activation. Cell Rep 2022; 41:111598. [DOI: 10.1016/j.celrep.2022.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
|
34
|
Haggadone MD, Speth J, Hong HS, Penke LR, Zhang E, Lyssiotis CA, Peters-Golden M. ATP citrate lyase links increases in glycolysis to diminished release of vesicular suppressor of cytokine signaling 3 by alveolar macrophages. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166458. [PMID: 35700791 PMCID: PMC9940702 DOI: 10.1016/j.bbadis.2022.166458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are important vectors for intercellular communication. Lung-resident alveolar macrophages (AMs) tonically secrete EVs containing suppressor of cytokine signaling 3 (SOCS3), a cytosolic protein that promotes homeostasis in the distal lung via its actions in recipient neighboring epithelial cells. AMs are metabolically distinct and exhibit low levels of glycolysis at steady state. To our knowledge, whether cellular metabolism influences the packaging and release of an EV cargo molecule has never been explored in any cellular context. Here, we report that increases in glycolysis following in vitro exposure of AMs to the growth and activating factor granulocyte-macrophage colony-stimulating factor inhibit the release of vesicular SOCS3 by primary AMs. Glycolytically diminished SOCS3 secretion requires export of citrate from the mitochondria to the cytosol and its subsequent conversion to acetyl-CoA by ATP citrate lyase. Our data for the first time implicate perturbations in intracellular metabolites in the regulation of vesicular cargo packaging and secretion.
Collapse
Affiliation(s)
- Mikel D Haggadone
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer Speth
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hanna S Hong
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 41809, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 41809, USA
| | - Loka R Penke
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric Zhang
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 41809, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 41809, USA
| | - Marc Peters-Golden
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
36
|
Zimmermann J, Goretzki A, Meier C, Wolfheimer S, Lin YJ, Rainer H, Krause M, Wedel S, Spies G, Führer F, Vieths S, Scheurer S, Schülke S. Modulation of dendritic cell metabolism by an MPLA-adjuvanted allergen product for specific immunotherapy. Front Immunol 2022; 13:916491. [PMID: 36059475 PMCID: PMC9430023 DOI: 10.3389/fimmu.2022.916491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 01/20/2023] Open
Abstract
Background Recently, bacterial components were shown to enhance immune responses by shifting immune cell metabolism towards glycolysis and lactic acid production, also known as the Warburg Effect. Currently, the effect of allergen products for immunotherapy (AIT) and commercial vaccines on immune cell metabolism is mostly unknown. Objective To investigate the effect of AIT products (adjuvanted with either MPLA or Alum) on myeloid dendritic cell (mDC) metabolism and activation. Methods Bone marrow-derived mDCs were stimulated with five allergoid-based AIT products (one adjuvanted with MPLA, four adjuvanted with Alum) and two MPLA-adjuvanted vaccines and analyzed for their metabolic activation, expression of cell surface markers, and cytokine secretion by ELISA. mDCs were pre-incubated with either immunological or metabolic inhibitors or cultured in glucose- or glutamine-free culture media and subsequently stimulated with the MPLA-containing AIT product (AIT product 1). mDCs were co-cultured with allergen-specific CD4+ T cells to investigate the contribution of metabolic pathways to the T cell priming capacity of mDCs stimulated with AIT product 1. Results Both the MPLA-containing AIT product 1 and commercial vaccines, but not the Alum-adjuvanted AIT products, activated Warburg metabolism and TNF-α secretion in mDCs. Further experiments focused on AIT product 1. Metabolic analysis showed that AIT product 1 increased glycolytic activity while also inducing the secretion of IL-1β, IL-10, IL-12, and TNF-α. Both rapamycin (mTOR-inhibitor) and SP600125 (SAP/JNK MAPK-inhibitor) dose-dependently suppressed the AIT product 1-induced Warburg Effect, glucose consumption, IL-10-, and TNF-α secretion. Moreover, both glucose- and glutamine deficiency suppressed secretion of all investigated cytokines (IL-1β, IL-10, and TNF-α). Glucose metabolism in mDCs was also critical for the (Th1-biased) T cell priming capacity of AIT product 1-stimulated mDCs, as inhibition of mTOR signaling abrogated their ability to induce Th1-responses. Conclusion The AIT product and commercial vaccines containing the adjuvant MPLA were shown to modulate the induction of immune responses by changing the metabolic state of mDCs. Better understanding the mechanisms underlying the interactions between cell metabolism and immune responses will allow us to further improve vaccine development and AIT.
Collapse
Affiliation(s)
- Jennifer Zimmermann
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Alexandra Goretzki
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Clara Meier
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Sonja Wolfheimer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Yen-Ju Lin
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Hannah Rainer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Maren Krause
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Saskia Wedel
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Gerd Spies
- Z6 Occupational Safety, Paul-Ehrlich-Institut, Langen, Germany
| | - Frank Führer
- Division of Allergology, Batch Control and Allergen Analytics, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Vieths
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stephan Scheurer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Schülke
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- *Correspondence: Stefan Schülke,
| |
Collapse
|
37
|
Li Q, Zhang T, Wang Y, Yang S, Luo J, Fang F, Liao J, Wen W, Cui H, Shang H. Qing-Wen-Jie-Re Mixture Ameliorates Poly (I:C)-Induced Viral Pneumonia Through Regulating the Inflammatory Response and Serum Metabolism. Front Pharmacol 2022; 13:891851. [PMID: 35784698 PMCID: PMC9240632 DOI: 10.3389/fphar.2022.891851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Qing-Wen-Jie-Re mixture (QWJR) has been used in the treatment of the coronavirus disease 2019 (COVID-19) in China. However, the protective mechanisms of QWJR on viral pneumonia remain unclear. In the present study, we first investigated the therapeutic effects of QWJR on a rat viral pneumonia model established by using polyinosinic-polycytidylic acid (poly (I:C)). The results indicated that QWJR could relieve the destruction of alveolar-capillary barrier in viral pneumonia rats, as represented by the decreased wet/dry weight (W/D) ratio in lung, total cell count and total protein concentration in bronchoalveolar lavage fluid (BALF). Besides, QWJR could also down-regulate the expression of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6. More M1-type macrophage polarization was detected by calculating CD86+ cells and CD206+ cells and validated by the decline of inducible nitric oxide synthase (iNOS) and elevated arginase-1 (Arg-1) in lung. Finally, serum untargeted metabolomics analysis demonstrated that QWJR might take effect through regulating arginine metabolism, arachidonic acid (AA) metabolism, tricarboxylic acid (TCA) cycle, nicotinate and nicotinamide metabolism processes.
Collapse
Affiliation(s)
- Qin Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Postdoctoral Research Station, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
- School of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tingrui Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuming Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shangsong Yang
- School of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Junyu Luo
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fang Fang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiabao Liao
- Department of Emergency, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Weibo Wen
- Postdoctoral Research Station, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Weibo Wen, ; Huantian Cui, ; Hongcai Shang,
| | - Huantian Cui
- School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Weibo Wen, ; Huantian Cui, ; Hongcai Shang,
| | - Hongcai Shang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Weibo Wen, ; Huantian Cui, ; Hongcai Shang,
| |
Collapse
|
38
|
Siesto G, Pietrafesa R, Infantino V, Thanh C, Pappalardo I, Romano P, Capece A. In Vitro Study of Probiotic, Antioxidant and Anti-Inflammatory Activities among Indigenous Saccharomyces cerevisiae Strains. Foods 2022; 11:1342. [PMID: 35564065 PMCID: PMC9105761 DOI: 10.3390/foods11091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Nowadays, the interest toward products containing probiotics is growing due to their potential health benefits to the host and the research is focusing on search of new probiotic microorganisms. The present work was focused on the characterization of indigenous Saccharomyces cerevisiae strains, isolated from different food matrixes, with the goal to select strains with probiotic or health-beneficial potential. A preliminary screening performed on fifty S. cerevisiae indigenous strains, in comparison to a commercial probiotic strain, allowed to individuate the most suitable ones for potential probiotic aptitude. Fourteen selected strains were tested for survival ability in the gastrointestinal tract and finally, the strains characterized for the most important probiotic features were analyzed for health-beneficial traits, such as the content of glucan, antioxidant and potential anti-inflammatory activities. Three strains, 4LBI-3, LL-1, TA4-10, showing better attributes compared to the commercial probiotic S.cerevisiae var. boulardii strain, were characterized by interesting health-beneficial traits, such as high content of glucan, high antioxidant and potential anti-inflammatory activities. Our results suggest that some of the tested S. cerevisiae strains have potential as probiotics and candidate for different applications, such as dietary supplements, and starter for the production of functional foods or as probiotic to be used therapeutically.
Collapse
Affiliation(s)
- Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.S.); (A.C.)
| | - Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.S.); (A.C.)
| | - Vittoria Infantino
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.I.); (I.P.)
| | - Channmuny Thanh
- Institute of Technology of Cambodia (ITC), Russian Federation Blvd, P.O. Box 86, Phnom Penh 12101, Cambodia;
| | - Ilaria Pappalardo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.I.); (I.P.)
| | - Patrizia Romano
- Dipartimento di Economia, Universitas Mercatorum, 00186 Roma, Italy;
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.S.); (A.C.)
| |
Collapse
|
39
|
Anders CB, Lawton TM, Smith HL, Garret J, Doucette MM, Ammons MCB. Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes. J Leukoc Biol 2022; 111:667-693. [PMID: 34374126 PMCID: PMC8825884 DOI: 10.1002/jlb.6a1120-744r] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
MΦs display remarkable plasticity and the ability to activate diverse responses to a host of intracellular and external stimuli. Despite extensive characterization of M1 MΦs and a broad set of M2 MΦs, comprehensive characterization of functional phenotype and associated metabotype driving this diverse MΦ activation remains. Herein, an ex vivo model was utilized to produce 6 MΦ functional phenotypes. Isolated CD14+ PBMCs were differentiated into resting M0 MΦs, and then polarized into M1 (IFN-γ/LPS), M2a (IL-4/IL-13), M2b (IC/LPS), M2c (IL-10), and M2d (IL-6/LIF) MΦs. The MΦs were profiled using a bioanalyte matrix of 4 cell surface markers, ∼50 secreted proteins, ∼800 expressed myeloid genes, and ∼450 identified metabolites relative to M0 MΦs. Signal protein and expressed gene profiles grouped the MΦs into inflammatory (M1 and M2b) and wound resolution (M2a, M2c, and M2d) phenotypes; however, each had a unique metabolic profile. While both M1 and M2b MΦs shared metabotype profiles consistent with an inflammatory signature; key differences were observed in the TCA cycle, FAO, and OXPHOS. Additionally, M2a, M2c, and M2d MΦs all profiled as tissue repair MΦs; however, metabotype differences were observed in multiple pathways including hexosamine, polyamine, and fatty acid metabolism. These metabolic and other key functional distinctions suggest phagocytic and proliferative functions for M2a MΦs, and angiogenesis and ECM assembly capabilities for M2b, M2c, and M2d MΦs. By integrating metabolomics into a systems analysis of MΦ phenotypes, we provide the most comprehensive map of MΦ diversity to date, along with the global metabolic shifts that correlate to MΦ functional plasticity in these phenotypes.
Collapse
Affiliation(s)
- Catherine B. Anders
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA
| | - Tyler M.W. Lawton
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA
| | - Hannah L. Smith
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA, Department of Microbiology and Immunology; Montana State University, Bozeman, MT, ZIP 59717; USA
| | - Jamie Garret
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA,School of Medicine, University of Washington, Seattle, WA, ZIP 98195; USA
| | - Margaret M. Doucette
- Department of Physical Medicine & Rehabilitation, Boise VA Medical Center (BVAMC), Boise, ID 83702; USA
| | - Mary Cloud B. Ammons
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA
| |
Collapse
|
40
|
Gauthier T, Chen W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Front Immunol 2022; 13:780839. [PMID: 35154105 PMCID: PMC8825490 DOI: 10.3389/fimmu.2022.780839] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Macrophages are essential innate immune cells that contribute to host defense during infection. An important feature of macrophages is their ability to respond to extracellular cues and to adopt different phenotypes and functions in response to these stimuli. The evidence accumulated in the last decade has highlighted the crucial role of metabolic reprogramming during macrophage activation in infectious context. Thus, understanding and manipulation of macrophage immunometabolism during infection could be of interest to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis, tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and regulate macrophage immune function in response to parasitic, bacterial and viral infections as well as trained immunity. At the end, we assess whether some drugs including those used in clinic and in development can target macrophage immunometabolism for potential therapy during infection with an emphasis on SARS-CoV2 infection.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wanjun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
41
|
Liu J, Gao M, Yang Z, Zhao Y, Guo K, Sun B, Gao Z, Wang L. Macrophages and Metabolic Reprograming in the Tumor Microenvironment. Front Oncol 2022; 12:795159. [PMID: 35242705 PMCID: PMC8885627 DOI: 10.3389/fonc.2022.795159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Due to the emergence of traditional drug resistance in tumor treatment, the anti-cancer therapies are facing multiple challenges. Immunotherapy, as a new and universal treatment, has been gradually concerned. The macrophages, as an important part of the immune system, play an important role in it. Many studies have shown that immune state is essential in cancer progression and prognosis, rebuilding the architecture and functional orientation of the tumor region. Most tumors are complex ecosystems that change temporally and spatially under the pressure of proliferation, apoptosis, and extension of every cell in the microenvironment. Here, we review how macrophages states can be dynamically altered in different metabolic states and we also focus on the formation of immune exhaustion. Finally, we look forward to the explorations of clinical treatment for immune metabolism process.
Collapse
Affiliation(s)
- Jin Liu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhou Yang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
| | - Yidan Zhao
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
| | - Kun Guo
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
| | - Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
| | - Zhenming Gao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Li Y, Li YC, Liu XT, Zhang L, Chen YH, Zhao Q, Gao W, Liu B, Yang H, Li P. Blockage of citrate export prevents TCA cycle fragmentation via Irg1 inactivation. Cell Rep 2022; 38:110391. [PMID: 35172156 DOI: 10.1016/j.celrep.2022.110391] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
The metabolism of activated macrophages relies on aerobic glycolysis, while mitochondrial oxidation is disrupted. In lipopolysaccharide-activated macrophages, the citrate carrier (CIC) exports citrate from mitochondria to enhance glycolytic genes through histone acetylation. CIC inhibition or Slc25a1 knockdown reduces the occupancy of H3K9ac to hypoxia-inducible factor-1α (HIF-1α) binding sites in promoters of glycolytic genes to restrain glycolysis. HIF-1α also transcriptionally upregulates immune-responsive gene 1 for itaconate production, which is inhibited by CIC blocking. Isotopic tracing of [U-13C6] glucose shows that CIC blockage prevents citrate accumulation and itaconate production by reducing glycolytic flux and facilitating metabolic flux in the TCA cycle. Isotopic tracing of [U-13C5] glutamine reveals that CIC inhibition reduces succinate accumulation from glutaminolysis and the gamma-aminobutyric acid shunt by enhancing mitochondrial oxidation. By restraining glycolysis, CIC inhibition increases NAD+ content to ensure mitochondrial biogenesis for oxidative phosphorylation. Furthermore, blockage of citrate export reduces cerebral thrombosis by inactivation of peripheral macrophages.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yu-Chen Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Tian Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Lu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yi-Hua Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Qiong Zhao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Baolin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
43
|
A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2339584. [PMID: 35178152 PMCID: PMC8847026 DOI: 10.1155/2022/2339584] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial β-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated β-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial β-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition “β-oxidation shuttle”. It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.
Collapse
|
44
|
Geiß C, Salas E, Guevara-Coto J, Régnier-Vigouroux A, Mora-Rodríguez RA. Multistability in Macrophage Activation Pathways and Metabolic Implications. Cells 2022; 11:404. [PMID: 35159214 PMCID: PMC8834178 DOI: 10.3390/cells11030404] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022] Open
Abstract
Macrophages are innate immune cells with a dynamic range of reversible activation states including the classical pro-inflammatory (M1) and alternative anti-inflammatory (M2) states. Deciphering how macrophages regulate their transition from one state to the other is key for a deeper understanding of inflammatory diseases and relevant therapies. Common regulatory motifs reported for macrophage transitions, such as positive or double-negative feedback loops, exhibit a switchlike behavior, suggesting the bistability of the system. In this review, we explore the evidence for multistability (including bistability) in macrophage activation pathways at four molecular levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1, NF-KB/p50-p65) and M2 (STAT3, NF-KB/p50-p50) signaling pathways. Second, a switchlike behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, these changes impact metabolic gene expression, leading to switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis, and nitrogen metabolism. Fourth, metabolic changes are monitored by metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining signals promoting M1 or M2 activation. In conclusion, we identify bistability hubs as promising therapeutic targets for reverting or blocking macrophage transitions through modulation of the metabolic environment.
Collapse
Affiliation(s)
- Carsten Geiß
- Institute for Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Elvira Salas
- Department of Biochemistry, Faculty of Medicine, Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
| | - Jose Guevara-Coto
- Department of Computer Sciences and Informatics (ECCI), Faculty of Engineering, Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Research Center for Information and Communication Technologies (CITIC), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Rodrigo A. Mora-Rodríguez
- Institute for Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, 55128 Mainz, Germany;
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica
- Research Center for Tropical Diseases (CIET), Lab of Tumor Chemosensitivity (LQT), Faculty of Microbiology, Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
45
|
Ferric Ammonium Citrate Upregulates PD-L1 Expression through Generation of Reactive Oxygen Species. J Immunol Res 2022; 2022:6284124. [PMID: 35083343 PMCID: PMC8786474 DOI: 10.1155/2022/6284124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/24/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Iron plays an important role in macrophage polarization by altering metabolic and redox status. However, the impact of iron on the immune status of macrophages is still controversial. In this study, we report that ferric ammonium citrate (FAC) upregulates PD-L1 expression in macrophages. FAC not only altered the phenotype of macrophages but also led to enriching immune-modulatory T cell subsets. Since iron is known to be a constituent of coenzymes facilitating metabolic processes in mitochondria, we examined the metabolic status of FAC-overloaded macrophages by measuring the oxygen consumption rate (OCR) and the represented coenzyme, aconitase. In addition to enhancement of metabolic processes, FAC accelerated the Fenton reaction in macrophages, which also contributed to the facilitation of oxygen consumption. We reasoned that the enhancement of the OCR leads to the production of reactive oxygen species (ROS), which are directly linked to PD-L1 induction. Using ferrostatin, rotenone, and N-acetyl-L-cysteine, we confirmed that metabolic and redox regulation is responsible for FAC-mediated PD-L1 expression. Furthermore, we suggested that FAC-induced ROS production may explain FAC-mediated pro- and anti-inflammatory responses in macrophages. These findings may extend our understanding of regulating iron concentration during immune checkpoint therapy in cancer patients.
Collapse
|
46
|
Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2022; 21:283-305. [PMID: 35031766 PMCID: PMC8758994 DOI: 10.1038/s41573-021-00367-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Fatty acids are essential for survival, acting as bioenergetic substrates, structural components and signalling molecules. Given their vital role, cells have evolved mechanisms to generate fatty acids from alternative carbon sources, through a process known as de novo lipogenesis (DNL). Despite the importance of DNL, aberrant upregulation is associated with a wide variety of pathologies. Inhibiting core enzymes of DNL, including citrate/isocitrate carrier (CIC), ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), represents an attractive therapeutic strategy. Despite challenges related to efficacy, selectivity and safety, several new classes of synthetic DNL inhibitors have entered clinical-stage development and may become the foundation for a new class of therapeutics. De novo lipogenesis (DNL) is vital for the maintenance of whole-body and cellular homeostasis, but aberrant upregulation of the pathway is associated with a broad range of conditions, including cardiovascular disease, metabolic disorders and cancers. Here, Steinberg and colleagues provide an overview of the physiological and pathological roles of the core DNL enzymes and assess strategies and agents currently in development to therapeutically target them.
Collapse
Affiliation(s)
- Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
47
|
Zeng Z, Huang Q, Mao L, Wu J, An S, Chen Z, Zhang W. The Pyruvate Dehydrogenase Complex in Sepsis: Metabolic Regulation and Targeted Therapy. Front Nutr 2022; 8:783164. [PMID: 34970577 PMCID: PMC8712327 DOI: 10.3389/fnut.2021.783164] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Anaerobic glycolysis is the process by which glucose is broken down into pyruvate and lactate and is the primary metabolic pathway in sepsis. The pyruvate dehydrogenase complex (PDHC) is a multienzyme complex that serves as a critical hub in energy metabolism. Under aerobic conditions, pyruvate translocates to mitochondria, where it is oxidized into acetyl-CoA through the activation of PDHC, thereby accelerating aerobic oxidation. Both phosphorylation and acetylation affect PDHC activity and, consequently, the regulation of energy metabolism. The mechanisms underlying the protective effects of PDHC in sepsis involve the regulation on the balance of lactate, the release of inflammatory mediators, the remodeling of tricarboxylic acid (TCA) cycle, as well as on the improvement of lipid and energy metabolism. Therapeutic drugs that target PDHC activation for sepsis treatment include dichloroacetate, thiamine, amrinone, TNF-binding protein, and ciprofloxacin. In this review, we summarize the recent findings regarding the metabolic regulation of PDHC in sepsis and the therapies targeting PDHC for the treatment of this condition.
Collapse
Affiliation(s)
- Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Lab of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Liangfeng Mao
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weijin Zhang
- Department of Internal Medicine General Ward, Shantou Central Hospital, Shantou, China
| |
Collapse
|
48
|
Russo S, Kwiatkowski M, Govorukhina N, Bischoff R, Melgert BN. Meta-Inflammation and Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of Metabolites. Front Immunol 2021; 12:746151. [PMID: 34804028 PMCID: PMC8602812 DOI: 10.3389/fimmu.2021.746151] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus type II and obesity are two important causes of death in modern society. They are characterized by low-grade chronic inflammation and metabolic dysfunction (meta-inflammation), which is observed in all tissues involved in energy homeostasis. A substantial body of evidence has established an important role for macrophages in these tissues during the development of diabetes mellitus type II and obesity. Macrophages can activate into specialized subsets by cues from their microenvironment to handle a variety of tasks. Many different subsets have been described and in diabetes/obesity literature two main classifications are widely used that are also defined by differential metabolic reprogramming taking place to fuel their main functions. Classically activated, pro-inflammatory macrophages (often referred to as M1) favor glycolysis, produce lactate instead of metabolizing pyruvate to acetyl-CoA, and have a tricarboxylic acid cycle that is interrupted at two points. Alternatively activated macrophages (often referred to as M2) mainly use beta-oxidation of fatty acids and oxidative phosphorylation to create energy-rich molecules such as ATP and are involved in tissue repair and downregulation of inflammation. Since diabetes type II and obesity are characterized by metabolic alterations at the organism level, these alterations may also induce changes in macrophage metabolism resulting in unique macrophage activation patterns in diabetes and obesity. This review describes the interactions between metabolic reprogramming of macrophages and conditions of metabolic dysfunction like diabetes and obesity. We also focus on different possibilities of measuring a range of metabolites intra-and extracellularly in a precise and comprehensive manner to better identify the subsets of polarized macrophages that are unique to diabetes and obesity. Advantages and disadvantages of the currently most widely used metabolite analysis approaches are highlighted. We further describe how their combined use may serve to provide a comprehensive overview of the metabolic changes that take place intracellularly during macrophage activation in conditions like diabetes and obesity.
Collapse
Affiliation(s)
- Sara Russo
- Department of Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Marcel Kwiatkowski
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
49
|
Diskin C, Zotta A, Corcoran SE, Tyrrell VJ, Zaslona Z, O'Donnell VB, O'Neill LAJ. 4-Octyl-Itaconate and Dimethyl Fumarate Inhibit COX2 Expression and Prostaglandin Production in Macrophages. THE JOURNAL OF IMMUNOLOGY 2021; 207:2561-2569. [PMID: 34635585 PMCID: PMC7613254 DOI: 10.4049/jimmunol.2100488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Prostaglandins (PGs) are important proinflammatory lipid mediators, the significance of which is highlighted by the widespread and efficacious use of non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of inflammation. 4-Octyl itaconate (4-OI), a derivative of the Krebs cycle-derived metabolite itaconate, has recently garnered much interest as an anti-inflammatory agent. Here we show that 4-OI limits PG production in macrophages stimulated with the Toll-like receptor 1/2 (TLR1/2) ligand Pam3CSK4. This decrease in PG secretion is due to a robust suppression of COX2 expression by 4-OI, with both mRNA and protein levels decreased. Dimethyl fumarate (DMF), a fumarate derivative used in the treatment of multiple sclerosis (MS), with properties similar to itaconate, replicated the phenotype observed with 4-OI. We also demonstrate that the decrease in COX2 expression and inhibition of downstream prostaglandin production occurs in an NRF2-independent manner. Our findings provide a new insight into the potential of 4-OI as an anti-inflammatory agent and also identifies a novel anti-inflammatory function of DMF.
Collapse
Affiliation(s)
- Ciana Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Alessia Zotta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Sarah E Corcoran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zbigniew Zaslona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| |
Collapse
|
50
|
The J2-Immortalized Murine Macrophage Cell Line Displays Phenotypical and Metabolic Features of Primary BMDMs in Their M1 and M2 Polarization State. Cancers (Basel) 2021; 13:cancers13215478. [PMID: 34771641 PMCID: PMC8582589 DOI: 10.3390/cancers13215478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Evidence of the role of macrophages in promoting cancer progression has prompted scientists to investigate innate immune cell function in order to identify targetable checkpoint for reverting the protumoral functions of macrophages. Primary cultures isolated from mice necessary to investigate the mechanisms mediating immune cell activation require expensive and time-consuming breeding and housing of mice strains. We obtained an in-house generated immortalized macrophage cell line from BMDMs. In the present study, we characterize this cell line both from a functional and metabolic point of view, comparing the different parameters to those obtained from the primary counterpart. Our results indicate that classically and alternatively immortalized macrophages display similar phenotypical, metabolic and functional features to primary cells polarized in the same way, validating their use for in vitro studies relevant to the understanding and targeting of immune cell functions within tumors. Abstract Macrophages are immune cells that are important for the development of the defensive front line of the innate immune system. Following signal recognition, macrophages undergo activation toward specific functional states, consisting not only in the acquisition of specific features but also of peculiar metabolic programs associated with each function. For these reasons, macrophages are often isolated from mice to perform cellular assays to study the mechanisms mediating immune cell activation. This requires expensive and time-consuming breeding and housing of mice strains. To overcome this issue, we analyzed an in-house J2-generated immortalized macrophage cell line from BMDMs, both from a functional and metabolic point of view. By assaying the intracellular and extracellular metabolism coupled with the phenotypic features of immortalized versus primary BMDMs, we concluded that classically and alternatively immortalized macrophages display similar phenotypical, metabolic and functional features compared to primary cells polarized in the same way. Our study validates the use of this immortalized cell line as a suitable model with which to evaluate in vitro how perturbations can influence the phenotypical and functional features of murine macrophages.
Collapse
|