1
|
Hirayama A, Iwata S, Oike A, Kawabata Y, Nagasato Y, Takai S, Sanematsu K, Takahashi I, Shigemura N. Cellular mechanisms of taste disturbance induced by the non-steroidal anti-inflammatory drug, diclofenac, in mice. Front Cell Neurosci 2023; 17:1279059. [PMID: 38164437 PMCID: PMC10757961 DOI: 10.3389/fncel.2023.1279059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Drug-induced taste disorders are a serious problem in an aging society. This study investigated the mechanisms underlying taste disturbances induced by diclofenac, a non-steroidal anti-inflammatory drug that reduces pain and inflammation by inhibiting the synthesis of prostaglandins by cyclooxygenase enzymes (COX-1 and COX-2). RT-PCR analyses demonstrated the expression of genes encoding arachidonic acid pathway components such as COX-1, COX-2 and prostaglandin synthases in a subset of mouse taste bud cells. Double-staining immunohistochemistry revealed that COX-1 and cytosolic prostaglandin E synthase (cPGES) were co-expressed with taste receptor type-1 member-3 (T1R3), a sweet/umami receptor component, or gustducin, a bitter/sweet/umami-related G protein, in a subset of taste bud cells. Long-term administration of diclofenac reduced the expression of genes encoding COX-1, gustducin and cPGES in mouse taste buds and suppressed both the behavioral and taste nerve responses to sweet and umami taste stimuli but not to other tastants. Furthermore, diclofenac also suppressed the responses of both mouse and human sweet taste receptors (T1R2/T1R3, expressed in HEK293 cells) to sweet taste stimuli. These results suggest that diclofenac may suppress the activation of sweet and umami taste cells acutely via a direct action on T1R2/T1R3 and chronically via inhibition of the COX/prostaglandin synthase pathway inducing down-regulated expression of sweet/umami responsive components. This dual inhibition mechanism may underlie diclofenac-induced taste alterations in humans.
Collapse
Affiliation(s)
- Ayaka Hirayama
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, Fukuoka, Japan
| | - Shusuke Iwata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Asami Oike
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuko Kawabata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nagasato
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Ma K, Tong G, Zhao C, Yin J, Wang Y, Zhang Y. Age-related alterations in the nutritional quality of Arctic grayling (Thymallus arcticus). J Food Sci 2022; 87:5107-5117. [PMID: 36250512 DOI: 10.1111/1750-3841.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/14/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
The biochemical composition of the muscle in Arctic graylings at three age stages was evaluated and compared. For conventional biochemical composition, there was no significant difference in the crude protein content among the three age stages, but the crude fat content in the 1 year old was significantly lower than that of the others (P < 0.05). For amino acids composition, there was no significant difference in the content of essential amino acids and delicious amino acids among the three age stages, but the essential amino acid index of the 2 year old was the highest (72.205), indicating that its essential amino acid composition was more suitable for human needs. For fatty acids composition, the content of monounsaturated fatty acids (2.759 mg/g) and polyunsaturated fatty acids (3.422 mg/g) of the 3 year old was significantly higher than that of the others (P < 0.05), and it also had relatively lowest atherogenicity index (0.419) and thrombogenicity index (0.179) and the highest hypocholesterolemic/hypercholesterolemic fatty acid ratio (2.404), indicating that its fatty acid composition was healthier and more beneficial to the prevention of human cardiovascular and cerebrovascular diseases. For minerals composition, the contents of iron, zinc, and copper increased with age, while the contents of selenium and manganese decreased with age, with the highest selenium content in the 1 year old (1.522 mg/kg). The chromium, arsenic, lead, and cadmium contents were all lower than the Chinese national standard. In conclusion, the nutritional composition of Arctic graylings variated with age and consumers could select suitable Arctic graylings based on their nutritional needs. PRACTICAL APPLICATION: This work analyzed the nutritional components in the muscle of Arctic graylings at different ages, which can provide an effective reference for consumers when purchasing Arctic graylings.
Collapse
Affiliation(s)
- Kai Ma
- Key Open Laboratory of Cold-Water Fish Germplasm Resources and Aquaculture of Heilongjiang Province, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Guangxiang Tong
- Key Open Laboratory of Cold-Water Fish Germplasm Resources and Aquaculture of Heilongjiang Province, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Cheng Zhao
- Key Open Laboratory of Cold-Water Fish Germplasm Resources and Aquaculture of Heilongjiang Province, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Jiasheng Yin
- Key Open Laboratory of Cold-Water Fish Germplasm Resources and Aquaculture of Heilongjiang Province, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Yumei Wang
- Key Open Laboratory of Cold-Water Fish Germplasm Resources and Aquaculture of Heilongjiang Province, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Yongquan Zhang
- Key Open Laboratory of Cold-Water Fish Germplasm Resources and Aquaculture of Heilongjiang Province, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
3
|
Xu P, Hong Y, Chen P, Wang X, Li S, Wang J, Meng F, Zhou Z, Shi D, Li Z, Cao S, Xiao Y. Regulation of the cecal microbiota community and the fatty liver deposition by the addition of brewers’ spent grain to feed of Landes geese. Front Microbiol 2022; 13:970563. [PMID: 36204629 PMCID: PMC9530188 DOI: 10.3389/fmicb.2022.970563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of brewers’ spent grain (BSG) diets on the fatty liver deposition and the cecal microbial community were investigated in a total of 320 healthy 5-day-old Landes geese. These geese were randomly and evenly divided into 4 groups each containing 8 replicates and 10 geese per replicate. These four groups of geese were fed from the rearing stage (days 5–60) to the overfeeding stage (days 61–90). The Landes geese in group C (control) were fed with basal diet (days 5–90); group B fed first with basal diet in the rearing stage and then basal diet + 4% BSG in the overfeeding stage; group F first with basal diet + 4% BSG during the rearing stage and then basal diet in the overfeeding stage; and group W with basal diet + 4% BSG (days 5–90). The results showed that during the rearing stage, the body weight (BW) and the average daily gain (ADG) of Landes geese were significantly increased in groups F and W, while during the overfeeding stage, the liver weights of groups W and B were significantly higher than that of group C. The taxonomic structure of the intestinal microbiota revealed that during the overfeeding period, the relative abundance of Bacteroides in group W was increased compared to group C, while the relative abundances of Escherichia–Shigella and prevotellaceae_Ga6A1_group were decreased. Results of the transcriptomics analysis showed that addition of BSG to Landes geese diets altered the expression of genes involved in PI3K-Akt signaling pathway and sphingolipid metabolism in the liver. Our study provided novel experimental evidence based on the cecal microbiota to support the application of BSG in the regulation of fatty liver deposition by modulating the gut microbiota in Landes geese.
Collapse
Affiliation(s)
- Ping Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuxuan Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Pinpin Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Shijie Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Fancong Meng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Deshi Shi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yuncai Xiao,
| |
Collapse
|
4
|
Islam MS. Molecular Regulations and Functions of the Transient Receptor Potential Channels of the Islets of Langerhans and Insulinoma Cells. Cells 2020; 9:cells9030685. [PMID: 32168890 PMCID: PMC7140661 DOI: 10.3390/cells9030685] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/17/2022] Open
Abstract
Insulin secretion from the β-cells of the islets of Langerhans is triggered mainly by nutrients such as glucose, and incretin hormones such as glucagon-like peptide-1 (GLP-1). The mechanisms of the stimulus-secretion coupling involve the participation of the key enzymes that metabolize the nutrients, and numerous ion channels that mediate the electrical activity. Several members of the transient receptor potential (TRP) channels participate in the processes that mediate the electrical activities and Ca2+ oscillations in these cells. Human β-cells express TRPC1, TRPM2, TRPM3, TRPM4, TRPM7, TRPP1, TRPML1, and TRPML3 channels. Some of these channels have been reported to mediate background depolarizing currents, store-operated Ca2+ entry (SOCE), electrical activity, Ca2+ oscillations, gene transcription, cell-death, and insulin secretion in response to stimulation by glucose and GLP1. Different channels of the TRP family are regulated by one or more of the following mechanisms: activation of G protein-coupled receptors, the filling state of the endoplasmic reticulum Ca2+ store, heat, oxidative stress, or some second messengers. This review briefly compiles our current knowledge about the molecular mechanisms of regulations, and functions of the TRP channels in the β-cells, the α-cells, and some insulinoma cell lines.
Collapse
Affiliation(s)
- Md. Shahidul Islam
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Research Center, 5th floor, SE-118 83 Stockholm, Sweden;
- Department of Emergency Care and Internal Medicine, Uppsala University Hospital, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
5
|
Yan J, Liu P, Xu L, Huan H, Zhou W, Xu X, Shi Z. Effects of exogenous inosine monophosphate on growth performance, flavor compounds, enzyme activity, and gene expression of muscle tissues in chicken. Poult Sci 2018; 97:1229-1237. [PMID: 29361047 DOI: 10.3382/ps/pex415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
The goal of this experiment was to examine effects of diets supplemented with exogenous inosine monophosphate (IMP) on the growth performance, flavor compounds, enzyme activity and gene expression of chicken. A total of 1,500 healthy, 1-day-old male 3-yellow chickens were used for a 52-d experimental period. Individuals were randomly divided into 5 groups (group I, II, III, IV, V) with 6 replicates per group, and fed a basal diet supplemented with 0.0, 0.05, 0.1, 0.2, and 0.3% IMP, respectively. There was no significant response to the increasing dietary IMP level in average daily feed intake (ADFI), average daily gain (ADG), and feed:gain ratio (F/G) (P ≥ 0.05). IMP content of the breast and thigh muscle showed an exponential and linear response to the increasing dietary IMP level (P < 0.05), the highest IMP content was obtained when the diet with 0.3% and 0.2% exogenous IMP was fed. There were significant effects of IMP level in diet on free amino acids (FAA) (exponential, linear and quadratic effect, P < 0.05) and delicious amino acids (DAA) (quadratic effect, P < 0.01) content in breast muscle. FAA and DAA content in thigh muscle showed an exponential and linear response (P < 0.05), and quadratic response (P < 0.01) to the increasing dietary IMP level, the highest FAA and DAA content was obtained when the diet with 0.2% exogenous IMP was fed. Dietary IMP supplementation had a quadratic effect on 5΄-NT and the alkaline phosphatase (ALP) enzyme activity in the breast muscle (P < 0.05), and the adenosine triphosphate (ATP) enzyme activity in the thigh muscles increased exponentially and linearly with increasing IMP level in diet (exponential effect, P = 0.061; linear effect, P = 0.059). Cyclohydrolase (ATIC) gene expression in thigh muscle had a quadratic response to the increasing dietary IMP level (P < 0.05), 0.2% exogenous IMP group had the highest (AMPD1) gene expression of the breast muscle and ATIC gene expression of the thigh muscle. These results indicate that dietary IMP did not affect the growth performance of chicken, the diet with 0.2 to 0.3% exogenous IMP is optimal to improve the meat flavor quality in chicken.
Collapse
Affiliation(s)
- Junshu Yan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanging, 210014 China
| | - Peifeng Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030 China
| | - Liangmei Xu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030 China
| | - Hailin Huan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanging, 210014 China
| | - Weiren Zhou
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanging, 210014 China
| | - Xiaoming Xu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanging, 210014 China
| | - Zhendan Shi
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanging, 210014 China
| |
Collapse
|
6
|
Banerjee A, McKinley ET, von Moltke J, Coffey RJ, Lau KS. Interpreting heterogeneity in intestinal tuft cell structure and function. J Clin Invest 2018; 128:1711-1719. [PMID: 29714721 DOI: 10.1172/jci120330] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.
Collapse
Affiliation(s)
- Amrita Banerjee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Association Between Arachidonic Acid and Chicken Meat and Egg Flavor, and Their Genetic Regulation. J Poult Sci 2018; 55:163-171. [PMID: 32055170 PMCID: PMC6756496 DOI: 10.2141/jpsa.0170123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/01/2017] [Indexed: 02/03/2023] Open
Abstract
In Japan, the majority of chicken meat is obtained from fast-growing broiler chickens. Because most Japanese chicken breeds have a low meat yield and egg production, many of these breeds are endangered. Recently, the palatability of meat and eggs of native chickens has been reevaluated in the Japanese market. Jidori, which means chicken from the local, is an indigenous local chicken that is more delicious, firmer in texture, and more expensive than the broiler chickens. Most Japanese consumers recognize that the meat of Jidori chicken is richer in flavor than that of the broiler chicken. However, the reason for this rich flavor of the meat of Jidori chicken has not been elucidated. Recently, we found that arachidonic acid (AA) (C20:4n-6), a polyunsaturated fatty acid, is associated with the rich flavor of the meat and eggs of Jidori chicken. The present paper summarizes the discovery of the involvement of AA in the flavor characteristic of the meat and eggs of chicken, and also the genetic regulation of the AA content in the meat and eggs of Jidori chicken.
Collapse
|
8
|
Vennekens R, Mesuere M, Philippaert K. TRPM5 in the battle against diabetes and obesity. Acta Physiol (Oxf) 2018; 222. [PMID: 28834354 DOI: 10.1111/apha.12949] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022]
Abstract
TRPM5 is a non-selective monovalent cation channel activated by increases in intracellular Ca2+ . It has a distinct expression pattern: expression is detected in chemosensitive tissues from solitary chemosensory cells to the taste receptor cells and in pancreatic β-cells. The role of TRPM5 has been investigated with the use of knockout mouse models. Trpm5-/- mice have a lack of type II taste perception and show reduced glucose-induced insulin secretion. Expression levels of TRPM5 are reduced in obese, leptin-signalling-deficient mice, and mutations in TRPM5 have been associated with type II diabetes and metabolic syndrome. In this review, we aim to give an overview of the activation, selectivity, modulation and physiological roles of TRPM5.
Collapse
Affiliation(s)
- R. Vennekens
- VIB Center for Brain & Disease Research; Leuven Belgium
- Laboratory of Ion Channel Research; TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine; KU Leuven, Leuven Belgium
| | - M. Mesuere
- VIB Center for Brain & Disease Research; Leuven Belgium
- Laboratory of Ion Channel Research; TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine; KU Leuven, Leuven Belgium
| | - K. Philippaert
- VIB Center for Brain & Disease Research; Leuven Belgium
- Laboratory of Ion Channel Research; TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine; KU Leuven, Leuven Belgium
| |
Collapse
|
9
|
Gangadharan A, Choi SE, Hassan A, Ayoub NM, Durante G, Balwani S, Kim YH, Pecora A, Goy A, Suh KS. Protein calorie malnutrition, nutritional intervention and personalized cancer care. Oncotarget 2017; 8:24009-24030. [PMID: 28177923 PMCID: PMC5410360 DOI: 10.18632/oncotarget.15103] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/23/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer patients often experience weight loss caused by protein calorie malnutrition (PCM) during the course of the disease or treatment. PCM is expressed as severe if the patient has two or more of the following characteristics: obvious significant muscle wasting, loss of subcutaneous fat; nutritional intake of <50% of recommended intake for 2 weeks or more; bedridden or otherwise significantly reduced functional capacity; weight loss of >2% in 1 week, 5% in 1 month, or 7.5% in 3 months. Cancer anorexia-cachexia syndrome (CACS) is a multifactorial condition of advanced PCM associated with underlying illness (in this case cancer) and is characterized by loss of muscle with or without loss of fat mass. Cachexia is defined as weight loss of more than 5% of body weight in 12 months or less in the presence of chronic disease. Hence with a chronic illness on board even a small amount of weight loss can open the door to cachexia. These nutritional challenges can lead to severe morbidity and mortality in cancer patients. In the clinic, the application of personalized medicine and the ability to withstand the toxic effects of anti-cancer therapies can be optimized when the patient is in nutritional homeostasis and is free of anorexia and cachexia. Routine assessment of nutritional status and appropriate intervention are essential components of the effort to alleviate effects of malnutrition on quality of life and survival of patients.
Collapse
Affiliation(s)
- Anju Gangadharan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Sung Eun Choi
- Department of Family, Nutrition, and Exercise Sciences, Queens College, The City University of New York, Flushing, NY, USA
| | - Ahmed Hassan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Gina Durante
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Sakshi Balwani
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Young Hee Kim
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Andrew Pecora
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Andre Goy
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| |
Collapse
|
10
|
Maeda T, Suzuki A, Koga K, Miyamoto C, Maehata Y, Ozawa S, Hata RI, Nagashima Y, Nabeshima K, Miyazaki K, Kato Y. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells. Oncotarget 2017; 8:78312-78326. [PMID: 29108231 PMCID: PMC5667964 DOI: 10.18632/oncotarget.20826] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/27/2017] [Indexed: 01/13/2023] Open
Abstract
Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca2+-dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.
Collapse
Affiliation(s)
- Toyonobu Maeda
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan
| | - Atsuko Suzuki
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan
| | - Kaori Koga
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka 814-0180, Japan
| | - Chihiro Miyamoto
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
| | - Yojiro Maehata
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
| | - Shigeyuki Ozawa
- Department of Dentomaxillofacial Diagnosis and Treatment, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
| | - Ryu-Ichiro Hata
- Department of Dentomaxillofacial Diagnosis and Treatment, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
- Oral Health Science Research Center, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women’s Medical University Hospital, Tokyo 162-8666, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka 814-0180, Japan
| | - Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan
| |
Collapse
|
11
|
Lindström JB, Pierce NT, Latz MI. Role of TRP Channels in Dinoflagellate Mechanotransduction. THE BIOLOGICAL BULLETIN 2017; 233:151-167. [PMID: 29373067 DOI: 10.1086/695421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd3+), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.
Collapse
Key Words
- AA, amino acids
- AMTB hydrochloride, N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide hydrochloride
- Ce, Caenorhabditis elegans
- Cr, Chlamydomonas reinhardtii
- DMSO, dimethyl sulfoxide
- Dm, Drosophila melanogaster
- Dr, Danio rerio
- FSW, filtered seawater
- Gd3+, gadolinium
- GsMTx4, Grammostola spatulata mechanotoxin 4
- HC067047, 2-Methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
- HMM, Hidden Markov Model
- Hs, Homo sapiens
- Lp, Lingulodinium polyedra
- ML204, 4-Methyl-2-(1-piperidinyl)-quinoline
- Mb, Monosiga brevicollis
- ORF, open reading frame
- PIP2, Phosphatidylinositol 4,5-bisphosphate
- PLC, phospholipase C
- Pt, Paramecium tetraurelia
- RHC80267, O,O′-[1,6-Hexanediylbis(iminocarbonyl)]dioxime cyclohexanone
- RN1734, 2,4-Dichloro-N-isopropyl-N-(2-isopropylaminoethyl)benzenesulfonamide
- RN1747, 1-(4-Chloro-2-nitrophenyl)sulfonyl-4-benzylpiperazine
- TMHMM, transmembrane helix prediction
- TRP, transient receptor potential channel
- U73122, 1-[6-[((17β)-3-Methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione
Collapse
|
12
|
Elinder F, Liin SI. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Front Physiol 2017; 8:43. [PMID: 28220076 PMCID: PMC5292575 DOI: 10.3389/fphys.2017.00043] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/16/2017] [Indexed: 01/29/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.
Collapse
Affiliation(s)
- Fredrik Elinder
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| | - Sara I Liin
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| |
Collapse
|
13
|
Vasconcelos LHC, Souza ILL, Pinheiro LS, Silva BA. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets. Front Pharmacol 2016; 7:58. [PMID: 27065858 PMCID: PMC4811910 DOI: 10.3389/fphar.2016.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/29/2016] [Indexed: 01/29/2023] Open
Abstract
Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.
Collapse
Affiliation(s)
- Luiz H C Vasconcelos
- Laboratório de Farmacologia Funcional Prof. George Thomas, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Iara L L Souza
- Laboratório de Farmacologia Funcional Prof. George Thomas, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Lílian S Pinheiro
- Laboratório de Farmacologia Funcional Prof. George Thomas, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Bagnólia A Silva
- Laboratório de Farmacologia Funcional Prof. George Thomas, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoão Pessoa, Brazil; Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoão Pessoa, Brazil
| |
Collapse
|
14
|
Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA. Functional and physiopathological implications of TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1772-82. [DOI: 10.1016/j.bbamcr.2015.04.016] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
15
|
Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 308:H157-82. [PMID: 25416190 PMCID: PMC4312948 DOI: 10.1152/ajpheart.00457.2014] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jia Xie
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jonathan Stock
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jianyang Du
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
16
|
Abstract
TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL, 33136, USA,
| |
Collapse
|
17
|
Takahashi H, Rikimaru K, Kiyohara R, Yamaguchi S. Effect of Arachidonic Acid-enriched Oil Diet Supplementation on the Taste of Broiler Meat. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:845-51. [PMID: 25049636 PMCID: PMC4093101 DOI: 10.5713/ajas.2011.11517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/21/2012] [Accepted: 02/07/2012] [Indexed: 11/27/2022]
Abstract
To elucidate the relationship between the arachidonic acid (AA) content and the taste of broiler meat, the effects of AA-enriched oil (AAO) supplements on the fatty acid content and sensory perceptions of thigh meat were evaluated. Four types of oil, including corn oil (CO), a 1:1 mixture of AAO and palm oil (PO) (1/2 AAO), a 1:3 mixture of AAO and PO (1/4 AAO), and a 1:7 mixture of AAO and PO (1/8 AAO) were prepared. Each type of oil was mixed with silicate at a ratio of 7:3, and added to the diet at a final proportion of 5% of fresh matter. Broiler chickens were fed these diets for 1 wk before slaughter. In thigh meat, the AA content of the 1/2 and 1/4 AAO groups was significantly higher than that of the CO group. The AA content in thigh meat (y, mg/g) increased linearly with increasing dietary AAO content (x, g/100 g of diet), according to the equation y = 0.5674+0.4596× (r2 = 0.8454). The content of other fatty acids was not significantly different among the 4 diet groups. Sensory evaluation showed that the flavor intensity, umami (L-glutamate taste), kokumi (continuity, mouthfulness, and thickness), and aftertaste of the 1/2 and 1/4 AAO groups were significantly higher than that of the CO group. There were significant positive correlations between AA content in thigh meat and the flavor intensity, total taste intensity, umami, and aftertaste. These data suggest that the taste of broiler meat can be improved by the amount of dietary AA supplementation.
Collapse
Affiliation(s)
- H Takahashi
- Livestock Experiment Station, Akita Prefectural Agriculture Forestry and Fisheries Research Center, Daisen 019-1701, Japan
| | - K Rikimaru
- Livestock Experiment Station, Akita Prefectural Agriculture Forestry and Fisheries Research Center, Daisen 019-1701, Japan
| | - R Kiyohara
- Oils and Fats Fundamental Technology Laboratory, J-Oil Mills, Inc., Yokohama 230-0053, Japan
| | - S Yamaguchi
- Oils and Fats Fundamental Technology Laboratory, J-Oil Mills, Inc., Yokohama 230-0053, Japan
| |
Collapse
|
18
|
Cell mechanisms of gustatory lipids perception and modulation of the dietary fat preference. Biochimie 2014; 107 Pt A:11-4. [PMID: 24997404 DOI: 10.1016/j.biochi.2014.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
Dietary lipids are usually responsible of several metabolic disorders. Recent compelling evidences suggest that there is a sixth taste modality, destined for the detection of oro-gustatory fats. The lipid-binding glycoprotein CD36, expressed by circumvallate papillae (CVP) of the mouse tongue, has been shown to be implicated in oro-gustatory perception of dietary lipids. We demonstrate that linoleic acid (LA) by activating sPLA2, cPLA2 and iPLA2 via CD36, produced arachidonic acid (AA) and lyso-phosphatidylcholine (Lyso-PC) which triggered Ca(2+) influx in CD36-positive taste bud cells (TBC), purified from mouse CVP. LA induced the production of Ca(2+) influx factor (CIF). CIF, AA and Lyso-PC exerted different actions on the opening of store-operated Ca2+ (SOC) channels, constituted of Orai proteins and regulated by STIM1, a sensor of Ca(2+) depletion in the endoplasmic reticulum. We observed that CIF and Lyso-PC opened Orai1 channels whereas AA-opened Ca(2+) channels were composed of Orai1/Orai3. STIM1 was found to regulate LA-induced CIF production and opening of both kinds of Ca(2+) channels. Furthermore, Stim1(-/-) mice lost the spontaneous preference for fat, observed in wild-type animals. Our results suggest that fatty acid-induced Ca(2+) signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat. Other cell types are involved in, and external factors can influence this preference.
Collapse
|
19
|
Nilius B, Szallasi A. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014; 66:676-814. [DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Gees M, Alpizar YA, Luyten T, Parys JB, Nilius B, Bultynck G, Voets T, Talavera K. Differential Effects of Bitter Compounds on the Taste Transduction Channels TRPM5 and IP3 Receptor Type 3. Chem Senses 2014; 39:295-311. [DOI: 10.1093/chemse/bjt115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
21
|
Abstract
TRPM5 is a Ca(2+)-activated cation channel that mediates signaling in taste and other chemosensory cells. Within taste cells, TRPM5 is the final element in a signaling cascade that starts with the activation of G protein-coupled receptors by bitter, sweet, or umami taste molecules and that requires the enzyme PLCβ2. PLCβ2 breaks down PIP2 into DAG and IP3, and the ensuing release of Ca(2+) from intracellular stores activates TRPM5. Since its initial discovery in the taste system, TRPM5 has been found to be distributed in sparse chemosensory cells located throughout the digestive track, in the respiratory system, and in the olfactory system. It is also found in pancreatic islets, where it contributes to insulin secretion. This review highlights recent work on the mechanisms of the activation of the TRPM5 channel and its regulation by voltage, phosphoinositides, temperature, and pH. The distribution of the channel in the body and its functional contribution to various sensory and nonsensory processes are discussed.
Collapse
Affiliation(s)
- Emily R Liman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, 3641 Watt Way, Los Angeles, CA, 90089, USA,
| |
Collapse
|
22
|
Gilbertson TA, Khan NA. Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges. Prog Lipid Res 2013; 53:82-92. [PMID: 24269201 DOI: 10.1016/j.plipres.2013.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023]
Abstract
CD36 and two G-protein coupled receptors (GPCR), i.e., GPR120 and GPR40, have been implicated in the gustatory perception of dietary fats in rodents. These glycoproteins are coupled to increases in free intracellular Ca²⁺ concentrations, [Ca²⁺](i), during their activation by dietary long-chain fatty acids (LCFA). The transient receptor potential type M5 (TRPM5) channel, activated by [Ca²⁺](i), participates in downstream signaling in taste bud cells (TBC). The mice, knocked-out for expression of CD36, GPR120, GPR40 or TRPM5 have a reduced spontaneous preference for fat. The delayed rectifying K⁺ (DRK) channels believed to lie downstream of these receptors are also important players in fat taste transduction. The trigeminal neurons by triggering increases in [Ca²⁺](i) may influence the taste signal to afferent nerve fibers. Why are there so many taste receptor candidates for one taste modality? We discuss the recent advances on the role of CD36, GPR120, GPR40, TRPM5 and DRK channels, in signal transduction in TBC. We shed light on their cross-talk and delineate their roles in obesity as a better understanding of the molecular mechanisms behind their regulation could eventually lead to new strategies to fight against this condition.
Collapse
Affiliation(s)
- Timothy A Gilbertson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Naim A Khan
- INSERM U866, Université de Bourgogne/AgroSup, Dijon 2100, France.
| |
Collapse
|
23
|
Guo YC, Chang CM, Hsu WL, Chiu SJ, Tsai YT, Chou YH, Hou MF, Wang JY, Lee MH, Tsai KL, Chang WC. Indomethacin inhibits cancer cell migration via attenuation of cellular calcium mobilization. Molecules 2013; 18:6584-96. [PMID: 23736792 PMCID: PMC6269835 DOI: 10.3390/molecules18066584] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 12/27/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) were shown to reduce the risk of colorectal cancer recurrence and are widely used to modulate inflammatory responses. Indomethacin is an NSAID. Herein, we reported that indomethacin can suppress cancer cell migration through its influence on the focal complexes formation. Furthermore, endothelial growth factor (EGF)-mediated Ca2+ influx was attenuated by indomethacin in a dose dependent manner. Our results identified a new mechanism of action for indomethacin: inhibition of calcium influx that is a key determinant of cancer cell migration.
Collapse
Affiliation(s)
- Yuh-Cherng Guo
- Department of Neurology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Che-Mai Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Li Hsu
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Siou-Jin Chiu
- Department of Urology, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yao-Ting Tsai
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yii-Her Chou
- Department of Urology, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterologic and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jaw-Yan Wang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterologic and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ke-Li Tsai
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Authors to whom correspondence should be addressed; E-Mail: (W.-C.C.); (K.-L.T.); Tel.: +886-2-2736-1661 (ext. 6187) (W.-C.C.); +886-7-312-1101 (ext. 2244) (K.-L.T.)
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pharmacy, Taipei Medical University-Wanfang Hospital, Taipei 11031, Taiwan
- Authors to whom correspondence should be addressed; E-Mail: (W.-C.C.); (K.-L.T.); Tel.: +886-2-2736-1661 (ext. 6187) (W.-C.C.); +886-7-312-1101 (ext. 2244) (K.-L.T.)
| |
Collapse
|
24
|
Sathyanesan A, Feijoo AA, Mehta ST, Nimarko AF, Lin W. Expression profile of G-protein βγ subunit gene transcripts in the mouse olfactory sensory epithelia. Front Cell Neurosci 2013; 7:84. [PMID: 23759900 PMCID: PMC3671183 DOI: 10.3389/fncel.2013.00084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/16/2013] [Indexed: 11/24/2022] Open
Abstract
Heterotrimeric G-proteins mediate a variety of cellular functions, including signal transduction in sensory neurons of the olfactory system. Whereas the Gα subunits in these neurons are well characterized, the gene transcript expression profile of Gβγ subunits is largely missing. Here we report our comprehensive expression analysis to identify Gβ and Gγ subunit gene transcripts in the mouse main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Our reverse transcriptase PCR (RT-PCR) and realtime qPCR analyses of all known Gβ (β1,2,3,4,5) and Gγ (γ1,2,2t,3,4,5,7,8,10,11,12,13) subunits indicate presence of multiple Gβ and Gγ subunit gene transcripts in the MOE and the VNO at various expression levels. These results are supported by our RNA in situ hybridization (RISH) experiments, which reveal the expression patterns of two Gβ subunits and four Gγ subunits in the MOE as well as one Gβ and four Gγ subunits in the VNO. Using double-probe fluorescence RISH and line intensity scan analysis of the RISH signals of two dominant Gβγ subunits, we show that Gγ13 is expressed in mature olfactory sensory neurons (OSNs), while Gβ1 is present in both mature and immature OSNs. Interestingly, we also found Gβ1 to be the dominant Gβ subunit in the VNO and present throughout the sensory epithelium. In contrast, we found diverse expression of Gγ subunit gene transcripts with Gγ2, Gγ3, and Gγ13 in the Gαi2-expressing neuronal population, while Gγ8 is expressed in both layers. Further, we determined the expression of these Gβγ gene transcripts in three post-natal developmental stages (p0, 7, and 14) and found their cell-type specific expression remains largely unchanged, except the transient expression of Gγ2 in a single basal layer of cells in the MOE during P7 and P14. Taken together, our comprehensive expression analyses reveal cell-type specific gene expression of multiple Gβ and Gγ in sensory neurons of the olfactory system.
Collapse
Affiliation(s)
- Aaron Sathyanesan
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore MD, USA
| | | | | | | | | |
Collapse
|
25
|
The Ca2+-Activated Monovalent Cation-Selective Channels TRPM4 and TRPM5. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2012. [DOI: 10.1007/978-1-62703-077-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Fougeron AS, Farine JP, Flaven-Pouchon J, Everaerts C, Ferveur JF. Fatty-acid preference changes during development in Drosophila melanogaster. PLoS One 2011; 6:e26899. [PMID: 22046401 PMCID: PMC3203165 DOI: 10.1371/journal.pone.0026899] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022] Open
Abstract
Fatty-acids (FAs) are required in the diet of many animals throughout their life. However, the mechanisms involved in the perception of and preferences for dietary saturated and unsaturated FAs (SFAs and UFAs, respectively) remain poorly explored, especially in insects. Using the model species Drosophila melanogaster, we measured the responses of wild-type larvae and adults to pure SFAs (14, 16, and 18 carbons) and UFAs (C18 with 1, 2, or 3 double-bonds). Individual and group behavioral tests revealed different preferences in larvae and adults. Larvae preferred UFAs whereas SFAs tended to induce both a strong aversion and a persistent aggregation behavior. Adults generally preferred SFAs, and laid more eggs and had a longer life span when ingesting these substances as compared to UFAs. Our data suggest that insects can discriminate long-chain dietary FAs. The developmental change in preference shown by this species might reflect functional variation in use of FAs or stage-specific nutritional requirements, and may be fundamental for insect use of these major dietary components.
Collapse
Affiliation(s)
- Anne-Sophie Fougeron
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|
27
|
Kiyohara R, Yamaguchi S, Rikimaru K, Takahashi H. Supplemental arachidonic acid-enriched oil improves the taste of thigh meat of Hinai-jidori chickens. Poult Sci 2011; 90:1817-22. [DOI: 10.3382/ps.2010-01323] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
28
|
Kukkonen JP. A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium 2011; 50:9-26. [DOI: 10.1016/j.ceca.2011.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
|
29
|
Brisbois TD, de Kock IH, Watanabe SM, Mirhosseini M, Lamoureux DC, Chasen M, MacDonald N, Baracos VE, Wismer WV. Delta-9-tetrahydrocannabinol may palliate altered chemosensory perception in cancer patients: results of a randomized, double-blind, placebo-controlled pilot trial. Ann Oncol 2011; 22:2086-2093. [PMID: 21343383 DOI: 10.1093/annonc/mdq727] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A pilot study (NCT00316563) to determine if delta-9-tetrahydrocannabinol (THC) can improve taste and smell (chemosensory) perception as well as appetite, caloric intake, and quality of life (QOL) for cancer patients with chemosensory alterations. PATIENTS AND METHODS Adult advanced cancer patients, with poor appetite and chemosensory alterations, were recruited from two sites and randomized in a double-blinded manner to receive either THC (2.5 mg, Marinol(®); Solvay Pharma Inc., n = 24) or placebo oral capsules (n = 22) twice daily for 18 days. Twenty-one patients completed the trial. At baseline and posttreatment, patients completed a panel of patient-reported outcomes: Taste and Smell Survey, 3-day food record, appetite and macronutrient preference assessments, QOL questionnaire, and an interview. RESULTS THC and placebo groups were comparable at baseline. Compared with placebo, THC-treated patients reported improved (P = 0.026) and enhanced (P < 0.001) chemosensory perception and food 'tasted better' (P = 0.04). Premeal appetite (P = 0.05) and proportion of calories consumed as protein increased compared with placebo (P = 0.008). THC-treated patients reported increased quality of sleep (P = 0.025) and relaxation (P = 0.045). QOL scores and total caloric intake were improved in both THC and placebo groups. CONCLUSIONS THC may be useful in the palliation of chemosensory alterations and to improve food enjoyment for cancer patients.
Collapse
Affiliation(s)
- T D Brisbois
- Department of Agricultural, Food & Nutritional Science
| | - I H de Kock
- Division of Palliative Care Medicine, Department of Oncology, University of Alberta, Edmonton
| | - S M Watanabe
- Division of Palliative Care Medicine, Department of Oncology, University of Alberta, Edmonton
| | - M Mirhosseini
- Division of Palliative Care Medicine, Department of Oncology, University of Alberta, Edmonton
| | - D C Lamoureux
- Division of Palliative Care Medicine, Department of Oncology, University of Alberta, Edmonton
| | - M Chasen
- Division of Palliative Care Medicine, Department of Oncology, University of Ottawa, Ottawa
| | - N MacDonald
- Cancer Nutrition and Rehabilitation Program, Department of Oncology, McGill University, Montreal, Canada
| | - V E Baracos
- Division of Palliative Care Medicine, Department of Oncology, University of Alberta, Edmonton
| | - W V Wismer
- Department of Agricultural, Food & Nutritional Science.
| |
Collapse
|
30
|
|
31
|
Medler KF. Multiple Roles for TRPs in the Taste System: Not Your Typical TRPs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:831-46. [DOI: 10.1007/978-94-007-0265-3_43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Nishiura H, Tokita K, Li Y, Harada K, Woodruff TM, Taylor SM, Nsiama TK, Nishino N, Yamamoto T. The role of the ribosomal protein S19 C-terminus in Gi protein-dependent alternative activation of p38 MAP kinase via the C5a receptor in HMC-1 cells. Apoptosis 2010; 15:966-81. [DOI: 10.1007/s10495-010-0511-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Deng PY, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, Watt J, Geiger JD, Liu R, Porter JE, Lei S. GABA(B) receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron 2009; 63:230-43. [PMID: 19640481 DOI: 10.1016/j.neuron.2009.06.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/23/2009] [Accepted: 06/29/2009] [Indexed: 11/25/2022]
Abstract
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus and thus is essential for learning and memory. Whereas the EC expresses a high density of GABA(B) receptors, the functions of these receptors in this region remain unexplored. Here, we examined the effects of GABA(B) receptor activation on neuronal excitability in the EC and spatial learning. Application of baclofen, a specific GABA(B) receptor agonist, inhibited significantly neuronal excitability in the EC. GABA(B) receptor-mediated inhibition in the EC was mediated via activating TREK-2, a type of two-pore domain K(+) channels, and required the functions of inhibitory G proteins and protein kinase A pathway. Depression of neuronal excitability in the EC underlies GABA(B) receptor-mediated inhibition of spatial learning as assessed by Morris water maze. Our study indicates that GABA(B) receptors exert a tight control over spatial learning by modulating neuronal excitability in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gilbertson T, Yu T, Shah B. Gustatory Mechanisms for Fat Detection. Front Neurosci 2009. [DOI: 10.1201/9781420067767-c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Gilyarov DA, Sakharova TA, Buzdin AA. Molecular receptors of taste agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009. [DOI: 10.1134/s1068162009010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Bitekhtina MA, Vekshin NL. [7-aminoactinomycin as a fluorescent probe for DNA unwinding and denaturation]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:781-5. [PMID: 19088751 DOI: 10.1134/s1068162008060083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A fluorescent analogue of the antibiotic actinomycin D, 7-aminoactinomycin D (7AAMD), which is widely used in molecular biology, was shown by steady-state, polarization, and phase fluorescent spectroscopy to bind primarily in unwound regions of DNA with a concomitant increase in its emission intensity. The maximum emission intensity of 7AAMD is observed for denatured DNA. Thus, 7AAMD may serve as a good indicator of DNA unwinding, denaturation, and fragmentation.
Collapse
Affiliation(s)
- M A Bitekhtina
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290 Russia
| | | |
Collapse
|
37
|
Bezençon C, Fürholz A, Raymond F, Mansourian R, Métairon S, Le Coutre J, Damak S. Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol 2008; 509:514-25. [DOI: 10.1002/cne.21768] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Abstract
Arachidonic acid (AA), a polyunsaturated fatty acid with four double bonds, has multiple actions on living cells. Many of these effects are mediated by an action of AA or its metabolites on ion channels. During the last 10 years, new types of ion channels, transient receptor potential (TRP) channels, store-operated calcium entry (SOCE) channels and non-SOCE channels have been studied. This review summarizes our current knowledge about the effects of AA on TRP and non-SOCE channels as well as classical ion channels. It aims to distinguish between effects of AA itself and effects of AA metabolites. Lipid mediators are of clinical interest because some of them (for example, leukotrienes) play a role in various diseases, others (such as prostaglandins) are targets for pharmacological therapeutic intervention.
Collapse
|
39
|
Ito K, Sugawara T, Shiroishi M, Tokuda N, Kurokawa A, Misaka T, Makyio H, Yurugi-Kobayashi T, Shimamura T, Nomura N, Murata T, Abe K, Iwata S, Kobayashi T. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2008; 371:841-5. [PMID: 18474222 DOI: 10.1016/j.bbrc.2008.04.182] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 11/20/2022]
Abstract
Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination.
Collapse
Affiliation(s)
- Keisuke Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Meng F, To WKL, Gu Y. Inhibition effect of arachidonic acid on hypoxia-induced [Ca(2+)](i) elevation in PC12 cells and human pulmonary artery smooth muscle cells. Respir Physiol Neurobiol 2008; 162:18-23. [PMID: 18455484 DOI: 10.1016/j.resp.2008.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/13/2008] [Accepted: 03/17/2008] [Indexed: 11/29/2022]
Abstract
[Ca(2+)](i) elevation is a key event when O(2) sensitive cells, e.g. PC12 cells and pulmonary artery smooth muscle cells, face hypoxia. Ca(2+) entry pathways in mediating hypoxia-induced [Ca(2+)](i) elevation include: voltage-gated Ca(2+) channels (VGCCs), transient receptor potential (TRP) channel and Na(+)-Ca(2+) ex-changer (NCX). In the pulmonary artery, accumulated evidence strongly suggests that prostaglandins (PGs) are involved in pulmonary inflammation and cause vasoconstriction during hypoxia. In this study, we investigated the effect of arachidonic acid (AA), the upstream substrate for PGs, on hypoxia response in O(2) sensitive cells. Exogenous application of AA significantly inhibited hypoxia-induced [Ca(2+)](i) elevation. This effect was due to AA itself rather than its degenerative products. The pharmacological modulation of endogenous AA showed that the prevention of AA generation by blockage of cPLA2, diacylglycerol (DAG) lipase and fatty acid hydrolysis (FAAH), augments hypoxia-induced [Ca(2+)](i) elevation, whereas prevention of AA degeneration attenuates hypoxia-induced [Ca(2+)](i) elevation. Over-expression of COX2 enhances hypoxia-induced [Ca(2+)](i) elevation and this enhancement is reversed by exogenous AA. Our results suggest that AA inhibits hypoxia response. The dynamic alterations in cellular lipids might determine cell response to hypoxia.
Collapse
Affiliation(s)
- Fei Meng
- Department of Physiology, The Medical School, University of Birmingham, Vincent Drive, Birmingham, UK
| | | | | |
Collapse
|
41
|
Merigo F, Benati D, Galie M, Crescimanno C, Osculati F, Sbarbati A. Immunohistochemical Localization of Cystic Fibrosis Transmembrane Regulator and Clara Cell Secretory Protein in Taste Receptor Cells of Rat Circumvallate Papillae. Chem Senses 2007; 33:231-41. [DOI: 10.1093/chemse/bjm082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
42
|
Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y, Nilius B. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 2007; 22:1343-55. [PMID: 18070821 DOI: 10.1096/fj.07-9591com] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ordinary gustatory experiences, which are usually evoked by taste mixtures, are determined by multiple interactions between different taste stimuli. The most studied model for these gustatory interactions is the suppression of the responses to sweeteners by the prototype bitter compound quinine. Here we report that TRPM5, a cation channel involved in sweet taste transduction, is inhibited by quinine (EC(50)=50 microM at -50 mV) owing to a decrease in the maximal whole-cell TRPM5 conductance and an acceleration of channel closure. Notably, quinine inhibits the gustatory responses of sweet-sensitive gustatory nerves in wild-type (EC(50)= approximately 1.6 mM) but not in Trpm5 knockout mice. Quinine induces a dose- and time-dependent inhibition of TRPM5-dependent responses of single sweet-sensitive fibers to sucrose, according to the restricted diffusion of the drug into the taste tissue. Quinidine, the stereoisomer of quinine, has similar effects on TRPM5 currents and on sweet-induced gustatory responses. In contrast, the chemically unrelated bitter compound denatonium benzoate has an approximately 100-fold weaker effect on TRPM5 currents and, accordingly, at 10 mM it does not alter gustatory responses to sucrose. The inhibition of TRPM5 by bitter compounds constitutes the molecular basis of a novel mechanism of taste interactions, whereby the bitter tastant inhibits directly the sweet transduction pathway.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Dept. of Molecular Cell Biology, Herestraat 49, Campus Gasthuisberg, O&N1, KU Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Czesnik D, Schild D, Kuduz J, Manzini I. Cannabinoid action in the olfactory epithelium. Proc Natl Acad Sci U S A 2007; 104:2967-72. [PMID: 17301239 PMCID: PMC1815290 DOI: 10.1073/pnas.0609067104] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Indexed: 11/18/2022] Open
Abstract
The perception of odors is influenced by a variety of neuromodulators, and there is growing evidence that modulation already takes place in the olfactory epithelium. Here we report on cannabinergic actions in the olfactory epithelium of Xenopus laevis tadpoles. First we show that CB1 receptor-specific antagonists AM251, AM281, and LY320135 modulate odor-evoked calcium changes in olfactory receptor neurons. Second, we localize CB1-like immunoreactivity on dendrites of olfactory receptor neurons. Finally, we describe the cannabinergic influence on odor-induced spike-associated currents in individual olfactory receptor neurons. Here we demonstrate that the cannabinergic system has a profound impact on peripheral odor processing and discuss its possible function.
Collapse
Affiliation(s)
- Dirk Czesnik
- Department of Neurophysiology and Cellular Biophysics and Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | | | | | | |
Collapse
|