1
|
Fan J, Hu J. Retinol binding protein 4 and type 2 diabetes: from insulin resistance to pancreatic β-cell function. Endocrine 2024; 85:1020-1034. [PMID: 38520616 DOI: 10.1007/s12020-024-03777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND AIM Retinol binding protein 4 (RBP4) is an adipokine that has been explored as a key biomarker of type 2 diabetes mellitus (T2DM) in recent years. Researchers have conducted a series of experiments to understand the interplay between RBP4 and T2DM, including its role in insulin resistance and pancreatic β-cell function. The results of these studies indicate that RBP4 has a significant influence on T2DM and is considered a potential biomarker of T2DM. However, there have also been some controversies about the relationship between RBP4 levels and T2DM. In this review, we update and summarize recent studies focused on the relationship between RBP4 and T2DM and its role in insulin resistance and pancreatic β-cell function to clarify the existing controversy and provide evidence for future studies. We also assessed the potential therapeutic applications of RBP4 in treating T2DM. METHODS A narrative review. RESULTS Overall, there were significant associations between RBP4 levels, insulin resistance, pancreatic β-cell function, and T2DM. CONCLUSIONS More mechanistic studies are needed to determine the role of RBP4 in the onset of T2DM, especially in terms of pancreatic β-cell function. In addition, further studies are required to evaluate the effects of drug intervention, lifestyle intervention, and bariatric surgery on RBP4 levels to control T2DM and the role of reducing RBP4 levels in improving insulin sensitivity and pancreatic β-cell function.
Collapse
Affiliation(s)
- Jiahua Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Clinical Nutrition, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China.
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China
| |
Collapse
|
2
|
Piras IM, Bezuidenhout A, Díaz-Delgado J, Slawski D, Kelly PA. Pathology of "double scale" skin defect in farmed American alligators ( Alligator mississippiensis) and the possible association with hepatic fibrosis. Vet Pathol 2024; 61:815-828. [PMID: 38549443 PMCID: PMC11370155 DOI: 10.1177/03009858241238685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
"Double scale" is a poorly characterized skin defect of crocodilians that drastically reduces the economic value of crocodilian skin. This study investigated the morphology and pathogenesis of double scale in a ranching farm of American alligators (Alligator mississippiensis). We compared the histopathology of skin and selected organs (liver, lung, kidney, heart, spleen, intestine, and brain) of alligators with double scale against healthy control animals, together with serum and liver vitamin and mineral levels. Skin affected with double scale had statistically significant hyperkeratosis, epidermal atrophy, and increased basal cell degeneration compared with control alligators (P < .0001). Interestingly, all alligators with double scale had varying degrees of hepatic fibrosis. Feed analysis showed that alligators that had double scale and hepatic fibrosis had prolonged dietary exposure to high levels of vitamin A, iron, and copper. Serum analysis indicated that levels of zinc (p < .0001), copper (P < .05), and vitamin E (P < .002) were significantly lower in alligators with hepatic fibrosis and double scale compared with controls. Finally, immunohistochemical analysis of skin with double scale showed a marked reduction in immunolabeling with the zinc-binding protein metallothionein. These results suggest that zinc deficiency, in combination with other micronutrient anomalies, may play a role in the pathogenesis of double scale in alligators with liver fibrosis.
Collapse
Affiliation(s)
| | | | - Josué Díaz-Delgado
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
3
|
Nhieu J, Wei CW, Ludwig M, Drake JM, Wei LN. CRABP1-complexes in exosome secretion. Cell Commun Signal 2024; 22:381. [PMID: 39075476 PMCID: PMC11285139 DOI: 10.1186/s12964-024-01749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Cellular retinoic acid binding protein 1 (CRABP1) mediates rapid, non-canonical activity of retinoic acid (RA) by forming signalosomes via protein-protein interactions. Two signalosomes have been identified previously: CRABP1-MAPK and CRABP1-CaMKII. Crabp1 knockout (CKO) mice exhibited altered exosome profiles, but the mechanism of CRABP1 action was unclear. This study aimed to screen for and identify novel CRABP1 signalosomes that could modulate exosome secretion by using a combinatorial approach involving biochemical, bioinformatic and molecular studies. METHODS Immunoprecipitation coupled with mass spectrometry (IP-MS) identified candidate CRABP1-interacting proteins which were subsequently analyzed using GO Term Enrichment, Functional Annotation Clustering; and Pathway Analysis. Gene expression analysis of CKO samples revealed altered expression of genes related to exosome biogenesis and secretion. The effect of CRABP1 on exosome secretion was then experimentally validated using CKO mice and a Crabp1 knockdown P19 cell line. RESULTS IP-MS identified CRABP1-interacting targets. Bioinformatic analyses revealed significant association with actin cytoskeletal dynamics, kinases, and exosome secretion. The effect of CRABP1 on exosome secretion was experimentally validated by comparing circulating exosome numbers of CKO and wild type (WT) mice, and secreted exosomes from WT and siCRABP1-P19 cells. Pathway analysis identified kinase signaling and Arp2/3 complex as the major pathways where CRABP1-signalosomes modulate exosome secretion, which was validated in the P19 system. CONCLUSION The combinatorial approach allowed efficient screening for and identification of novel CRABP1-signalosomes. The results uncovered a novel function of CRABP1 in modulating exosome secretion, and suggested that CRABP1 could play roles in modulating intercellular communication and signal propagation.
Collapse
Affiliation(s)
- Jennifer Nhieu
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Chin-Wen Wei
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Yu M, Li Q, Dolios G, Tu P, Teitelbaum S, Chen J, Petrick L. Active Molecular Network Discovery Links Lifestyle Variables to Breast Cancer in the Long Island Breast Cancer Study Project. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:401-410. [PMID: 38932753 PMCID: PMC11197006 DOI: 10.1021/envhealth.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 06/28/2024]
Abstract
A healthy lifestyle has been associated with decreased risk of developing breast cancer. Using untargeted metabolomics profiling, which provides unbiased information regarding lifestyle choices such as diet and exercise, we aim to identify the molecular mechanisms connecting lifestyle and breast cancer through network analysis. A total of 100 postmenopausal women, 50 with breast cancer and 50 cancer-free controls, were selected from the Long Island Breast Cancer Study Project (LIBCSP). We measured untargeted plasma metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Using the "enet" package, we retained highly correlated metabolites representing active molecular network (AMN) clusters for analysis. LASSO was used to examine associations between cancer status and AMN metabolites and covariates such as BMI, age, and reproductive factors. LASSO was then repeated to examine associations between AMN metabolites and 10 lifestyle-related variables including smoking, physical activity, alcohol consumption, meat consumption, fruit and vegetable consumption, and supplemental vitamin use. Results were displayed as a network to uncover biological pathways linking lifestyle factors to breast cancer status. After filtering, 851 "active" metabolites out of 1797 metabolomics were retained in 197 correlation AMN clusters. Using LASSO, breast cancer status was associated with 71 "active" metabolites. Several of these metabolites were associated with lifestyle variables including meat consumption, alcohol consumption, and supplemental β-carotene, B12, and folate use. Those metabolites could potentially serve as molecular-level biological intermediaries connecting healthy lifestyle factors to breast cancer, even though direct associations between breast cancer and the investigated lifestyles at the phenotype level are not evident. In particular, DiHODE, a metabolite linked with inflammation, was associated with breast cancer status and connected to β-carotene supplement usage through an AMN. We found several plasma metabolites associated with lifestyle factors and breast cancer status. Future studies investigating the mechanistic role of inflammation in linking supplement usage to breast cancer status are warranted.
Collapse
Affiliation(s)
- Miao Yu
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- The
Jackson Laboratory, Farmington, Connecticut 06032, United States
| | - Qian Li
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Georgia Dolios
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peijun Tu
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susan Teitelbaum
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- The
Institute for Exposomics Research, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jia Chen
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- The
Institute for Exposomics Research, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lauren Petrick
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- The
Institute for Exposomics Research, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- The
Bert Strassburger Metabolic Center, Sheba
Medical Center, Tel-Hashomer 5266202, Israel
| |
Collapse
|
5
|
Ferdouse A, Clugston RD. Modest effect of differential dietary vitamin A intake on the pathogenesis of alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1036-1049. [PMID: 38649284 DOI: 10.1111/acer.15329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Chronic alcohol consumption is a major public health issue. The primary organ damaged by alcohol abuse is the liver, leading to alcohol-associated liver disease (ALD). ALD begins with hepatic steatosis and can progress to fibrosis and cirrhosis; however, we have an incomplete understanding of ALD pathogenesis. Interestingly, the liver is also the major organ for vitamin A metabolism and storage, and ALD has previously been linked with altered hepatic vitamin A homeostasis. We hypothesize that alcohol-induced vitamin A depletion disrupts its normal function in the liver, contributing to the pathogenesis of ALD. To test this hypothesis, we postulated that adding copious vitamin A to the diet might alleviate ALD, and conversely, that a vitamin A deficient diet would worsen ALD. METHODS We conducted two dietary intervention studies in mice comparing deficient (0 IU/g diet) and copious (25 IU/g diet) dietary vitamin A intake versus control (4 IU/g diet), using the NIAAA chronic-binge model of ALD. Hepatic steatosis was assessed using histopathological and biochemical approaches. Tissue Vitamin A levels were measured using high-performance liquid chromatography. Markers of ALD, hepatic inflammation and lipid metabolism were analyzed by the quantitative polymerase chain reaction and western blotting. RESULTS As expected, a 0 IU/g Vitamin A diet decreased, and a 25 IU/g Vitamin A diet increased hepatic Vitamin A stores. However, alcohol induced changes in hepatic triglyceride levels, markers of hepatic lipid metabolism, inflammation and fibrosis were not significantly different in mice consuming a copious or deficient vitamin A diet compared to control. CONCLUSIONS Altered vitamin A intake and hepatic vitamin A storage have a minor effect on the pathogenesis of ALD. Thus, given the known link between altered retinoic acid signaling and ALD, future studies that further explore this linkage are warranted.
Collapse
Affiliation(s)
- Afroza Ferdouse
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- The Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- The Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Goel H, Printz RL, Pannala VR, AbdulHameed MDM, Wallqvist A. Probing Liver Injuries Induced by Thioacetamide in Human In Vitro Pooled Hepatocyte Experiments. Int J Mol Sci 2024; 25:3265. [PMID: 38542239 PMCID: PMC10970511 DOI: 10.3390/ijms25063265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024] Open
Abstract
Animal studies are typically utilized to understand the complex mechanisms associated with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro pooled human hepatocytes have the potential to capture population variability. Here, we examined the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots, obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle, 1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We assessed gene expression variability using heat maps, correlation plots, and statistical variance. We used KEGG pathways and co-expression modules to identify underlying physiological processes/pathways. The co-expression module analysis showed that the majority of the lots exhibited activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of common differentially expressed genes across the lots with similarities in their response to amino acid, lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
| |
Collapse
|
7
|
Perramón M, Navalón-López M, Fernández-Varo G, Moreno-Lanceta A, García-Pérez R, Faneca J, López-Moya M, Fornaguera C, García-Villoria J, Morales-Ruiz M, Melgar-Lesmes P, Borrós S, Jiménez W. Liver-targeted nanoparticles delivering nitric oxide reduce portal hypertension in cirrhotic rats. Biomed Pharmacother 2024; 171:116143. [PMID: 38219387 DOI: 10.1016/j.biopha.2024.116143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Nitric oxide (NO) is a small vasodilator playing a key role in the pathogenesis of portal hypertension. Here, we assessed the potential therapeutic effect of a NO donor targeted to the liver by poly(beta-amino ester) nanoparticles (pBAE NPs) in experimental cirrhosis. Retinol-functionalized NO donor pBAE NPs (Ret pBAE NPs) were synthetized with the aim of actively targeting the liver. Administration of Ret pBAE NPs resulted in uptake and transfection by the liver and spleen. NPs were not found in other organs or the systemic circulation. Treatment with NO donor Ret pBAE NPs (30 mg/ kg body weight) significantly decreased aspartate aminotransferase, lactate dehydrogenase and portal pressure (9.75 ± 0.64 mmHg) compared to control NPs (13.4 ± 0.53 mmHg) in cirrhotic rats. There were no effects on mean arterial pressure and cardiac output. Liver-targeted NO donor NPs reduced collagen fibers and steatosis, activation of hepatic stellate cells and mRNA expression of profibrogenic and proinflammatory genes. Finally, Ret pBAE NPs displayed efficient transfection in human liver slices. Overall, liver-specific NO donor NPs effectively target the liver and mitigated inflammation and portal hypertension in cirrhotic rats. The use of Ret pBAE may prove to be an effective therapeutic strategy to treat advanced liver disease.
Collapse
Affiliation(s)
- Meritxell Perramón
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - María Navalón-López
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Alazne Moreno-Lanceta
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Rocío García-Pérez
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Digestive & Metabolic Disease Institute (ICMDM) of Hospital Clínic of Barcelona, Barcelona, Spain. Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joana Faneca
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mario López-Moya
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - Judith García-Villoria
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, USA
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Hatherell J, Abdelmagid SA, Ma DWL, El-Sohemy A, Mutch DM. Dietary and plasma retinoids are not associated with fatty acid desaturase indices in healthy young adults. Lipids 2023; 58:217-227. [PMID: 37309710 DOI: 10.1002/lipd.12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Past research in rodents suggests that fatty acid (FA) desaturase expression and activity may be modified by vitamin A; however, this has not been investigated in humans. The primary objective of this study was to examine associations between dietary retinoid intakes, plasma retinoid concentrations, and FA desaturase indices in young adults. As a secondary objective, biological sex and estrogen-containing contraceptive (EC) use were investigated due to prior evidence demonstrating that both can influence plasma retinol concentration and FA desaturase indices. Dietary retinoid intake (food frequency questionnaire), plasma retinoid concentrations (high-performance liquid chromatography-tandem mass spectrometry), plasma FA (gas chromatography), and FA desaturase indices (product-to-precursor ratios) from 945 adults recruited for the cross-sectional Toronto Nutrigenomics and Health study were analyzed. Participants were stratified into quartiles based on plasma retinol concentration and data analyzed by one-way analysis of covariance. Dietary retinoid intakes were not associated with the overall n-3 pathway, overall n-6 pathway, delta-5 desaturase, delta-6 desaturase, or delta-9 desaturase indices (all r < 0.10, p > 0.05). The overall n-6 pathway index was significantly higher (p = 0.0004) and the delta-5 desaturase index was significantly lower (p = 0.0003) in individuals with higher plasma retinol levels; however, these differences were lost when participants were grouped by biological sex and EC use. Although weak relationships were observed between plasma retinol and some FA desaturase indices in the total population, these associations appear to be driven by biological sex and EC usage rather than retinoids. We therefore find little evidence of a relationship between retinoids and FA desaturase indices in young, healthy adults.
Collapse
Affiliation(s)
- Julia Hatherell
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Salma A Abdelmagid
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Qi T, Hu Y, Liu M, Tian L, Peng Z, Xu H, Zhang C. Abnormal alanine aminotransferase levels in patients with moderate or severe ovarian hyperstimulation result in an increased risk of obstetric complications. Int J Gynaecol Obstet 2023; 162:913-921. [PMID: 37010882 DOI: 10.1002/ijgo.14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVES To explore the effect of abnormally elevated serum alanine aminotransferase (ALT) on pregnancy outcomes in patients with moderate and severe ovarian hyperstimulation syndrome (OHSS) at disease onset. METHODS This was a single-center retrospective cohort study conducted between January 1, 2014 and October 31, 2021. A total of 3550 fresh in vitro fertilization/intracytoplasmic sperm injection embryo transfer cycles were included, using Golan's three-degree, five-level classification to diagnose patients with OHSS. According to the patient's ALT level after diagnosis of OHSS, 123 (3.46%) patients with moderate-to-severe OHSS were divided into two groups. A control group included 3427 (96.54%) non-OHSS patients, and 91 (2.56%) abnormal ALT patients were matched with the control group for propensity scores. RESULTS There was no difference in baseline data between the abnormal ALT and matched control groups. The incidence of obstetric complications was significantly higher in the abnormal ALT group than in the matched control group (P < 0.05). After adjusting for confounding factors, the incidence of obstetric complications in the abnormal ALT group was still higher than that in the normal ALT group (P < 0.05). CONCLUSION In patients with moderate and severe OHSS, higher ALT levels resulted in an increased risk of obstetric and neonatal complications.
Collapse
Affiliation(s)
- Tiange Qi
- Renmin Hospital Postgraduate Training Base united, Jinzhou Medical University, Shiyan, China
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yueyue Hu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Mei Liu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Liu Tian
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Zhiyu Peng
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Hongyi Xu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Changjun Zhang
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
10
|
Liu S, Sommese RF, Nedoma NL, Stevens LM, Dutra JK, Zhang L, Edmonds DJ, Wang Y, Garnsey M, Clasquin MF. Structural basis of lipid-droplet localization of 17-beta-hydroxysteroid dehydrogenase 13. Nat Commun 2023; 14:5158. [PMID: 37620305 PMCID: PMC10449848 DOI: 10.1038/s41467-023-40766-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Hydroxysteroid 17-beta-dehydrogenase 13 (HSD17B13) is a hepatic lipid droplet-associated enzyme that is upregulated in patients with non-alcoholic fatty liver disease. Recently, there have been several reports that predicted loss of function variants in HSD17B13 protect against the progression of steatosis to non-alcoholic steatohepatitis with fibrosis and hepatocellular carcinoma. Here we report crystal structures of full length HSD17B13 in complex with its NAD+ cofactor, and with lipid/detergent molecules and small molecule inhibitors from two distinct series in the ligand binding pocket. These structures provide insights into a mechanism for lipid droplet-associated proteins anchoring to membranes as well as a basis for HSD17B13 variants disrupting function. Two series of inhibitors interact with the active site residues and the bound cofactor similarly, yet they occupy different paths leading to the active site. These structures provide ideas for structure-based design of inhibitors that may be used in the treatment of liver disease.
Collapse
Affiliation(s)
- Shenping Liu
- Medicine Design, Pfizer Inc, Groton, CT, 06340, USA.
| | | | | | | | - Jason K Dutra
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
| | - Liying Zhang
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
- Discovery Chemistry, Merck Research Laboratories, Cambridge, MA, USA
| | - David J Edmonds
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
- Medicinal Chemistry, Roche, Basel, Switzerland
| | - Yang Wang
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
| | | | | |
Collapse
|
11
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
12
|
Barouki R, Samson M, Blanc EB, Colombo M, Zucman-Rossi J, Lazaridis KN, Miller GW, Coumoul X. The exposome and liver disease - how environmental factors affect liver health. J Hepatol 2023; 79:492-505. [PMID: 36889360 PMCID: PMC10448911 DOI: 10.1016/j.jhep.2023.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
Since the initial development of the exposome concept, much effort has been devoted to the characterisation of the exposome through analytical, epidemiological, and toxicological/mechanistic studies. There is now an urgent need to link the exposome to human diseases and to include exposomics in the characterisation of environment-linked pathologies together with genomics and other omics. Liver diseases are particularly well suited for such studies since major functions of the liver include the detection, detoxification, and elimination of xenobiotics, as well as inflammatory responses. It is well known that several liver diseases are associated with i) addictive behaviours such as alcohol consumption, smoking, and to a certain extent dietary imbalance and obesity, ii) viral and parasitic infections, and iii) exposure to toxins and occupational chemicals. Recent studies indicate that environmental exposures are also significantly associated with liver diseases, and these include air pollution (particulate matter and volatile chemicals), contaminants such as polyaromatic hydrocarbons, bisphenol A and per-and poly-fluorinated substances, and physical stressors such as radiation. Furthermore, microbial metabolites and the "gut-liver" axis play a major role in liver diseases. Exposomics is poised to play a major role in the field of liver pathology. Methodological advances such as the exposomics-metabolomics framework, the determination of risk factors' genomic and epigenomic signatures, and cross-species biological pathway analysis should further delineate the impact of the exposome on the liver, opening the way for improved prevention, as well as the identification of new biomarkers of exposure and effects, and additional therapeutic targets.
Collapse
Affiliation(s)
| | - Michel Samson
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | | - Massimo Colombo
- San Raffaele Hospital, Liver Center, Via Olgettina 60, 20132, Milan, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, AP-HP, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, F-75006, Paris, France
| | | | - Gary W Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | | |
Collapse
|
13
|
Croce AC, Ferrigno A, Palladini G, Mannucci B, Vairetti M, Di Pasqua LG. Fatty Acids and Bilirubin as Intrinsic Autofluorescence Serum Biomarkers of Drug Action in a Rat Model of Liver Ischemia and Reperfusion. Molecules 2023; 28:molecules28093818. [PMID: 37175228 PMCID: PMC10180479 DOI: 10.3390/molecules28093818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The autofluorescence of specific fatty acids, retinoids, and bilirubin in crude serum can reflect changes in liver functional engagement in maintaining systemic metabolic homeostasis. The role of these fluorophores as intrinsic biomarkers of pharmacological actions has been investigated here in rats administered with obeticholic acid (OCA), a Farnesoid-X Receptor (FXR) agonist, proven to counteract the increase of serum bilirubin in hepatic ischemia/reperfusion (I/R) injury. Fluorescence spectroscopy has been applied to an assay serum collected from rats submitted to liver I/R (60/60 min ± OCA administration). The I/R group showed changes in the amplitude and profiles of emission spectra excited at 310 or 366 nm, indicating remarkable alterations in the retinoid and fluorescing fatty acid balance, with a particular increase in arachidonic acid. The I/R group also showed an increase in bilirubin AF, detected in the excitation spectra recorded at 570 nm. OCA greatly reversed the effects observed in the I/R group, confirmed by the biochemical analysis of bilirubin and fatty acids. These results are consistent with a relationship between OCA anti-inflammatory effects and the acknowledged roles of fatty acids as precursors of signaling agents mediating damaging responses to harmful stimuli, supporting serum autofluorescence analysis as a possible direct, real-time, cost-effective tool for pharmacological investigations.
Collapse
Affiliation(s)
- Anna C Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Internal Medicine, Fondazione, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | | | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Laura G Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
14
|
Kirundi J, Moghadamrad S, Urbaniak C. Microbiome-liver crosstalk: A multihit therapeutic target for liver disease. World J Gastroenterol 2023; 29:1651-1668. [PMID: 37077519 PMCID: PMC10107210 DOI: 10.3748/wjg.v29.i11.1651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Liver disease has become a leading cause of death, particularly in the West, where it is attributed to more than two million deaths annually. The correlation between gut microbiota and liver disease is still not fully understood. However, it is well known that gut dysbiosis accompanied by a leaky gut causes an increase in lipopolysaccharides in circulation, which in turn evoke massive hepatic inflammation promoting liver cirrhosis. Microbial dysbiosis also leads to poor bile acid metabolism and low short-chain fatty acids, all of which exacerbate the inflammatory response of liver cells. Gut microbial homeostasis is maintained through intricate processes that ensure that commensal microbes adapt to the low oxygen potential of the gut and that they rapidly occupy all the intestinal niches, thus outcompeting any potential pathogens for available nutrients. The crosstalk between the gut microbiota and its metabolites also guarantee an intact gut barrier. These processes that protect against destabilization of gut microbes by potential entry of pathogenic bacteria are collectively called colonization resistance and are equally essential for liver health. In this review, we shall investigate how the mechanisms of colonization resistance influence the liver in health and disease and the microbial-liver crosstalk potential as therapeutic target areas.
Collapse
Affiliation(s)
- Jorum Kirundi
- Department of Biomedical Research, University of Bern, Bern 3014, Switzerland
| | - Sheida Moghadamrad
- Department of Gastroenterology/Hepatology, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona and Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano 6900, Switzerland
| | | |
Collapse
|
15
|
Kubickova B, Martinkova S, Bohaciakova D, Nezvedova M, Liu R, Brozman O, Spáčil Z, Hilscherova K. Effects of all-trans and 9-cis retinoic acid on differentiating human neural stem cells in vitro. Toxicology 2023; 487:153461. [PMID: 36805303 PMCID: PMC10019519 DOI: 10.1016/j.tox.2023.153461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Cyanobacterial blooms are known sources of environmentally-occurring retinoid compounds, including all-trans and 9-cis retinoic acids (RAs). The developmental hazard for aquatic organisms has been described, while the implications for human health hazard assessment are not yet sufficiently characterized. Here, we employ a human neural stem cell model that can differentiate in vitro into a mixed culture of neurons and glia. Cells were exposed to non-cytotoxic 8-1000 nM all-trans or 9-cis RA for 9-18 days (DIV13 and DIV22, respectively). Impact on biomarkers was analyzed on gene expression (RT-qPCR) and protein level (western blot and proteomics) at both time points; network patterning (immunofluorescence) on DIV22. RA exposure significantly concentration-dependently increased gene expression of retinoic acid receptors and the metabolizing enzyme CYP26A1, confirming the chemical-specific response of the model. Expression of thyroid hormone signaling-related genes remained mostly unchanged. Markers of neural progenitors/stem cells (PAX6, SOX1, SOX2, NESTIN) were decreased with increasing RA concentrations, though a basal population remained. Neural markers (DCX, TUJ1, MAP2, NeuN, SYP) remained unchanged or were decreased at high concentrations (200-1000 nM). Conversely, (astro-)glial marker S100β was increased concentration-dependently on DIV22. Together, the biomarker analysis indicates an RA-dependent promotion of glial cell fates over neural differentiation, despite the increased abundance of neural protein biomarkers during differentiation. Interestingly, RA exposure induced substantial changes to the cell culture morphology: while low concentrations resulted in a network-like differentiation pattern, high concentrations (200-1000 nM RA) almost completely prevented such network patterning. After functional confirmation for implications in network function, such morphological features could present a proxy for network formation assessment, an apical key event in (neuro-)developmental Adverse Outcome Pathways. The described application of a human in vitro model for (developmental) neurotoxicity to emerging environmentally-relevant retinoids contributes to the evidence-base for the use of differentiating human in vitro models for human health hazard and risk assessment.
Collapse
Affiliation(s)
- Barbara Kubickova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Sarka Martinkova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Dasa Bohaciakova
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Kamenice 3, 62500 Brno, Czech Republic.
| | - Marketa Nezvedova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Runze Liu
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Ondrej Brozman
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
16
|
Yan J, Feng Y, Fang X, Cui X, Xia X, Li F, Luo W, Liang J, Feng J, Yu K. Anti-liver fibrosis effects of the total flavonoids of litchi semen on CCl 4-induced liver fibrosis in rats associated with the upregulation of retinol metabolism. PHARMACEUTICAL BIOLOGY 2022; 60:1264-1277. [PMID: 35787093 PMCID: PMC9262366 DOI: 10.1080/13880209.2022.2086584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT The litchi semen are traditional medications for treating liver fibrosis (LF) in China. The mechanism remains unclear. OBJECTIVE This study investigates the anti-liver fibrotic mechanism of the total flavonoids of litchi semen (TFL). MATERIALS AND METHODS Sprague-Dawley rats with carbon tetrachloride-induced LF were treated with TFL (50 and 100 mg/kg) for 4 weeks. The anti-liver fibrotic effects of TFL were evaluated and the underlying mechanisms were investigated via histopathological analysis, proteomic analysis and molecular biology technology. RESULTS Significant anti-LF effects were observed in the high-TFL-dose group (TFL-H, p < 0.05). Five hundred and eighty-five and 95 differentially expressed proteins (DEPs) were identified in the LF rat model (M group) and TFL-H group, respectively. The DEPs were significantly enriched in the retinol metabolism pathway (p < 0.0001). The content of 9-cis-retinoic acid (0.93 ± 0.13 vs. 0.66 ± 0.10, p < 0.05, vs. the M group) increased significantly in the TFL-H group. The upregulation of RXRα (0.50 ± 0.05 vs. 0.27 ± 0.13 protein, p < 0.05), ALDH2 (1.24 ± 0.09 vs. 1.04 ± 0.08 protein, p < 0.05), MMP3 (0.89 ± 0.02 vs. 0.61 ± 0.12 protein, p < 0.05), Aldh1a7 (0.20 ± 0.03 vs. 0.03 ± 0.00 mRNA, p < 0.05) and Aox3 (0.72 ± 0.14 vs. 0.05 ± 0.01 mRNA, p < 0.05) after TFL treatment was verified. CONCLUSIONS TFL exhibited good anti-liver fibrotic effects, which may be related to the upregulation of the retinol metabolism pathway. TFL may be promising anti-LF agents with potential clinical application prospects.
Collapse
Affiliation(s)
- Jiongyi Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- School of Health, Wuzhou Vocational College, Wuzhou, China
| | - Yinyi Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xuewan Fang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaojuan Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xing Xia
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Weisheng Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianqin Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Foguet C, Xu Y, Ritchie SC, Lambert SA, Persyn E, Nath AP, Davenport EE, Roberts DJ, Paul DS, Di Angelantonio E, Danesh J, Butterworth AS, Yau C, Inouye M. Genetically personalised organ-specific metabolic models in health and disease. Nat Commun 2022; 13:7356. [PMID: 36446790 PMCID: PMC9708841 DOI: 10.1038/s41467-022-35017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding how genetic variants influence disease risk and complex traits (variant-to-function) is one of the major challenges in human genetics. Here we present a model-driven framework to leverage human genome-scale metabolic networks to define how genetic variants affect biochemical reaction fluxes across major human tissues, including skeletal muscle, adipose, liver, brain and heart. As proof of concept, we build personalised organ-specific metabolic flux models for 524,615 individuals of the INTERVAL and UK Biobank cohorts and perform a fluxome-wide association study (FWAS) to identify 4312 associations between personalised flux values and the concentration of metabolites in blood. Furthermore, we apply FWAS to identify 92 metabolic fluxes associated with the risk of developing coronary artery disease, many of which are linked to processes previously described to play in role in the disease. Our work demonstrates that genetically personalised metabolic models can elucidate the downstream effects of genetic variants on biochemical reactions involved in common human diseases.
Collapse
Affiliation(s)
- Carles Foguet
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Elodie Persyn
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Artika P Nath
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - David J Roberts
- BRC Haematology Theme, Radcliffe Department of Medicine, and NHSBT-Oxford, John Radcliffe Hospital, Oxford, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Science Centre, Human Technopole, Milan, Italy
| | - John Danesh
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Adam S Butterworth
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Christopher Yau
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, OX3 9DU, UK
- Health Data Research UK, Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- The Alan Turing Institute, London, UK.
| |
Collapse
|
18
|
Bi G, Liang J, Bian Y, Shan G, Besskaya V, Wang Q, Zhan C. The immunomodulatory role of all-trans retinoic acid in tumor microenvironment. Clin Exp Med 2022:10.1007/s10238-022-00860-x. [PMID: 35829844 DOI: 10.1007/s10238-022-00860-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/19/2022]
Abstract
Retinoids are essential nutrients for human beings. Among them, all-trans retinoic acid (ATRA), considered one of the most active metabolites, plays important roles in multiple biological processes. ATRA regulates the transcription of target genes by interacting with nuclear receptors bonded to retinoic acid response elements (RAREs). Besides its differentiation-inducing effect in the treatment of acute promyelocytic leukemia and some solid tumor types, its immunoregulatory role in tumor microenvironment (TME) has attracted considerable attention. ATRA not only substantially abrogates the immunosuppressive effect of tumor-infiltrating myeloid-derived suppressor cells but also activates the anti-tumor effect of CD8 + T cells. Notably, the combination of ATRA with other therapeutic approaches, including immune checkpoint inhibitors (ICIs), tumor vaccines, and chemotherapy, has been extensively investigated in a variety of tumor models and clinical trials. In this review, we summarize the current understanding of the role of ATRA in cancer immunology and immunotherapy, dissect the underlying mechanisms of ATRA-mediated activation or differentiation of different types of immune cells, and explore the potential clinical significance of ATRA-based cancer therapy.
Collapse
Affiliation(s)
- Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Valeria Besskaya
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
19
|
Santos A, Colaço AR, Nielsen AB, Niu L, Strauss M, Geyer PE, Coscia F, Albrechtsen NJW, Mundt F, Jensen LJ, Mann M. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol 2022; 40:692-702. [PMID: 35102292 PMCID: PMC9110295 DOI: 10.1038/s41587-021-01145-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.
Collapse
Affiliation(s)
- Alberto Santos
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Li-Ka Shing Big Data Institute, University of Oxford, Oxford, UK.
- Center for Health Data Science, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ana R Colaço
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annelaura B Nielsen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lili Niu
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Strauss
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- OmicEra Diagnostics GmbH, Planegg, Germany
| | - Philipp E Geyer
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- OmicEra Diagnostics GmbH, Planegg, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Fabian Coscia
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department for Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Filip Mundt
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
20
|
Melis M, Tang XH, Trasino SE, Gudas LJ. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022; 14:1456. [PMID: 35406069 PMCID: PMC9002467 DOI: 10.3390/nu14071456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A (VA), all-trans-retinol (ROL), and its analogs are collectively called retinoids. Acting through the retinoic acid receptors RARα, RARβ, and RARγ, all-trans-retinoic acid, an active metabolite of VA, is a potent regulator of numerous biological pathways, including embryonic and somatic cellular differentiation, immune functions, and energy metabolism. The liver is the primary organ for retinoid storage and metabolism in humans. For reasons that remain incompletely understood, a body of evidence shows that reductions in liver retinoids, aberrant retinoid metabolism, and reductions in RAR signaling are implicated in numerous diseases of the liver, including hepatocellular carcinoma, non-alcohol-associated fatty liver diseases, and alcohol-associated liver diseases. Conversely, restoration of retinoid signaling, pharmacological treatments with natural and synthetic retinoids, and newer agonists for specific RARs show promising benefits for treatment of a number of these liver diseases. Here we provide a comprehensive review of the literature demonstrating a role for retinoids in limiting the pathogenesis of these diseases and in the treatment of liver diseases.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY 10065, USA;
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| |
Collapse
|
21
|
Steinhoff JS, Lass A, Schupp M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022; 14:1236. [PMID: 35334893 PMCID: PMC8951293 DOI: 10.3390/nu14061236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.
Collapse
Affiliation(s)
- Julia S. Steinhoff
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Michael Schupp
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| |
Collapse
|
22
|
Janeschitz-Kriegl L, Cattaneo M, Scholl HPN. Baseline Levels of Retinol Binding Protein 4 and Vitamin A in Healthy Subjects, Stargardt Disease and Geographic Atrophy Patients. Ophthalmic Res 2022; 65:351-360. [PMID: 35108705 DOI: 10.1159/000522365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The accumulation of lipofuscin is a hallmark in the pathogenesis of Stargardt disease (STGD1) and geographic atrophy (GA) secondary to age-related macular degeneration (AMD). Limiting lipofuscin accumulation by inhibiting the retinol binding protein 4 (RBP4) is being explored as a potential treatment target for those diseases. In this study, we aimed to establish the concentration of RBP4 in the systemic circulation in different age cohorts of healthy individuals and to check if patients with STGD1 or GA may show abnormal RBP4 levels. METHODS 40 healthy subjects of various age groups, 15 Stargardt patients and 15 GA patients were included in the study. We measured RBP4 levels, serum retinol (SR) levels, complete blood count (CBC), and blood chemistry including liver function tests. RESULTS Mean RBP4 for all cohorts was 26'911.40 ± 6'198.61 ng/mL and mean SR 1.75 ± 0.36 µmol/L. Age was not found to significantly impact levels neither of RBP4 and SR nor of the RBP4-to-SR ratio. Also, the two patient groups showed similar blood levels to their age-matched controls. DISCUSSION/CONCLUSION Serum RBP4 and SR do not appear to be affected by age in healthy individuals and remain within normal limits in both STGD1 and GA.
Collapse
Affiliation(s)
- Lucas Janeschitz-Kriegl
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Marco Cattaneo
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| |
Collapse
|
23
|
Bozhkov A, Ionov I, Kurhuzova N, Novikova A, Katerynych О, Akzhyhitov R. Vitamin A intake forms resistance to hypervitaminosis A and affects the functional activity of the liver. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Ferdouse A, Agrawal RR, Gao MA, Jiang H, Blaner WS, Clugston RD. Alcohol induced hepatic retinoid depletion is associated with the induction of multiple retinoid catabolizing cytochrome P450 enzymes. PLoS One 2022; 17:e0261675. [PMID: 35030193 PMCID: PMC8759667 DOI: 10.1371/journal.pone.0261675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol consumption leads to a spectrum of liver disease that is associated with significant global mortality and morbidity. Alcohol is known to deplete hepatic vitamin A content, which has been linked to the pathogenesis of alcoholic liver disease. It has been suggested that induction of Cytochrome P450 2E1 (CYP2E1) contributes to alcohol-induced hepatic vitamin A depletion, but the possible contributions of other retinoid-catabolizing CYPs have not been well studied. The main objective of this study was to better understand alcohol-induced hepatic vitamin A depletion and test the hypothesis that alcohol-induced depletion of hepatic vitamin A is due to CYP-mediated oxidative catabolism. This hypothesis was tested in a mouse model of chronic alcohol consumption, including wild type and Cyp2e1 -/- mice. Our results show that chronic alcohol consumption is associated with decreased levels of hepatic retinol, retinyl esters, and retinoic acid. Moreover, the depletion of hepatic retinoid is associated with the induction of multiple retinoid catabolizing CYPs, including CYP26A1, and CYP26B1 in alcohol fed wild type mice. In Cyp2e1 -/- mice, alcohol-induced retinol decline is blunted but retinyl esters undergo a change in their acyl composition and decline upon alcohol exposure like WT mice. In conclusion, the alcohol induced decline in hepatic vitamin A content is associated with increased expression of multiple retinoid-catabolizing CYPs, including the retinoic acid specific hydroxylases CYP26A1 and CYP26B1.
Collapse
Affiliation(s)
- Afroza Ferdouse
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Rishi R. Agrawal
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
| | - Madeleine A. Gao
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - William S. Blaner
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Robin D. Clugston
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Cui S, Yu Y, Zhan T, Gao Y, Zhang J, Zhang L, Ge Z, Liu W, Zhang C, Zhuang S. Carcinogenic Risk of 2,6-Di- tert-Butylphenol and Its Quinone Metabolite 2,6-DTBQ Through Their Interruption of RARβ: In Vivo, In Vitro, and In Silico Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:480-490. [PMID: 34927421 DOI: 10.1021/acs.est.1c06866] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thousands of contaminants are used worldwide and eventually released into the environment, presenting a challenge of health risk assessment. The identification of key toxic pathways and characterization of interactions with target biomacromolecules are essential for health risk assessments. The adverse outcome pathway (AOP) incorporates toxic mechanisms into health risk assessment by emphasizing the relationship among molecular initiating events (MIEs), key events (KEs), and adverse outcome (AO). Herein, we attempted the use of AOP to decipher the toxic effects of 2,6-di-tert-butylphenol (2,6-DTBP) and its para-quinone metabolite 2,6-di-tert-butyl-1,4-benzoquinone (2,6-DTBQ) based on integrated transcriptomics, molecular modeling, and cell-based assays. Through transcriptomics and quantitative real-time PCR validation, we identified retinoic acid receptor β (RARβ) as the key target biomacromolecule. The epigenetic analysis and molecular modeling revealed RARβ interference as one MIE, including DNA methylation and conformational changes. In vitro assays extended subsequent KEs, including altered protein expression of p-Erk1/2 and COX-2, and promoted cancer cell H4IIE proliferation and metastasis. These toxic effects altogether led to carcinogenic risk as the AO of 2,6-DTBP and 2,6-DTBQ, in line with chemical carcinogenesis identified from transcriptome profiling. Overall, our simplified AOP network of 2,6-DTBP and 2,6-DTBQ facilitates relevant health risk assessment.
Collapse
Affiliation(s)
- Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Yu
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment (MEE), Beijing 100029, China
| | - Tingjie Zhan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiachen Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, Houston, Texas 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
26
|
Nishino A, Maoka T, Yasui H. Preventive Effects of β-Cryptoxanthin, a Potent Antioxidant and Provitamin A Carotenoid, on Lifestyle-Related Diseases-A Central Focus on Its Effects on Non-Alcoholic Fatty Liver Disease (NAFLD). Antioxidants (Basel) 2021; 11:antiox11010043. [PMID: 35052547 PMCID: PMC8772992 DOI: 10.3390/antiox11010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022] Open
Abstract
Humans usually get dietary carotenoids from foods such as green and yellow vegetables and algae. Carotenoids have been reported to effectively reduce the risk of developing lifestyle-related diseases. β-Cryptoxanthin, which is an antioxidative carotenoid and a type of provitamin A, is metabolically converted to vitamin A. β-Cryptoxanthin has recently gained attention for its risk-reducing effects on lifestyle-related diseases, especially on non-alcoholic fatty liver disease (NAFLD), from epidemiological, interventional, and mechanistic studies. Retinoids (vitamin A) have also been reported to be useful as a therapeutic agent for NAFLD. Provitamin A is known to serve as a supply source of retinoids through metabolic conversion by the regulated activity of β-carotene 15,15′-monooxygenase 1 (BCMO1) to the retina only when retinoids are deficient. From mechanistic studies using NAFLD-model mice, β-cryptoxanthin has been shown to contribute to the improvement of NAFLD through a multifaceted approach, including improved insulin resistance, suppression of oxidative stress and inflammation, a reduction of macrophages and a shift of their subsets, and control of lipid metabolism by peroxisome proliferator-activated receptor (PPAR) family activation, which are also expected to have clinical applications. β-Cryptoxanthin has the potential to prevent lifestyle-related diseases from different angles, not only as an antioxidant but also as a retinoid precursor.
Collapse
Affiliation(s)
- Azusa Nishino
- Applied Research Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Morimoto-cho, Shimogamo, Sakyo-ku, Kyoto 606-0805, Japan;
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-841, Japan
- Correspondence: ; Tel.: +81-75-595-4629
| |
Collapse
|
27
|
Delgado ME, Cárdenas BI, Farran N, Fernandez M. Metabolic Reprogramming of Liver Fibrosis. Cells 2021; 10:3604. [PMID: 34944111 PMCID: PMC8700241 DOI: 10.3390/cells10123604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is an excessive and imbalanced deposition of fibrous extracellular matrix (ECM) that is associated with the hepatic wound-healing response. It is also the common mechanism that contributes to the impairment of the liver function that is observed in many chronic liver diseases (CLD). Despite the efforts, no effective therapy against fibrosis exists yet. Worryingly, due to the growing obesity pandemic, fibrosis incidence is on the rise. Here, we aim to summarize the main components and mechanisms involved in the progression of liver fibrosis, with special focus on the metabolic regulation of key effectors of fibrogenesis, hepatic stellate cells (HSCs), and their role in the disease progression. Hepatic cells that undergo metabolic reprogramming require a tightly controlled, fine-tuned cellular response, allowing them to meet their energetic demands without affecting cellular integrity. Here, we aim to discuss the role of ribonucleic acid (RNA)-binding proteins (RBPs), whose dynamic nature being context- and stimuli-dependent make them very suitable for the fibrotic situation. Thus, we will not only summarize the up-to-date literature on the metabolic regulation of HSCs in liver fibrosis, but also on the RBP-dependent post-transcriptional regulation of this metabolic switch that results in such important consequences for the progression of fibrosis and CLD.
Collapse
Affiliation(s)
- M. Eugenia Delgado
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| | | | | | - Mercedes Fernandez
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| |
Collapse
|
28
|
Martin Ask N, Leung M, Radhakrishnan R, Lobo GP. Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye. Nutrients 2021; 13:nu13113987. [PMID: 34836244 PMCID: PMC8620617 DOI: 10.3390/nu13113987] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/23/2022] Open
Abstract
Vitamins are essential compounds obtained through diet that are necessary for normal development and function in an organism. One of the most important vitamins for human physiology is vitamin A, a group of retinoid compounds and carotenoids, which generally function as a mediator for cell growth, differentiation, immunity, and embryonic development, as well as serving as a key component in the phototransduction cycle in the vertebrate retina. For humans, vitamin A is obtained through the diet, where provitamin A carotenoids such as β-carotene from plants or preformed vitamin A such as retinyl esters from animal sources are absorbed into the body via the small intestine and converted into all-trans retinol within the intestinal enterocytes. Specifically, once absorbed, carotenoids are cleaved by carotenoid cleavage oxygenases (CCOs), such as Beta-carotene 15,15’-monooxygenase (BCO1), to produce all-trans retinal that subsequently gets converted into all-trans retinol. CRBP2 bound retinol is then converted into retinyl esters (REs) by the enzyme lecithin retinol acyltransferase (LRAT) in the endoplasmic reticulum, which is then packaged into chylomicrons and sent into the bloodstream for storage in hepatic stellate cells in the liver or for functional use in peripheral tissues such as the retina. All-trans retinol also travels through the bloodstream bound to retinol binding protein 4 (RBP4), where it enters cells with the assistance of the transmembrane transporters, stimulated by retinoic acid 6 (STRA6) in peripheral tissues or retinol binding protein 4 receptor 2 (RBPR2) in systemic tissues (e.g., in the retina and the liver, respectively). Much is known about the intake, metabolism, storage, and function of vitamin A compounds, especially with regard to its impact on eye development and visual function in the retinoid cycle. However, there is much to learn about the role of vitamin A as a transcription factor in development and cell growth, as well as how peripheral cells signal hepatocytes to secrete all-trans retinol into the blood for peripheral cell use. This article aims to review literature regarding the major known pathways of vitamin A intake from dietary sources into hepatocytes, vitamin A excretion by hepatocytes, as well as vitamin A usage within the retinoid cycle in the RPE and retina to provide insight on future directions of novel membrane transporters for vitamin A in retinal cell physiology and visual function.
Collapse
|
29
|
Young BD, Varney KM, Wilder PT, Costabile BK, Pozharski E, Cook ME, Godoy-Ruiz R, Clarke OB, Mancia F, Weber DJ. Physiologically Relevant Free Ca 2+ Ion Concentrations Regulate STRA6-Calmodulin Complex Formation via the BP2 Region of STRA6. J Mol Biol 2021; 433:167272. [PMID: 34592217 PMCID: PMC8568335 DOI: 10.1016/j.jmb.2021.167272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022]
Abstract
The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Paul T Wilder
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edwin Pozharski
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA
| | - Raquel Godoy-Ruiz
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA.
| |
Collapse
|
30
|
Balliu B, Carcamo-Orive I, Gloudemans MJ, Nachun DC, Durrant MG, Gazal S, Park CY, Knowles DA, Wabitsch M, Quertermous T, Knowles JW, Montgomery SB. An integrated approach to identify environmental modulators of genetic risk factors for complex traits. Am J Hum Genet 2021; 108:1866-1879. [PMID: 34582792 PMCID: PMC8546041 DOI: 10.1016/j.ajhg.2021.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Complex traits and diseases can be influenced by both genetics and environment. However, given the large number of environmental stimuli and power challenges for gene-by-environment testing, it remains a critical challenge to identify and prioritize specific disease-relevant environmental exposures. We propose a framework for leveraging signals from transcriptional responses to environmental perturbations to identify disease-relevant perturbations that can modulate genetic risk for complex traits and inform the functions of genetic variants associated with complex traits. We perturbed human skeletal-muscle-, fat-, and liver-relevant cell lines with 21 perturbations affecting insulin resistance, glucose homeostasis, and metabolic regulation in humans and identified thousands of environmentally responsive genes. By combining these data with GWASs from 31 distinct polygenic traits, we show that the heritability of multiple traits is enriched in regions surrounding genes responsive to specific perturbations and, further, that environmentally responsive genes are enriched for associations with specific diseases and phenotypes from the GWAS Catalog. Overall, we demonstrate the advantages of large-scale characterization of transcriptional changes in diversely stimulated and pathologically relevant cells to identify disease-relevant perturbations.
Collapse
Affiliation(s)
- Brunilda Balliu
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Ivan Carcamo-Orive
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute and Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Gloudemans
- Biomedical Informatics Training Program and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel C Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew G Durrant
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chong Y Park
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Knowles
- New York Genome Center, New York, NY 10013, USA; Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology, Ulm University, Ulm 89075, Germany
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiology and Cardiovascular Institute, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiology and Cardiovascular Institute, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Stephen B Montgomery
- Department of Pathology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Zhang S, Duan J, Du Y, Xie J, Zhang H, Li C, Zhang W. Long Non-coding RNA Signatures Associated With Liver Aging in Senescence-Accelerated Mouse Prone 8 Model. Front Cell Dev Biol 2021; 9:698442. [PMID: 34368149 PMCID: PMC8339557 DOI: 10.3389/fcell.2021.698442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
The liver is sensitive to aging because the risk of hepatopathy, including fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, increases dramatically with age. Long non-coding RNAs (lncRNAs) are >200 nucleotides long and affect many pathological and physiological processes. A potential link was recently discovered between lncRNAs and liver aging; however, comprehensive and systematic research on this topic is still limited. In this study, the mouse liver genome-wide lncRNA profiles of 8-month-old SAMP8 and SAMR1 models were explored through deep RNA sequencing. A total of 605,801,688 clean reads were generated. Among the 2,182 identified lncRNAs, 28 were differentially expressed between SAMP8 and SAMR1 mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) surveys showed that these substantially dysregulated lncRNAs participated in liver aging from different aspects, such as lipid catabolic (GO: 0016042) and metabolic pathways. Further assessment was conducted on lncRNAs that are most likely to be involved in liver aging and related diseases, such as LNC_000027, LNC_000204E, NSMUST00000144661.1, and ENSMUST00000181906.1 acted on Ces1g. This study provided the first comprehensive dissection of lncRNA landscape in SAMP8 mouse liver. These lncRNAs could be exploited as potential targets for the molecular-based diagnosis and therapy of age-related liver diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juanjuan Duan
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yu Du
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Haijing Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Changyu Li
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wensheng Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,National and Local United Engineering Research Center for Panax Notoginseng Resources Protection and Utilization Technology, Kunming, China
| |
Collapse
|
32
|
Takahashi N, Saito D, Hasegawa S, Yamasaki M, Imai M. Vitamin A in health care: Suppression of growth and induction of differentiation in cancer cells by vitamin A and its derivatives and their mechanisms of action. Pharmacol Ther 2021; 230:107942. [PMID: 34175370 DOI: 10.1016/j.pharmthera.2021.107942] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Vitamin A is an important micro-essential nutrient, whose primary dietary source is retinyl esters. In addition, β-carotene (pro-vitamin A) is a precursor of vitamin A contained in green and yellow vegetables that is converted to retinol in the body after ingestion. Retinol is oxidized to produce visual retinal, which is further oxidized to retinoic acid (RA), which is used as a therapeutic agent for patients with promyelocytic leukemia. Thus, the effects of retinal and RA are well known. In this paper, we will introduce (1) vitamin A circulation in the body, (2) the actions and mechanisms of retinal and RA, (3) retinoylation: another RA mechanism not depending on RA receptors, (4) the relationship between cancer and actions of retinol or β-carotene, whose roles in vivo are still unknown, and (5) anti-cancer actions of vitamin A derivatives derived from fenretinide (4-HPR). We propose that vitamin A nutritional management is effective in the prevention of cancer.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan.
| | - Daisuke Saito
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Shinya Hasegawa
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Masahiro Yamasaki
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Masahiko Imai
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
33
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
34
|
Mega A, Marzi L, Kob M, Piccin A, Floreani A. Food and Nutrition in the Pathogenesis of Liver Damage. Nutrients 2021; 13:nu13041326. [PMID: 33923822 PMCID: PMC8073814 DOI: 10.3390/nu13041326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
The liver is an important organ and plays a key role in the regulation of metabolism and in the secretion, storage, and detoxification of endogenous and exogenous substances. The impact of food and nutrition on the pathophysiological mechanisms of liver injury represents a great controversy. Several environmental factors including food and micronutrients are involved in the pathogenesis of liver damage. Conversely, some xenobiotics and micronutrients have been recognized to have a protective effect in several liver diseases. This paper offers an overview of the current knowledge on the role of xenobiotics and micronutrients in liver damage.
Collapse
Affiliation(s)
- Andrea Mega
- Gastroenterology Department, Bolzano Regional Hospital, 39100 Bolzano, Italy;
- Correspondence:
| | - Luca Marzi
- Gastroenterology Department, Bolzano Regional Hospital, 39100 Bolzano, Italy;
| | - Michael Kob
- Dietetics and Clinical Nutrition Unit, Bolzano Regional Hospital, 39100 Bolzano, Italy;
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast BT9 7TS, UK;
- Department of Internal Medicine V, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, 38100 Trento, Italy
| | - Annarosa Floreani
- Scientific Institute for Research, Hospitalization and Healthcare, 37024 Negrar-Verona, Italy;
- Department Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| |
Collapse
|
35
|
Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:615-642. [PMID: 33817704 PMCID: PMC8112759 DOI: 10.47162/rjme.61.3.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC), initially analyzed by von Kupffer, in 1876, revealed to be an extraordinary mesenchymal cell, essential for both hepatocellular function and lesions, being the hallmark of hepatic fibrogenesis and carcinogenesis. Apart from their implications in hepatic injury, HSCs play a vital role in liver development and regeneration, xenobiotic response, intermediate metabolism, and regulation of immune response. In this review, we discuss the current state of knowledge regarding HSCs morphology, human HSCs markers and human HSC cell lines. We also summarize the latest findings concerning their roles in normal and liver pathology, focusing on their impact in fibrogenesis, chronic viral hepatitis and liver tumors.
Collapse
Affiliation(s)
- Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | |
Collapse
|
36
|
Esteban J, Sánchez-Pérez I, Hamscher G, Miettinen HM, Korkalainen M, Viluksela M, Pohjanvirta R, Håkansson H. Role of aryl hydrocarbon receptor (AHR) in overall retinoid metabolism: Response comparisons to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure between wild-type and AHR knockout mice. Reprod Toxicol 2021; 101:33-49. [PMID: 33607186 DOI: 10.1016/j.reprotox.2021.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Young adult wild-type and aryl hydrocarbon receptor knockout (AHRKO) mice of both sexes and the C57BL/6J background were exposed to 10 weekly oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; total dose of 200 μg/kg bw) to further characterize the observed impacts of AHR as well as TCDD on the retinoid system. Unexposed AHRKO mice harboured heavier kidneys, lighter livers and lower serum all-trans retinoic acid (ATRA) and retinol (REOH) concentrations than wild-type mice. Results from the present study also point to a role for the murine AHR in the control of circulating REOH and ATRA concentrations. In wild-type mice, TCDD elevated liver weight and reduced thymus weight, and drastically reduced the hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid (CORA) and retinyl palmitate (REPA). In female wild-type mice, TCDD increased the hepatic concentration of ATRA as well as the renal and circulating REOH concentrations. Renal CORA concentrations were substantially diminished in wild-type male mice exclusively following TCDD-exposure, with a similar tendency in serum. In contrast, TCDD did not affect any of these toxicity or retinoid system parameters in AHRKO mice. Finally, a distinct sex difference occurred in kidney concentrations of all the analysed retinoid forms. Together, these results strengthen the evidence of a mandatory role of AHR in TCDD-induced retinoid disruption, and suggest that the previously reported accumulation of several retinoid forms in the liver of AHRKO mice is a line-specific phenomenon. Our data further support participation of AHR in the control of liver and kidney development in mice.
Collapse
Affiliation(s)
- Javier Esteban
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Ismael Sánchez-Pérez
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.
| | - Hanna M Miettinen
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Matti Viluksela
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland; Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Mustialankatu 1, FI-00790 Helsinki, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
37
|
Hepatic Stellate Cell Activation and Inactivation in NASH-Fibrosis-Roles as Putative Treatment Targets? Biomedicines 2021; 9:biomedicines9040365. [PMID: 33807461 PMCID: PMC8066583 DOI: 10.3390/biomedicines9040365] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic fibrosis is the primary predictor of mortality in patients with non-alcoholic steatohepatitis (NASH). In this process, the activated hepatic stellate cells (HSCs) constitute the principal cells responsible for the deposition of a fibrous extracellular matrix, thereby driving the hepatic scarring. HSC activation, migration, and proliferation are controlled by a complex signaling network involving growth factors, lipotoxicity, inflammation, and cellular stress. Conversely, the clearance of activated HSCs is a prerequisite for the resolution of the extracellular fibrosis. Hence, pathways regulating the fate of the HSCs may represent attractive therapeutic targets for the treatment and prevention of NASH-associated hepatic fibrosis. However, the development of anti-fibrotic drugs for NASH patients has not yet resulted in clinically approved therapeutics, underscoring the complex biology and challenges involved when targeting the intricate cellular signaling mechanisms. This narrative review investigated the mechanisms of activation and inactivation of HSCs with a focus on NASH-associated hepatic fibrosis. Presenting an updated overview, this review highlights key cellular pathways with potential value for the development of future treatment modalities.
Collapse
|
38
|
Payen VL, Lavergne A, Alevra Sarika N, Colonval M, Karim L, Deckers M, Najimi M, Coppieters W, Charloteaux B, Sokal EM, El Taghdouini A. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Rep 2021; 3:100278. [PMID: 34027339 PMCID: PMC8121977 DOI: 10.1016/j.jhepr.2021.100278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/11/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Background & Aims The multiple vital functions of the human liver are performed by highly specialised parenchymal and non-parenchymal cells organised in complex collaborative sinusoidal units. Although crucial for homeostasis, the cellular make-up of the human liver remains to be fully elucidated. Here, single-cell RNA-sequencing was used to unravel the heterogeneity of human liver cells, in particular of hepatocytes (HEPs) and hepatic stellate cells (HSCs). Method The transcriptome of ~25,000 freshly isolated human liver cells was profiled using droplet-based RNA-sequencing. Recently published data sets and RNA in situ hybridisation were integrated to validate and locate newly identified cell populations. Results In total, 22 cell populations were annotated that reflected the heterogeneity of human parenchymal and non-parenchymal liver cells. More than 20,000 HEPs were ordered along the portocentral axis to confirm known, and reveal previously undescribed, zonated liver functions. The existence of 2 subpopulations of human HSCs with unique gene expression signatures and distinct intralobular localisation was revealed (i.e. portal and central vein-concentrated GPC3+ HSCs and perisinusoidally located DBH+ HSCs). In particular, these data suggest that, although both subpopulations collaborate in the production and organisation of extracellular matrix, GPC3+ HSCs specifically express genes involved in the metabolism of glycosaminoglycans, whereas DBH+ HSCs display a gene signature that is reminiscent of antigen-presenting cells. Conclusions This study highlights metabolic zonation as a key determinant of HEP transcriptomic heterogeneity and, for the first time, outlines the existence of heterogeneous HSC subpopulations in the human liver. These findings call for further research on the functional implications of liver cell heterogeneity in health and disease. Lay summary This study resolves the cellular landscape of the human liver in an unbiased manner and at high resolution to provide new insights into human liver cell biology. The results highlight the physiological heterogeneity of human hepatic stellate cells. A cell atlas from the near-native transcriptome of >25,000 human liver cells is presented. Hepatocytes were ordered along the portocentral axis to reveal previously undescribed gene expression patterns and zonated liver functions. Two subpopulations of human hepatic stellate cells (HSCs) are reported, characterised by different spatial distribution in the native tissue. Characteristic gene signatures of HSC subpopulations are suggestive of far-reaching functional differences.
Collapse
Key Words
- BSA, bovine serum albumin
- CC, cholangiocyte
- CV, central vein
- DEG, differentially expressed gene
- EC, endothelial cell
- ECM, extracellular matrix
- Extracellular matrix
- FFPE, formaldehyde-fixed paraffin embedded
- GAG, glycosaminoglycan
- GEO, Gene Expression Omnibus
- GO, gene ontology
- HEP, hepatocyte
- HLA, human leukocyte antigen
- HRP, horseradish peroxidase
- HSC, hepatic stellate cell
- Hepatocyte
- ISH, in situ hybridisation
- KLR, killer lectin-like receptor
- LP, lymphoid cell
- Liver cell atlas
- MP, macrophage
- MZ, midzonal
- PC, pericentral
- PP, periportal
- PV, portal vein
- TBS, Tris buffered saline
- TSA, tyramide signal amplification
- UMAP, uniform manifold approximation and projection
- UMI, unique molecular identifier
- VIM, vimentin
- Zonation
- scRNA-seq, single-cell RNA-sequencing
Collapse
Affiliation(s)
- Valéry L. Payen
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Advanced Drug Delivery and Biomaterials (ADDB), LDRI Institute, Université catholique de Louvain, Brussels, Belgium
| | - Arnaud Lavergne
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Niki Alevra Sarika
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Advanced Drug Delivery and Biomaterials (ADDB), LDRI Institute, Université catholique de Louvain, Brussels, Belgium
| | - Megan Colonval
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Latifa Karim
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Manon Deckers
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
| | - Wouter Coppieters
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | | | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Corresponding authors. Address: Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Avenue Mounier 52 Box B1.52.03, 1200 Brussels, Belgium.
| | - Adil El Taghdouini
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Corresponding authors. Address: Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Avenue Mounier 52 Box B1.52.03, 1200 Brussels, Belgium.
| |
Collapse
|
39
|
Steinhoff JS, Lass A, Schupp M. Biological Functions of RBP4 and Its Relevance for Human Diseases. Front Physiol 2021; 12:659977. [PMID: 33790810 PMCID: PMC8006376 DOI: 10.3389/fphys.2021.659977] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body’s vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4’s actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
40
|
Apigenin Alleviates Liver Fibrosis by Inhibiting Hepatic Stellate Cell Activation and Autophagy via TGF- β1/Smad3 and p38/PPAR α Pathways. PPAR Res 2021; 2021:6651839. [PMID: 33574836 PMCID: PMC7861947 DOI: 10.1155/2021/6651839] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Objective The aim of this study is to confirm the hepatocellular protective functions of apigenin and the molecular mechanism on liver fibrosis in mice. Methods Carbon tetrachloride (CCl4) and bile duct ligature (BDL) mouse fibrosis models were used to investigate the effects of apigenin on liver fibrosis. Sixty-six male C57 mice were randomly divided into eight groups, including the vehicle group, CCl4 group, CCl4+L-apigenin (20 mg/kg) group, CCl4+H-apigenin (40 mg/kg) group, sham group, BDL group, BDL+L-apigenin(20 mg/kg) group, and BDL+H-apigenin(40 mg/kg) group. Serum liver enzymes (ALT and AST), proteins associated with autophagy, and indicators linked with the TGF-β1/Smad3 and p38/PPARα pathways were detected using qRT-PCR, immunohistochemical staining, and western blotting. Results Our findings confirmed that apigenin could decrease the levels of ALT and AST, suppress the generation of ECM, inhibit the activation of HSCs, regulate the balance of MMP2 and TIMP1, reduce the expression of autophagy-linked protein, and restrain the TGF-β1/Smad3 and p38/PPARα pathways. Conclusion Apigenin could alleviate liver fibrosis by inhibiting hepatic stellate cell activation and autophagy via TGF-β1/Smad3 and p38/PPARα pathways.
Collapse
|
41
|
Serum biomarker panel for the diagnosis of rheumatoid arthritis. Arthritis Res Ther 2021; 23:31. [PMID: 33461622 PMCID: PMC7812661 DOI: 10.1186/s13075-020-02405-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease of inflammatory joint damage, wherein C-reactive protein and autoantibodies including rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) are rapidly elevated. These serological factors are diagnostic markers of RA; however, their sensitivity and specificity for prediction warrant improvement for an early and accurate diagnosis. Methods We aimed to identify alternative biomarkers by serum protein profiling using LC-MS/MS. We performed statistical and functional analysis of differentially expressed proteins to identify biomarker candidates complementing conventional serological tests. Results Seven biomarker candidates were verified through multiple reaction monitoring-based quantitative analysis, of which angiotensinogen (AGT), serum amyloid A-4 protein (SAA4), vitamin D-binding protein (VDBP), and retinol-binding protein-4 (RBP4) had an area under the curve over 0.8, thus distinguishing RA patients, including seronegative (RF- and anti-CCP-negative) RA patients, from healthy controls. Conclusions Therefore, among seronegative RA patients, a four-biomarker panel (AGT, SAA4, VDBP, and RBP4) can prevent false negatives and help diagnose RA accurately.
Collapse
|
42
|
Trites MJ, Febbraio M, Clugston RD. Absence of CD36 alters systemic vitamin A homeostasis. Sci Rep 2020; 10:20386. [PMID: 33230291 PMCID: PMC7683526 DOI: 10.1038/s41598-020-77411-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Fatty acid translocase (CD36) is a scavenger receptor with multiple ligands and diverse physiological actions. We recently reported that alcohol-induced hepatic retinoid mobilization is impaired in Cd36-/- mice, leading us to hypothesize that CD36 has a novel role in hepatic vitamin A mobilization. Given the central role of the liver in systemic vitamin A homeostasis we also postulated that absence of CD36 would affect whole-body vitamin A homeostasis. We tested this hypothesis in aging wild type and Cd36-/- mice, as well as mice fed a vitamin A-deficient diet. In agreement with our hypothesis, Cd36-/- mice accumulated hepatic retinyl ester stores with age to a greater extent than wild type mice. However, contrary to expectations, Cd36-/- mice consuming a vitamin A-deficient diet mobilized hepatic retinoid similar to wild type mice. Interestingly, we observed that Cd36-/- mice had significantly reduced white adipose tissue retinoid levels compared to wild type mice. In conclusion, we demonstrate that the absence of CD36 alters whole-body vitamin A homeostasis and suggest that this phenotype is secondary to the impaired chylomicron metabolism previously reported in these mice.
Collapse
Affiliation(s)
- Michael J Trites
- Department of Physiology, University of Alberta, 7-49 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
- Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Febbraio
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Robin D Clugston
- Department of Physiology, University of Alberta, 7-49 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.
- Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
43
|
Fenzl A, Kulterer OC, Spirk K, Mitulović G, Marculescu R, Bilban M, Baumgartner-Parzer S, Kautzky-Willer A, Kenner L, Plutzky J, Quadro L, Kiefer FW. Intact vitamin A transport is critical for cold-mediated adipose tissue browning and thermogenesis. Mol Metab 2020; 42:101088. [PMID: 32992038 PMCID: PMC7585949 DOI: 10.1016/j.molmet.2020.101088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
Objective Transformation of white into brown fat (“browning”) reduces obesity in many preclinical models and holds great promise as a therapeutic concept in metabolic disease. Vitamin A metabolites (retinoids) have been linked to thermogenic programming of adipose tissue; however, the physiologic importance of systemic retinoid transport for adipose tissue browning and adaptive thermogenesis is unknown. Methods We performed cold exposure studies in mice and humans and used a genetic model of defective vitamin A transport, the retinol binding protein deficient (Rbp−/-) mouse, to study the effects of cooling on systemic vitamin A and the relevance of intact retinoid transport on cold-induced adipose tissue browning. Results We show that cold stimulation in mice and humans leads to an increase in circulating retinol and its plasma transporter, Rbp. In Rbp−/- mice, thermogenic programming of adipocytes and oxidative mitochondrial function are dramatically impaired in subcutaneous white fat, which renders Rbp−/- mice more cold-sensitive. In contrast, retinol stimulation in primary human adipocytes promotes thermogenic gene expression and mitochondrial respiration. In humans, cold-mediated retinol increase is associated with a shift in oxidative substrate metabolism suggestive of higher lipid utilisation. Conclusions Systemic vitamin A levels are regulated by cold exposure in mice and humans, and intact retinoid transport is essential for cold-induced adipose tissue browning and adaptive thermogenesis.
Collapse
Affiliation(s)
- Anna Fenzl
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Oana Cristina Kulterer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Katrin Spirk
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Goran Mitulović
- Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Jorge Plutzky
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Loredana Quadro
- Department of Food Science and Rutgers Centre for Lipid Research and New Jersey Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Florian W Kiefer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
44
|
Sun H, Burrola S, Wu J, Ding WQ. Extracellular Vesicles in the Development of Cancer Therapeutics. Int J Mol Sci 2020; 21:ijms21176097. [PMID: 32847103 PMCID: PMC7504131 DOI: 10.3390/ijms21176097] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-delimited nanoparticles released from all types of cells examined thus far. Several groups of EVs, including exosomes, microvesicles, and apoptotic bodies, have been identified according to their size and biogenesis. With extensive investigations on EVs over the last decade, it is now recognized that EVs play a pleiotropic role in various physiological processes as well as pathological conditions through mediating intercellular communication. Most notably, EVs have been shown to be involved in cancer initiation and progression and EV signaling in cancer are viewed as potential therapeutic targets. Furthermore, as membrane nanoparticles, EVs are natural products with some of them, such as tumor exosomes, possessing tumor homing propensity, thus leading to strategies utilizing EVs as drug carriers to effectively deliver cancer therapeutics. In this review, we summarize recent reports on exploring EVs signaling as potential therapeutic targets in cancer as well as on developing EVs as therapeutic delivery carriers for cancer therapy. Findings from preclinical studies are primarily discussed, with early phase clinical trials reviewed. We hope to provide readers updated information on the development of EVs as cancer therapeutic targets or therapeutic carriers.
Collapse
Affiliation(s)
- Haoyao Sun
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Stephanie Burrola
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
| | - Jinchang Wu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
- Section of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
- Correspondence: (J.W.); (W.-Q.D.); Tel.: +86-1377-604-8328 (J.W.); +1-405-271-1605 (W.-Q.D.)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
- Correspondence: (J.W.); (W.-Q.D.); Tel.: +86-1377-604-8328 (J.W.); +1-405-271-1605 (W.-Q.D.)
| |
Collapse
|
45
|
Wan S, Pan Q, Yang G, Kuang J, Luo S. Role of CYP4F2 as a novel biomarker regulating malignant phenotypes of liver cancer cells via the Nrf2 signaling axis. Oncol Lett 2020; 20:13. [PMID: 32774486 PMCID: PMC7405372 DOI: 10.3892/ol.2020.11874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent types of cancer worldwide. The present study attempted to identify a prognostic biomarker for HCC. RNA sequencing data from the GSE63863 dataset were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified based on a protein-protein interaction (PPI) network, and prognostic evaluation was subsequently conducted. Following lentiviral transfection, the migratory, proliferative and apoptotic abilities of cells were evaluated using wound healing, Cell Counting Kit-8, Transwell migration and apoptosis assays. A total of 192 DEGs were identified from 11 pairs of HCC and matched non-tumor samples. The PPI network revealed the top three modules, and eight genes were identified from these modules. The expression levels of cytochrome P450 family 4 subfamily F member 2 (CYP4F2) were downregulated in 50 HCC samples from The Cancer Genome Atlas and in the HCC Hep3B cell line. Low CYP4F2 expression was associated with a lower overall survival time. Functional studies revealed that CYP4F2 overexpression inhibited HCC cell proliferation and migration, and induced apoptosis. Furthermore, CYP4F2 overexpression repressed the expression of genes in the nuclear factor, erythroid 2 like 2 (Nrf2) signaling pathway, including Nrf2, heme oxygenase-1 and ferritin heavy chain 1, while increasing NAD(P)H quinone dehydrogenase 1 expression, suggesting that CYP4F2 overexpression reversed the antioxidant response of liver cancer cells. Overall, the present findings indicated that CYP4F2 may be a potential prognostic biomarker for predicting tumorigenesis and long-term survival rates in patients with HCC.
Collapse
Affiliation(s)
- Shunyuan Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qi Pan
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Guang Yang
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Kuang
- Department of Medical Affairs, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Shiqiao Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
46
|
Kamran U, Towey J, Khanna A, Chauhan A, Rajoriya N, Holt A. Nutrition in alcohol-related liver disease: Physiopathology and management. World J Gastroenterol 2020; 26:2916-2930. [PMID: 32587439 PMCID: PMC7304106 DOI: 10.3748/wjg.v26.i22.2916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Malnutrition encompassing both macro- and micro-nutrient deficiency, remains one of the most frequent complications of alcohol-related liver disease (ArLD). Protein-energy malnutrition can cause significant complications including sarcopenia, frailty and immunodepression in cirrhotic patients. Malnutrition reduces patient’s survival and negatively affects the quality of life of individuals with ArLD. Moreover, nutritional deficit increases the likelihood of hepatic decompensation in cirrhosis. Prompt recognition of at-risk individuals, early diagnosis and treatment of malnutrition remains a key component of ArLD management. In this review, we describe the pathophysiology of malnutrition in ArLD, review the screening tools available for nutritional assessment and discuss nutritional management strategies relevant to the different stages of ArLD, ranging from acute alcoholic hepatitis through to decompensated end stage liver disease.
Collapse
Affiliation(s)
- Umair Kamran
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, United Kingdom
| | - Jennifer Towey
- Department of Dietetics, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, United Kingdom
| | - Amardeep Khanna
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, United Kingdom
| | - Abhishek Chauhan
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, United Kingdom
- Centre for Liver Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Neil Rajoriya
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, United Kingdom
| | - Andrew Holt
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, United Kingdom
| |
Collapse
|
47
|
Croce AC, Ferrigno A, Berardo C, Bottiroli G, Vairetti M, Di Pasqua LG. Spectrofluorometric Analysis of Autofluorescing Components of Crude Serum from a Rat Liver Model of Ischemia and Reperfusion. Molecules 2020; 25:molecules25061327. [PMID: 32183261 PMCID: PMC7144569 DOI: 10.3390/molecules25061327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Autofluorescence (AF) of crude serum was investigated with reference to the potential of its intrinsic AF biomarkers for the noninvasive diagnosis of liver injury. Spectral parameters of pure compounds representing retinol (vitamin A) and fluorescing free fatty acids were characterized by spectrofluorometry, to assess spectral parameters for the subsequent AF analysis of serum, collected from rats undergoing liver ischemia/reperfusion (I/R). Differences in AF spectral profiles detected between control and I/R were due to the increase in the AF components representing fatty acids in I/R serum samples. No significant changes occurred for retinol levels, consistently with the literature reporting that constant retinol levels are commonly observed in the blood, except for malnutrition or chronic severe liver disease. Conversely, fatty acids, in particular arachidonic and linoleic acid and their derivatives, act as modulating agents in inflammation, representing both a protective and damaging response to stress stimuli. The biometabolic and pathophysiological meaning of serum components and the possibility of their direct detection by AF spectrofluorometry open up interesting perspectives for the development of AF serum analysis, as a direct, cost effective, supportive tool to assess liver injury and related systemic metabolic alterations, for applications in experimental biomedicine and foreseen translation to the clinics.
Collapse
Affiliation(s)
- Anna C. Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy;
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-986-428
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| | - Giovanni Bottiroli
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy;
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| | - Laura G. Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| |
Collapse
|
48
|
Wang H, Lu CH, Ho PC. Metabolic adaptation orchestrates tissue context-dependent behavior in regulatory T cells. Immunol Rev 2020; 295:126-139. [PMID: 32147869 DOI: 10.1111/imr.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
The diverse distribution and functions of regulatory T cells (Tregs) ensure tissue and immune homeostasis; however, it remains unclear which factors can guide distribution, local differentiation, and tissue context-specific behavior in Tregs. Although the emerging concept that Tregs could re-adjust their transcriptome based on their habitations is supported by recent findings, the underlying mechanisms that reprogram transcriptome in Tregs are unknown. In the past decade, metabolic machineries have been revealed as a new regulatory circuit, known as immunometabolic regulation, to orchestrate activation, differentiation, and functions in a variety of immune cells, including Tregs. Given that systemic and local alterations of nutrient availability and metabolite profile associate with perturbation of Treg abundance and functions, it highlights that immunometabolic regulation may be one of the mechanisms that orchestrate tissue context-specific regulation in Tregs. The understanding on how metabolic program instructs Tregs in peripheral tissues not only represents a critical opportunity to delineate a new avenue in Treg biology but also provides a unique window to harness Treg-targeting approaches for treating cancer and autoimmunity with minimizing side effects. This review will highlight the metabolic features on guiding Treg formation and function in a disease-oriented perspective and aim to pave the foundation for future studies.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Chun-Hao Lu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
49
|
Carotenoids and fatty liver disease: Current knowledge and research gaps. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158597. [PMID: 31904420 DOI: 10.1016/j.bbalip.2019.158597] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022]
Abstract
Carotenoids form an important part of the human diet, consumption of which has been associated with many health benefits. With the growing global burden of liver disease, increasing attention has been paid on the possible beneficial role that carotenoids may play in the liver. This review focuses on carotenoid actions in non-alcoholic fatty liver disease (NAFLD), and alcoholic liver disease (ALD). Indeed, many human studies have suggested an association between decreased circulating levels of carotenoids and increased incidence of NAFLD and ALD. The literature describing supplementation of individual carotenoids in rodent models of NAFLD and ALD is reviewed, with particular attention paid to β-carotene and lycopene, but also including β-cryptoxanthin, lutein, zeaxanthin, and astaxanthin. The effect of beta-carotene oxygenase 1 and 2 knock-out mice on hepatic lipid metabolism is also discussed. In general, there is evidence to suggest that carotenoids have beneficial effects in animal models of both NAFLD and ALD. Mechanistically, these benefits may occur via three possible modes of action: 1) improved hepatic antioxidative status broadly attributed to carotenoids in general, 2) the generation of vitamin A from β-carotene and β-cryptoxanthin, leading to improved hepatic retinoid signaling, and 3) the generation of apocarotenoid metabolites from β-carotene and lycopene, that may regulate hepatic signaling pathways. Gaps in our knowledge regarding carotenoid mechanisms of action in the liver are highlighted throughout, and the review ends by emphasizing the importance of dose effects, mode of delivery, and mechanism of action as important areas for further study. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
|
50
|
Zhang DM, Luo Y, Yishake D, Liu ZY, He TT, Luo Y, Zhang YJ, Fang AP, Zhu HL. Prediagnostic dietary intakes of vitamin A and β-carotene are associated with hepatocellular-carcinoma survival. Food Funct 2020; 11:759-767. [DOI: 10.1039/c9fo02468a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vitamin A and its precursor (β-carotene) have been linked with cancer incidence and mortality.
Collapse
Affiliation(s)
- Dao-ming Zhang
- Department of Nutrition
- School of Public Health
- Sun Yat-sen University
- Guangzhou 510080
- People's Republic of China
| | - Yun Luo
- Department of Nutrition
- School of Public Health
- Sun Yat-sen University
- Guangzhou 510080
- People's Republic of China
| | - Dinuerguli Yishake
- Department of Nutrition
- School of Public Health
- Sun Yat-sen University
- Guangzhou 510080
- People's Republic of China
| | - Zhao-yan Liu
- Department of Nutrition
- School of Public Health
- Sun Yat-sen University
- Guangzhou 510080
- People's Republic of China
| | - Tong-tong He
- Department of Nutrition
- School of Public Health
- Sun Yat-sen University
- Guangzhou 510080
- People's Republic of China
| | - Yan Luo
- Department of Nutrition
- School of Public Health
- Sun Yat-sen University
- Guangzhou 510080
- People's Republic of China
| | - Yao-jun Zhang
- Department of Hepatobiliary Oncology
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- People's Republic of China
- State Key Laboratory of Oncology in South China
| | - Ai-ping Fang
- Department of Nutrition
- School of Public Health
- Sun Yat-sen University
- Guangzhou 510080
- People's Republic of China
| | - Hui-lian Zhu
- Department of Nutrition
- School of Public Health
- Sun Yat-sen University
- Guangzhou 510080
- People's Republic of China
| |
Collapse
|