1
|
Çetinel ZÖ, Bilge D. Investigation of miltefosine-model membranes interactions at the molecular level for two different PS levels modeling cancer cells. J Bioenerg Biomembr 2024; 56:461-473. [PMID: 38833041 PMCID: PMC11217121 DOI: 10.1007/s10863-024-10025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Miltefosine (MLT) is a broad-spectrum drug included in the alkylphospholipids (APL) used against leishmania and various types of cancer. The most crucial feature of APLs is that they are thought to only kill cancerous cells without harming normal cells. However, the molecular mechanism of action of APLs is not completely understood. The increase in the phosphatidylserine (PS) ratio is a marker showing the stage of cancer and even metastasis. The goal of this research was to investigate the molecular effects of miltefosine at the molecular level in different PS ratios. The effects of MLT on membrane phase transition, membrane orders, and dynamics were studied using DPPC/DPPS (3:1) and DPPC/DPPS (1:1) multilayer (MLV) vesicles mimicking DPPS ratio variation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared spectroscopy (FTIR). Our findings indicate that miltefosine is evidence at the molecular level that it is directed towards the tumor cell and that the drug's effect increases with the increase of anionic lipids in the membrane depending on the stage of cancer.
Collapse
Affiliation(s)
| | - Duygu Bilge
- Department of Physics, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey.
| |
Collapse
|
2
|
Zambrano P, Manrique-Moreno M, Petit K, Colina JR, Jemiola-Rzeminska M, Suwalsky M, Strzalka K. Differential scanning calorimetry in drug-membrane interactions. Biochem Biophys Res Commun 2024; 709:149806. [PMID: 38579619 DOI: 10.1016/j.bbrc.2024.149806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.
Collapse
Affiliation(s)
- Pablo Zambrano
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Marcela Manrique-Moreno
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin, 050010, Antioquia, Colombia
| | - Karla Petit
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción, Chile
| | - José R Colina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
3
|
Dakir EH, Gajate C, Mollinedo F. Antitumor activity of alkylphospholipid edelfosine in prostate cancer models and endoplasmic reticulum targeting. Biomed Pharmacother 2023; 167:115436. [PMID: 37683591 DOI: 10.1016/j.biopha.2023.115436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer death among men worldwide. While the five-year survival in local and regional prostate cancer is higher than 99%, it falls to about 28% in advanced metastatic prostate cancer. The ether lipid edelfosine is considered the prototype of a family of promising antitumor drugs collectively named as alkylphospholipid analogs. Here, we found that edelfosine was the most potent alkylphospholipid analog in inducing apoptosis in three different human prostate cancer cell lines (LNCaP, PC3, and DU145) with distinct androgen dependency, and differing in tumor suppressor phosphatase and tensin homolog (PTEN) and p53 status. Edelfosine accumulated in the endoplasmic reticulum of prostate cancer cells, leading to endoplasmic reticulum stress and cell death in the three prostate cancer cells. Inhibition of autophagy potentiated the pro-apoptotic activity of edelfosine in LNCaP and PC3 cells, where autophagy was induced as a survival response. Edelfosine induced a slight and transient inhibition of AKT in PTEN-negative LNCaP and PC3 cells, but not in PTEN-positive DU145 cells. Daily oral administration of edelfosine in murine prostate restricted AKT kinase transgenic mice, expressing active AKT in a prostate-specific manner, and in a DU145 xenograft mouse model resulted in significant tumor regression and apoptosis in tumor cells. Taken together, these results show a significant in vitro and in vivo antitumor activity of edelfosine against prostate cancer, and highlight the endoplasmic reticulum as a novel and promising therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- El-Habib Dakir
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Faculty of Biology, University of Latvia, Riga, Latvia.
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
4
|
Vit O, Talacko P, Musil Z, Hartmann I, Pacak K, Petrak J. Identification of potential molecular targets for the treatment of cluster 1 human pheochromocytoma and paraganglioma via comprehensive proteomic characterization. Clin Proteomics 2023; 20:39. [PMID: 37749499 PMCID: PMC10518975 DOI: 10.1186/s12014-023-09428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors. New drug targets and proteins that would assist sensitive PPGL imagining could improve therapy and quality of life of patients with PPGL, namely those with recurrent or metastatic disease. Using a combined proteomic strategy, we looked for such clinically relevant targets among integral membrane proteins (IMPs) upregulated on the surface of tumor cells and non-membrane druggable enzymes in PPGL. METHODS We conducted a detailed proteomic analysis of 22 well-characterized human PPGL samples and normal chromaffin tissue from adrenal medulla. A standard quantitative proteomic analysis of tumor lysate, which provides information largely on non-membrane proteins, was accompanied by specific membrane proteome-aimed methods, namely glycopeptide enrichment using lectin-affinity, glycopeptide capture by hydrazide chemistry, and enrichment of membrane-embedded hydrophobic transmembrane segments. RESULTS The study identified 67 cell surface integral membrane proteins strongly upregulated in PPGL compared to control chromaffin tissue. We prioritized the proteins based on their already documented direct role in cancer cell growth or progression. Increased expression of the seven most promising drug targets (CD146, CD171, ANO1, CD39, ATP8A1, ACE and SLC7A1) were confirmed using specific antibodies. Our experimental strategy also provided expression data for soluble proteins. Among the druggable non-membrane enzymes upregulated in PPGL, we identified three potential drug targets (SHMT2, ARG2 and autotaxin) and verified their upregulated expression. CONCLUSIONS Application of a combined proteomic strategy recently presented as "Pitchfork" enabled quantitative analysis of both, membrane and non-membrane proteome, and resulted in identification of 10 potential drug targets in human PPGL. Seven membrane proteins localized on the cell surface and three non-membrane druggable enzymes proteins were identified and verified as significantly upregulated in PPGL. All the proteins have been previously shown to be upregulated in several human cancers, and play direct role in cancer progression. Marked upregulation of these proteins along with their localization and established direct roles in tumor progression make these molecules promising candidates as drug targets or proteins for sensitive PPGL imaging.
Collapse
Affiliation(s)
- Ondrej Vit
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, 25250, Czech Republic
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Zdenek Musil
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, 12800, Czech Republic
| | - Igor Hartmann
- Department of Urology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, 77900, Czech Republic
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, 25250, Czech Republic.
| |
Collapse
|
5
|
Marsh IR, Li C, Grudzinski J, Jeffery J, Longhurst C, Adam DP, Hernandez R, Weichert JP, Harari PM, Bednarz BP. Targeting of Head and Neck Cancer by Radioiodinated CLR1404 in Murine Xenograft Tumor Models with Partial Volume Corrected Theranostic Dosimetry. Cancer Biother Radiopharm 2023; 38:458-467. [PMID: 37022739 PMCID: PMC10516227 DOI: 10.1089/cbr.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Background: Delivery of radiotherapeutic dose to recurrent head and neck cancer (HNC) is primarily limited by locoregional toxicity in conventional radiotherapy. As such, HNC patients stand to benefit from the conformal targeting of primary and remnant disease achievable with radiopharmaceutical therapies. In this study, the authors investigated the tumor targeting capacity of 131I-CLR1404 (iopofosine I-131) in various HNC xenograft mouse models and the impact of partial volume correction (PVC) on theranostic dosimetry based on 124I-CLR1404 (CLR 124) positron emission tomography (PET)/computed tomography (CT) imaging. Methods: Mice bearing flank tumor xenograft models of HNC (six murine cell line and six human patient derived) were intravenously administered 6.5-9.1 MBq of CLR 124 and imaged five times over the course of 6 d using microPET/CT. In vivo tumor uptake of CLR 124 was assessed and PVC for 124I was applied using a novel preclinical phantom. Using subject-specific theranostic dosimetry estimations for iopofosine I-131 based on CLR 124 imaging, a discrete radiation dose escalation study (2, 4, 6, and 8 Gy) was performed to evaluate tumor growth response to iopofosine I-131 relative to a single fraction of external beam radiation therapy (6 Gy). Results: PET imaging demonstrated consistent tumor selective uptake and retention of CLR 124 across all HNC xenograft models. Peak uptake of 4.4% ± 0.8% and 4.2% ± 0.4% was observed in squamous cell carcinoma-22B and UW-13, respectively. PVC application increased uptake measures by 47%-188% and reduced absolute differences between in vivo and ex vivo uptake measurements from 3.3% to 1.0 percent injected activity per gram. Tumor dosimetry averaged over all HNC models was 0.85 ± 0.27 Gy/MBq (1.58 ± 0.46 Gy/MBq with PVC). Therapeutic iopofosine I-131 studies demonstrated a variable, but linear relationship between iopofosine I-131 radiation dose and tumor growth delay (p < 0.05). Conclusions: Iopofosine I-131 demonstrated tumoricidal capacity in preclinical HNC tumor models and the theranostic pairing with CLR 124 presents a promising new treatment approach for personalizing administration of iopofosine I-131.
Collapse
Affiliation(s)
- Ian R. Marsh
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chunrong Li
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph Grudzinski
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Justin Jeffery
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Colin Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David P. Adam
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P. Weichert
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul M. Harari
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bryan P. Bednarz
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
In Vitro Study of Cytotoxic Mechanisms of Alkylphospholipids and Alkyltriazoles in Acute Lymphoblastic Leukemia Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238633. [PMID: 36500726 PMCID: PMC9737184 DOI: 10.3390/molecules27238633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
This study investigates the efficacy of miltefosine, alkylphospholipid, and alkyltriazolederivative compounds against leukemia lineages. The cytotoxic effects and cellular and molecular mechanisms of the compounds were investigated. The inhibitory potential and mechanism of inhibition of cathepsins B and L, molecular docking simulation, molecular dynamics and binding free energy evaluation were performed to determine the interaction of cathepsins and compounds. Among the 21 compounds tested, C9 and C21 mainly showed cytotoxic effects in Jurkat and CCRF-CEM cells, two human acute lymphoblastic leukemia (ALL) lineages. Activation of induced cell death by C9 and C21 with apoptotic and necrosis-like characteristics was observed, including an increase in annexin-V+propidium iodide-, annexin-V+propidium iodide+, cleaved caspase 3 and PARP, cytochrome c release, and nuclear alterations. Bax inhibitor, Z-VAD-FMK, pepstatin, and necrostatin partially reduced cell death, suggesting that involvement of the caspase-dependent and -independent mechanisms is related to cell type. Compounds C9 and C21 inhibited cathepsin L by a noncompetitive mechanism, and cathepsin B by a competitive and noncompetitive mechanism, respectively. Complexes cathepsin-C9 and cathepsin-C21 exhibited significant hydrophobic interactions, water bridges, and hydrogen bonds. In conclusion, alkyltriazoles present cytotoxic activity against acute lymphoblastic lineages and represent a promising scaffold for the development of molecules for this application.
Collapse
|
7
|
Momchilova A, Nikolaev G, Pankov S, Vassileva E, Krastev N, Robev B, Krastev D, Pinkas A, Pankov R. Effect of Quercetin and Fingolimod, Alone or in Combination, on the Sphingolipid Metabolism in HepG2 Cells. Int J Mol Sci 2022; 23:ijms232213916. [PMID: 36430423 PMCID: PMC9697772 DOI: 10.3390/ijms232213916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Combinations of anti-cancer drugs can overcome resistance to therapy and provide new more effective treatments. In this work we have analyzed the effect of the polyphenol quercetin and the anti-cancer sphingosine analog fingolimod on the sphingolipid metabolism in HepG2 cells, since sphingolipids are recognized as mediators of cell proliferation and apoptosis in cancer cells. Treatment of hepatocellular carcinoma HepG2 cells with quercetin and fingolimod, alone or in combination, induced different degrees of sphingomyelin (SM) reduction and a corresponding activation of neutral sphingomyelinase (nSMase). Western blot analysis showed that only treatments containing quercetin induced up-regulation of nSMase expression. The same treatment caused elevation of ceramide (CER) levels, whereas the observed alterations in sphingosine (SPH) content were not statistically significant. The two tested drugs induced a reduction of the pro-proliferative sphingolipid, sphingosine 1 phosphate (S1P), in the following order: quercetin, fingolimod, quercetin + fingolimod. The activity of the enzyme responsible for CER hydrolysis, alkaline ceramidase (ALCER) was down-regulated only in the incubations involving quercetin and fingolimod did not affect this activity. The enzyme, maintaining the balance between apoptosis and proliferation, sphingosine kinase 1 (SK1), was down-regulated by incubations in the following order: quercetin, fingolimod, quercetin + fingolimod. Western blot analysis showed down-regulation in SK1 expression upon quercetin but not upon fingolimod treatment. Studies on the effect of quercetin and fingolimod on the two proteins associated with apoptotic events, AKT and Bcl-2, showed that only quercetin, alone or in combination, down-regulated the activity of the two proteins. The reported observations provide information which can be useful in the search of novel anti-tumor approaches, aiming at optimization of the therapeutic effect and maximal preservation of healthy tissues.
Collapse
Affiliation(s)
- Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-9792686 or +359-898-238971
| | - Georgi Nikolaev
- Biological Faculty, Sofia University “St. Kliment Ohridki”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Stefan Pankov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Evgenia Vassileva
- Clinic of Neurology, Tsaritsa Yoanna University Hospital-ISUL, 1527 Sofia, Bulgaria
| | - Nikolai Krastev
- Department of Anatomy, Histology and Embryology, Medical University-Sofia, Blvd. Sv. Georgi Sofiisky 1, 1431 Sofia, Bulgaria
| | - Bozhil Robev
- Department of Medical Oncology, University Multi-Profile Hospital for Active Treatment (UMHAT) “St. Ivan Rilski”, 1606 Sofia, Bulgaria
| | - Dimo Krastev
- Medical College “Y. Filaretova”, Medical University-Sofia, Yordanka Filaretova Str. 3, 1606 Sofia, Bulgaria
| | - Adriana Pinkas
- CSTEP, Office of Continuing Education, Suffolk County Community College 30 Greene Ave., Sayville, NY 11782, USA
| | - Roumen Pankov
- Biological Faculty, Sofia University “St. Kliment Ohridki”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| |
Collapse
|
8
|
The Potential of Novel Lipid Agents for the Treatment of Chemotherapy-Resistant Human Epithelial Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14143318. [PMID: 35884379 PMCID: PMC9322924 DOI: 10.3390/cancers14143318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Disease recurrence and chemotherapy resistance are the major causes of mortality for the majority of epithelial ovarian cancer (EOC) patients. Standard of care relies on cytotoxic drugs that induce a form of cell death called apoptosis. EOC cells can evolve to resist apoptosis. We developed drugs called glycosylated antitumor ether lipids (GAELs) that kill EOC cells by a mechanism that does not involve apoptosis. GAELs most likely induce cell death through a process called methuosis. Importantly, we showed that GAELs are effective at killing chemotherapy-resistant EOC cells in vitro and in vivo. Our work shows that the EOC community should begin to investigate methuosis-inducing agents as a novel therapeutic platform to treat chemotherapy-resistant EOC. Abstract Recurrent epithelial ovarian cancer (EOC) coincident with chemotherapy resistance remains the main contributor to patient mortality. There is an ongoing investigation to enhance patient progression-free and overall survival with novel chemotherapeutic delivery, such as the utilization of antiangiogenic medications, PARP inhibitors, or immune modulators. Our preclinical studies highlight a novel tool to combat chemotherapy-resistant human EOC. Glycosylated antitumor ether lipids (GAELs) are synthetic glycerolipids capable of killing established human epithelial cell lines from a wide variety of human cancers, including EOC cell lines representative of different EOC histotypes. Importantly, GAELs kill high-grade serous ovarian cancer (HGSOC) cells isolated from the ascites of chemotherapy-sensitive and chemotherapy-resistant patients grown as monolayers of spheroid cultures. In addition, GAELs were well tolerated by experimental animals (mice) and were capable of reducing tumor burden and blocking ascites formation in an OVCAR-3 xenograft model. Overall, GAELs show great promise as adjuvant therapy for EOC patients with or without chemotherapy resistance.
Collapse
|
9
|
Çetinel ZÖ, Bilge D. The effects of miltefosine on the structure and dynamics of DPPC and DPPS liposomes mimicking normal and cancer cell membranes: FTIR and DSC studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Abdik H. Antineoplastic effects of erufosine on small cell and non-small cell lung cancer cells through induction of apoptosis and cell cycle arrest. Mol Biol Rep 2022; 49:2963-2971. [PMID: 35015224 DOI: 10.1007/s11033-022-07117-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung cancer (LC) is the most common types of cancer worldwide and is marked by high mortality rate. LC is classified into two major types due to their molecular and histological properties; non-small cell lung cancer (NSCLC) A549 and small cell lung cancer (SCLC). Currently, surgery, chemotherapy and radiation therapy are the most common treatment options of LC. However, the survival rate of LC is still very poor. Therefore, new treatment strategies are urgently needed. Erufosine (ErPC3) is a novel alkylphosphocholine and inhibits the translocation of Akt to the plasma membrane. METHODS AND RESULTS In the current study, the effects of ErPC3 in NSCLC cell line A549 and SCLC cell line DMS 114 in terms of cell viability, induction of apoptosis, cell cycle phase distribution, gene and protein expression levels, and migration capacity were investigated. 25 µM ErPC3 exhibited dose-dependent cytotoxicity against in both cancer cells. However, DMS 114 was more sensitive to ErPC3 than A549. Similarly, ErPC3 induced apoptotic cell ratio in DMS114 was significantly greater than A549. 25 µM ErPC3 caused the accumulation of both cell in G2/M phase. The levels of BCL-2 were downregulated and CASPASE 3-7 and BAX were upregulated while p-Akt levels were reduced in A549 and DMS 114 cells treated with 25 µM ErPC3. Besides, ErPC3 displayed anti-migratory effect on A549 and DMS 114. CONCLUSION These findings suggest that ErPC3 may be a promising novel therapeutic candidate for treatment of LC. ErPC3 treatment merits further investigation as potential agent against LC.
Collapse
Affiliation(s)
- Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
11
|
de Castro PF, Maria DA, de Campos Pinto ACFB, Patricio GCF, Matera JM. Local tumour response to neoadjuvant therapy with 2-aminoethyl dihydrogen phosphate in dogs with soft tissue sarcoma. Vet Med Sci 2022; 8:990-1000. [PMID: 35191220 PMCID: PMC9122438 DOI: 10.1002/vms3.757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In cases of soft tissue sarcoma (STS), neoadjuvant therapy is indicated to downstage the tumour prior to surgery to achieve enhanced local tumour control. The antineoplastic phospholipid compound 2-aminoethyl dihydrogen phosphate (2-AEH2F) is an alkyl phosphate ester capable of inhibiting cell proliferation and inducing cell death by modifying the asymmetry of phospholipids in the cytoplasmic membrane OBJECTIVES: This clinical study was designed to investigate local antitumoural effects of neoadjuvant therapy with 2-AEH2F in dogs with naturally occurring STS MATERIAL AND METHODS: Dogs (n = 11) received four consecutive weekly intravenous injections of 2-AEH2F (70 mg/kg) prior to tumour resection. Tomographic (CT) and thermal (TE) images were used to investigate changes in tumour size and local temperature in response to treatment RESULTS: Comparative analysis of CT images (n = 9/11) failed to reveal complete or partial remission according to selected assessment criteria (RECIST, WHO and volumetric). Comparative analysis of TE images (n = 10/11) revealed significantly (p = 0.01416) lower temperatures in tumoural areas relative to surrounding tissues over the course of treatment CONCLUSIONS: 2-AEH2F had no cytoreductive effects when used at doses and intervals described in this study. However, significant drop in skin temperatures recorded in tumoural areas suggest induction of physiological changes.
Collapse
Affiliation(s)
- Patrícia Ferreira de Castro
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Julia Maria Matera
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Wang T, Ma F, Qian HL. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:82-95. [PMID: 34703878 PMCID: PMC8517097 DOI: 10.1016/j.omto.2021.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Mitochondrial ATP synthase (MAS) produces most of the ATP that drives the cell. High expression of the MAS-composing proteins is found during cancer and is linked to a poor prognosis in glioblastoma, ovarian cancer, prostate cancer, breast cancer, and clear cell renal cell carcinoma. Cell surface-expressed ATP synthase, translocated from mitochondrion to cell membrane, involves the angiogenesis, tumorigenesis, and metastasis of cancer. ATP synthase has therefore been considered a therapeutic target. We review recent various ATP synthase inhibitors that suppress tumor growth and are being tested for the clinic.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
13
|
Taniguchi K, Suzuki T, Okamura T, Kurita A, Nohara G, Ishii S, Kado S, Takagi A, Tsugane M, Shishido Y. Perifosine, a Bioavailable Alkylphospholipid Akt Inhibitor, Exhibits Antitumor Activity in Murine Models of Cancer Brain Metastasis Through Favorable Tumor Exposure. Front Oncol 2021; 11:754365. [PMID: 34804943 PMCID: PMC8600181 DOI: 10.3389/fonc.2021.754365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
Metastatic brain tumors are regarded as the most advanced stage of certain types of cancer; however, chemotherapy has played a limited role in the treatment of brain metastases. Here, we established murine models of brain metastasis using cell lines derived from human brain metastatic tumors, and aimed to explore the antitumor efficacy of perifosine, an orally active allosteric Akt inhibitor. We evaluated the effectiveness of perifosine by using it as a single agent in ectopic and orthotopic models created by injecting the DU 145 and NCI-H1915 cell lines into mice. Initially, the injected cells formed distant multifocal lesions in the brains of NCI-H1915 mice, making surgical resection impractical in clinical settings. We determined that perifosine could distribute into the brain and remain localized in that region for a long period. Perifosine significantly prolonged the survival of DU 145 and NCI-H1915 orthotopic brain tumor mice; additionally, complete tumor regression was observed in the NCI-H1915 model. Perifosine also elicited much stronger antitumor responses against subcutaneous NCI-H1915 growth; a similar trend of sensitivity to perifosine was also observed in the orthotopic models. Moreover, the degree of suppression of NCI-H1915 tumor growth was associated with long-term exposure to a high level of perifosine at the tumor site and the resultant blockage of the PI3K/Akt signaling pathway, a decrease in tumor cell proliferation, and increased apoptosis. The results presented here provide a promising approach for the future treatment of patients with metastatic brain cancers and emphasize the importance of enriching a patient population that has a higher probability of responding to perifosine.
Collapse
Affiliation(s)
| | - Tomo Suzuki
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Tomomi Okamura
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Akinobu Kurita
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Gou Nohara
- Pharmaceutical Research & Development Department, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Satoru Ishii
- Pharmaceutical Research & Development Department, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Shoichi Kado
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Akimitsu Takagi
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Momomi Tsugane
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
14
|
Geroldinger-Simić M, Bögl T, Himmelsbach M, Sepp N, Buchberger W. Changes in Plasma Phospholipid Metabolism Are Associated with Clinical Manifestations of Systemic Sclerosis. Diagnostics (Basel) 2021; 11:diagnostics11112116. [PMID: 34829463 PMCID: PMC8625116 DOI: 10.3390/diagnostics11112116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with fibrosis of the skin and/or internal organs, causing a decrease in quality of life and survival. There is no causative therapy, and the pathophysiology of the SSc remains unclear. Studies showed that lipid metabolism was relevant for autoimmune diseases, but little is known about the role of lipids in SSc. In the present study, we sought to explore the phospholipid profile of SSc by using the lipidomics approach. We also aimed to analyze lipidomics results for different clinical manifestations of SSc. Experiments were performed using high-performance liquid chromatography coupled to mass spectrometry for the lipidomic profiling of plasma samples from patients with SSc. Our study showed, for the first time, significant changes in the level of phospholipids such as plasmalogens and sphingomyelins from the plasma of SSc patients as compared to controls. Phosphatidylcholine plasmalogens species and sphingomyelins were significantly increased in SSc patients as compared to controls. Our results also demonstrated a significant association of changes in the metabolism of phospholipids (phosphatidylcholine and phosphatidylethanolamine plasmalogens species and sphingomyelins) with different clinical manifestations of SSc. Further lipidomic studies might lead to the detection of lipids as new biomarkers or therapeutic targets of SSc.
Collapse
Affiliation(s)
- Marija Geroldinger-Simić
- Department of Dermatology, Ordensklinikum Linz Elisabethinen, 4020 Linz, Austria;
- Faculty of Medicine, Johannes Kepler University Linz, 4040 Linz, Austria
- Correspondence:
| | - Thomas Bögl
- Institute for Analytical and General Chemistry, Johannes Kepler University Linz, 4040 Linz, Austria; (T.B.); (M.H.); (W.B.)
| | - Markus Himmelsbach
- Institute for Analytical and General Chemistry, Johannes Kepler University Linz, 4040 Linz, Austria; (T.B.); (M.H.); (W.B.)
| | - Norbert Sepp
- Department of Dermatology, Ordensklinikum Linz Elisabethinen, 4020 Linz, Austria;
| | - Wolfgang Buchberger
- Institute for Analytical and General Chemistry, Johannes Kepler University Linz, 4040 Linz, Austria; (T.B.); (M.H.); (W.B.)
| |
Collapse
|
15
|
Wdowiak P, Matysiak J, Kuszta P, Czarnek K, Niezabitowska E, Baj T. Quinazoline Derivatives as Potential Therapeutic Agents in Urinary Bladder Cancer Therapy. Front Chem 2021; 9:765552. [PMID: 34805097 PMCID: PMC8595829 DOI: 10.3389/fchem.2021.765552] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer diseases remain major health problems in the world despite significant developments in diagnostic methods and medications. Many of the conventional therapies, however, have limitations due to multidrug resistance or severe side effects. Bladder cancer is a complex disorder, and can be classified according to its diverse genetic backgrounds and clinical features. A very promising direction in bladder cancer treatment is targeted therapy directed at specific molecular pathways. Derivatives of quinazolines constitute a large group of chemicals with a wide range of biological properties, and many quinazoline derivatives are approved for antitumor clinical use, e.g.,: erlotinib, gefitinib, afatinib, lapatinib, and vandetanib. The character of these depends mostly on the properties of the substituents and their presence and position on one of the cyclic compounds. Today, new quinazoline-based compounds are being designed and synthesized as potential drugs of anticancer potency against bladder cancers.
Collapse
Affiliation(s)
- Paulina Wdowiak
- Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Joanna Matysiak
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Kuszta
- Student Research Group at the Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ewa Niezabitowska
- Department of Urology and Urological Oncology, Multidisciplinary Hospital in Lublin, Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
16
|
Park S, Kim J, Choi J, Lee C, Lee W, Park S, Park Z, Baek J, Nam J. Lipid raft-disrupting miltefosine preferentially induces the death of colorectal cancer stem-like cells. Clin Transl Med 2021; 11:e552. [PMID: 34841679 PMCID: PMC8567043 DOI: 10.1002/ctm2.552] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Lipid rafts (LRs), cholesterol-enriched microdomains on cell membranes, are increasingly viewed as signalling platforms governing critical facets of cancer progression. The phenotype of cancer stem-like cells (CSCs) presents significant hurdles for successful cancer treatment, and the expression of several CSC markers is associated with LR integrity. However, LR implications in CSCs remain unclear. METHODS This study evaluated the biological and molecular functions of LRs in colorectal cancer (CRC) by using an LR-disrupting alkylphospholipid (APL) drug, miltefosine. The mechanistic role of miltefosine in CSC inhibition was examined through normal or tumour intestinal mouse organoid, human CRC cell, CRC xenograft and miltefosine treatment gene expression profile analyses. RESULTS Miltefosine suppresses CSC populations and their self-renewal activities in CRC cells, a CSC-targeting effect leading to irreversible disruption of tumour-initiating potential in vivo. Mechanistically, miltefosine reduced the expression of a set of genes, leading to stem cell death. Among them, miltefosine transcriptionally inhibited checkpoint kinase 1 (CHEK1), indicating that LR integrity is essential for CHEK1 expression regulation. In isolated CD44high CSCs, we found that CSCs exhibited stronger therapy resistance than non-CSC counterparts by preventing cell death through CHEK1-mediated cell cycle checkpoints. However, inhibition of the LR/CHEK1 axis by miltefosine released cell cycle checkpoints, forcing CSCs to enter inappropriate mitosis with accumulated DNA damage and resulting in catastrophic cell death. CONCLUSION Our findings underscore the therapeutic potential of LR-targeting APLs for CRC treatment that overcomes the therapy-resistant phenotype of CSCs, highlighting the importance of the LR/CHEK1 axis as a novel mechanism of APLs.
Collapse
Affiliation(s)
- So‐Yeon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
- Cell Logistics Research CenterGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jee‐Heun Kim
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jang‐Hyun Choi
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Choong‐Jae Lee
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Won‐Jae Lee
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Sehoon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Zee‐Yong Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Jeong‐Heum Baek
- Division of Colon and Rectal SurgeryDepartment of SurgeryGil Medical CenterGachon University College of MedicineIncheonRepublic of Korea
| | - Jeong‐Seok Nam
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
- Cell Logistics Research CenterGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| |
Collapse
|
17
|
Pezeshki PS, Moeinafshar A, Ghaemdoust F, Razi S, Keshavarz-Fathi M, Rezaei N. Advances in pharmacotherapy for neuroblastoma. Expert Opin Pharmacother 2021; 22:2383-2404. [PMID: 34254549 DOI: 10.1080/14656566.2021.1953470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuroblastoma is the most prevalent cancer type diagnosed within the first year after birth and accounts for 15% of deaths from pediatric cancer. Despite the improvements in survival rates of patients with neuroblastoma, the incidence of the disease has increased over the last decade. Neuroblastoma tumor cells harbor a vast range of variable and heterogeneous histochemical and genetic alterations which calls for the need to administer individualized and targeted therapies to induce tumor regression in each patient. AREAS COVERED This paper provides reviews the recent clinical trials which used chemotherapeutic and/or targeted agents as either monotherapies or in combination to improve the response rate in patients with neuroblastoma, and especially high-risk neuroblastoma. It also reviews some of the prominent preclinical studies which can provide the rationale for future clinical trials. EXPERT OPINION Although some distinguished advances in pharmacotherapy have been made to improve the survival rate and reduce adverse events in patients with neuroblastoma, a more comprehensive understanding of the mechanisms of tumorigenesis, resistance to therapies or relapse, identifying biomarkers of response to each specific drug, and developing predictive preclinical models of the tumor can lead to further breakthroughs in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghaemdoust
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
18
|
Evaluation of release and pharmacokinetics of hexadecylphosphocholine (miltefosine) in phosphatidyldiglycerol-based thermosensitive liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183698. [PMID: 34283999 DOI: 10.1016/j.bbamem.2021.183698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Hexadecylphosphocholine (HePC, Miltefosine) is a drug from the class of alkylphosphocholines with an antineoplastic and antiprotozoal activity. We previously reported that HePC uptake from thermosensitive liposomes (TSL) containing 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) into cancer cells is accelerated at mild hyperthermia (HT) resulting in increased cytotoxicity. In this study, we compared HePC release of different TSL formulations in serum. HePC showed rapid but incomplete release below the transition temperature (Tm) of investigated TSL formulations in serum. Short heating (5 min) to 42 °C increased HePC release from DPPG2-TSL (Tm = 41 °C) by a factor of two in comparison to body temperature (37 °C). Bovine serum albumin (BSA) induced HePC release from DPPG2-TSL comparable to serum. Furthermore, multilamellar vesicles (MLV) were capable to extract HePC from DPPG2-TSL in a concentration- and temperature-dependent manner. Repetitive exposure of DPPG2-TSL to MLV at 37 °C led to a fast initial release of HePC which slowed down after subsequent extraction cycles finally reaching approx. 50% HePC release. A pharmacokinetic study in rats revealed a biphasic pattern with an immediate clearance of approx. 50% HePC whereas the remaining 50% HePC showed a prolonged circulation time. We speculate that HePC located in the external leaflet of DPPG2-TSL is rapidly released upon contact with suitable biological acceptors. As demonstrated by MLV transfer experiments, asymmetric incorporation of HePC into the internal leaflet of DPPG2-TSL might improve HePC retention in presence of complex biological media and still give rise to HT-induced HePC release.
Collapse
|
19
|
Saini A, Singh J, Kumar S. Optically superior fluorescent probes for selective imaging of cells, tumors, and reactive chemical species. Org Biomol Chem 2021; 19:5208-5236. [PMID: 34037048 DOI: 10.1039/d1ob00509j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluorescent chemical probes have become powerful tools to study biological events in living cells. They provide a great opportunity to quantitatively and qualitatively analyze the physiological and biochemical properties of living cells in real time. The ability of researchers to manipulate these probes for a desired specific purpose has turned many heads in the scientific community. Despite a slow start, fluorescent probe research has seen exponential growth over the last decade in the world. This change required some adventurous and creative scientists from different fields-like biology, medicine, and chemistry-to come together to facilitate the constant expansion of this field. This review article introduces some fundamental concepts related to fluorescent probe designing and development. It also summarizes various fluorescent probes with superior optical properties used in fields like cell biology, cellular imaging, medical research, and cancer diagnosis. It is hoped that this article will encourage more young and creative scientists to contribute their talents to this field.
Collapse
Affiliation(s)
- Abhishek Saini
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Jyoti Singh
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Sonu Kumar
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| |
Collapse
|
20
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules. Drug Deliv 2021; 28:906-919. [PMID: 33960245 PMCID: PMC8131005 DOI: 10.1080/10717544.2021.1917728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Itraconazole (ITC), a well-tolerated antifungal drug, exerts multiple anticancer effects which justified its preclinical and clinical investigation as potential anti-cancer agent with reduced side effects. Enhancement of ITC anti-cancer efficacy would bring valuable benefits to patients. We propose herein lipid nanocapsules (LNCs) modified with a subtherapeutic dose of miltefosine (MFS) as a membrane bioactive amphiphilic additive (M-ITC-LNC) for the development of an ITC nanoformulation with enhanced anticancer activity compared with ITC solution (ITC-sol) and unmodified ITC-LNC. Both LNC formulations showed a relatively small size (43-46 nm) and high entrapment efficiency (>97%), though ITC release was more sustained by M-ITC-LNC. Cytotoxicity studies revealed significantly greater anticancer activity and selectivity of M-ITC-LNC for MCF-7 breast cancer cells compared with ITC-sol and ITC-LNC. This trend was substantiated by in vivo findings following a 14 day-treatment of murine mammary pad Ehrlich tumors. M-ITC-LNC showed the greatest enhancement of the ITC-induced tumor growth inhibition, proliferation, and necrosis. At the molecular level, the tumor content of Gli 1, caspase-3, and vascular endothelial growth factor verified superiority of M-ITC-LNC in enhancing the ITC antiangiogenic, apoptotic, and Hedgehog pathway inhibitory effects. Finally, histopathological and biochemical analysis indicated greater reduction of ITC systemic toxicity by M-ITC-LNC. Superior performance of M-ITC-LNC was attributed to the effect of MFS on the structural and release properties of LNC coupled with its distinct bioactivities. In conclusion, MFS-modified LNC provides a simple nanoplatform integrating the potentials of LNC and MFS for enhancing the chemotherapeutic efficacy of ITC and possibly other oncology drugs.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Big game cervid meat as a potential good source of plasmalogens for functional foods. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Shahi A, Weiss GE, Bhattacharya S, Baiu DC, Marino R, Pula T, Callander NS, Asimakopoulos F, Otto M. Targeted treatment of multiple myeloma with a radioiodinated small molecule radiopharmaceutical. Leuk Lymphoma 2021; 62:1518-1521. [PMID: 33502270 DOI: 10.1080/10428194.2021.1876858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ankita Shahi
- Department of Pediatrics, School of Medicine and Public Health, Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Gerald E Weiss
- Department of Pediatrics, School of Medicine and Public Health, Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Saswati Bhattacharya
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Dana C Baiu
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Roberta Marino
- Department of Therapeutics Production and Quality, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taner Pula
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Natalie S Callander
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Fotis Asimakopoulos
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Medicine, Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California-San Diego, CA, USA
| | - Mario Otto
- Department of Pediatrics, School of Medicine and Public Health, Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
23
|
Bioactive Ether Lipids: Primordial Modulators of Cellular Signaling. Metabolites 2021; 11:metabo11010041. [PMID: 33430006 PMCID: PMC7827237 DOI: 10.3390/metabo11010041] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
The primacy of lipids as essential components of cellular membranes is conserved across taxonomic domains. In addition to this crucial role as a semi-permeable barrier, lipids are also increasingly recognized as important signaling molecules with diverse functional mechanisms ranging from cell surface receptor binding to the intracellular regulation of enzymatic cascades. In this review, we focus on ether lipids, an ancient family of lipids having ether-linked structures that chemically differ from their more prevalent acyl relatives. In particular, we examine ether lipid biosynthesis in the peroxisome of mammalian cells, the roles of selected glycerolipids and glycerophospholipids in signal transduction in both prokaryotes and eukaryotes, and finally, the potential therapeutic contributions of synthetic ether lipids to the treatment of cancer.
Collapse
|
24
|
Latifi A. Reviewing the Effects of Miltefosine and Suggesting It for the Treatment of Coronavirus Disease (COVID-19). Infect Dis (Lond) 2020; 13:1178633720977488. [PMID: 33311985 PMCID: PMC7716057 DOI: 10.1177/1178633720977488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Objective: Miltefosine is an anti-cancer drug used to treat leishmaniasis and deadly opportunistic free-living amoeba and other deadly pathogenic microorganisms. Several studies have demonstrated its antiviral effect. In this study, we discuss the effectiveness of this drug on pathogenic microorganisms, and according to the functional system of the medicine, we present this drug as a therapeutic proposal to treat Coronavirus disease (COVID-19) Methods: A literature search was conducted in electronic databases, including Pubmed, Science Direct, Elsevier, and Google Scholar, and articles published from 2006 to 2020 (the last decade) were selected. The search keywords included Miltefosine, microorganism, pathogen, and treatment. Results: The studies indicated that Miltefosine had therapeutic effects on leishmaniasis and deadly opportunistic free-living amoeba and other deadly pathogenic microorganisms. Several studies have proven its antiviral effect. Conclusion: Owing to the beneficial effects of this drug on pathogenic and deadly microorganisms and antiviral effects, and due to the epidemic of Coronavirus and the lack of effective treatment and vaccine, this drug is recommended as one of the treatment options for this disease.
Collapse
Affiliation(s)
- Alireza Latifi
- School of Public Health, Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Cho YY, Kwon OH, Chung S. Preferred Endocytosis of Amyloid Precursor Protein from Cholesterol-Enriched Lipid Raft Microdomains. Molecules 2020; 25:molecules25235490. [PMID: 33255194 PMCID: PMC7727664 DOI: 10.3390/molecules25235490] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Amyloid precursor protein (APP) at the plasma membrane is internalized via endocytosis and delivered to endo/lysosomes, where neurotoxic amyloid-β (Aβ) is produced via β-, γ-secretases. Hence, endocytosis plays a key role in the processing of APP and subsequent Aβ generation. β-, γ-secretases as well as APP are localized in cholesterol-enriched lipid raft microdomains. However, it is still unclear whether lipid rafts are the site where APP undergoes endocytosis and whether cholesterol levels affect this process. In this study, we found that localization of APP in lipid rafts was increased by elevated cholesterol level. We also showed that increasing or decreasing cholesterol levels increased or decreased APP endocytosis, respectively. When we labeled cell surface APP, APP localized in lipid rafts preferentially underwent endocytosis compared to nonraft-localized APP. In addition, APP endocytosis from lipid rafts was regulated by cholesterol levels. Our results demonstrate for the first time that cholesterol levels regulate the localization of APP in lipid rafts affecting raft-dependent APP endocytosis. Thus, regulating the microdomain localization of APP could offer a new therapeutic strategy for Alzheimer’s disease.
Collapse
|
26
|
Gaillard B, Remy JS, Pons F, Lebeau L. Dual Gene Delivery Reagents From Antiproliferative Alkylphospholipids for Combined Antitumor Therapy. Front Chem 2020; 8:581260. [PMID: 33134279 PMCID: PMC7566913 DOI: 10.3389/fchem.2020.581260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Alkylphospholipids (APLs) have elicited great interest as antitumor agents due to their unique mode of action on cell membranes. However, their clinical applications have been limited so far by high hemolytic activity. Recently, cationic prodrugs of erufosine, a most promising APL, have been shown to mediate efficient intracellular gene delivery, while preserving the antiproliferative properties of the parent APL. Here, cationic prodrugs of the two APLs that are currently used in the clinic, miltefosine, and perifosine, are investigated and compared to the erufosine prodrugs. Their synthesis, stability, gene delivery and self-assembly properties, and hemolytic activity are discussed in detail. Finally, the potential of the pro-miltefosine and pro-perifosine compounds ME12 and PE12 in combined antitumor therapy is demonstrated using pUNO1-hTRAIL, a plasmid DNA encoding TRAIL, a member of the TNF superfamily. With these pro-APL compounds, we provide a proof of concept for a new promising strategy for cancer therapy combining gene therapy and APL-based chemotherapy.
Collapse
Affiliation(s)
- Boris Gaillard
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Jean-Serge Remy
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
27
|
ABT-737 and erufosine combination against castration-resistant prostate cancer: a promising but cell-type specific response associated with the modulation of anti-apoptotic signaling. Anticancer Drugs 2020; 30:383-393. [PMID: 30557204 DOI: 10.1097/cad.0000000000000736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A deeper understanding of the molecular basis of castration-resistant prostate cancer (CRPC) paved the way for the rational design and development of targeted therapies, which yielded promising preclinical results. However, translation of these potentially promising agents into clinics has usually failed, partly because of tumor heterogeneity. In this study, anticancer activities of the Bcl-2 inhibitor ABT-737 and the Akt-inhibitor erufosine (ErPC3) alone and in combination were compared between CRPC (PC-3 and DU-145) and healthy (PNT-1A) cell lines. The combination of ABT-737 and ErPC3 showed synergistic antiproliferative, antimigratory, and apoptotic effects in PC-3 cells. In DU-145 cells, ErPC3 showed a resistant profile, with half-maximal inhibitory concentration (IC50) values more than two-fold of PC-3, and combining ErPC3 with ABT-737 yielded no added benefit for all the incubation periods compared with ErPC3 alone. In PNT-1A cells, ABT-737 and ErPC3 alone and in combination reduced cell survival slightly and only at the highest concentrations. Apoptosis analysis showed that ABT-737 induced increased Akt expression and ErPC3 induced increased Mcl-1 expression in DU-145 cells. In conclusion, the ABT-737 and ErPC3 combination seems to be promising against CRPC, with a favorable safety profile in healthy cells. However, CRPC cell-type-specific resistance may be induced by enhancement of antiapoptotic signaling.
Collapse
|
28
|
Roy R, Roseblade A, Rawling T. Expansion of the structure-activity relationship of branched chain fatty acids: Effect of unsaturation and branching group size on anticancer activity. Chem Phys Lipids 2020; 232:104952. [PMID: 32814085 DOI: 10.1016/j.chemphyslip.2020.104952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023]
Abstract
Branched chain fatty acids (BCFAs) are a class of fatty acid with promising anticancer activity. The BCFA 13-methyltetradecanoic acid (13-MTD) inhibits tumour growth in vivo without toxicity but efficacy is limited by moderate potency, a property shared by all known BCFAs. The mechanism of action of BCFAs has not been fully elucidated, and in the absence of a clearly defined target optimisation of BCFA potency must rely on structure-activity relationships. Our current understanding of the structural features that promote BCFA anticancer activity is limited by the low structural diversity of reported BCFAs.The aim of this study was to examine the effects of two new structural modifications- unsaturation and branching group size- on BCFA activity. Thus, homologous series of saturated and cis-Δ11 unsaturated BCFAs were synthesised bearing methyl, ethyl, propyl and butyl branching groups, and were screened in vitro for activity against three human cancer cell lines. Potencies of the new BCFAs were compared to 13-MTD and an unbranched monounstaurated fatty acid (MUFA) bearing a cis-Δ11 double bond. The principal findings to emerge were that the anticancer activity of BCFAs was adversly affected by larger branching groups but significantly improved by incorporation of a cis-Δ11 double bond into the BCFA alkyl chain. This study provides new structure-activity relationship insights that may be used to develop BCFAs with improved potency and therapeutic potential.
Collapse
Affiliation(s)
- Ritik Roy
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ariane Roseblade
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
29
|
Ahmed H, Carter KC, Williams RA. Structure and Antiparasitic Activity Relationship of Alkylphosphocholine Analogues against Leishmania donovani. Microorganisms 2020; 8:microorganisms8081117. [PMID: 32722326 PMCID: PMC7463460 DOI: 10.3390/microorganisms8081117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Miltefosine (Milt) is the only oral treatment for visceral leishmaniasis (VL) but its use is associated with adverse effects, e.g., teratogenicity, vomiting, diarrhoea. Understanding how its chemical structure induces cytotoxicity, whilst not compromising its anti-parasitic efficacy, could identify more effective compounds. Therefore, we systemically modified the compound’s head, tail and linker tested the in vitro activity of three alkylphosphocholines (APC) series against Leishmania donovani strains with different sensitivities to antimony. The analogue, APC12, with an alkyl carbon chain of 12 atoms, was also tested for anti-leishmanial in vivo activity in a murine VL model. All APCs produced had anti-leishmanial activity in the micromolar range (IC50 and IC90, 0.46– > 82.21 µM and 4.14–739.89 µM; 0.01– > 8.02 µM and 0.09–72.18 µM, respectively, against promastigotes and intracellular amastigotes). The analogue, APC12 was the most active, was 4–10 fold more effective than the parent Milt molecule (APC16), irrespective of the strain’s sensitivity to antimony. Intravenous administration of 40 mg/kg APC12 to L. donovani infected BALB/c mice reduced liver and spleen parasite burdens by 60 ± 11% and 60 ± 19%, respectively, while oral administration reduced parasite load in the bone marrow by 54 ± 34%. These studies confirm that it is possible to alter the Milt structure and produce more active anti-leishmanial compounds.
Collapse
Affiliation(s)
- Humera Ahmed
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland School of Science and Sport High Street Paisley, Scotland PA1 2BE, UK;
| | - Katharine C. Carter
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde 121 Cathedral Street Glasgow, Scotland G4 ONR, UK;
| | - Roderick A.M. Williams
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland School of Science and Sport High Street Paisley, Scotland PA1 2BE, UK;
- Correspondence:
| |
Collapse
|
30
|
Kaleağasıoğlu F, Ali DM, Berger MR. Multiple Facets of Autophagy and the Emerging Role of Alkylphosphocholines as Autophagy Modulators. Front Pharmacol 2020; 11:547. [PMID: 32410999 PMCID: PMC7201076 DOI: 10.3389/fphar.2020.00547] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly conserved multistep process and functions as passage for degrading and recycling protein aggregates and defective organelles in eukaryotic cells. Based on the nature of these materials, their size and degradation rate, four types of autophagy have been described, i.e. chaperone mediated autophagy, microautophagy, macroautophagy, and selective autophagy. One of the major regulators of this process is mTOR, which inhibits the downstream pathway of autophagy following the activation of its complex 1 (mTORC1). Alkylphosphocholine (APC) derivatives represent a novel class of antineoplastic agents that inhibit the serine-threonine kinase Akt (i.e. protein kinase B), which mediates cell survival and cause cell cycle arrest. They induce autophagy through inhibition of the Akt/mTOR cascade. They interfere with phospholipid turnover and thus modify signaling chains, which start from the cell membrane and modulate PI3K/Akt/mTOR, Ras-Raf-MAPK/ERK and SAPK/JNK pathways. APCs include miltefosine, perifosine, and erufosine, which represent the first-, second- and third generation of this class, respectively. In a high fraction of human cancers, constitutively active oncoprotein Akt1 suppresses autophagy in vitro and in vivo. mTOR is a down-stream target for Akt, the activation of which suppresses autophagy. However, treatment with APC derivatives will lead to dephosphorylation (hence deactivation) of mTOR and thus induces autophagy. Autophagy is a double-edged sword and may result in chemotherapeutic resistance as well as cancer cell death when apoptotic pathways are inactive. APCs display differential autophagy induction capabilities in different cancer cell types. Therefore, autophagy-dependent cellular responses need to be well understood in order to improve the chemotherapeutic outcome.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Department of Pharmacology, Faculty of Medicine, Near East University, Mersin, Turkey
| | - Doaa M. Ali
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
TMEM30A loss-of-function mutations drive lymphomagenesis and confer therapeutically exploitable vulnerability in B-cell lymphoma. Nat Med 2020; 26:577-588. [PMID: 32094924 DOI: 10.1038/s41591-020-0757-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Transmembrane protein 30A (TMEM30A) maintains the asymmetric distribution of phosphatidylserine, an integral component of the cell membrane and 'eat-me' signal recognized by macrophages. Integrative genomic and transcriptomic analysis of diffuse large B-cell lymphoma (DLBCL) from the British Columbia population-based registry uncovered recurrent biallelic TMEM30A loss-of-function mutations, which were associated with a favorable outcome and uniquely observed in DLBCL. Using TMEM30A-knockout systems, increased accumulation of chemotherapy drugs was observed in TMEM30A-knockout cell lines and TMEM30A-mutated primary cells, explaining the improved treatment outcome. Furthermore, we found increased tumor-associated macrophages and an enhanced effect of anti-CD47 blockade limiting tumor growth in TMEM30A-knockout models. By contrast, we show that TMEM30A loss-of-function increases B-cell signaling following antigen stimulation-a mechanism conferring selective advantage during B-cell lymphoma development. Our data highlight a multifaceted role for TMEM30A in B-cell lymphomagenesis, and characterize intrinsic and extrinsic vulnerabilities of cancer cells that can be therapeutically exploited.
Collapse
|
32
|
Improvement of Blood Plasmalogens and Clinical Symptoms in Parkinson's Disease by Oral Administration of Ether Phospholipids: A Preliminary Report. PARKINSONS DISEASE 2020; 2020:2671070. [PMID: 32148751 PMCID: PMC7049862 DOI: 10.1155/2020/2671070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Introduction. Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). With the ageing of population, the frequency of PD is expected to increase dramatically in the coming decades. L-DOPA (1,3,4-dihydroxyalanine) is the most effective drug in the symptomatic treatment of PD. Nonmotor symptoms in PD include sleep problems, depression, and dementia, which are not adequately controlled with dopaminergic therapy. Here, we report the efficacy of oral administration of scallop-derived ether phospholipids to some nonmotor symptoms of PD.
Collapse
|
33
|
Jakubec M, Totland C, Rise F, Chamgordani EJ, Paulsen B, Maes L, Matheeussen A, Gundersen LL, Halskau Ø. Bioactive Metabolites of Marine Origin Have Unusual Effects on Model Membrane Systems. Mar Drugs 2020; 18:md18020125. [PMID: 32092956 PMCID: PMC7073740 DOI: 10.3390/md18020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Marine sponges and soft corals have yielded novel compounds with antineoplastic and antimicrobial activities. Their mechanisms of action are poorly understood, and in most cases, little relevant experimental evidence is available on this topic. In the present study, we investigated whether agelasine D (compound 1) and three agelasine analogs (compound 2–4) as well as malonganenone J (compound 5), affect the physical properties of a simple lipid model system, consisting of dioleoylphospahtidylcholine and dioleoylphosphatidylethanolamine. The data indicated that all the tested compounds increased stored curvature elastic stress, and therefore, tend to deform the bilayer which occurs without a reduction in the packing stress of the hexagonal phase. Furthermore, lower concentrations (1%) appear to have a more pronounced effect than higher ones (5–10%). For compounds 4 and 5, this effect is also reflected in phospholipid headgroup mobility assessed using 31P chemical shift anisotropy (CSA) values of the lamellar phases. Among the compounds tested, compound 4 stands out with respect to its effects on the membrane model systems, which matches its efficacy against a broad spectrum of pathogens. Future work that aims to increase the pharmacological usefulness of these compounds could benefit from taking into account the compound effects on the fluid lamellar phase at low concentrations.
Collapse
Affiliation(s)
- Martin Jakubec
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, NO-5006 Bergen, Norway;
| | - Christian Totland
- Department of Environmental Chemistry, Norwegian Geotechnical Institute, Sognsveien 72, 0855 Oslo, Norway;
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway; (F.R.); (E.J.C.); (B.P.)
| | - Elahe Jafari Chamgordani
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway; (F.R.); (E.J.C.); (B.P.)
| | - Britt Paulsen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway; (F.R.); (E.J.C.); (B.P.)
| | - Louis Maes
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Universiteitsplein 1, B-2610 Antwerp, Belgium; (L.M.); (A.M.)
| | - An Matheeussen
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Universiteitsplein 1, B-2610 Antwerp, Belgium; (L.M.); (A.M.)
| | - Lise-Lotte Gundersen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway; (F.R.); (E.J.C.); (B.P.)
- Correspondence: (L.-L.G.); (Ø.H.)
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, NO-5006 Bergen, Norway;
- Correspondence: (L.-L.G.); (Ø.H.)
| |
Collapse
|
34
|
Eleftheriou K, Kaminari A, Panagiotaki KN, Sideratou Z, Zachariadis M, Anastassopoulou J, Tsiourvas D. A combination drug delivery system employing thermosensitive liposomes for enhanced cell penetration and improved in vitro efficacy. Int J Pharm 2020; 574:118912. [PMID: 31809858 DOI: 10.1016/j.ijpharm.2019.118912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Drug-loaded thermosensitive liposomes are investigated as drug delivery systems in combination with local mild hyperthermia therapy due to their capacity to release their cargo at a specific temperature range (40-42 °C). Additional benefit can be achieved by the development of such systems that combine two different anticancer drugs, have cell penetration properties and, when heated, release their drug payload in a controlled fashion. To this end, liposomes were developed incorporating at low concentration (5 mol%) a number of monoalkylether phosphatidylcholine lipids, encompassing the platelet activating factor, PAF, and its analogues that induce thermoresponsiveness and have anticancer biological activity. These thermoresponsive liposomes were efficiently (>90%) loaded with doxorubicin (DOX), and their thermal properties, stability and drug release were investigated both at 37 ◦C and at elevated temperatures. In vitro studies of the most advantageous liposomal formulation containing the methylated PAF derivative (methyl-PAF, edelfosine), an established antitumor agent, were performed on human prostate cancer cell lines. This system exhibits controlled release of DOX at 40-42 °C, enhanced cell uptake due to the presence of methyl-PAF, and improved cell viability inhibition due to the combined action of both medications.
Collapse
Affiliation(s)
- Kleopatra Eleftheriou
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Archontia Kaminari
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Katerina N Panagiotaki
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Michael Zachariadis
- Institute of Biosciences and Applications, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece
| | - Jane Anastassopoulou
- Radiation Chemistry and Biospectroscopy, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| |
Collapse
|
35
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Botschuijver S, van Diest SA, van Thiel IAM, Saia RS, Strik AS, Yu Z, Maria-Ferreira D, Welting O, Keszthelyi D, Jennings G, Heinsbroek SEM, Elferink RPO, Schuren FHJ, de Jonge WJ, van den Wijngaard RM. Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Sci Rep 2019; 9:12530. [PMID: 31467355 PMCID: PMC6715706 DOI: 10.1038/s41598-019-49096-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a heterogenic, functional gastrointestinal disorder of the gut-brain axis characterized by altered bowel habit and abdominal pain. Preclinical and clinical results suggested that, in part of these patients, pain may result from fungal induced release of mast cell derived histamine, subsequent activation of sensory afferent expressed histamine-1 receptors and related sensitization of the nociceptive transient reporter potential channel V1 (TRPV1)-ion channel. TRPV1 gating properties are regulated in lipid rafts. Miltefosine, an approved drug for the treatment of visceral Leishmaniasis, has fungicidal effects and is a known lipid raft modulator. We anticipated that miltefosine may act on different mechanistic levels of fungal-induced abdominal pain and may be repurposed to IBS. In the IBS-like rat model of maternal separation we assessed the visceromotor response to colonic distension as indirect readout for abdominal pain. Miltefosine reversed post-stress hypersensitivity to distension (i.e. visceral hypersensitivity) and this was associated with differences in the fungal microbiome (i.e. mycobiome). In vitro investigations confirmed fungicidal effects of miltefosine. In addition, miltefosine reduced the effect of TRPV1 activation in TRPV1-transfected cells and prevented TRPV1-dependent visceral hypersensitivity induced by intracolonic-capsaicin in rat. Miltefosine may be an attractive drug to treat abdominal pain in IBS.
Collapse
Affiliation(s)
- Sara Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Sophie A van Diest
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Isabelle A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Rafael S Saia
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Anne S Strik
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Zhumei Yu
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Neurobiology, Tongji Medical College, HUST, Wuhan, People's Republic of China.,State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Daniele Maria-Ferreira
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gary Jennings
- Business Development, Redivia, Technische Universität, Dresden, Germany
| | - Sigrid E M Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Ronald P Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Frank H J Schuren
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - René M van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands. .,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Uzunova V, Tzoneva R, Stoyanova T, Pankov R, Skrobanska R, Georgiev G, Maslenkova L, Tsonchev Z, Momchilova A. Dimethylsphingosine and miltefosine induce apoptosis in lung adenocarcinoma A549 cells in a synergistic manner. Chem Biol Interact 2019; 310:108731. [PMID: 31265827 DOI: 10.1016/j.cbi.2019.108731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
Lung cancer is one of the most common and lethal types of oncological diseases. Despite the advanced therapeutic approaches, the prognosis for lung cancer still remains poor. Apparently, there is an imperative need for more efficient therapeutic strategies. In this work we report that concurrent treatment of human adenocarcinoma A549 cells with specific concentrations of two antitumor agents, the sphingosine kinase 1 inhibitor N, N dimethylsphingosine (DMS) and the alkylphosphocholine miltefosine, induced synergistic cytotoxic effect, which was confirmed by calculation of the combination index. The simultaneous action of these agents, induced significant decrease of A549 cell number, as well as pronounced morphological alterations. Combined drugs caused substantial apoptotic events, and significant reduction of the pro-survival marker sphingosine- 1-phosphate (S1P), when compared to the individual treatments with each of the anticancer drugs alone. Miltefosine is known to affect the synthesis of choline-containing phospholipids, including sphingomyelin, but we report for the first time that it also reduces S1P. Here we suggest a putative mechanism underlying the effect of miltefosine on sphingosine kinase 1, involving miltefosine-induced inhibition of protein kinase C. In conclusion, our findings provide a possibility for treatment of lung cancer cells with lower concentrations of the two antitumor drugs, DMS and miltefosine, which is favorable, regarding their potential cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Veselina Uzunova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl 21, 1113, Sofia, Bulgaria
| | - Rumiana Tzoneva
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl 21, 1113, Sofia, Bulgaria
| | - Tihomira Stoyanova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl 21, 1113, Sofia, Bulgaria
| | - Roumen Pankov
- Department of Cytology, Histology and Embryology, Biological Faculty, Sofia University, 8, Dragan Tzankov str, 1164, Sofia, Bulgaria
| | - Ralica Skrobanska
- Department of Cytology, Histology and Embryology, Biological Faculty, Sofia University, 8, Dragan Tzankov str, 1164, Sofia, Bulgaria
| | - Georgi Georgiev
- Department of Cytology, Histology and Embryology, Biological Faculty, Sofia University, 8, Dragan Tzankov str, 1164, Sofia, Bulgaria
| | - Liliana Maslenkova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl 21, 1113, Sofia, Bulgaria
| | - Zlatan Tsonchev
- Department of Neurology, ISUL Hospital Tsaritsa Yoanna, 8 Bialo more str, 1527, Sofia, Bulgaria
| | - Albena Momchilova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl 21, 1113, Sofia, Bulgaria.
| |
Collapse
|
38
|
In vitro effects of the antitumor drug miltefosine on human erythrocytes and molecular models of its membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:17-25. [DOI: 10.1016/j.bbamem.2018.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/31/2022]
|
39
|
Bhattacharya D, Scimè A. Metabolic Regulation of Epithelial to Mesenchymal Transition: Implications for Endocrine Cancer. Front Endocrinol (Lausanne) 2019; 10:773. [PMID: 31849832 PMCID: PMC6901924 DOI: 10.3389/fendo.2019.00773] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
The last few decades have witnessed an outstanding advancement in our understanding of the hallmarks of endocrine cancers. This includes the epithelial to mesenchymal transition (EMT), a process that alters the morphology and functional characteristics of carcinoma cells. The mesenchymal stem cell like phenotype produced by EMT allows the dislocation of cancer cells from the primary tumor site with inheritance of motility, metastatic and invasive properties. A fundamental driver thought to initiate and propagate EMT is metabolic reprogramming that occur during these transitions. Though there remains a paucity of data regarding the alterations that occur during EMT in endocrine cancers, the contribution of deregulated metabolism is a prominent feature. This mini review focuses on metabolic reprogramming events that occur in cancer cells and in particular those of endocrine origin. It highlights the main metabolic reprogramming outcomes of EMT, encompassing glycolysis, mitochondria oxidative phosphorylation and function, glutamine and lipid metabolism. Comprehending the metabolic changes that occur during EMT will help formulate potential bioenergetic targets as therapies for endocrine cancer metastasis.
Collapse
|
40
|
Batista WR, Fernandes FC, Neves MHCB, Nascimento TS, Lopes RSC, Lopes CC, Ziegler GP, Soler-Figueroa BM, Sparks D, Fontaine DN, Carney KJ, Quiñones-Oquendo LE, Ruiz GM. Synthetic lipids as a biocide candidate for disinfection of ballast water. MARINE POLLUTION BULLETIN 2018; 137:702-710. [PMID: 30503487 DOI: 10.1016/j.marpolbul.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The objective of this study is to propose the use of specific synthetic lipid as an active substance (biocide) in the control of harmful aquatic microorganisms, such as pathogens and non-indigenous species, transported in ships' ballast water. The biocide candidate, without metal or halogen components, was produced from a sub-product of the edible oil industry, the lecithin. Laboratory assays were conducted with phytoplankton, zooplankton, and marine bacteria to evaluate the efficiency of the biocide. The study also considers specific biocide's characteristics related to environmental risks, such as chemical composition, persistence, bioaccumulation, and toxicity. Results showed that, in the first 24 h of treatment, the biocide effectively reduced the concentration of the planktonic micro-organisms to very low levels. Additionally, a preliminary risk evaluation pointed that biocide candidate has a low residual toxicity, also a low potential for persistence and bioaccumulation in the environment.
Collapse
Affiliation(s)
- William R Batista
- Instituto de Estudos do Mar Almirante Paulo Moreira, Marinha do Brasil, Rua Kioto 253, Praia dos Anjos, Arraial do Cabo, RJ 28930-000, Brazil.
| | - Flavio C Fernandes
- Instituto de Estudos do Mar Almirante Paulo Moreira, Marinha do Brasil, Rua Kioto 253, Praia dos Anjos, Arraial do Cabo, RJ 28930-000, Brazil
| | - Maria H C B Neves
- Instituto de Estudos do Mar Almirante Paulo Moreira, Marinha do Brasil, Rua Kioto 253, Praia dos Anjos, Arraial do Cabo, RJ 28930-000, Brazil
| | - Thiana S Nascimento
- Laboratório de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Bloco A, s.508, Cidade Universitária, RJ 21941-909, Brazil
| | - Rosangela S C Lopes
- Laboratório de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Bloco A, s.508, Cidade Universitária, RJ 21941-909, Brazil
| | - Claudio C Lopes
- Laboratório de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Bloco A, s.508, Cidade Universitária, RJ 21941-909, Brazil
| | - Gregory P Ziegler
- Wye Research and Education Center, University of Maryland, 124 Wye Narrows Drive, Queenstown, MD 21658-0169, USA
| | - Brenda M Soler-Figueroa
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037-0028, USA
| | - Darrick Sparks
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037-0028, USA
| | - Diana N Fontaine
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037-0028, USA
| | - Katharine J Carney
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037-0028, USA
| | - Luz E Quiñones-Oquendo
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037-0028, USA
| | - Gregory M Ruiz
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037-0028, USA
| |
Collapse
|
41
|
Elsaid MY, Shahi A, Wang AR, Baiu DC, Li C, Werner LR, Singhal S, Hall LT, Weichert JP, Armstrong EA, Bednarz BP, Harari PM, Iyer G, Otto M. Enhanced Radiosensitivity in Solid Tumors using a Tumor-selective Alkyl Phospholipid Ether Analog. Mol Cancer Ther 2018; 17:2320-2328. [PMID: 30108133 DOI: 10.1158/1535-7163.mct-17-0897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/08/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022]
Abstract
Antitumor alkyl phospholipid (APL) analogs comprise a group of structurally related molecules with remarkable tumor selectivity. Some of these compounds have shown radiosensitizing capabilities. CLR127 is a novel, clinical-grade antitumor APL ether analog, a subtype of synthetic APL broadly targeting cancer cells with limited uptake in normal tissues. The purpose of this study was to investigate the effect of CLR127 to modulate radiation response across several adult and pediatric cancer types in vitro as well as in murine xenograft models of human prostate adenocarcinoma, neuroblastoma, Ewing sarcoma, and rhabdomyosarcoma. In vitro, CLR127 demonstrated selective uptake in cancer cells compared to normal cells. In cancer cells, CLR127 treatment prior to radiation significantly decreased clonogenic survival in vitro, and led to increased radiation-induced double-stranded DNA (dsDNA) breakage compared with radiation alone, which was not observed in normal controls. In animal models, CLR127 effectively increased the antitumor response to fractionated radiotherapy and led to delayed tumor regrowth at potentially clinically achievable doses. In conclusion, our study highlights the ability of CLR127 to increase radiation response in several cancer types. Given almost universal uptake of CLR127 in malignant cells, future research should test whether the observed effects can be extended to other tumor types. Our data provide a strong rationale for clinical testing of CLR127 as a tumor-targeted radiosensitizing agent. Mol Cancer Ther; 17(11); 2320-8. ©2018 AACR.
Collapse
Affiliation(s)
- Mohamed Y Elsaid
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ankita Shahi
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Albert R Wang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Dana C Baiu
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Chunrong Li
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lauryn R Werner
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sorabh Singhal
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lance T Hall
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jamey P Weichert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Eric A Armstrong
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bryan P Bednarz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mario Otto
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
42
|
Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:219-297. [PMID: 30712673 DOI: 10.1016/bs.ircmb.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and results from the clonal amplification of plasma cells. Despite recent advances in treatment, MM remains incurable with a median survival time of only 5-6years, thus necessitating further insights into MM biology and exploitation of novel therapeutic approaches. Both the ubiquitin proteasome system (UPS) and the PI3K/Akt/mTOR signaling pathways have been implicated in the pathogenesis, and treatment of MM and different lines of evidence suggest a close cross talk between these central cell-regulatory signaling networks. In this review, we outline the interplay between the UPS and mTOR pathways and discuss their implications for the pathophysiology and therapy of MM.
Collapse
|
43
|
Zhang N, Prasad S, Huyghues Despointes CE, Young J, Kima PE. Leishmania parasitophorous vacuole membranes display phosphoinositides that create conditions for continuous Akt activation and a target for miltefosine in Leishmania infections. Cell Microbiol 2018; 20:e12889. [PMID: 29993167 DOI: 10.1111/cmi.12889] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Miltefosine is an important drug for the treatment of leishmaniasis; however, its mechanism of action is still poorly understood. In these studies, we tested the hypothesis that like in cancer cells, miltefosine's efficacy in leishmaniasis is due to its inhibition of Akt activation in host cells. We show using pharmacologic agents that block Akt activation by different mechanisms and also using an inducible knockdown approach that miltefosine loses its efficacy when its access to Akt1 is limited. Interestingly, limitation of Akt activation results in clearance of established Leishmania infections. We then show, using fluorophore-tagged probes that bind to phosphoinositides, that Leishmania parasitophorous vacuole membranes (LPVMs) display the relevant phosphoinositides to which Akt can be recruited and activated continuously. Taken together, we propose that the acquisition of PI(4) P and the display of PI (3,4)P2 on LPVMs initiate the machinery that supports continuous Akt activation and sensitivity to miltefosine.
Collapse
Affiliation(s)
- Naixin Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samiksha Prasad
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Jeffrey Young
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Inositol-C2-PAF acts as a biological response modifier and antagonizes cancer-relevant processes in mammary carcinoma cells. Cell Oncol (Dordr) 2018; 41:505-516. [PMID: 30047091 DOI: 10.1007/s13402-018-0387-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Previous studies have identified alkyl-phospholipids as promising compounds for cancer therapy by targeting constituents of the cell membrane and different signaling pathways. We previously showed that the alkylphospholipid Inositol-C2-PAF inhibits the proliferation and migration of immortalized keratinocytes and the squamous carcinoma-derived cell line SCC-25. Here, we investigated the effect of this compound on growth and motility as well as its mode of action in mammary carcinoma-derived cell lines. METHODS Using BrdU incorporation and haptotactic cell migration assays, we assessed the effects of Inositol-C2-PAF on MCF-7 and MBA-MB-231 cell proliferation and migration. The phosphorylation status of signaling molecules was investigated by Western blotting as well as indirect immunofluorescence analysis and capillary isoelectric focusing. RESULTS We found that Inositol-C2-PAF inhibited the growth as well as the migration in MCF-7 and MBA-MB-231 cells. Furthermore, we found that this compound inhibited phosphorylation of the protein kinase Akt at serine residue 473, but had no impact on phosphorylation at threonine 308. Phosphorylation of other kinases, such as Erk1/2, FAK and Src, which are targeted by Inositol-C2-PAF in other cells, remained unaffected by the compound in the mammary carcinoma-derived cell lines tested. In MCF-7 cells, we found that IGF-1-induced growth, as well as phosphorylation of AktS473, mTOR and the tumor suppressor pRB, was inhibited in the presence of Inositol-C2-PAF. Moreover, we found that in these cells IGF-1 had no impact on migration and did not seem to be linked to full Akt activity. Therefore, MCF-7 cell migration appears to be inhibited by Ino-C2-PAF in an Akt-independent manner. CONCLUSION The antagonistic effects of Inositol-C2-PAF on cell migration and proliferation are indicative for its potential for breast cancer therapy, alone or in combination with other cytostatic drugs.
Collapse
|
45
|
Ausili A, Martínez-Valera P, Torrecillas A, Gómez-Murcia V, de Godos AM, Corbalán-García S, Teruel JA, Gómez Fernández JC. Anticancer Agent Edelfosine Exhibits a High Affinity for Cholesterol and Disorganizes Liquid-Ordered Membrane Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8333-8346. [PMID: 29924618 DOI: 10.1021/acs.langmuir.8b01539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Edelfosine is an anticancer drug with an asymmetric structure because, being a derivative of glycerol, it possesses two hydrophobic substituents of very different lengths. We showed that edelfosine destabilizes liquid-ordered membranes formed by either 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine, sphingomyelin (SM), and cholesterol (1:1:1 molar ratio) or SM and cholesterol (2:1 molar ratio). This was observed by differential scanning calorimetry in which phase transition arises from either of these membrane systems after the addition of edelfosine. The alteration in the liquid-ordered domains was characterized by using a small-angle X-ray diffraction that revealed the formation of gel phases as a consequence of the addition of edelfosine at low temperatures and by a wide-angle X-ray diffraction that confirmed changes in the membranes, indicating the formation of these gel phases. The increase in phase transition derived by the edelfosine addition was further confirmed by Fourier-transform infrared spectroscopy. The effect of edelfosine was compared with that of structurally analogue lipids: platelet-activating factor and 1-palmitoyl-2-acetyl- sn-glycero-3-phosphocholine, which also have the capacity of destabilizing liquid-ordered domains, although they are less potent than edelfosine for this activity, and lysophosphatidylcholine, which lacks this capacity. It was concluded that edelfosine may be associated with cholesterol favorably competing with sphingomyelin, and that this sets sphingomyelin free to undergo a phase transition. Finally, the experimental observations can be described by molecular dynamics calculations in terms of intermolecular interaction energies in phospholipid-cholesterol membranes. Higher interaction energies between asymmetric phospholipids and cholesterol than between sphingomyelin and cholesterol were obtained. These results are interesting because they biophysically characterize one of the main molecular mechanisms to trigger apoptosis of the cancer cells.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Pablo Martínez-Valera
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Victoria Gómez-Murcia
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Ana M de Godos
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Juan C Gómez Fernández
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| |
Collapse
|
46
|
Luna ACDL, Saraiva GKV, Chierice GO, Hesse H, Maria DA. Antiproliferative and proapoptotic effects of DODAC/synthetic phosphoethanolamine on hepatocellular carcinoma cells. BMC Pharmacol Toxicol 2018; 19:44. [PMID: 29996919 PMCID: PMC6042440 DOI: 10.1186/s40360-018-0225-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/20/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Current studies have demonstrated that DODAC/PHO-S (Dioctadecyldimethylammonium Chloride/Synthetic phosphoethanolamine) liposomes induces cytotoxicity in Hepa1c1c7 and B16F10 murine tumor cells, with a higher proportion than PHO-S. Therefore, our aim was to evaluate the potential of DODAC/PHO-S to elucidate the mechanism of cell death whereby the liposomes induces cytotoxicity in hepatocellular carcinoma Hepa1c1c7, compared to the PHO-S alone. METHODS Liposomes (DODAC/PHO-S) were prepared by ultrasonication. The cell cycle phases, protein expression and types of cell's death on Hepa1c1c7 were analyzed by flow cytometry. The internalisation of liposomes, mitochondrial electrical potential and lysosomal stability were also evaluated by confocal laser scanning microscopy. RESULTS After treatment with liposomes (DODAC/PHO-S), we observed a significant increase in the population of Hepa1c1c7 cells experiencing cell cycle arrest in the S and G2/M phases, and this treatment was significantly more effective to promote cell death by apoptosis. There also was a decrease in the mitochondrial electrical potential; changes in the lysosomes; nuclear fragmentation and catastrophic changes in Hepa1c1c7 cells. The liposomes additionally promoted increases in the expression of DR4 receptor, caspases 3 and 8, cytochrome c, p53, p21, p27 and Bax. There was also a decrease in the expression of Bcl-2, cyclin D1, CD90 and CD44 proteins. CONCLUSION The overall results showed that DODAC/PHO-S liposomes were more effective than PHO-S alone, in promoting cytotoxicity Hepa1c1c7 tumor cells, activating the intrinsic and extrinsic pathways of programmed cell death.
Collapse
Affiliation(s)
- Arthur Cássio de Lima Luna
- Department of Biochemistry and Biophysics, Butantan Institute, 1500, Vital Brasil Avenue, Sao Paulo, 05503-900, Brazil. .,Department of Medical Sciences, Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | - Henrique Hesse
- Department of Biochemistry and Biophysics, Butantan Institute, 1500, Vital Brasil Avenue, Sao Paulo, 05503-900, Brazil
| | - Durvanei Augusto Maria
- Department of Biochemistry and Biophysics, Butantan Institute, 1500, Vital Brasil Avenue, Sao Paulo, 05503-900, Brazil. .,Department of Medical Sciences, Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
47
|
Bello C, Bai J, Zambron BK, Elías-Rodríguez P, Gajate C, Robina I, Caffa I, Cea M, Montecucco F, Nencioni A, Nahimana A, Aubry D, Breton C, Duchosal MA, Mollinedo F, Vogel P. Induction of cell killing and autophagy by amphiphilic pyrrolidine derivatives on human pancreatic cancer cells. Eur J Med Chem 2018; 150:457-478. [DOI: 10.1016/j.ejmech.2018.02.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 12/15/2022]
|
48
|
Cala MP, Agulló‐Ortuño MT, Prieto‐García E, González‐Riano C, Parrilla‐Rubio L, Barbas C, Díaz‐García CV, García A, Pernaut C, Adeva J, Riesco MC, Rupérez FJ, Lopez‐Martin JA. Multiplatform plasma fingerprinting in cancer cachexia: a pilot observational and translational study. J Cachexia Sarcopenia Muscle 2018; 9:348-357. [PMID: 29464940 PMCID: PMC5879957 DOI: 10.1002/jcsm.12270] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/04/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cachexia is a metabolic syndrome that affects up to 50-80% of cancer patients. The pathophysiology is characterized by a variable combination of reduced food intake and abnormal metabolism, including systemic inflammation and negative protein and energy balance. Despite its high clinical significance, defined diagnostic criteria and established therapeutic strategies are lacking. The 'omics' technologies provide a global view of biological systems. We hypothesize that blood-based metabolomics might identify findings in cachectic patients that could provide clues to gain knowledge on its pathophysiology, and eventually postulate new therapeutic strategies. METHODS This is a cross-sectional observational study in two cohorts of cancer patients, with and without cachexia. Patients were consecutively recruited from routine clinical practice of a General Oncology Department at '12 de Octubre' University Hospital. Selected clinical and biochemical features were collected. Blood metabolite fingerprinting was performed using three analytical platforms, gas chromatography coupled to mass spectrometry (GC-MS), capillary electrophoresis coupled to mass spectrometry (CE-MS), and liquid chromatography coupled to mass spectrometry (LC-MS). Besides, we performed pathway-based metabolite analyses to obtain more information on biological functions. RESULTS A total of 15 subjects were included in this study, 8 cachectic and 7 non-cachectic patients. Metabolomic analyses were able to correctly classify their samples in 80% (GC-MS), 97% (CE-MS), 96% [LC-MS (positive mode)], and 89% [LC-MS (negative mode)] of the cases. The most prominent metabolic alteration in plasma of cachectic patients was the decrease of amino acids and derivatives [especially arginine, tryptophan, indolelactic acid, and threonine, with 0.4-fold change (FC) compared with non-cachectic patients], along with the reduction of glycerophospholipids [mainly lysophosphatidylcholines(O-16:0) and lysophosphatidylcholines(20:3) sn-1, FC = 0.1] and sphingolipids [SM(d30:0), FC = 0.5]. The metabolite with the highest increase was cortisol (FC = 1.6). Such alterations suggest a role of the following metabolic pathways in the pathophysiology of cancer cachexia: arginine and proline metabolism; alanine, aspartate, and glutamate metabolism; phenylalanine metabolism; lysine degradation; aminoacyl-tRNA biosynthesis; fatty acid elongation in mitochondria; tricarboxylic acids cycle; among others. CONCLUSIONS These findings suggest that plasma amino acids and lipids profiling has great potential to find the mechanisms involved in the pathogenesis of cachexia. Metabolic profiling of plasma from cancer patients show differences between cachexia and non-cachexia in amino acids and lipids that might be related to mechanisms involved in its pathophysiology. A better understanding of these mechanisms might identify novel therapeutic approaches to palliate this unmet medical condition.
Collapse
Affiliation(s)
- Mónica Patricia Cala
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
- Grupo de Investigación en Química Analítica y Bioanalítica (GABIO), Department of Chemistry, Faculty of SciencesUniversidad de los AndesCra. 1 No. 18a‐10111710BogotáColombia
| | - María Teresa Agulló‐Ortuño
- Clinical & Translational Cancer Research GroupInstituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)Av Córdoba s/n28041MadridSpain
| | - Elena Prieto‐García
- Clinical & Translational Cancer Research GroupInstituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)Av Córdoba s/n28041MadridSpain
| | - Carolina González‐Riano
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
| | - Lucía Parrilla‐Rubio
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| | - Coral Barbas
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
| | - Carmen Vanesa Díaz‐García
- Clinical & Translational Cancer Research GroupInstituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)Av Córdoba s/n28041MadridSpain
| | - Antonia García
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
| | - Cristina Pernaut
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| | - Jorge Adeva
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| | - María Carmen Riesco
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| | - Francisco Javier Rupérez
- Centre for Metabolomic and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad San Pablo CEUUrbanización Montepríncipe, M‐501 km 028660Boadilla del Monte, MadridSpain
| | - Jose Antonio Lopez‐Martin
- Clinical & Translational Cancer Research GroupInstituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)Av Córdoba s/n28041MadridSpain
- Medical Oncology DepartmentHospital Universitario 12 de OctubreAv de Córdoba s/n28041MadridSpain
| |
Collapse
|
49
|
The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget 2018; 7:86871-86888. [PMID: 27894086 PMCID: PMC5349960 DOI: 10.18632/oncotarget.13508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] Open
Abstract
2-hydroxyoleic acid (OHOA, Minerval®) is an example of a substance used for membrane lipid therapy, where the cellular membranes rather than specific proteins constitute the therapeutical target. OHOA is thought to mediate its anti-tumor effect by affecting the biophysical properties of membranes, which leads to altered recruitment and activation of amphitropic proteins, altered cellular signaling, and eventual cell death. Little is known about the initial signaling events upon treatment with OHOA, and whether the altered membrane properties would have any impact on the dynamic intracellular transport system. In the present study we demonstrate that treatment with OHOA led to a rapid release of intracellular calcium and activation of multiple signaling pathways in HeLa cells, including the PI3K-AKT1-MTOR pathway and several MAP kinases, in a process independent of the EGFR. By lipidomics we confirmed that OHOA was incorporated into several lipid classes. Concomitantly, OHOA potently increased retrograde transport of the plant toxin ricin from endosomes to the Golgi and further to the endoplasmic reticulum. The OHOA-stimulated ricin transport seemed to require several amphitropic proteins, including Src, phospholipase C, protein kinase C, and also Ca2+/calmodulin. Interestingly, OHOA induced a slight increase in endosomal localization of the retromer component VPS35. Thus, our data show that addition of a lipid known to alter membrane properties not only affects signaling, but also intracellular transport.
Collapse
|
50
|
Messias MCF, Mecatti GC, Priolli DG, de Oliveira Carvalho P. Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer. Lipids Health Dis 2018. [PMID: 29514688 PMCID: PMC5842581 DOI: 10.1186/s12944-018-0685-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The plasmalogens are a class of glycerophospholipids which contain a vinyl-ether and an ester bond at the sn-1 and sn-2 positions, respectively, in the glycerol backbone. They constitute 10 mol% of the total mass of phospholipids in humans, mainly as membrane structure components. Plasmalogens are important for the organization and stability of lipid raft microdomains and cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Although the clinical significance of plasmalogens is linked to peroxisomal disorders, the pathophysiological roles and their possible metabolic pathways are not fully understood since they present unique structural attributes for the different tissue types. Studies suggest that changes in plasmalogen metabolism may contribute to the development of various types of cancer. Here, we review the molecular characteristics of plasmalogens in order to significantly increase our understanding of the plasmalogen molecule and its involvement in gastrointestinal cancers as well as other types of cancers.
Collapse
Affiliation(s)
- Márcia Cristina Fernandes Messias
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil.
| | - Giovana Colozza Mecatti
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| | - Denise Gonçalves Priolli
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil.
| |
Collapse
|