1
|
Vaidya K, Rodrigues G, Gupta S, Devarajan A, Yeolekar M, Madhusudhan MS, Kamat SS. Identification of sequence determinants for the ABHD14 enzymes. Proteins 2025; 93:255-266. [PMID: 37974539 DOI: 10.1002/prot.26632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Over the course of evolution, enzymes have developed remarkable functional diversity in catalyzing important chemical reactions across various organisms, and understanding how new enzyme functions might have evolved remains an important question in modern enzymology. To systematically annotate functions, based on their protein sequences and available biochemical studies, enzymes with similar catalytic mechanisms have been clustered together into an enzyme superfamily. Typically, enzymes within a superfamily have similar overall three-dimensional structures, conserved catalytic residues, but large variations in substrate recognition sites and residues to accommodate the diverse biochemical reactions that are catalyzed within the superfamily. The serine hydrolases are an excellent example of such an enzyme superfamily. Based on known enzymatic activities and protein sequences, they are split almost equally into the serine proteases and metabolic serine hydrolases. Within the metabolic serine hydrolases, there are two outlying members, ABHD14A and ABHD14B, that have high sequence similarity, but their biological functions remained cryptic till recently. While ABHD14A still lacks any functional annotation to date, we recently showed that ABHD14B functions as a lysine deacetylase in mammals. Given their high sequence similarity, automated databases often wrongly assign ABHD14A and ABHD14B as the same enzyme, and therefore, annotating functions to them in various organisms has been problematic. In this article, we present a bioinformatics study coupled with biochemical experiments, which identifies key sequence determinants for both ABHD14A and ABHD14B, and enable better classification for them. In addition, we map these enzymes on an evolutionary timescale and provide a much-wanted resource for studying these interesting enzymes in different organisms.
Collapse
Affiliation(s)
- Kaveri Vaidya
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Golding Rodrigues
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Sonali Gupta
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Archit Devarajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Mihika Yeolekar
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - M S Madhusudhan
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| |
Collapse
|
2
|
Torres-Romero I, Légeret B, Bertrand M, Sorigue D, Damm A, Cuiné S, Veillet F, Blot C, Brugière S, Couté Y, Garneau MG, Kotapati HK, Xin Y, Xu J, Bates PD, Thiam AR, Beisson F, Li-Beisson Y. α/β hydrolase domain-containing protein 1 acts as a lysolipid lipase and is involved in lipid droplet formation. Natl Sci Rev 2024; 11:nwae398. [PMID: 39791125 PMCID: PMC11711679 DOI: 10.1093/nsr/nwae398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 01/12/2025] Open
Abstract
Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga Chlamydomonas, we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural. The knockout mutants contained similar amounts of triacylglycerols (TAG) but their LDs showed a higher content of lyso-derivatives of betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine (DGTS). Over-expression of ABHD1 increased LD abundance and boosted TAG content. Purified recombinant ABHD1 hydrolyzed lyso-DGTS, producing a free fatty acid and a glyceryltrimethylhomoserine. In vitro droplet-embedded vesicles showed that ABHD1 promoted LD emergence. Taken together, these results identify ABHD1 as a new player in LD formation by its lipase activity on lyso-DGTS and by its distinct biophysical property. This study further suggests that lipases targeted to LDs and able to act on their polar lipid coat may be interesting tools to promote LD assembly in eukaryotic cells.
Collapse
Affiliation(s)
- Ismael Torres-Romero
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France
| | - Bertrand Légeret
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France
| | - Marie Bertrand
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France
| | - Damien Sorigue
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France
| | - Alicia Damm
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, Paris 75005, France
| | - Stéphan Cuiné
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France
| | - Florian Veillet
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France
| | - Carla Blot
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France
| | - Sabine Brugière
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Matthew G Garneau
- Institute of Biological Chemistry, Washington State University, Pullman 99164, USA
| | - Hari K Kotapati
- Institute of Biological Chemistry, Washington State University, Pullman 99164, USA
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman 99164, USA
| | - Abdou R Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, Paris 75005, France
| | - Fred Beisson
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France
| |
Collapse
|
3
|
Frolov A, Atwood SG, Guzman MA, Martin JR. A Rare Case of Polymicrogyria in an Elderly Individual With Unique Polygenic Underlining. Cureus 2024; 16:e74300. [PMID: 39717325 PMCID: PMC11665267 DOI: 10.7759/cureus.74300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case study is presented where an elderly individual with a medical history of unspecified PMG was examined postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological, and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS) platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants revealed that a significant number of affected genes were associated with most of the biological processes known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes (ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2 warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its compound heterozygous mutations.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Stuart G Atwood
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
4
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross SS, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.556646. [PMID: 37905030 PMCID: PMC10614741 DOI: 10.1101/2023.09.09.556646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptors agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Biological Sciences division, University of Chicago, Chicago, IL, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Zhang X, Thomas GM. Recruitment, regulation, and release: Control of signaling enzyme localization and function by reversible S-acylation. J Biol Chem 2024; 300:107696. [PMID: 39168183 PMCID: PMC11417247 DOI: 10.1016/j.jbc.2024.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
An ever-growing number of studies highlight the importance of S-acylation, a reversible protein-lipid modification, for diverse aspects of intracellular signaling. In this review, we summarize the current understanding of how S-acylation regulates perhaps the best-known class of signaling enzymes, protein kinases. We describe how S-acylation acts as a membrane targeting signal that localizes certain kinases to specific membranes, and how such membrane localization in turn facilitates the assembly of signaling hubs consisting of an S-acylated kinase's upstream activators and/or downstream targets. We further discuss recent findings that S-acylation can control additional aspects of the function of certain kinases, including their interactions and, surprisingly, their activity, and how such regulation might be exploited for potential therapeutic gain. We go on to describe the roles and regulation of de-S-acylases and how extracellular signals drive dynamic (de)S-acylation of certain kinases. We discuss how S-acylation has the potential to lead to "emergent properties" that alter the temporal profile and/or salience of intracellular signaling events. We close by giving examples of other S-acylation-dependent classes of signaling enzymes and by discussing how recent biological and technological advances should facilitate future studies into the functional roles of S-acylation-dependent signaling.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Neural Sciences, Center for Neural Development and Repair, Philadelphia, Pennsylvania, USA
| | - Gareth M Thomas
- Department of Neural Sciences, Center for Neural Development and Repair, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Long X, Xiong W, Wang X, Geng J, Zhong M, Huang Y, Liu M, Bu F, Cheng J, Lu Y, Yuan H. Genotype-phenotype spectrum and correlation of PHARC Syndrome due to pathogenic ABHD12 variants. BMC Med Genomics 2024; 17:203. [PMID: 39123271 PMCID: PMC11312174 DOI: 10.1186/s12920-024-01984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND A comprehensive understanding of the genetic basis of rare diseases and their regulatory mechanisms is essential for human molecular genetics. However, the genetic mutant spectrum of pathogenic genes within the Chinese population remains underrepresented. Here, we reported previously unreported functional ABHD12 variants in two Chinese families and explored the correlation between genetic polymorphisms and phenotypes linked to PHARC syndrome. METHODS Participants with biallelic pathogenic ABHD12 variants were recruited from the Chinese Deafness Genetics Cohort. These participants underwent whole-genome sequencing. Subsequently, a comprehensive literature review was conducted. RESULTS Two Han Chinese families were identified, one with a compound heterozygous variant and the other with a novel homozygous variant in ABHD12. Among 65 PHARC patients, including 62 from the literature and 3 from this study, approximately 90% (57 out of 63) exhibited hearing loss, 82% (50 out of 61) had cataracts, 82% (46 out of 56) presented with retinitis pigmentosa, 79% (42 out of 53) experienced polyneuropathy, and 63% (36 out of 57) displayed ataxia. Seventeen different patterns were observed in the five main phenotypes of PHARC syndrome. A total of 33 pathogenic variants were identified in the ABHD12. Compared with other genotypes, individuals with biallelic truncating variants showed a higher incidence of polyneuropathy (p = 0.006), but no statistically significant differences were observed in the incidence of hearing loss, ataxia, retinitis pigmentosa and cataracts. CONCLUSIONS The diagnosis of PHARC syndrome is challenging because of its genetic heterogeneity. Therefore, exploring novel variants and establishing genotype-phenotype correlations can significantly enhance gene diagnosis and genetic counseling for this complex disease.
Collapse
Affiliation(s)
- Xicui Long
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Wenyu Xiong
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Xuegang Wang
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Jia Geng
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Mingjun Zhong
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Yu Huang
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Man Liu
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Fengxiao Bu
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Jing Cheng
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Yu Lu
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China.
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China.
| | - Huijun Yuan
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China.
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
7
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
8
|
Říhová K, Lapčík P, Veselá B, Knopfová L, Potěšil D, Pokludová J, Šmarda J, Matalová E, Bouchal P, Beneš P. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res 2024; 23:2999-3011. [PMID: 38498986 PMCID: PMC11301665 DOI: 10.1021/acs.jproteome.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Kamila Říhová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Petr Lapčík
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Barbora Veselá
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucia Knopfová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - David Potěšil
- Proteomics
Core Facility, Central European Institute for Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Jana Pokludová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Jan Šmarda
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Eva Matalová
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno 612 42, Czech Republic
| | - Pavel Bouchal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Petr Beneš
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| |
Collapse
|
9
|
Wang S, Xing X, Ma J, Zheng S, Song Q, Zhang P. Deacylases-structure, function, and relationship to diseases. FEBS Lett 2024; 598:959-977. [PMID: 38644468 DOI: 10.1002/1873-3468.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.
Collapse
Affiliation(s)
- Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
10
|
Shen Y, Zheng LL, Fang CY, Xu YY, Wang C, Li JT, Lei MZ, Yin M, Lu HJ, Lei QY, Qu J. ABHD7-mediated depalmitoylation of lamin A promotes myoblast differentiation. Cell Rep 2024; 43:113720. [PMID: 38308845 DOI: 10.1016/j.celrep.2024.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/04/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024] Open
Abstract
LMNA gene mutation can cause muscular dystrophy, and post-translational modification plays a critical role in regulating its function. Here, we identify that lamin A is palmitoylated at cysteine 522, 588, and 591 residues, which are reversely catalyzed by palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) and depalmitoylase α/β hydrolase domain 7 (ABHD7). Furthermore, the metabolite lactate promotes palmitoylation of lamin A by inhibiting the interaction between it and ABHD7. Interestingly, low-level palmitoylation of lamin A promotes, whereas high-level palmitoylation of lamin A inhibits, murine myoblast differentiation. Together, these observations suggest that ABHD7-mediated depalmitoylation of lamin A controls myoblast differentiation.
Collapse
Affiliation(s)
- Yuan Shen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang-Liang Zheng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cai-Yun Fang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yao-Yao Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Wang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jin-Tao Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ming-Zhu Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao-Jie Lu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China; Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; New Cornerstone Science Laboratory, Fudan University, Shanghai 200032, China.
| | - Jia Qu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Wei Y, Qi FN, Xu YR, Zhang KQ, Xu J, Cao YR, Liang LM. Characterization of regulatory genes Plhffp and Plpif1 involved in conidiation regulation in Purpureocillium lavendulum. Front Microbiol 2024; 15:1352989. [PMID: 38435693 PMCID: PMC10906660 DOI: 10.3389/fmicb.2024.1352989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Purpureocillium lavendulum is an important biocontrol agent against plant-parasitic nematodes, primarily infecting them with conidia. However, research on the regulatory genes and pathways involved in its conidiation is still limited. In this study, we employed Agrobacterium tumefaciens-mediated genetic transformation to generate 4,870 random T-DNA insertion mutants of P. lavendulum. Among these mutants, 131 strains exhibited abnormal conidiation, and further in-depth investigations were conducted on two strains (designated as #5-197 and #5-119) that showed significantly reduced conidiation. Through whole-genome re-sequencing and genome walking, we identified the T-DNA insertion sites in these strains and determined the corresponding genes affected by the insertions, namely Plhffp and Plpif1. Both genes were knocked out through homologous recombination, and phenotypic analysis revealed a significant difference in conidiation between the knockout strains and the wild-type strain (ku80). Upon complementation of the ΔPlpif1 strain with the corresponding wildtype allele, conidiation was restored to a level comparable to ku80, providing further evidence of the involvement of this gene in conidiation regulation in P. lavendulum. The knockout of Plhffp or Plpif1 reduced the antioxidant capacity of P. lavendulum, and the absence of Plhffp also resulted in decreased resistance to SDS, suggesting that this gene may be involved in the integrity of the cell wall. RT-qPCR showed that knockout of Plhffp or Plpif1 altered expression levels of several known genes associated with conidiation. Additionally, the analysis of nematode infection assays with Caenorhabditis elegans indicated that the knockout of Plhffp and Plpif1 indirectly reduced the pathogenicity of P. lavendulum towards the nematodes. The results demonstrate that Agrobacterium tumefaciens - mediated T-DNA insertion mutagenesis, gene knockout, and complementation can be highly effective for identifying functionally important genes in P. lavendulum.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Feng-Na Qi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yan-Rui Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Yan-Ru Cao
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
12
|
Fagbémi MNA, Nivelle R, Muller M, Mélard C, Lalèyè P, Rougeot C. Effect of high temperatures on sex ratio and differential expression analysis (RNA-seq) of sex-determining genes in Oreochromis niloticus from different river basins in Benin. ENVIRONMENTAL EPIGENETICS 2024; 9:dvad009. [PMID: 38487307 PMCID: PMC10939319 DOI: 10.1093/eep/dvad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 01/10/2024] [Indexed: 03/17/2024]
Abstract
The high temperature sex reversal process leading to functional phenotypic masculinization during development has been widely described in Nile tilapia (Oreochromis n iloticus) under laboratory or aquaculture conditions and in the wild. In this study, we selected five wild populations of O. niloticus from different river basins in Benin and produced twenty full-sib families of mixed-sex (XY and XX) by natural reproduction. Progenies were exposed to room temperature or high (36.5°C) temperatures between 10 and 30 days post-fertilization (dpf). In control groups, we observed sex ratios from 40% to 60% males as expected, except for 3 families from the Gobé region which showed a bias towards males. High temperature treatment significantly increased male rates in each family up to 88%. Transcriptome analysis was performed by RNA-sequencing (RNA-seq) on brains and gonads from control and treated batches of six families at 15 dpf and 40 dpf. Analysis of differentially expressed genes, differentially spliced genes, and correlations with sex reversal was performed. In 40 dpf gonads, genes involved in sex determination such as dmrt1, cyp11c1, amh, cyp19a1b, ara, and dax1 were upregulated. In 15 dpf brains, a negative correlation was found between the expression of cyp19a1b and the reversal rate, while at 40 dpf a negative correlation was found between the expression of foxl2, cyp11c1, and sf1 and positive correlation was found between dmrt1 expression and reversal rate. Ontology analysis of the genes affected by high temperatures revealed that male sex differentiation processes, primary male sexual characteristics, autophagy, and cilium organization were affected. Based on these results, we conclude that sex reversal by high temperature treatment leads to similar modifications of the transcriptomes in the gonads and brains in offspring of different natural populations of Nile tilapia, which thus may activate a common cascade of reactions inducing sex reversal in progenies.
Collapse
Affiliation(s)
- Mohammed Nambyl A Fagbémi
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
- Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Renaud Nivelle
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
- Laboratory for Organogenesis and Regeneration (LOR), Interdisciplinary Research Institute in Biomedical Sciences (GIGA-I3), Liège University, Sart Tilman, Liège, Belgium
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), Interdisciplinary Research Institute in Biomedical Sciences (GIGA-I3), Liège University, Sart Tilman, Liège, Belgium
| | - Charles Mélard
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
| | - Philippe Lalèyè
- Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Carole Rougeot
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
| |
Collapse
|
13
|
Lv MY, Jin LL, Sang XQ, Shi WC, Qiang LX, Lin QY, Jin SD. Abhd2, a Candidate Gene Regulating Airway Remodeling in COPD via TGF-β. Int J Chron Obstruct Pulmon Dis 2024; 19:33-50. [PMID: 38197032 PMCID: PMC10775803 DOI: 10.2147/copd.s440200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
Purpose The typical characteristic of COPD is airway remodeling, affected by environmental and genetic factors. However, genetic studies on COPD have been limited. Currently, the Abhd2 gene is found to play a critical role in maintaining alveolar architecture and stability. The research aims to investigate the predictive value of Abhd2 for airway remodeling in COPD and its effect on TGF-β regulation. Methods In humans, Abhd2 protein was obtained from peripheral blood monocytes. Peripheral blood TGF-β, pulmonary surfactant proteins (SPs), metalloproteinases, inflammatory indicators (WBC, NEU, NLR, EOS, CRP, PCT, D-Dimer), chest CT (airway diameter and airway wall thickness), pulmonary function, and blood gas analysis were used to assess airway remodeling. In animals, Abhd2 deficient mice (Abhd2Gt/Gt) using gene trapping and C57BL6 mice were injected intraperitoneally with CSE to construct COPD models. HE staining, Masson staining and immunohistochemistry were used to observe the pathological changes of airway in mice, and RT-PCR, WB, ELISA and immunofluorescence were used to detect the expression of secreted proteins and EMT markers. Results COPD patients with worse pulmonary function and higher airway remodeling-related inflammatory factors had lower Abhd2 protein expression. Moreover, indicators followed the same trend for COPD patients grouped by prognosis (Group A vs Group B). Serum TGF-β was negatively correlated with Abhd2 protein expression, FEV1/FVC, FEV1, and FEV1% PRED. In mice, Abhd2 depletion promoted deposition of TGF-β, leading to more pronounced emphysema, airway thickening, increased alveolar macrophage infiltration, decreased AECII number and SPs, and EMT phenomenon. Conclusion Downregulation of Abhd2 can promote airway remodeling in COPD by modulating repair after injury and EMT via TGF-β. This study suggests that Abhd2 may serve as a biomarker for assessing airway remodeling and guiding prognosis in COPD.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, 150001, People’s Republic of China
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Ling-Ling Jin
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
- Department of Critical Care medicine, the Second Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an, Shaanxi, China
| | - Xi-Qiao Sang
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Wen-Chao Shi
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Li-Xia Qiang
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Qing-Yan Lin
- Department of Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, 150001, People’s Republic of China
| | - Shou-De Jin
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| |
Collapse
|
14
|
Cai M, Luo J, Yang C, Yang X, Zhang C, Ma L, Cheng Y. ABHD12 contributes to tumorigenesis and sorafenib resistance by preventing ferroptosis in hepatocellular carcinoma. iScience 2023; 26:108340. [PMID: 38053637 PMCID: PMC10694648 DOI: 10.1016/j.isci.2023.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Sorafenib induces ferroptosis, making it a useful treatment against advanced liver hepatocellular carcinoma (LIHC). However, sorafenib resistance is extremely common among LIHC patients. Here, we used a comprehensive approach to investigate the effects of ABHD12, which regulates tumorigenesis and sorafenib resistance in LIHC. We validated ABHD12 expression was upregulated in LIHC tissue, which correlated with worse overall survival and related to tumor size or stage. ABHD12 facilitated a pro-tumorigenic phenotype involving increased cell proliferation, migration, and clonogenicity as well as sorafenib resistance. Knockout of ABHD12 sensitized liver cancer cells to sorafenib-induced ferroptosis. Co-delivery of sorafenib and ABHD12 inhibitor into a nude mouse model enhanced therapeutic efficacy for LIHC. Our study demonstrates that ABHD12 contributes to tumor growth and sorafenib resistance in liver cancer, which indicate the promising potential of ABHD12 in diagnosis and prognosis as well as highlight the potential therapeutic applications for co-delivery of sorafenib and ABHD12 inhibitor.
Collapse
Affiliation(s)
- Mengxing Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jingwen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chunxiu Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaopeng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
15
|
Ahonen T, Ng CP, Farinha B, Almeida B, Victor BL, Reynolds C, Kalso E, Yli-Kauhaluoma J, Greaves J, Moreira VM. Probing the Interactions of Thiazole Abietane Inhibitors with the Human Serine Hydrolases ABHD16A and ABHD12. ACS Med Chem Lett 2023; 14:1404-1410. [PMID: 37849541 PMCID: PMC10577890 DOI: 10.1021/acsmedchemlett.3c00313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
12-Thiazole abietanes are highly selective reversible inhibitors of hABHD16A that could potentially alleviate neuroinflammation. In this study, we used synthetic chemistry, competitive activity-based protein profiling, and computational methodologies to try to establish relevant structural determinants of activity and selectivity of this class of compounds for inhibiting ABHD16A over ABHD12. Five compounds significantly inhibited hABHD16A but also very efficiently discriminated between inhibition of hABHD16A and hABHD12, with compound 35 being the most effective, at 100 μM (55.1 ± 8.7%; p < 0.0001). However, an outstanding switch in the selectivity toward ABHD12 was observed in the presence of a ring A ester, if the C2' position of the thiazole ring possessed a 1-hydroxyethyl group, as in compound 28. Although our data were inconclusive as to whether the observed enzyme inhibition is allosteric or not, we anticipate that the structure-activity relationships presented herein will inspire future drug discovery efforts in this field.
Collapse
Affiliation(s)
- Tiina
J. Ahonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Choa P. Ng
- Research
Centre for Health and Life Sciences, Coventry
University, CV1 5RW Coventry, U.K.
| | - Beatriz Farinha
- BioISI—Biosystems
& Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Bárbara Almeida
- BioISI—Biosystems
& Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Bruno L. Victor
- BioISI—Biosystems
& Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Christopher Reynolds
- Research
Centre for Health and Life Sciences, Coventry
University, CV1 5RW Coventry, U.K.
- School
of Life Sciences, University of Essex, CO4 3SQ Colchester, U.K.
| | - Eija Kalso
- Department
of Pharmacology, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Department
of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Jennifer Greaves
- Research
Centre for Health and Life Sciences, Coventry
University, CV1 5RW Coventry, U.K.
| | - Vânia M. Moreira
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Centre
for Neuroscience and Cell Biology, and Centre for Innovative Biomedicine
and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory
of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
16
|
Ho TC, Wan HT, Lee WK, Lam TKY, Lin X, Chan TF, Lai KP, Wong CKC. Effects of In Utero PFOS Exposure on Epigenetics and Metabolism in Mouse Fetal Livers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14892-14903. [PMID: 37759171 PMCID: PMC10569047 DOI: 10.1021/acs.est.3c05207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Prenatal exposure to perfluorooctanesulfonate (PFOS) increases fetus' metabolic risk; however, the investigation of the underlying mechanism is limited. In this study, pregnant mice in the gestational days (GD, 4.5-17.5) were exposed to PFOS (0.3 and 3 μg/g of body weight). At GD 17.5, PFOS perturbed maternal lipid metabolism and upregulated metabolism-regulating hepatokines (Angptl4, Angptl8, and Selenop). Mass-spectrometry imaging and whole-genome bisulfite sequencing revealed, respectively, selective PFOS localization and deregulation of gene methylation in fetal livers, involved in inflammation, glucose, and fatty acid metabolism. PCR and Western blot analysis of lipid-laden fetal livers showed activation of AMPK signaling, accompanied by significant increases in the expression of glucose transporters (Glut2/4), hexose-phosphate sensors (Retsat and ChREBP), and the key glycolytic enzyme, pyruvate kinase (Pk) for glucose catabolism. Additionally, PFOS modulated the expression levels of PPARα and PPARγ downstream target genes, which simultaneously stimulated fatty acid oxidation (Cyp4a14, Acot, and Acox) and lipogenesis (Srebp1c, Acaca, and Fasn). Using human normal hepatocyte (MIHA) cells, the underlying mechanism of PFOS-elicited nuclear translocation of ChREBP, associated with a fatty acid synthesizing pathway, was revealed. Our finding implies that in utero PFOS exposure altered the epigenetic landscape associated with dysregulation of fetal liver metabolism, predisposing postnatal susceptibility to metabolic challenges.
Collapse
Affiliation(s)
- Tsz Chun Ho
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
- State
Key Laboratory in Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Hin Ting Wan
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Wang Ka Lee
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Thomas Ka Yam Lam
- State
Key Laboratory in Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Xiao Lin
- Department
of Psychiatry, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Ting Fung Chan
- School
of Life Sciences, State Key Laboratory of Agrobiotechnology, Bioinformatics
Centre, The Chinese University of Hong Kong, New Territories 999077, Hong Kong SAR, China
| | - Keng Po Lai
- Key
Laboratory of Environmental Pollution and Integrative Omics, Education
Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541100, China
| | - Chris Kong Chu Wong
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
- State
Key Laboratory in Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
17
|
Seramur ME, Sink S, Cox AO, Furdui CM, Key CCC. ABHD4 regulates adipocyte differentiation in vitro but does not affect adipose tissue lipid metabolism in mice. J Lipid Res 2023; 64:100405. [PMID: 37352974 PMCID: PMC10400869 DOI: 10.1016/j.jlr.2023.100405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/02/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023] Open
Abstract
Alpha/beta hydrolase domain-containing protein 4 (ABHD4) catalyzes the deacylation of N-acyl phosphatidyl-ethanolamine (NAPE) and lyso-NAPE to produce glycerophospho-N-acyl ethanolamine (GP-NAE). Through a variety of metabolic enzymes, NAPE, lyso-NAPE, and GP-NAE are ultimately converted into NAE, a group of bioactive lipids that control many physiological processes including inflammation, cognition, food intake, and lipolysis (i.e., oleoylethanolamide or OEA). In a diet-induced obese mouse model, adipose tissue Abhd4 gene expression positively correlated with adiposity. However, it is unknown whether Abhd4 is a causal or a reactive gene to obesity. To fill this knowledge gap, we generated an Abhd4 knockout (KO) 3T3-L1 pre-adipocyte. During adipogenic stimulation, Abhd4 KO pre-adipocytes had increased adipogenesis and lipid accumulation, suggesting Abhd4 is responding to (a reactive gene), not contributing to (not a causal gene), adiposity, and may serve as a mechanism for protecting against obesity. However, we did not observe any differences in adiposity and metabolic outcomes between whole-body Abhd4 KO or adipocyte-specific Abhd4 KO mice and their littermate control mice (both male and female) on chow or a high-fat diet. This might be because we found that deletion of Abhd4 did not affect NAE such as OEA production, even though Abhd4 was highly expressed in adipose tissue and correlated with fasting adipose OEA levels and lipolysis. These data suggest that ABHD4 regulates adipocyte differentiation in vitro but does not affect adipose tissue lipid metabolism in mice despite nutrient overload, possibly due to compensation from other NAPE and NAE metabolic enzymes.
Collapse
Affiliation(s)
- Mary E Seramur
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Sandy Sink
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Anderson O Cox
- Wake Forest Baptist Comprehensive Cancer Center Proteomics and Metabolomics Shared Resource, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Chia-Chi Chuang Key
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA.
| |
Collapse
|
18
|
Mohammad I, Liebmann KL, Miller SC. Firefly luciferin methyl ester illuminates the activity of multiple serine hydrolases. Chem Commun (Camb) 2023; 59:8552-8555. [PMID: 37337906 PMCID: PMC10347678 DOI: 10.1039/d3cc02540c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Firefly luciferin methyl ester is hydrolyzed by monoacylglycerol lipase MAGL, amidase FAAH, poorly-characterized hydrolase ABHD11, and hydrolases known for S-depalmitoylation (LYPLA1/2), not just esterase CES1. This enables activity-based bioluminescent assays for serine hydrolases and suggests that the 'esterase activity' responsible for hydrolyzing ester prodrugs is more diverse than previously supposed.
Collapse
Affiliation(s)
- Innus Mohammad
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Kate L Liebmann
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Stephen C Miller
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Price TR, Stapleton DS, Schueler KL, Norris MK, Parks BW, Yandell BS, Churchill GA, Holland WL, Keller MP, Attie AD. Lipidomic QTL in Diversity Outbred mice identifies a novel function for α/β hydrolase domain 2 (Abhd2) as an enzyme that metabolizes phosphatidylcholine and cardiolipin. PLoS Genet 2023; 19:e1010713. [PMID: 37523383 PMCID: PMC10414554 DOI: 10.1371/journal.pgen.1010713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/10/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/β-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
20
|
Guerrero-Santoro J, Morizane M, Oh SY, Mishima T, Goff JP, Bildirici I, Sadovsky E, Ouyang Y, Tyurin VA, Tyurina YY, Kagan VE, Sadovsky Y. The lipase cofactor CGI58 controls placental lipolysis. JCI Insight 2023; 8:168717. [PMID: 37212279 DOI: 10.1172/jci.insight.168717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
In eutherians, the placenta plays a critical role in the uptake, storage, and metabolism of lipids. These processes govern the availability of fatty acids to the developing fetus, where inadequate supply has been associated with substandard fetal growth. Whereas lipid droplets are essential for the storage of neutral lipids in the placenta and many other tissues, the processes that regulate placental lipid droplet lipolysis remain largely unknown. To assess the role of triglyceride lipases and their cofactors in determining placental lipid droplet and lipid accumulation, we assessed the role of patatin like phospholipase domain containing 2 (PNPLA2) and comparative gene identification-58 (CGI58) in lipid droplet dynamics in the human and mouse placenta. While both proteins are expressed in the placenta, the absence of CGI58, not PNPLA2, markedly increased placental lipid and lipid droplet accumulation. These changes were reversed upon restoration of CGI58 levels selectively in the CGI58-deficient mouse placenta. Using co-immunoprecipitation, we found that, in addition to PNPLA2, PNPLA9 interacts with CGI58. PNPLA9 was dispensable for lipolysis in the mouse placenta yet contributed to lipolysis in human placental trophoblasts. Our findings establish a crucial role for CGI58 in placental lipid droplet dynamics and, by extension, in nutrient supply to the developing fetus.
Collapse
Affiliation(s)
- Jennifer Guerrero-Santoro
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mayumi Morizane
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Soo-Young Oh
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Takuya Mishima
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julie P Goff
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ibrahim Bildirici
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health
- Department of Chemistry
- Department of Pharmacology and Chemical Biology
- Department of Radiation Oncology; and
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Hayashi D, Dennis EA. Molecular basis of unique specificity and regulation of group VIA calcium-independent phospholipase A 2 (PNPLA9) and its role in neurodegenerative diseases. Pharmacol Ther 2023; 245:108395. [PMID: 36990122 PMCID: PMC10174669 DOI: 10.1016/j.pharmthera.2023.108395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Glycerophospholipids are major components of cell membranes and consist of a glycerol backbone esterified with one of over 30 unique fatty acids at each of the sn-1 and sn-2 positions. In addition, in some human cells and tissues as much as 20% of the glycerophospholipids contain a fatty alcohol rather than an ester in the sn-1 position, although it can also occur in the sn-2 position. The sn-3 position of the glycerol backbone contains a phosphodiester bond linked to one of more than 10 unique polar head-groups. Hence, humans contain thousands of unique individual molecular species of phospholipids given the heterogeneity of the sn-1 and sn-2 linkage and carbon chains and the sn-3 polar groups. Phospholipase A2 (PLA2) is a superfamily of enzymes that hydrolyze the sn-2 fatty acyl chain resulting in lyso-phospholipids and free fatty acids that then undergo further metabolism. PLA2's play a critical role in lipid-mediated biological responses and membrane phospholipid remodeling. Among the PLA2 enzymes, the Group VIA calcium-independent PLA2 (GVIA iPLA2), also referred to as PNPLA9, is a fascinating enzyme with broad substrate specificity and it is implicated in a wide variety of diseases. Especially notable, the GVIA iPLA2 is implicated in the sequelae of several neurodegenerative diseases termed "phospholipase A2-associated neurodegeneration" (PLAN) diseases. Despite many reports on the physiological role of the GVIA iPLA2, the molecular basis of its enzymatic specificity was unclear. Recently, we employed state-of-the-art lipidomics and molecular dynamics techniques to elucidate the detailed molecular basis of its substrate specificity and regulation. In this review, we summarize the molecular basis of the enzymatic action of GVIA iPLA2 and provide a perspective on future therapeutic strategies for PLAN diseases targeting GVIA iPLA2.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan.
| | - Edward A Dennis
- Department of Pharmacology, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0601, USA
| |
Collapse
|
22
|
Price TR, Stapleton DS, Schueler KL, Norris MK, Parks BW, Yandell BS, Churchill GA, Holland WL, Keller MP, Attie AD. Lipidomic QTL in Diversity Outbred mice identifies a novel function for α/β hydrolase domain 2 ( Abhd2 ) as an enzyme that metabolizes phosphatidylcholine and cardiolipin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533902. [PMID: 36993241 PMCID: PMC10055419 DOI: 10.1101/2023.03.23.533902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/β-hydrolase domain 2 ( Abhd2 ), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2 . The Abhd2 KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2 KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.
Collapse
Affiliation(s)
- Tara R Price
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Donnie S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Marie K Norris
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, WI
| | | | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
23
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
24
|
Molecular insights on PS-PLA 1 lipase activity of human ABHD16B. Biophys Chem 2023; 296:106976. [PMID: 36841071 DOI: 10.1016/j.bpc.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The human alpha beta hydrolase domain (ABHD) proteins are ubiquitous and regulate the cellular lipids' anabolic and catabolic processes. The structural aspects for specific biochemical function of many ABHD proteins related to physiological disorders and its link to pathological conditions remain unknown. Here putative human ABHD16B protein was overexpressed in Saccharomyces cerevisiae for its biological activity. In-vitro enzymatic assay of the recombinant ABHD16B protein with fluorescently tagged glycerophospholipids revealed that the PLA1 activity is observed with phosphatidylserine (PS). In addition, it efficiently hydrolyzed monoacylglycerol over triacylglycerols. Further, molecular dynamic simulations and per residue binding free energy decomposition analysis revealed that the origin of PS-specific PLA1 activity of ABHD16B is due to the electrostatic interaction of the PS head group with K8, R319, and E178, which led to having the hydrogen bond interaction of sn-1 acyl chain ester to the catalytic site residues. Site-directed mutagenesis of the 245GXSXG249 motif of ABHD16B reduced the maximal lipase activity of PS and MAG. In summary, these results revealed that ABHD16B plays a vital role in PS selectivity that in turn, controls the specific subcellular pools of 2-LPS metabolism in the tissues at low pH.
Collapse
|
25
|
Brown RWB, Sharma AI, Villanueva MR, Li X, Onguka O, Zilbermintz L, Nguyen H, Falk BA, Olson CL, Taylor JM, Epting CL, Kathayat RS, Amara N, Dickinson BC, Bogyo M, Engman DM. Trypanosoma brucei Acyl-Protein Thioesterase-like (TbAPT-L) Is a Lipase with Esterase Activity for Short and Medium-Chain Fatty Acids but Has No Depalmitoylation Activity. Pathogens 2022; 11:1245. [PMID: 36364996 PMCID: PMC9693859 DOI: 10.3390/pathogens11111245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 02/12/2024] Open
Abstract
Dynamic post-translational modifications allow the rapid, specific, and tunable regulation of protein functions in eukaryotic cells. S-acylation is the only reversible lipid modification of proteins, in which a fatty acid, usually palmitate, is covalently attached to a cysteine residue of a protein by a zDHHC palmitoyl acyltransferase enzyme. Depalmitoylation is required for acylation homeostasis and is catalyzed by an enzyme from the alpha/beta hydrolase family of proteins usually acyl-protein thioesterase (APT1). The enzyme responsible for depalmitoylation in Trypanosoma brucei parasites is currently unknown. We demonstrate depalmitoylation activity in live bloodstream and procyclic form trypanosomes sensitive to dose-dependent inhibition with the depalmitoylation inhibitor, palmostatin B. We identified a homologue of human APT1 in Trypanosoma brucei which we named TbAPT-like (TbAPT-L). Epitope-tagging of TbAPT-L at N- and C- termini indicated a cytoplasmic localization. Knockdown or over-expression of TbAPT-L in bloodstream forms led to robust changes in TbAPT-L mRNA and protein expression but had no effect on parasite growth in vitro, or cellular depalmitoylation activity. Esterase activity in cell lysates was also unchanged when TbAPT-L was modulated. Unexpectedly, recombinant TbAPT-L possesses esterase activity with specificity for short- and medium-chain fatty acid substrates, leading to the conclusion, TbAPT-L is a lipase, not a depalmitoylase.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aabha I. Sharma
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Rey Villanueva
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaomo Li
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ouma Onguka
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leeor Zilbermintz
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Helen Nguyen
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ben A. Falk
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cheryl L. Olson
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Joann M. Taylor
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Conrad L. Epting
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Neri Amara
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Matthew Bogyo
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M. Engman
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
26
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
27
|
Pusch LM, Riegler-Berket L, Oberer M, Zimmermann R, Taschler U. α/β-Hydrolase Domain-Containing 6 (ABHD6)- A Multifunctional Lipid Hydrolase. Metabolites 2022; 12:761. [PMID: 36005632 PMCID: PMC9412472 DOI: 10.3390/metabo12080761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
α/β-hydrolase domain-containing 6 (ABHD6) belongs to the α/β-hydrolase fold superfamily and was originally discovered in a functional proteomic approach designed to discover monoacylglycerol (MAG) hydrolases in the mouse brain degrading the endocannabinoid 2-arachidonoylglycerol. Subsequent studies confirmed that ABHD6 acts as an MAG hydrolase regulating cannabinoid receptor-dependent and -independent signaling processes. The enzyme was identified as a negative modulator of insulin secretion and regulator of energy metabolism affecting the pathogenesis of obesity and metabolic syndrome. It has been implicated in the metabolism of the lysosomal co-factor bis(monoacylglycerol)phosphate and in the surface delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Finally, ABHD6 was shown to affect cancer cell lipid metabolism and tumor malignancy. Here, we provide new insights into the experimentally derived crystal structure of ABHD6 and its possible orientation in biological membranes, and discuss ABHD6's functions in health and disease.
Collapse
Affiliation(s)
- Lisa-Maria Pusch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Lina Riegler-Berket
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
28
|
Liu BW, Wang XY, Cao JL, Chen LL, Wang YL, Zhao BQ, Zhou J, Shen ZF. TDP-43 upregulates lipid metabolism modulator ABHD2 to suppress apoptosis in hepatocellular carcinoma. Commun Biol 2022; 5:816. [PMID: 35963893 PMCID: PMC9376094 DOI: 10.1038/s42003-022-03788-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
TAR DNA-Binding Protein 43 (TDP-43) has been well studied in neurodegenerative diseases, but its potential role in malignance is still unclear. Here, we demonstrate that TDP-43 contributes to the suppression of apoptosis by facilitating lipid metabolism in hepatocellular carcinoma (HCC). In HCC cells, TDP-43 is able to suppress apoptosis while deletion of it markedly induces apoptosis. RNA-sequencing identifies the lipid metabolism gene abhydrolase domain containing 2 (ABHD2) as the target gene of TDP-43. Tissue microarray analysis shows the positive correlation of TDP-43 and ABHD2 in HCC. Mechanistically, TDP-43 binds with the UG-rich sequence1 of ABHD2 3’UTR to enhance the mRNA stability of ABHD2, thereby upregulating ABHD2. Afterwards, TDP-43 promotes the production of free fatty acid and fatty acid oxidation-originated reactive oxygen species (ROS) in an ABHD2-dependent manner, so as to suppress apoptosis of HCC. Our findings provide insights into the mechanism of HCC progression and reveal TDP-43/ABHD2 as potential targets for the precise treatment of HCC. TDP-43 acts as an RNA-binding protein that regulates the RNA stability of ABHD2 and affects the release of fatty acids and ROS, which in turn regulates apoptosis and affects the growth of liver tumors.
Collapse
Affiliation(s)
- Bo-Wen Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Xiang-Yun Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jin-Ling Cao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Lu-Lu Chen
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yi-Lei Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Bing-Qian Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jia Zhou
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhi-Fa Shen
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China.
| |
Collapse
|
29
|
α/β-Hydrolase D16B Truncation Results in Premature Sperm Capacitation in Cattle. Int J Mol Sci 2022; 23:ijms23147777. [PMID: 35887122 PMCID: PMC9316559 DOI: 10.3390/ijms23147777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Recently it was shown that a specific form of male infertility in Holstein cattle was caused by a nonsense variant in the α/β-hydrolase domain-containing 16B (ABHD16B) gene resulting in a protein truncation at amino acid position 218 (p.218Q*) and loss of function. Lipidomics showed that the absence of ABHD16B influenced the content of phosphatidylcholine (PC), ceramide (Cer), diacylglycerol (DAG), and sphingomyelin (SM) in variant carrier sperm membranes. However, the exact cause of infertility in affected sires has remained unclear until now. To elucidate the cause of infertility, we analyzed (i) standard sperm parameters (i.e., total sperm number, morphological intact sperm, total sperm motility), (ii) in vitro fertilizability and effects on early embryonic development, and (iii) sperm survival rates (i.e., capacitation time). The affected spermatozoa showed no changes in the usual sperm parameters and were also capable of fertilization in vitro. Furthermore, the absence of ABHD16B did not affect early embryonic development. Based on these results, it was concluded that the affected spermatozoa appeared to be fertilizable per se. Consequently, the actual cause of the inability to fertilize could only be due to a time- and/or place-dependent process after artificial insemination and before fertilization. A process fundamental to the ability to fertilize after insemination is capacitation. Capacitation is a biochemical maturation process that spermatozoa undergo in the female genital tract and is inevitable for the successful fertilization of the oocyte. It is known that the presence and concentration of certain sperm membrane lipids are essential for the correct course of capacitation. However, precisely these lipids are absent in the membrane of spermatozoa affected by the ABHD16B truncation. Since all other causes of fertilization inability were excluded in the previous experiments, consequently, the only remaining hypothesis was that the loss of function of ABHD16B leads to a capacitation disruption. We were able to show that heterozygous and homozygous affected spermatozoa exhibit premature capacitation and therefore decay before fertilization. This effect of the loss of function of ABHD16B has not been described before and our studies now revealed why sires harboring the variant in the ABHD16B gene are infertile.
Collapse
|
30
|
Dave A, Park EJ, Kumar A, Parande F, Beyoğlu D, Idle JR, Pezzuto JM. Consumption of Grapes Modulates Gene Expression, Reduces Non-Alcoholic Fatty Liver Disease, and Extends Longevity in Female C57BL/6J Mice Provided with a High-Fat Western-Pattern Diet. Foods 2022; 11:1984. [PMID: 35804799 PMCID: PMC9265568 DOI: 10.3390/foods11131984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
A key objective of this study was to explore the potential of dietary grape consumption to modulate adverse effects caused by a high-fat (western-pattern) diet. Female C57BL/6J mice were purchased at six-weeks-of-age and placed on a standard (semi-synthetic) diet (STD). At 11 weeks-of-age, the mice were continued on the STD or placed on the STD supplemented with 5% standardized grape powder (STD5GP), a high-fat diet (HFD), or an HFD supplemented with 5% standardized grape powder (HFD5GP). After being provided with the respective diets for 13 additional weeks, the mice were euthanized, and liver was collected for biomarker analysis, determination of genetic expression (RNA-Seq), and histopathological examination. All four dietary groups demonstrated unique genetic expression patterns. Using pathway analysis tools (GO, KEGG and Reactome), relative to the STD group, differentially expressed genes of the STD5GP group were significantly enriched in RNA, mitochondria, and protein translation related pathways, as well as drug metabolism, glutathione, detoxification, and oxidative stress associated pathways. The expression of Gstp1 was confirmed to be upregulated by about five-fold (RT-qPCR), and, based on RNA-Seq data, the expression of additional genes associated with the reduction of oxidative stress and detoxification (Gpx4 and 8, Gss, Gpx7, Sod1) were enhanced by dietary grape supplementation. Cluster analysis of genetic expression patterns revealed the greatest divergence between the HFD5GP and HFD groups. In the HFD5GP group, relative to the HFD group, 14 genes responsible for the metabolism, transportation, hydrolysis, and sequestration of fatty acids were upregulated. Conversely, genes responsible for lipid content and cholesterol synthesis (Plin4, Acaa1b, Slc27a1) were downregulated. The two top classifications emerging as enriched in the HFD5GP group vs. the HFD group (KEGG pathway analysis) were Alzheimer's disease and nonalcoholic fatty liver disease (NAFLD), both of which have been reported in the literature to bear a causal relationship. In the current study, nonalcoholic steatohepatitis was indicated by histological observations that revealed archetype markers of fatty liver induced by the HFD. The adverse response was diminished by grape intervention. In addition to these studies, life-long survival was assessed with C57BL/6J mice. C57BL/6J mice were received at four-weeks-of-age and placed on the STD. At 14-weeks-of-age, the mice were divided into two groups (100 per group) and provided with the HFD or the HFD5GP. Relative to the HFD group, the survival time of the HFD5GP group was enhanced (log-rank test, p = 0.036). The respective hazard ratios were 0.715 (HFD5GP) and 1.397 (HFD). Greater body weight positively correlated with longevity; the highest body weight of the HFD5GP group was attained later in life than the HFD group (p = 0.141). These results suggest the potential of dietary grapes to modulate hepatic gene expression, prevent oxidative damage, induce fatty acid metabolism, ameliorate NAFLD, and increase longevity when co-administered with a high-fat diet.
Collapse
Affiliation(s)
- Asim Dave
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
| | - Avinash Kumar
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
| | - Falguni Parande
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
- Artus Therapeutics, Harvard Life Lab, Allston, MA 02134, USA
| | - Diren Beyoğlu
- Arthur G. Zupko’s Institute of Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (D.B.); (J.R.I.)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Institute of Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (D.B.); (J.R.I.)
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
31
|
NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis. Sci Rep 2022; 12:11264. [PMID: 35787631 PMCID: PMC9253118 DOI: 10.1038/s41598-022-14429-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. ‘Thermomemory’ is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Arabidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like ataf1, anac055 mutants show improved thermomemory, revealing a potential co-control of both NAC TFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory.
Collapse
|
32
|
Liu Z, Huang Z, Zheng X, Zheng Z, Yao D, Zhang Y, Aweya JJ. The juvenile hormone epoxide hydrolase homolog in Penaeus vannamei plays immune-related functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104410. [PMID: 35398160 DOI: 10.1016/j.dci.2022.104410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Juvenile hormone epoxide hydrolase (JHEH) participates in the degradation of juvenile hormone and also involved in the development and molting process in insects. Here, the JHEH homolog in Pennaus vannamei was cloned and found to consist of a full-length cDNA of 2543 bp and an open reading frame (ORF) of 1386 bp. Transcripts of PvJHEH1 were expressed in most tissues of healthy shrimp with the highest found in the hepatopancreas and lowest in hemocytes. Both Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Streptococcus iniae) bacteria induced PvJHEH1 expression in shrimp hemocytes and hepatopancreas, suggesting the involvement of PvJHEH1 in P. vannamei immune responses. Moreover, the mRNA levels of ecdysone inducible nuclear transcription factor PvE75 and crustacean hyperglycemic hormone (PvCHH), two endocrine-related genes with roles in shrimp innate immune response, decreased significantly in shrimp hemocytes after PvJHEH1 knockdown. Shrimp survival was also affected after PvJHEH1 knockdown followed by V. parahaemolyticus challenge, indicating that JHEH1 plays an essential role in shrimp survival during bacterial infection.
Collapse
Affiliation(s)
- Zhuoyan Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zishu Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Xiaoyu Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
33
|
The Role of Hydrolases in Biology and Xenobiotics Metabolism. Int J Mol Sci 2022; 23:ijms23094870. [PMID: 35563260 PMCID: PMC9105290 DOI: 10.3390/ijms23094870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
|
34
|
Llamas-García M, Páez-Pérez ED, Benitez-Cardoza CG, Montero-Morán GM, Lara-González S. Improved Stability of Human CGI-58 Induced by Phosphomimetic S237E Mutation. ACS OMEGA 2022; 7:12643-12653. [PMID: 35474805 PMCID: PMC9026008 DOI: 10.1021/acsomega.1c06872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/22/2022] [Indexed: 05/08/2023]
Abstract
In lipolysis, the activating function of CGI-58 is regulated by its interaction with perilipin 1 (PLIN1) localized on the lipid droplet (LD), and its release is controlled by phosphorylation. Once lipolysis is stimulated by catecholamines, protein kinase A (PKA)-mediated phosphorylation enables the dissociation of the CGI-58/PLIN1 complex, thereby recruiting adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) to initiate fatty acid release. It has been shown that mouse CGI-58 mutant S239E, which mimics the phosphorylation of this residue, is able to dissociate from the CGI-58/PLIN1 complex and activate ATGL. Here, we analyze the stabilizing effect on human CGI-58 of a triple tryptophan to alanine mutant (3WA) on the LD-binding motif, as well as a quadruple mutant in which the phosphomimetic S237E substitution was introduced to the 3WA construct (3WA/S237E). We found that tryptophan residues promote wild-type (WT) protein aggregation in solution since their substitution for alanine residues favors the presence of the monomer. Our experimental data showed increased thermal stability and solubility of 3WA/S237E protein compared to the 3WA mutant. Moreover, the 3WA/S237E protein showed proper folding and a functional binding site for oleoyl-CoA. The analysis of a bioinformatic three-dimensional (3D) model suggests an intramolecular interaction between the phosphomimetic glutamic acid and a residue of the α/β hydrolase core. This could explain the increased solubility and stability observed in the 3WA/S237E mutant and evidences the possible role of serine 237 phosphorylation.
Collapse
Affiliation(s)
- Miriam
Livier Llamas-García
- IPICYT,
División de Biología Molecular, Instituto Potosino de
Investigación Científica y Tecnológica A.C., San Luis Potosí, San Luis Potosí 78216, México
| | - Edgar D. Páez-Pérez
- IPICYT,
División de Biología Molecular, Instituto Potosino de
Investigación Científica y Tecnológica A.C., San Luis Potosí, San Luis Potosí 78216, México
| | - Claudia G. Benitez-Cardoza
- Laboratorio
de Investigación Bioquímica, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico
Nacional, Ciudad de México 07320, México
| | - Gabriela M. Montero-Morán
- Universidad
Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, San Luis Potosí, San Luis Potosí 78210, México
| | - Samuel Lara-González
- IPICYT,
División de Biología Molecular, Instituto Potosino de
Investigación Científica y Tecnológica A.C., San Luis Potosí, San Luis Potosí 78216, México
| |
Collapse
|
35
|
Jeffries CD, Ford JR, Tilson JL, Perkins DO, Bost DM, Filer DL, Wilhelmsen KC. A greedy regression algorithm with coarse weights offers novel advantages. Sci Rep 2022; 12:5440. [PMID: 35361850 PMCID: PMC8971398 DOI: 10.1038/s41598-022-09415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Regularized regression analysis is a mature analytic approach to identify weighted sums of variables predicting outcomes. We present a novel Coarse Approximation Linear Function (CALF) to frugally select important predictors and build simple but powerful predictive models. CALF is a linear regression strategy applied to normalized data that uses nonzero weights + 1 or - 1. Qualitative (linearly invariant) metrics to be optimized can be (for binary response) Welch (Student) t-test p-value or area under curve (AUC) of receiver operating characteristic, or (for real response) Pearson correlation. Predictor weighting is critically important when developing risk prediction models. While counterintuitive, it is a fact that qualitative metrics can favor CALF with ± 1 weights over algorithms producing real number weights. Moreover, while regression methods may be expected to change most or all weight values upon even small changes in input data (e.g., discarding a single subject of hundreds) CALF weights generally do not so change. Similarly, some regression methods applied to collinear or nearly collinear variables yield unpredictable magnitude or the direction (in p-space) of the weights as a vector. In contrast, with CALF if some predictors are linearly dependent or nearly so, CALF simply chooses at most one (the most informative, if any) and ignores the others, thus avoiding the inclusion of two or more collinear variables in the model.
Collapse
Affiliation(s)
- Clark D Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA.
| | | | - Jeffrey L Tilson
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Diana O Perkins
- Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Darius M Bost
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
- Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Dayne L Filer
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
- Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Kirk C Wilhelmsen
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
- Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Neurology, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV, USA
| |
Collapse
|
36
|
Beuchel C, Dittrich J, Pott J, Henger S, Beutner F, Isermann B, Loeffler M, Thiery J, Ceglarek U, Scholz M. Whole Blood Metabolite Profiles Reflect Changes in Energy Metabolism in Heart Failure. Metabolites 2022; 12:metabo12030216. [PMID: 35323659 PMCID: PMC8949022 DOI: 10.3390/metabo12030216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
A variety of atherosclerosis and cardiovascular disease (ASCVD) phenotypes are tightly linked to changes in the cardiac energy metabolism that can lead to a loss of metabolic flexibility and to unfavorable clinical outcomes. We conducted an association analysis of 31 ASCVD phenotypes and 97 whole blood amino acids, acylcarnitines and derived ratios in the LIFE-Adult (n = 9646) and LIFE-Heart (n = 5860) studies, respectively. In addition to hundreds of significant associations, a total of 62 associations of six phenotypes were found in both studies. Positive associations of various amino acids and a range of acylcarnitines with decreasing cardiovascular health indicate disruptions in mitochondrial, as well as peroxisomal fatty acid oxidation. We complemented our metabolite association analyses with whole blood and peripheral blood mononuclear cell (PBMC) gene-expression analyses of fatty acid oxidation and ketone-body metabolism related genes. This revealed several differential expressions for the heart failure biomarker N-terminal prohormone of brain natriuretic peptide (NT-proBNP) in peripheral blood mononuclear cell (PBMC) gene expression. Finally, we constructed and compared three prediction models of significant stenosis in the LIFE-Heart study using (1) traditional risk factors only, (2) the metabolite panel only and (3) a combined model. Area under the receiver operating characteristic curve (AUC) comparison of these three models shows an improved prediction accuracy for the combined metabolite and classical risk factor model (AUC = 0.78, 95%-CI: 0.76–0.80). In conclusion, we improved our understanding of metabolic implications of ASCVD phenotypes by observing associations with metabolite concentrations and gene expression of the mitochondrial and peroxisomal fatty acid oxidation. Additionally, we demonstrated the predictive potential of the metabolite profile to improve classification of patients with significant stenosis.
Collapse
Affiliation(s)
- Carl Beuchel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany; (J.P.); (S.H.); (M.L.)
- Correspondence: (C.B.); (U.C.); (M.S.)
| | - Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; (J.D.); (B.I.); (J.T.)
| | - Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany; (J.P.); (S.H.); (M.L.)
- LIFE—Leipzig Research Center for Civilization Diseases, Leipzig University, 04103 Leipzig, Germany
| | - Sylvia Henger
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany; (J.P.); (S.H.); (M.L.)
- LIFE—Leipzig Research Center for Civilization Diseases, Leipzig University, 04103 Leipzig, Germany
| | | | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; (J.D.); (B.I.); (J.T.)
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany; (J.P.); (S.H.); (M.L.)
- LIFE—Leipzig Research Center for Civilization Diseases, Leipzig University, 04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; (J.D.); (B.I.); (J.T.)
- Faculty of Medicine, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; (J.D.); (B.I.); (J.T.)
- LIFE—Leipzig Research Center for Civilization Diseases, Leipzig University, 04103 Leipzig, Germany
- Correspondence: (C.B.); (U.C.); (M.S.)
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany; (J.P.); (S.H.); (M.L.)
- LIFE—Leipzig Research Center for Civilization Diseases, Leipzig University, 04103 Leipzig, Germany
- IFB AdiposityDiseases, University Hospital Leipzig, 04103 Leipzig, Germany
- Correspondence: (C.B.); (U.C.); (M.S.)
| |
Collapse
|
37
|
Nguyen TT, Voeltz GK. An ER phospholipid hydrolase drives ER-associated mitochondrial constriction for fission and fusion. eLife 2022; 11:84279. [PMID: 36448541 PMCID: PMC9725753 DOI: 10.7554/elife.84279] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo cycles of fission and fusion at a unified platform defined by endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCSs). These MCSs or nodes co-localize fission and fusion machinery. We set out to identify how ER-associated mitochondrial nodes can regulate both fission and fusion machinery assembly. We have used a promiscuous biotin ligase linked to the fusion machinery, Mfn1, and proteomics to identify an ER membrane protein, ABHD16A, as a major regulator of node formation. In the absence of ABHD16A, fission and fusion machineries fail to recruit to ER-associated mitochondrial nodes, and fission and fusion rates are significantly reduced. ABHD16A contains an acyltransferase motif and an α/β hydrolase domain, and point mutations in critical residues of these regions fail to rescue the formation of ER-associated mitochondrial hot spots. These data suggest a mechanism whereby ABHD16A functions by altering phospholipid composition at ER-mitochondria MCSs. Our data present the first example of an ER membrane protein that regulates the recruitment of both fission and fusion machineries to mitochondria.
Collapse
Affiliation(s)
- Tricia T Nguyen
- Howard Hughes Medical InstituteChevy ChaseUnited States,Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Gia K Voeltz
- Howard Hughes Medical InstituteChevy ChaseUnited States,Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| |
Collapse
|
38
|
Zhang H, Li X, Liao D, Luo P, Jiang X. Alpha/Beta-Hydrolase Domain-Containing 6: Signaling and Function in the Central Nervous System. Front Pharmacol 2021; 12:784202. [PMID: 34925039 PMCID: PMC8675881 DOI: 10.3389/fphar.2021.784202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Endocannabinoid (eCB) signaling plays an important role in the central nervous system (CNS). α/β-Hydrolase domain-containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids such as endocannabinoid 2-arachidonoyl glycerol (2-AG). ABHD6 participates in neurotransmission, inflammation, brain energy metabolism, tumorigenesis and other biological processes and is a potential therapeutic target for various neurological diseases, such as traumatic brain injury (TBI), multiple sclerosis (MS), epilepsy, mental illness, and pain. This review summarizes the molecular mechanisms of action and biological functions of ABHD6, particularly its mechanism of action in the pathogenesis of neurological diseases, and provides a theoretical basis for new pharmacological interventions via targeting of ABHD6.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Tian W, Zhang B, Zhong H, Nie R, Ling Y, Zhang H, Wu C. Dynamic Expression and Regulatory Network of Circular RNA for Abdominal Preadipocytes Differentiation in Chicken ( Gallus gallus). Front Cell Dev Biol 2021; 9:761638. [PMID: 34869349 PMCID: PMC8633312 DOI: 10.3389/fcell.2021.761638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNA (circRNA), as a novel endogenous biomolecule, has been emergingly demonstrated to play crucial roles in mammalian lipid metabolism and obesity. However, little is known about their genome-wide identification, expression profile, and function in chicken adipogenesis. In present study, the adipogenic differentiation of chicken abdominal preadipocyte was successfully induced, and the regulatory functional circRNAs in chicken adipogenesis were identified from abdominal adipocytes at different differentiation stages using Ribo-Zero RNA-seq. A total of 1,068 circRNA candidates were identified and mostly derived from exons. Of these, 111 differentially expressed circRNAs (DE-circRNAs) were detected, characterized by stage-specific expression, and enriched in several lipid-related pathways, such as Hippo signaling pathway, mTOR signaling pathway. Through weighted gene co-expression network analyses (WGCNA) and K-means clustering analyses, two DE-circRNAs, Z:35565770|35568133 and Z:54674624|54755962, were identified as candidate regulatory circRNAs in chicken adipogenic differentiation. Z:35565770|35568133 might compete splicing with its parental gene, ABHD17B, owing to its strictly negative co-expression. We also constructed competing endogenous RNA (ceRNA) network based on DE-circRNA, DE-miRNA, DE-mRNAs, revealing that Z:54674624|54755962 might function as a ceRNA to regulate chicken adipogenic differentiation through the gga-miR-1635-AHR2/IRF1/MGAT3/ABCA1/AADAC and/or the novel_miR_232-STAT5A axis. Translation activity analysis showed that Z:35565770|35568133 and Z:54674624|54755962 have no protein-coding potential. These findings provide valuable evidence for a better understanding of the specific functions and molecular mechanisms of circRNAs underlying avian adipogenesis.
Collapse
Affiliation(s)
- Weihua Tian
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haian Zhong
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ruixue Nie
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Ling
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
41
|
Hussain SA, Deepak KV, Nanjappa DP, Sherigar V, Nandan N, Suresh PS, Venkatesh T. Comparative expression analysis of tRF-3001a and tRF-1003 with corresponding miRNAs (miR-1260a and miR-4521) and their network analysis with breast cancer biomarkers. Mol Biol Rep 2021; 48:7313-7324. [PMID: 34661810 DOI: 10.1007/s11033-021-06732-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND MicroRNAs and tRFs (tRNA-derived fragments) are small non-coding RNAs that are promising breast cancer (BC) biomarkers. miRNA sequences are found within tRFs. For example, miR-1260a and miR-4521 sequences are found within tRF-3001a and tRF-1003, respectively. No study has addressed the biomarker potential of these tRF-miRNA pairs in BC or their association with other BC miRNA biomarkers. METHODS AND RESULTS Real-time PCR was performed to examine the expression of miR-1260a-tRF-3001a and miR-4521-tRF-1003 pairs in plasma of BC patients. miR-4521 and miR-1260a showed no change in plasma of breast cancer patients (n = 19). On the contrary, both the corresponding tRFs (tRF-1003 and tRF-3001a) were down-regulated. Also, we performed miRNA/mRNA network analysis for miR-1260a and miR-4521 with top degree BC biomarkers miR-16-5p and miR-93-5p. We found that they shared nine target genes. Moreover, miR-16-5p was down-regulated, and miR-93-5p was up-regulated in the same sample set. Survival analysis plotted using clinical data from Kaplan-Meier Plotter showed that all four miRNAs and 8/9 target gene expressions could predict the survival of BC patients. CONCLUSIONS Our cohort analyses suggest that tRF-3001a and tRF-1003 serve as better biomarkers than their miRNA counterparts in addition to miR-93-5p and miR-16-5p. Also, they form a significant miRNA/mRNA biomarker cluster.
Collapse
Affiliation(s)
- Shaharbhanu A Hussain
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye, Kasargod, Kerala, 671316, India
| | - Kunhi Valappil Deepak
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye, Kasargod, Kerala, 671316, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru, 575018, India
| | - Viswanath Sherigar
- Department of Oncosurgery, A.J. Hospital and Research Centre, Mangalore, Karnataka, 575004, India
| | - Neetha Nandan
- Department of Obstetrics and Gynaecology, KS Hegde Medical Academy, Mangalore, Karnataka, 575018, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye, Kasargod, Kerala, 671316, India.
| |
Collapse
|
42
|
Lemire G, Ito YA, Marshall AE, Chrestian N, Stanley V, Brady L, Tarnopolsky M, Curry CJ, Hartley T, Mears W, Derksen A, Rioux N, Laflamme N, Hutchison HT, Pais LS, Zaki MS, Sultan T, Dane AD, Gleeson JG, Vaz FM, Kernohan KD, Bernard G, Boycott KM, Boycott KM. ABHD16A deficiency causes a complicated form of hereditary spastic paraplegia associated with intellectual disability and cerebral anomalies. Am J Hum Genet 2021; 108:2017-2023. [PMID: 34587489 DOI: 10.1016/j.ajhg.2021.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
ABHD16A (abhydrolase domain-containing protein 16A, phospholipase) encodes the major phosphatidylserine (PS) lipase in the brain. PS lipase synthesizes lysophosphatidylserine, an important signaling lipid that functions in the mammalian central nervous system. ABHD16A has not yet been associated with a human disease. In this report, we present a cohort of 11 affected individuals from six unrelated families with a complicated form of hereditary spastic paraplegia (HSP) who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls. Our findings add ABHD16A to the growing list of lipid genes in which dysregulation can cause complicated forms of HSP and begin to describe the molecular etiology of this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
43
|
Impaired skin barrier function due to reduced ω- O-acylceramide levels in a mouse model of Sjögren-Larsson syndrome. Mol Cell Biol 2021; 41:e0035221. [PMID: 34370553 DOI: 10.1128/mcb.00352-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sjögren-Larsson syndrome (SLS) is an inherited neurocutaneous disorder whose causative gene encodes the fatty aldehyde dehydrogenase ALDH3A2. To date, the detailed molecular mechanism of the skin pathology of SLS has remained largely unclear. We generated double knockout (DKO) mice for Aldh3a2 and its homolog Aldh3b2 (a pseudogene in humans). These mice showed hyperkeratosis and reduced fatty aldehyde dehydrogenase activity and skin barrier function. The levels of ω-O-acylceramides (acylceramides), which are specialized ceramides essential for skin barrier function, in the epidermis of DKO mice were about 60% of those in wild type mice. In the DKO mice, levels of acylceramide precursors (ω-hydroxy ceramides and triglycerides) were increased, suggesting that the final step of acylceramide production was inhibited. A decrease in acylceramide levels was also observed in human immortalized keratinocytes lacking ALDH3A2. Differentiated keratinocytes prepared from the DKO mice exhibited impaired long-chain base metabolism. Based on these results, we propose that the long-chain-base-derived fatty aldehydes that accumulate in DKO mice and SLS patients attack and inhibit the enzyme involved in the final step of acylceramide. Our findings provide insight into the pathogenesis of the skin symptoms of SLS, i.e., decreased acylceramide production, and its molecular mechanism.
Collapse
|
44
|
Do WL, Whitsel EA, Costeira R, Masachs OM, Le Roy CI, Bell JT, Staimez LR, Stein AD, Smith AK, Horvath S, Assimes TL, Liu S, Manson JE, Shadyab AH, Li Y, Hou L, Bhatti P, Jordahl K, Narayan KMV, Conneely KN. Epigenome-wide association study of diet quality in the Women's Health Initiative and TwinsUK cohort. Int J Epidemiol 2021; 50:675-684. [PMID: 33354722 DOI: 10.1093/ije/dyaa215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Diet quality is a risk factor for chronic disease and mortality. Differential DNA methylation across the epigenome has been associated with chronic disease risk. Whether diet quality is associated with differential methylation is unknown. This study assessed whether diet quality was associated with differential DNA methylation measured across 445 548 loci in the Women's Health Initiative (WHI) and the TwinsUK cohort. DESIGN The discovery cohort consisted of 4355 women from the WHI. The replication cohort consisted of 571 mono- and dizygotic twins from the TwinsUK cohort. DNA methylation was measured in whole blood using the Illumina Infinium HumanMethylation450 Beadchip. Diet quality was assessed using the Alternative Healthy Eating Index 2010 (AHEI-2010). A meta-analysis, stratified by study cohort, was performed using generalized linear models that regressed methylation on AHEI-2010, adjusting for cell composition, chip number and location, study characteristics, principal components of genetic relatedness, age, smoking status, race/ethnicity and body mass index (BMI). Statistical significance was defined as a false discovery rate < 0.05. Significant sites were tested for replication in the TwinsUK cohort, with significant replication defined by P < 0.05 and a consistent direction. RESULTS Diet quality was significantly associated with differential DNA methylation at 428 cytosine-phosphate-guanine (CpG) sites in the discovery cohort. A total of 24 CpG sites were consistent with replication in the TwinsUK cohort, more than would be expected by chance (P = 2.7x10-4), with one site replicated in both the blood and adipose tissue (cg16379999 located in the body of SEL1L). CONCLUSIONS Diet quality was associated with methylation at 24 CpG sites, several of which have been associated with adiposity, inflammation and dysglycaemia. These findings may provide insight into pathways through which diet influences chronic disease.
Collapse
Affiliation(s)
- Whitney L Do
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Eric A Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Olatz M Masachs
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Caroline I Le Roy
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Lisa R Staimez
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aryeh D Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | | | - Simin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aladdin H Shadyab
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada.,Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kristina Jordahl
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - K M Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
45
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
46
|
ABHD4-Regulating RNA Panel: Novel Biomarkers in Acute Coronary Syndrome Diagnosis. Cells 2021; 10:cells10061512. [PMID: 34208452 PMCID: PMC8235602 DOI: 10.3390/cells10061512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Acute coronary syndrome (ACS) is a major cause of death all over the world. STEMI represents a type of myocardial infarction with acute ST elevation. We aimed to assess the predictive power of potential RNA panel expression in acute coronary syndrome. Method: We used in silico data analysis to retrieve RNAs related to glycerophospholipid metabolism dysregulation and specific to ACS that results in the selection of Alpha/Beta hydrolase fold domain4 (ABHD4) mRNA and its epigenetic regulators (Foxf1 adjacent noncoding developmental regulatory RNA (FENDRR) lncRNA, miRNA-221, and miRNA-197). We assessed the expression of the serum RNA panel in 68 patients with ACS, 21 patients with chest pain due to non-cardiac causes, and 21 healthy volunteers by quantitative real-time polymerase chain reaction. Results: The study data showed significant down regulation in the expression of the serum levels of FENDRR lncRNA and miRNA-221-3p by 120-fold and 22-fold in Unstable angina (UA) in comparison with healthy volunteers, and by 8.6-fold and 2-fold in ST segment elevation myocardial infarction (STEMI) patients versus UA; concomitant upregulation in the expression of ABHD4 mRNA and miRNA-197-5p by 444-fold and 10-fold in UA compared with healthy volunteers, and by 1.54-fold and 4.5-fold in STEMI versus unstable angina. Performance characteristics analysis showed that the ABHD4-regulating RNA panel were potential biomarkers for prediction of ACS. Moreover, there was a significant association between the 2 miRNAs and ABHD4 mRNA and the regulating FENDRR lncRNA. Conclusion: Collectively, ABHD4 mRNA regulating RNA panel based on putative interactions seems to be novel non-invasive biomarkers that could detect ACS early and stratify severity of the condition that could improve health outcome.
Collapse
|
47
|
Yang S, Lim KH, Kim SH, Joo JY. Molecular landscape of long noncoding RNAs in brain disorders. Mol Psychiatry 2021; 26:1060-1074. [PMID: 33173194 DOI: 10.1038/s41380-020-00947-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
According to current paradigms, various risk factors, such as genetic mutations, oxidative stress, neural network dysfunction, and abnormal protein degradation, contribute to the progression of brain disorders. Through the cooperation of gene transcripts in biological processes, the study of noncoding RNAs can lead to insights into the cause and treatment of brain disorders. Recently, long noncoding RNAs (lncRNAs) which are longer than 200 nucleotides in length have been suggested as key factors in various brain disorders. Accumulating evidence suggests the potential of lncRNAs as diagnostic or prognostic biomarkers and therapeutic targets. High-throughput screening-based sequencing has been instrumental in identification of lncRNAs that demand new approaches to understanding the progression of brain disorders. In this review, we discuss the recent progress in the study of lncRNAs, and addresses the pathogenesis of brain disorders that involve lncRNAs and describes the associations of lncRNAs with neurodegenerative disorders such as Alzheimer disease (AD), Parkinson disease (PD), and neurodevelopmental disorders. We also discuss potential targets of lncRNAs and their promise as novel therapeutics and biomarkers in brain disorders.
Collapse
Affiliation(s)
- Sumin Yang
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sung-Hyun Kim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
48
|
Human Interferon Inducible Transmembrane Protein 3 (IFITM3) Inhibits Influenza Virus A Replication and Inflammation by Interacting with ABHD16A. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6652147. [PMID: 33763481 PMCID: PMC7946484 DOI: 10.1155/2021/6652147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/11/2021] [Accepted: 02/20/2021] [Indexed: 01/08/2023]
Abstract
Studies have shown that human interferon inducible transmembrane protein (hIFITMs) family proteins have broad-spectrum antiviral capabilities. Preliminary studies in our laboratory have tentatively proved that hIFITMs have the effect of inhibiting influenza viruses. In order to further study its mechanism and role in the occurrence and development of influenza A, relevant studies have been carried out. Fluorescence quantitative polymerase chain reaction (PCR) detection technology was used to observe the effect of hIFITM3 on the replication of influenza A virus (IVA) and the interaction with hABHD16A. In HEK293 cells, overexpression of hIFITM3 protein significantly inhibited the replication of IVA at 24 h, 48 h, and 72 h; yeast two-hybrid experiment proved that hIFITM3 interacts with hABHD16A; laser confocal microscopy observations showed that hIFITM3 and hABHD16A colocalized in the cell membrane area; the expression level of inflammation-related factors in cells overexpressing hIFITM3 or hABHD16A was detected by fluorescence quantitative PCR, and the results showed that the mRNA levels of interleukin- (IL-) 1β, IL-6, IL-10, tumor necrosis factor- (TNF-) α, and cyclooxygenase 2 (COX2) were significantly increased. But when hIFITM3/hABHD16A was coexpressed, the mRNA expression levels of these cytokines were significantly reduced except COX2. When influenza virus infected cells coexpressing hIFITM3/hABHD16A, the expression level of inflammatory factors decreased compared with the control group, indicating that hIFITM3 can play an important role in regulating inflammation balance. This study confirmed that hIFITM3 has an effect of inhibiting IVA replication. Furthermore, it was found that hIFITM3 interacts with hABHD16A, following which it can better inhibit the replication of influenza virus and the inflammatory response caused by the disease process.
Collapse
|
49
|
Edin ML, Yamanashi H, Boeglin WE, Graves JP, DeGraff LM, Lih FB, Zeldin DC, Brash AR. Epoxide hydrolase 3 (Ephx3) gene disruption reduces ceramide linoleate epoxide hydrolysis and impairs skin barrier function. J Biol Chem 2021; 296:100198. [PMID: 33334892 PMCID: PMC7948417 DOI: 10.1074/jbc.ra120.016570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian epoxide hydrolase (EPHX)3 is known from in vitro experiments to efficiently hydrolyze the linoleate epoxides 9,10-epoxyoctadecamonoenoic acid (EpOME) and epoxyalcohol 9R,10R-trans-epoxy-11E-13R-hydroxy-octadecenoate to corresponding diols and triols, respectively. Herein we examined the physiological relevance of EPHX3 to hydrolysis of both substrates in vivo. Ephx3−/− mice show no deficiency in EpOME-derived plasma diols, discounting a role for EPHX3 in their formation, whereas epoxyalcohol-derived triols esterified in acylceramides of the epidermal 12R-lipoxygenase pathway are reduced. Although the Ephx3−/− pups appear normal, measurements of transepidermal water loss detected a modest and statistically significant increase compared with the wild-type or heterozygote mice, reflecting a skin barrier impairment that was not evident in the knockouts of mouse microsomal (EPHX1/microsomal epoxide hydrolase) or soluble (EPHX2/sEH). This barrier phenotype in the Ephx3−/− pups was associated with a significant decrease in the covalently bound ceramides in the epidermis (40% reduction, p < 0.05), indicating a corresponding structural impairment in the integrity of the water barrier. Quantitative LC-MS analysis of the esterified linoleate-derived triols in the murine epidermis revealed a marked and isomer-specific reduction (∼85%) in the Ephx3−/− epidermis of the major trihydroxy isomer 9R,10S,13R-trihydroxy-11E-octadecenoate. We conclude that EPHX3 (and not EPHX1 or EPHX2) catalyzes hydrolysis of the 12R-LOX/eLOX3-derived epoxyalcohol esterified in acylceramide and may function to control flux through the alternative and crucial route of metabolism via the dehydrogenation pathway of SDR9C7. Importantly, our findings also identify a functional role for EPHX3 in transformation of a naturally esterified epoxide substrate, pointing to its potential contribution in other tissues.
Collapse
Affiliation(s)
- Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA
| | - Haruto Yamanashi
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joan P Graves
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA
| | - Laura M DeGraff
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA.
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
50
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|