1
|
Zhou L, Cai X, Wang Y, Yang J, Wang Y, Deng J, Ye D, Zhang L, Liu Y, Ma S. Chemistry and biology of natural stilbenes: an update. Nat Prod Rep 2024. [PMID: 39711130 DOI: 10.1039/d4np00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Covering: 2009 up to the end of 2023Stilbenes, an emblematic group of polyphenols, have attracted the attention of numerous researchers owing to their intriguing polycyclic architectures and diverse bioactivities. In this updated review, natural stilbenes were analysed, especially oligomeric stilbenes, which are an emblematic group of polyphenols that harbor intriguing polycyclic architectures and diverse bioactivities compared with those previously anticipated. Oligomeric stilbenes with unique skeletons comprise a large majority of natural stilbenes owing to their structural changes and different substitutions on the phenyl rings. These compounds can be promising sources of lead compounds for studying new drugs and medicines. In addition, the exploration of unusual structures of oligomeric stilbenes such as polyflavanostilbenes A and B, analysing their absolute stereochemistry, and improving their yield using synthetic biology methods have recently gained interest. This review provides a systematic overview of 409 new stilbenes, which were isolated and identified over time from January 2009 to December 2023, focusing on the classification and biomimetic syntheses of oligomeric stilbenes, in addition to presenting meaningful insights into their structural diversity and biological activities, which will inspire further investigations of biological activities, structure-activity relationships, and screening of drug candidates.
Collapse
Affiliation(s)
- Lipeng Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinyu Cai
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yadan Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jialing Deng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
2
|
Li X, Mao J. Research progress on the role of lipoxygenase and its inhibitors in prostate cancer. Future Oncol 2024:1-20. [PMID: 39535136 DOI: 10.1080/14796694.2024.2419356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer (PCa) has become a common disease among middle-aged and elderly men. The lipoxygenase (LOX) pathway plays a crucial role in the occurrence, development, invasion and metastasis of PCa and is therefore considered a new target for the prevention and treatment of PCa. 5-LOX and 12-LOX have a promoting effect on the occurrence, development, invasion and metastasis of PCa. 15-LOX-2 has an inhibitory effect on PCa. LOX inhibitors can effectively inhibit the metabolic activity of LOX. The research aims to review the mechanism of action and inhibitors of LOX in PCa, in order to provide relevant references for the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Xiaobing Li
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingxin Mao
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Zhuravlev A, Gavrilyuk V, Chen X, Aksenov V, Kuhn H, Ivanov I. Structural and Functional Biology of Mammalian ALOX Isoforms with Particular Emphasis on Enzyme Dimerization and Their Allosteric Properties. Int J Mol Sci 2024; 25:12058. [PMID: 39596127 PMCID: PMC11593649 DOI: 10.3390/ijms252212058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The human genome involves six functional arachidonic acid (AA) lipoxygenase (ALOX) genes, and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiations and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. Humans express two different AA 15-lipoxygenating ALOX isoforms, and these enzymes are called ALOX15 (15-LOX1) and ALOX15B (15-LOX2). Chromosomal localization, sequence alignments, and comparison of the enzyme properties suggest that pig and mouse ALOX15 orthologs (leukocyte-type 12-LOX) on the one hand and rabbit and human ALOX15 orthologs on the other (reticulocyte-type 15-LOX1) belong to the same enzyme family despite their different reaction specificities with AA as a substrate. In contrast, human ALOX12 (platelet-type 12-LOX), as well as pig and mouse ALOX15 (leukocyte-type 12-LOX), belong to different enzyme families, although they exhibit a similar reaction specificity with AA as a substrate. The complex multiplicity of mammalian ALOX isoforms and the controversial enzyme nomenclatures are highly confusing and prompted us to summarize the current knowledge on the biological functions, enzymatic properties, and allosteric regulation mechanisms of mammalian ALOX15, ALOX15B, and ALOX12 orthologs that belong to three different enzyme sub-families.
Collapse
Affiliation(s)
- Alexander Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| | - Viktor Gavrilyuk
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| | - Xin Chen
- Department of Biochemistry, Charite, University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Vladislav Aksenov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| | - Hartmut Kuhn
- Department of Biochemistry, Charite, University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (A.Z.); (V.A.); (I.I.)
| |
Collapse
|
4
|
Kaynar A, Kim W, Ceyhan AB, Zhang C, Uhlén M, Turkez H, Shoaie S, Mardinoglu A. Unveiling the Molecular Mechanisms of Glioblastoma through an Integrated Network-Based Approach. Biomedicines 2024; 12:2237. [PMID: 39457550 PMCID: PMC11504402 DOI: 10.3390/biomedicines12102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Despite current treatments extending the lifespan of Glioblastoma (GBM) patients, the average survival time is around 15-18 months, underscoring the fatality of GBM. This study aims to investigate the impact of sample heterogeneity on gene expression in GBM, identify key metabolic pathways and gene modules, and explore potential therapeutic targets. Methods: In this study, we analysed GBM transcriptome data derived from The Cancer Genome Atlas (TCGA) using genome-scale metabolic models (GEMs) and co-expression networks. We examine transcriptome data incorporating tumour purity scores (TPSs), allowing us to assess the impact of sample heterogeneity on gene expression profiles. We analysed the metabolic profile of GBM by generating condition-specific GEMs based on the TPS group. Results: Our findings revealed that over 90% of genes showing brain and glioma specificity in RNA expression demonstrate a high positive correlation, underscoring their expression is dominated by glioma cells. Conversely, negatively correlated genes are strongly associated with immune responses, indicating a complex interaction between glioma and immune pathways and non-tumorigenic cell dominance on gene expression. TPS-based metabolic profile analysis was supported by reporter metabolite analysis, highlighting several metabolic pathways, including arachidonic acid, kynurenine and NAD pathway. Through co-expression network analysis, we identified modules that significantly overlap with TPS-correlated genes. Notably, SOX11 and GSX1 are upregulated in High TPS, show a high correlation with TPS, and emerged as promising therapeutic targets. Additionally, NCAM1 exhibits a high centrality score within the co-expression module, which shows a positive correlation with TPS. Moreover, LILRB4, an immune-related gene expressed in the brain, showed a negative correlation and upregulated in Low TPS, highlighting the importance of modulating immune responses in the GBM mechanism. Conclusions: Our study uncovers sample heterogeneity's impact on gene expression and the molecular mechanisms driving GBM, and it identifies potential therapeutic targets for developing effective treatments for GBM patients.
Collapse
Affiliation(s)
- Ali Kaynar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Atakan Burak Ceyhan
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Medical Biology Department, Faculty of Medicine, Atatürk University, Erzurum 25240, Türkiye;
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| |
Collapse
|
5
|
Franks SJ, Gowler PRW, Dunster JL, Turnbull J, Gohir SA, Kelly A, Valdes AM, King JR, Barrett DA, Chapman V, Preston S. Modelling the role of enzymatic pathways in the metabolism of docosahexaenoic acid by monocytes and its association with osteoarthritic pain. Math Biosci 2024; 374:109228. [PMID: 38851528 DOI: 10.1016/j.mbs.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Chronic pain is a major cause of disability and suffering in osteoarthritis (OA) patients. Endogenous specialised pro-resolving molecules (SPMs) curtail pro-inflammatory responses. One of the SPM intermediate oxylipins, 17-hydroxydocasahexaenoic acid (17-HDHA, a metabolite of docosahexaenoic acid (DHA)), is significantly associated with OA pain. The aim of this multidisciplinary work is to develop a mathematical model to describe the contributions of enzymatic pathways (and the genes that encode them) to the metabolism of DHA by monocytes and to the levels of the down-stream metabolites, 17-HDHA and 14-hydroxydocasahexaenoic acid (14-HDHA), motivated by novel clinical data from a study involving 30 participants with OA. The data include measurements of oxylipin levels, mRNA levels, measures of OA severity and self-reported pain scores. We propose a system of ordinary differential equations to characterise associations between the different datasets, in order to determine the homeostatic concentrations of DHA, 17-HDHA and 14-HDHA, dependent upon the gene expression of the associated metabolic enzymes. Using parameter-fitting methods, local sensitivity and uncertainty analysis, the model is shown to fit well qualitatively to experimental data. The model suggests that up-regulation of some ALOX genes may lead to the down-regulation of 17-HDHA and that dosing with 17-HDHA increases the production of resolvins, which helps to down-regulate the inflammatory response. More generally, we explore the challenges and limitations of modelling real data, in particular individual variability, and also discuss the value of gathering additional experimental data motivated by the modelling insights.
Collapse
Affiliation(s)
- S J Franks
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - P R W Gowler
- Pain Centre Versus Arthritis, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - J L Dunster
- Institute for Cardiovascular and Metabolic Research, University of Reading, UK
| | - J Turnbull
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - S A Gohir
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - A Kelly
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - A M Valdes
- Pain Centre Versus Arthritis, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - J R King
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - D A Barrett
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - V Chapman
- Pain Centre Versus Arthritis, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - S Preston
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
6
|
Turnbull J, Jha RR, Gowler PRW, Ferrands-Bentley R, Kim DH, Barrett DA, Sarmanova A, Fernandes GS, Doherty M, Zhang W, Walsh DA, Valdes AM, Chapman V. Serum levels of hydroxylated metabolites of arachidonic acid cross-sectionally and longitudinally predict knee pain progression: an observational cohort study. Osteoarthritis Cartilage 2024; 32:990-1000. [PMID: 38648876 DOI: 10.1016/j.joca.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE To examine associations between serum oxylipins, which regulate tissue repair and pain signalling, and knee pain/radiographic osteoarthritis (OA) at baseline and knee pain at 3 year follow-up. METHOD Baseline, and 3 year follow-up, knee pain phenotypes were assessed from 154 participants in the Knee Pain in the Community (KPIC) cohort study. Serum and radiographic Kellgren and Lawrence (KL) and Nottingham line drawing atlas OA scores were collected at baseline. Oxylipin levels were quantified using liquid chromatography coupled with mass spectrometry. Associations were measured by linear regression and receiver operating characteristics (ROC). RESULTS Serum levels of 8,9-epoxyeicosatrienoic acid (EET) (β(95% confidence intervals (CI)) = 1.809 (-0.71 to 2.91)), 14,15-dihydroxyeicosatrienoic acid (DHET) (β(95%CI) = 0.827 (0.34-1.31)), and 12-hydroxyeicosatetraenoic acid (HETE) (β(95%CI) = 4.090 (1.92-6.26)) and anandamide (β(95%CI) = 3.060 (1.35-4.77)) were cross-sectionally associated with current self-reported knee pain scores (numerical rating scale (NRS) item 3, average pain). Serum levels of 9- (β(95%CI) = 0.467 (0.18-0.75)) and 15-HETE (β(95%CI) = 0.759 (0.29-1.22)), 14-hydroxydocosahexaenoic acid (β(95%CI) = 0.483(0.24-0.73)), and the ratio of 8,9-EET:DHET (β(95%CI) = 0.510(0.19-0.82)) were cross-sectionally associated with KL scores. Baseline serum concentrations of 8,9-EET (β(95%CI) = 2.166 (0.89-3.44)), 5,6-DHET (β(95%CI) = 152.179 (69.39-234.97)), and 5-HETE (β(95%CI) = 1.724 (0.677-2.77) showed positive longitudinal associations with follow-up knee pain scores (NRS item 3, average pain). Combined serum 8,9-EET and 5-HETE concentration showed the strongest longitudinal association (β(95%CI) = 1.156 (0.54-1.77) with pain scores at 3 years, and ROC curves distinguished between participants with no pain and high pain scores at follow-up (area under curve (95%CI) = 0.71 (0.61-0.82)). CONCLUSIONS Serum levels of a combination of hydroxylated metabolites of arachidonic acid may have prognostic utility for knee pain, providing a potential novel approach to identify people who are more likely to have debilitating pain in the future.
Collapse
Affiliation(s)
- James Turnbull
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom; School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom.
| | - Rakesh R Jha
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| | - Peter R W Gowler
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom.
| | - Rose Ferrands-Bentley
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Dong-Hyun Kim
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| | - David A Barrett
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| | - Aliya Sarmanova
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Gwen S Fernandes
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Michael Doherty
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Weiya Zhang
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - David A Walsh
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Ana M Valdes
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom.
| |
Collapse
|
7
|
Lee G, Jung BH, Lee T, Park JH, Kim HS, Kim H, Yang HO. Exploring the Metabolic Effects of a Herbal Remedy of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia Extracts: Unraveling Its Therapeutic Potential as a Topical Application for Atopic Dermatitis Treatment. Antioxidants (Basel) 2024; 13:563. [PMID: 38790668 PMCID: PMC11117881 DOI: 10.3390/antiox13050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Our previous study demonstrated that our novel herbal remedy, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum Cassia extracts, exhibits a therapeutic effect in 1-chloro-2,4-dinitrobenzene (DNCB)-induced mice by inhibiting the Th-2 inflammatory response upon oral administration. It also ameliorated imbalances in lipid metabolism related to the skin barrier function in keratinocytes, indicating its potential as a topical agent. This study aims to further investigate the therapeutic effects and metabolic mechanisms of its topical application. The anti-atopic effect was evaluated using dermatitis scores, histopathological analysis, and immune cell factors in DNCB-induced mice. Metabolomic profiling of serum and lesional skin was conducted to elucidate the metabolic mechanisms. The topical application significantly reduced dermatitis scores, mast cell infiltration, and serum levels of immunoglobulin E (IgE), IFN-γ, interleukin (IL)-4, IL-17, and thymic stromal lymphopoietin (TSLP), demonstrating its effectiveness in treating atopic dermatitis (AD). Serum metabolomics revealed alterations in fatty acid metabolism related to the pro-inflammatory response. In lesional skin, metabolic markers associated with oxidative stress, immune regulation, and AD symptoms were restored. This study demonstrated its potential as a topical agent in suppressing Th-2 inflammatory responses and improving metabolic abnormalities related to AD symptoms, providing crucial insights for developing natural AD treatments.
Collapse
Affiliation(s)
- Gakyung Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (G.L.); (T.L.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Taemin Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (G.L.); (T.L.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; (J.H.P.); (H.S.K.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; (J.H.P.); (H.S.K.)
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (G.L.); (T.L.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
8
|
Yang J, Liu C, Cheng J, Wang Y, Wang Z, Zhong W. Identification of core gene in chronic rhinosinusitis with nasal polyps and correlations with inflammation-related genes. Braz J Otorhinolaryngol 2024; 90:101410. [PMID: 38490010 PMCID: PMC10955304 DOI: 10.1016/j.bjorl.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVE Our aim in this study is to identify the core genes of chronic rhinosinusitis with nasal polyps and analyze the correlations between it and inflammation-related genes. METHODS GSE72713 dataset containing gene expression data of ECRSwNP, nonECRSwNP and healthy samples was obtained from Gene Expression Omnibus (GEO) and filtered by limma to identify DEGs among three groups, then the functions and correlated pathways of DEGs were analyzed using GO and KEGG. The core DEGs were selected by the intersection of DEGs and the PPI network was constructed via STRING. The correlations between the expression levels of CRSwNP core gene and inflammation-related genes were analyzed via the Mann-Whitney U test. RESULTS The DEGs among ECRSwNP, nonECRSwNP, and CTRL were filtered respectively, and enrichment analysis showed they were associated with olfaction and/or immune responses. The PPI network was constructed by 7 core DEGs obtained via the intersection among three groups, and ALOX15 was confirmed as the core gene in the network. Subsequently, the correlations between the expression levels of ALOX15 and inflammation-related genes were illustrated. CONCLUSION In this study, the core gene ALOX15 was selected from the DEGs among ECRSwNP, nonECRSwNP, and CTRL. IL5, IL1RL1, and IL1RAP were found to exhibit a significant positive correlation with ALOX15. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Jingpu Yang
- The Second Hospital of Jilin University, Department of Otolaryngology- Head and Neck Surgery, Changchun, China
| | - Chang Liu
- The Second Hospital of Jilin University, Department of Otolaryngology- Head and Neck Surgery, Changchun, China
| | - Jinzhang Cheng
- The Second Hospital of Jilin University, Department of Otolaryngology- Head and Neck Surgery, Changchun, China
| | - Yunmeng Wang
- The Second Hospital of Jilin University, Department of Otolaryngology- Head and Neck Surgery, Changchun, China
| | - Zonggui Wang
- The Second Hospital of Jilin University, Department of Otolaryngology- Head and Neck Surgery, Changchun, China.
| | - Wei Zhong
- The China-Japan Union Hospital of Jilin University, Department of Ophthalmology, Changchun, China.
| |
Collapse
|
9
|
Touaibia M, Chiasson AI, Robichaud S, Doiron JA, Hébert MPA, Surette ME. Single and multiple inhibitors of the biosynthesis of 5-, 12-, 15-lipoxygenase products derived from cinnamyl-3,4-dihydroxy-α-cyanocinnamate: Synthesis and structure-activity relationship. Drug Dev Res 2024; 85:e22181. [PMID: 38619209 DOI: 10.1002/ddr.22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The involvement of lipoxygenases in various pathologies, combined with the unavailability of safe and effective inhibitors of the biosynthesis of their products, is a source of inspiration for the development of new inhibitors. Based on a structural analysis of known inhibitors of lipoxygenase products biosynthesis, a comprehensive structure-activity study was carried out, which led to the discovery of several novel compounds (16a-c, 17a) demonstrating promising potency to inhibit the biosynthesis of products of 5-, 12- and 15-LO. Compounds 16b and 16c outperformed zileuton (1), the only FDA-approved 5-LO inhibitor, as well as known inhibitors such as caffeic acid phenethyl ester (CAPE (2)) and cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC (4)). However, the introduction of a cyano group at the α-position of the carbonyl abolished the activity. Compounds 16a and 17a also inhibited the biosynthesis of 12- and 15-LO products. Compounds 16a, 17a far surpassed baicalein, a known 12-LO inhibitor, as inhibitors of 12-LO products biosynthesis. Compound 17a and CDC (4) showed equivalent inhibition of LO products, proposing that the double bond in the ester moiety is not necessary for the inhibitory activity. The introduction of the cyano group, as in compound 17a, at the α-position of the carbonyl in compound 16a significantly reduced the inhibitory activity against the biosynthesis of 15-LO products. In addition to the interactions with residues His372 and Phe421 also found with zileuton and CAPE, compounds 16a and 16c each interact with residue His367 as shown by molecular docking. This new interaction may explain their high affinity with the 5-LO active site.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
| | - Audrey Isabel Chiasson
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
| | - Samuel Robichaud
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
| | - Jérémie A Doiron
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Université de Moncton, Moncton, New Brunswick, Canada
| | - Mathieu P A Hébert
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Université de Moncton, Moncton, New Brunswick, Canada
| | - Marc E Surette
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
10
|
Mfotie Njoya E, Tabakam GT, Chukwuma CI, Mashele SS, Makhafola TJ. Phytoconstituents of Androstachys johnsonii Prain Prevent Reactive Oxygen Species Production and Regulate the Expression of Inflammatory Mediators in LPS-Stimulated RAW 264.7 Macrophages. Antioxidants (Basel) 2024; 13:401. [PMID: 38671849 PMCID: PMC11047428 DOI: 10.3390/antiox13040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
According to a survey, the medicinal use of Androstachys johnsonii Prain is kept secret by traditional healers. Considering that inflammation and oxidative stress are major risk factors for the progression of various chronic diseases and disorders, we resolved to investigate the antioxidant and anti-inflammatory potentials of A. johnsonii using in vitro and cell-based assays. The antioxidant activity of A. johnsonii hydroethanolic leaf extract (AJHLE) was evaluated using the ABTS, DPPH, and FRAP assays. Its cytotoxic effect was assessed on RAW 264.7 macrophages using an MTT assay. Then, its anti-inflammatory effect was evaluated by measuring the NO production and 15-LOX inhibitory activities. Moreover, its preventive effect on ROS production and its regulatory effect on the expression of pro-inflammatory mediators such as IL-1β, IL-10, TNF-α, and COX-2 were determined using established methods. AJHLE strongly inhibited radicals such as ABTS•+, DPPH•, and Fe3+-TPTZ with IC50 values of 9.07 µg/mL, 8.53 µg/mL, and 79.09 µg/mL, respectively. Additionally, AJHLE induced a significant (p < 0.05) cytotoxic effect at 100 µg/mL, and when tested at non-cytotoxic concentrations, it inhibited NO and ROS production in LPS-stimulated RAW 264.7 macrophages in a concentration-dependent manner. Furthermore, AJHLE showed that its anti-inflammatory action occurs via the inhibition of 15-LOX activity, the downregulation of COX-2, TNF-α, and IL-1β expression, and the upregulation of IL-10 expression. Finally, chemical investigation showed that AJHLE contains significant amounts of procyanidin, epicatechin, rutin, and syringic acid which support its antioxidant and anti-inflammatory activities. These findings suggest that A. johnsonii is a potential source of therapeutic agents against oxidative stress and inflammatory-related diseases.
Collapse
Affiliation(s)
- Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (G.T.T.); (C.I.C.); (S.S.M.)
| | | | | | | | - Tshepiso J. Makhafola
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (G.T.T.); (C.I.C.); (S.S.M.)
| |
Collapse
|
11
|
Elzahhar PA, Orioli R, Hassan NW, Gobbi S, Belluti F, Labib HF, El-Yazbi AF, Nassra R, Belal ASF, Bisi A. Chromone-based small molecules for multistep shutdown of arachidonate pathway: Simultaneous inhibition of COX-2, 15-LOX and mPGES-1 enzymes. Eur J Med Chem 2024; 266:116138. [PMID: 38219658 DOI: 10.1016/j.ejmech.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
As a new approach to the management of inflammatory disorders, a series of chromone-based derivatives containing a (carbamate)hydrazone moiety was designed and synthesized. The compounds were assessed for their ability to inhibit COX-1/2, 15-LOX, and mPGES-1, as a combination that should effectively impede the arachidonate pathway. Results revealed that the benzylcarbazates (2a-c) demonstrated two-digit nanomolar COX-2 inhibitory activities with reasonable selectivity indices. They also showed appreciable 15-LOX inhibition, in comparison to quercetin. Further testing of these compounds for mPGES-1 inhibition displayed promising activities. Intriguingly, compounds 2a-c were capable of suppressing edema in the formalin-induced rat paw edema assay. They exhibited an acceptable gastrointestinal safety profile regarding ulcerogenic liabilities in gross and histopathological examinations. Additionally, upon treatment with the test compounds, the expression of the anti-inflammatory cytokine IL-10 was elevated, whereas that of TNF-α, iNOS, IL-1β, and COX-2 were downregulated in LPS-challenged RAW264.7 macrophages. Docking experiments into the three enzymes showed interesting binding profiles and affinities, further substantiating their biological activities. Their in silico physicochemical and pharmacokinetic parameters were advantageous.
Collapse
Affiliation(s)
- Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Rebecca Orioli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Nayera W Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Hala F Labib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy of Science Technology and Maritime Transport, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Faculty of Pharmacy and the Research and Innovation Hub, Alamein International University, Alamein, 5060335, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Rasha Nassra
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Egypt
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
12
|
Rajiv C, Sanjita Devi H, Devi AK, Tamreihao K, Kshetri P, Tania C, Singh TS, Sonia C, Singh MN, Sen A, Sharma SK, Roy SS. Pharmacological potential of Jussiaea repens L. against CuSO 4 and bacterial lipopolysaccharide O55:B5 induced inflammation using in-vivo zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116932. [PMID: 37473823 DOI: 10.1016/j.jep.2023.116932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Northeastern state of India is known for its remarkable biodiversity and untapped medicinal resources. Jussiaea repens L., commonly known as water primrose, is a plant found in this region that has been traditionally used by indigenous communities for various purposes. It has been employed to treat skin ulcerations, bone fractures, rheumatism, stomach pain, and intestinal worms. Despite its long-standing ethnopharmacological usage, there is limited scientific research on the bioactivity of Jussiaea repens L. However, preliminary studies have shown its potential antioxidant properties and cytotoxicity against cancer cells. Further exploration of its medicinal properties, particularly its potential as an anti-inflammatory agent, is warranted. AIM OF THE STUDY This study aimed to investigate the anti-inflammatory properties of Jussiaea repens L., a plant species found in the biodiverse Northeastern region of India. The plant has been traditionally used by indigenous communities for various ailments. By utilizing zebrafish as an animal model and evaluating its effects in different inflammation models, the study aimed to uncover the plant's potential as an anti-inflammatory agent. The research contributes to the scientific understanding of this traditional remedy and its potential therapeutic applications. METHODS Jussiaea repens L. extract was obtained from the stem and leaves using methanol as the solvent. Zebrafish embryos were used for in vivo assays. The anti-inflammatory study included two models: CuSO4-induced inflammation and tail wounding followed by bacterial lipopolysaccharide-induced inflammation. The activities of catalase (CAT) and superoxide dismutase (SOD) were measured in CuSO4-induced inflammation. Leukocyte migration at the injury site was observed in the tail wounding model. The extract's inhibition of the 15-LOX enzyme was assessed. All procedures followed established protocols and ethical guidelines. RESULTS AND CONCLUSION Jussiaea repens L. extract exhibited anti-inflammatory activity in two in vivo zebrafish models: CuSO4-induced inflammation and tail wounding combined with bacterial lipopolysaccharide-induced inflammation. The extract reduced mortality rates and showed antioxidant effects by increasing catalase (CAT) and superoxide dismutase (SOD) activities in the CuSO4 model. In the tail wounding model, the extract reduced leukocyte migration in a concentration-dependent manner. Additionally, the extract demonstrated dose-dependent inhibition of the 15-LOX enzyme in the in vitro assay. These results suggest that Jussiaea repens L. extract possesses anti-inflammatory properties and inhibits the 15-LOX enzyme.
Collapse
Affiliation(s)
- Chongtham Rajiv
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | | | - Asem Kajal Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - K Tamreihao
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; St. Joseph College, Ukhrul, 795142, Manipur, India
| | - Pintubala Kshetri
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; Yairipok Universal College, Yairipok, 795138, Manipur, India
| | - Chongtham Tania
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - Thangjam Surchandra Singh
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; TS Paul Women's College, Mongsangei, 795003, Manipur, India
| | - Chongtham Sonia
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | | | - Arnab Sen
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - Susheel Kumar Sharma
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Subhra Saikat Roy
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; ICAR-Central Citrus Research Institute, Nagpur, 440033, Maharashtra, India.
| |
Collapse
|
13
|
Wei L, Gao J, Wang L, Tao Q, Tu C. Multi-omics analysis reveals the potential pathogenesis and therapeutic targets of diabetic kidney disease. Hum Mol Genet 2024; 33:122-137. [PMID: 37774345 DOI: 10.1093/hmg/ddad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Clinicians have long been interested in understanding the molecular basis of diabetic kidney disease (DKD)and its potential treatment targets. Its pathophysiology involves protein phosphorylation, one of the most recognizable post-transcriptional modifications, that can take part in many cellular functions and control different metabolic processes. In order to recognize the molecular and protein changes of DKD kidney, this study applied Tandem liquid chromatography-mass spectrometry (LC-MS/MS) and Next-Generation Sequencing, along with Tandem Mass Tags (TMT) labeling techniques to evaluate the mRNA, protein and modified phosphorylation sites between DKD mice and model ones. Based on Gene Ontology (GO) and KEGG pathway analyses of transcriptome and proteome, The molecular changes of DKD include accumulation of extracellular matrix, abnormally activated inflammatory microenvironment, oxidative stress and lipid metabolism disorders, leading to glomerulosclerosis and tubulointerstitial fibrosis. Oxidative stress has been emphasized as an important factor in DKD and progression to ESKD, which is directly related to podocyte injury, albuminuria and renal tubulointerstitial fibrosis. A histological study of phosphorylation further revealed that kinases were crucial. Three groups of studies have found that RAS signaling pathway, RAP1 signaling pathway, AMPK signaling pathway, PPAR signaling pathway and HIF-1 signaling pathway were crucial for the pathogenesis of DKD. Through this approach, it was discovered that targeting specific molecules, proteins, kinases and critical pathways could be a promising approach for treating DKD.
Collapse
Affiliation(s)
- Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Jingjing Gao
- Zhonglou District Center for Disease Control and Prevention, Changzhou, Jiangsu 213000, China
| | - Liangzhi Wang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Qianru Tao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| |
Collapse
|
14
|
Heydeck D, Kakularam KR, Labuz D, Machelska H, Rohwer N, Weylandt K, Kuhn H. Transgenic mice overexpressing human ALOX15 under the control of the aP2 promoter are partly protected in the complete Freund's adjuvant-induced paw inflammation model. Inflamm Res 2023; 72:1649-1664. [PMID: 37498393 PMCID: PMC10499711 DOI: 10.1007/s00011-023-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND, OBJECTIVES AND DESIGN Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.
Collapse
Affiliation(s)
- Dagmar Heydeck
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kumar R. Kakularam
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dominika Labuz
- Department of Experimental Anesthesiology, Charité ˗ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Halina Machelska
- Department of Experimental Anesthesiology, Charité ˗ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nadine Rohwer
- Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Medical Department B, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Karsten Weylandt
- Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Medical Department B, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
15
|
Leal M, Mercado MI, Moreno MA, Martínez Chamas JJ, Zampini IC, Ponessa GI, Simirgiotis MJ, Isla MI. Gochnatia glutinosa (D.Don) D.Don ex Hook. & Arn.: A plant with medicinal value against inflammatory disorders and infections. Heliyon 2023; 9:e15276. [PMID: 37215790 PMCID: PMC10196343 DOI: 10.1016/j.heliyon.2023.e15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/11/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Gochnatia glutinosa is a shrub that grown in the Argentinean semiarid region (Monte region) used in the ancestral medicine as an antiseptic and anti-inflammatory agent. This study was aimed to examine the morpho-anatomical characteristics of G. glutinosa aerial parts, identify the chemical composition of traditionally used preparations to assess its pharmacobotanical characterization and evaluate its activity as antiseptic and anti-inflammatory to give scientific support to its traditional uses. G. glutinosa morpho-anatomical description was performed following standard histological techniques. Tincture and infusion of its aerial parts were prepared and were subjected to phytochemical analysis. Xanthine oxidase (XOD) and lipoxygenase (LOX) inhibition experiments, as well as ABTS•+, superoxide radical, and hydrogen peroxide scavenging activity, were carried out. The growth inhibition of methicillin-resistant Staphylococcus aureus (MRSA) strains was also determined. The morpho-anatomical traits of G. glutinosa leaves and stems were reported for the first time. The medicinal preparations exhibited a large amount of phenolic chemicals mainly flavonoids such as rhamnetin, arcapillin, rhamnacin, hesperetin, isorhamnetin, centaureidin, europetin 7-O-mehylmyricetin, cirsiliol, sakuranetin, genkwanin and eupatorine and also phenolic acids and diterpenoid derivatives. Both preparations had free radical scavenging activity and were able to reduce both XOD and LOX activity, indicating their anti-inflammatory properties. Besides, tincture was effective against all MRSA strains (MIC values ranging from 60 to 240 g DW/mL). The results obtained in this work scientifically support the medicinal popular use of G. glutinosa as an antiseptic and anti-inflammatory. The identification of bioactive compounds and their morpho-anatomical description contribute to the quality control of this medicinal plant from Argentine Calchaquí Valley.
Collapse
Affiliation(s)
- Mariana Leal
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - María Inés Mercado
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Alejandra Moreno
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - José Javier Martínez Chamas
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Inés Ponessa
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja,Valdivia 5090000, Chile
| | - María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
16
|
Fujii J, Yamada KI. Defense systems to avoid ferroptosis caused by lipid peroxidation-mediated membrane damage. Free Radic Res 2023; 57:353-372. [PMID: 37551716 DOI: 10.1080/10715762.2023.2244155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The presence of hydrogen peroxide along with ferrous iron produces hydroxyl radicals that preferably oxidize polyunsaturated fatty acids (PUFA) to alkyl radicals (L•). The reaction of L• with an oxygen molecule produces lipid peroxyl radical (LOO•) that collectively trigger chain reactions, which results in the accumulation of lipid peroxidation products (LOOH). Oxygenase enzymes, such as lipoxygenase, also stimulate the peroxidation of PUFA. The production of phospholipid hydroperoxides (P-LOOH) can result in the destruction of the architecture of cell membranes and ultimate cell death. This iron-dependent regulated cell death is generally referred to as ferroptosis. Radical scavengers, which include tocopherol and nitric oxide (•NO), react with lipid radicals and terminate the chain reaction. When tocopherol reductively detoxifies lipid radicals, the resultant tocopherol radicals are recycled via reduction by coenzyme Q or ascorbate. CoQ radicals are reduced back by the anti-ferroptotic enzyme FSP1. •NO reacts with lipid radicals and produces less reactive nitroso compounds. The resulting P-LOOH is reductively detoxified by the action of glutathione peroxidase 4 (GPX4) or peroxiredoxin 6 (PRDX6). The hydrolytic removal of LOOH from P-LOOH by calcium-independent phospholipase A2 leads the preservation of membrane structure. While the expression of such protective genes or the presence of these anti-oxidant compounds serve to maintain a healthy condition, tumor cells employ them to make themselves resistant to anti-tumor treatments. Thus, these defense mechanisms against ferroptosis are protective in ordinary cells but are also potential targets for cancer treatment.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Ken-Ichi Yamada
- Faculty of Pharmaceutical Sciences, Physical Chemistry for Life Science Laboratory, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Liu L, Lian N, Shi L, Hao Z, Chen K. Ferroptosis: Mechanism and connections with cutaneous diseases. Front Cell Dev Biol 2023; 10:1079548. [PMID: 36684424 PMCID: PMC9846271 DOI: 10.3389/fcell.2022.1079548] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Ferroptosis is a recognized novel form of programmed cell death pathway, featuring abnormalities in iron metabolism, SystemXc-/glutathione axis, and lipid peroxidation regulation. A variety of ferroptosis inducers can influence glutathione peroxidase directly or indirectly via diverse pathways, leading to decreased antioxidant capacity, accumulated cellular lipid peroxides, and finally inducing ferroptosis. To date, mounting studies confirm the association of ferroptosis with various cutaneous diseases, including skin homeostasis, neoplastic diseases, infectious diseases, genetic skin disease, inflammatory skin diseases, and autoimmune diseases. There are shared characteristics regarding ferroptosis and various cutaneous diseases in terms of pathophysiological mechanisms, such as oxidative stress associated with iron metabolism disorder and accumulated lipid peroxides. Therefore, we summarize the current knowledge regarding the mechanisms involved in the regulation of ferroptosis for further discussion of its role in the pathogenesis and prognosis of skin diseases. Gaining insight into the underlying mechanisms of ferroptosis and the associated dermatological disorders could illuminate the pathogenesis and treatments of different cutaneous diseases.
Collapse
Affiliation(s)
- Lihao Liu
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Ni Lian
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Liqing Shi
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Zhimin Hao
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Kun Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China,*Correspondence: Kun Chen,
| |
Collapse
|
18
|
Li Y, Tan Y, Li X, Chen X, Wang L, Zhang L, Xu S, Huang K, Shu W, Liang H, Chen M. Loss of LXN promotes macrophage M2 polarization and PD-L2 expression contributing cancer immune-escape in mice. Cell Death Dis 2022; 8:440. [PMID: 36323670 PMCID: PMC9630456 DOI: 10.1038/s41420-022-01227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Latexin (LXN) plays an important role in tumorigenesis and inflammatory response and as a tumor suppressor in many tumors. However, whether LXN regulates tumorigenesis through immune regulation remains uncertain. Here, we demonstrate that LXN deficiency increases hematopoietic stem cells, as well as affects the proportion of immune cells in the peripheral system. Animal studies show that mice loss of LXN promotes tumor growth in subcutaneous tumor model and AOM/DSS-induced colorectal cancer model. We found that loss of LXN promotes macrophage M2 polarization and PD-L2 expression in macrophage, thus, inhibits the function of T cells. Adoptive transfer of wild-type macrophage rescues the function of T cells in LXN-deficient mice. LXN deficiency in hematopoietic lineage exacerbates colorectal carcinogenesis, and targeted inhibition of PD-L2 ameliorates cancer growth in LXN-deficient mice. Mechanistically, we demonstrate that LXN inhibits STAT3 transcriptional activity by targeting inhibition of JAK1 in macrophages. LXN deficiency enhances PD-L2 expression rather than PD-L1 in macrophages, which lead to inhibition of T cells in tumor microenvironment. Collectively, we define a critical role of LXN/JAK1/STAT3 signal in macrophage and highlights the potential role of LXN in tumor immune-escape by regulating macrophage polarization, as well as the expression of immune checkpoint PD-L2.
Collapse
Affiliation(s)
- Yaping Li
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| | - Yanhui Tan
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| | - XiuZhen Li
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| | - Xuanming Chen
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| | - Lingzhu Wang
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| | - Lijun Zhang
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| | - Shaohua Xu
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| | - Kebing Huang
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| | - Wei Shu
- grid.443385.d0000 0004 1798 9548College of Biotechnology, Guilin Medical University, Guilin, 541199 P.R. China
| | - Hong Liang
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| | - Ming Chen
- grid.459584.10000 0001 2196 0260State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
| |
Collapse
|
19
|
Saas P, Vetter M, Maraux M, Bonnefoy F, Perruche S. Resolution therapy: Harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol 2022; 13:1021413. [PMID: 36389733 PMCID: PMC9651061 DOI: 10.3389/fimmu.2022.1021413] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 09/03/2023] Open
Abstract
Several chronic inflammatory diseases are associated with non-resolving inflammation. Conventional anti-inflammatory drugs fail to completely cure these diseases. Resolution pharmacology is a new therapeutic approach based on the use of pro-resolving mediators that accelerate the resolution phase of inflammation by targeting the productive phase of inflammation. Indeed, pro-resolving mediators prevent leukocyte recruitment and induce apoptosis of accumulated leukocytes. This approach is now called resolution therapy with the introduction of complex biological drugs and cell-based therapies. The main objective of resolution therapy is to specifically reduce the duration of the resolution phase to accelerate the return to homeostasis. Under physiological conditions, macrophages play a critical role in the resolution of inflammation. Indeed, after the removal of apoptotic cells (a process called efferocytosis), macrophages display anti-inflammatory reprogramming and subsequently secrete multiple pro-resolving factors. These factors can be used as resolution therapy. Here, we review the different mechanisms leading to anti-inflammatory reprogramming of macrophages after efferocytosis and the pro-resolving factors released by these efferocytic macrophages. We classify these mechanisms in three different categories: macrophage reprogramming induced by apoptotic cell-derived factors, by molecules expressed by apoptotic cells (i.e., "eat-me" signals), and induced by the digestion of apoptotic cell-derived materials. We also evoke that macrophage reprogramming may result from cooperative mechanisms, for instance, implicating the apoptotic cell-induced microenvironment (including cellular metabolites, specific cytokines or immune cells). Then, we describe a new drug candidate belonging to this resolution therapy. This candidate, called SuperMApo, corresponds to the secretome of efferocytic macrophages. We discuss its production, the pro-resolving factors present in this drug, as well as the results obtained in experimental models of chronic (e.g., arthritis, colitis) and acute (e.g., peritonitis or xenogeneic graft-versus-host disease) inflammatory diseases.
Collapse
Affiliation(s)
- Philippe Saas
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Mathieu Vetter
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Melissa Maraux
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Sylvain Perruche
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| |
Collapse
|
20
|
Functional and pathological role of 15-Lipoxygenase and its metabolites in pregnancy and pregnancy-associated complications. Prostaglandins Other Lipid Mediat 2022; 161:106648. [PMID: 35577309 DOI: 10.1016/j.prostaglandins.2022.106648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 01/03/2023]
Abstract
Maternal lipid metabolism status during pregnancy may have pivotal effects on a healthy pregnancy, the progression of labor, and childbirth. Based on evidence, changes in maternal lipid profile and metabolism is related to various alterations in fetal metabolic status, fat mass, birth weight and can result in serious maternal and fetal complications. 15-lipoxygenase accounts as a key enzyme in metabolizing polyunsaturated fatty acids that generate various inflammatory lipid metabolites. The possible involvement of 15- lipoxygenase and its metabolites in the inflammatory process, cell proliferation and death, and immune response has been postulated. The indicative role of the 15- lipoxygenase enzymatic pathway in the implantation process, stages of pregnancy, embryogenesis, organogenesis, progression of labor, pregnancy period, and pregnancy-associated complications is remarkable. Accordingly, this study will review the research conducted on the role of 15- lipoxygenase in different reproductive tissues, and its pathological role in pregnancy-related diseases to provide more insight regarding the emerging role of 15-lipoxygenase in normal pregnancy.
Collapse
|
21
|
Yasin M, Shahid W, Ashraf M, Saleem M, Muzaffar S, Aziz-ur-Rehman, Ejaz SA, Saeed A, Majer T, Bhattarai K, Riaz N. 4-Chlorophenyl- N-furfuryl-1,2,4-triazole Methylacetamides as Significant 15-Lipoxygenase Inhibitors: an Efficient Approach for Finding Lead Anti-inflammatory Compounds. ACS OMEGA 2022; 7:19721-19734. [PMID: 35721976 PMCID: PMC9202051 DOI: 10.1021/acsomega.2c01439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2023]
Abstract
Lipoxygenases (LOXs) are a class of enzymes that catalyze the production of pro-inflammatory mediators, such as leukotrienes and lipoxins, via an arachidonic acid cascade as soon as they are released from the membrane phospholipids after tissue injury. In continuation of our efforts in search for new LOX inhibitors, a series of chlorophenyl-furfuryl-based 1,2,4-triazole derivatives were prepared and evaluated for their 15-LOX inhibitory activities. A simple precursor, 4-chlorobenzoic acid (a), was consecutively transformed into benzoate (1), hydrazide (2), semicarbazide (3), and N-furfuryl 5-(4-chlorobenzyl)-4H-1,2,4-triazole (4), which when further merged with electrophiles (6a-o) resulted in end products (7a-o). The structural elucidations of the newly synthesized compounds (7a-o) were carried out by Fourier transform infrared, 1H-, 13C NMR spectroscopy, EI-MS, and HR-EI-MS spectrometry. The inhibitive capability of compounds (7a-o) on soybean 15-LOX was performed in vitro using the chemiluminescence method. The compounds 7k, 7o, 7m, 7b, and 7i demonstrated potent activities (IC50 17.43 ± 0.38, 19.35 ± 0.71, 23.59 ± 0.68, 26.35 ± 0.62, and 27.53 ± 0.82 μM, respectively). These compounds revealed 79.5 to 98.8% cellular viability as measured by the MTT assay at 0.25 mM concentration. The structure-activity relationship (SAR) studies showed that the positions and the nature of substituents bonded to the phenyl ring are important in the determination of 15-LOX inhibitory activities. ADME, in silico, and density functional theory studies supported the evidence as yet another class of triazoles with potential lead properties in search for anti-LOX compounds with a safe gastrointestinal safety profile for various inflammatory diseases. Further work is in progress on the synthesis of more derivatives in search for anti-inflammatory agents.
Collapse
Affiliation(s)
- Muhammad Yasin
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Wardah Shahid
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Muhammad Ashraf
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Saima Muzaffar
- University
of Education Lahore, Department of Chemistry,
Division of Science and Technology, Vehari Campus, Lahore 54770, Pakistan
| | - Aziz-ur-Rehman
- Department
of Chemistry, Government College University
Lahore, Lahore 54000, Pakistan
| | - Syed Abid Ejaz
- The
Islamia University of Bahawalpur, Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, Bahawalpur 63100, Pakistan
| | - Amna Saeed
- The
Islamia University of Bahawalpur, Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, Bahawalpur 63100, Pakistan
| | - Thomas Majer
- University
of Tuebingen, Department of Pharmaceutical
Biology, Auf der Morgenstelle
8, Tuebingen 72076, Germany
| | - Keshab Bhattarai
- University
of Tuebingen, Department of Pharmaceutical
Biology, Auf der Morgenstelle
8, Tuebingen 72076, Germany
| | - Naheed Riaz
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| |
Collapse
|
22
|
Halade GV, Lee DH. Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine 2022; 79:103992. [PMID: 35405389 PMCID: PMC9014358 DOI: 10.1016/j.ebiom.2022.103992] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Unresolved inflammation is a key mediator of advanced heart failure. Especially, damage, pathogen, and lifestyle-associated molecular patterns are the major factors in initiating baseline inflammatory diseases, particularly in cardiac pathology. After a significant cardiac injury like a heart attack, splenic and circulating leukocytes begin a highly optimized sequence of immune cell recruitment (neutrophils and monocytes) to coordinate effective tissue repair. An injured cardiac tissue repair and homeostasis are dependent on clearance of cellular debris where the recruited leukocytes transition from a pro-inflammatory to a reparative program through resolution process. After a cardiac injury, macrophages play a decisive role in cardiac repair through the biosynthesis of endogenous lipid mediators that ensure a timely tissue repair while avoiding chronic inflammation and impaired cardiac repair. However, dysregulation of resolution of inflammation processes due to cardiometabolic defects (obesity, hypertension, and diabetes), aging, or co-medication(s) lead to impaired cardiac repair. Hence, the presented review demonstrates the fundamental role of leukocytes, in particular macrophages orchestrate the inflammation and resolution biology, focusing on the biosynthesis of specialized lipid mediators in cardiac repair and heart failure. This work was supported by research funds from National Institutes of Health (AT006704, HL132989, and HL144788) to G.V.H. The authors acknowledges the use of Servier Medical Art image bank and Biorender that is used to create schematic Figures 1–3.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL 33602, United States.
| | - Dae Hyun Lee
- Division of Cardiovascular Sciences, Department of Medicine, Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL 33602, United States
| |
Collapse
|
23
|
Miek L, Jordan PM, Günther K, Pace S, Beyer T, Kowalak D, Hoerr V, Löffler B, Tuchscherr L, Serhan CN, Gerstmeier J, Werz O. Staphylococcus aureus controls eicosanoid and specialized pro-resolving mediator production via lipoteichoic acid. Immunology 2022; 166:47-67. [PMID: 35143048 PMCID: PMC9426618 DOI: 10.1111/imm.13449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus causes severe infections associated with inflammation, such as sepsis or osteomyelitis. Inflammatory processes are regulated by distinct lipid mediators (LMs) but how their biosynthetic pathways are orchestrated in S. aureus infections is elusive. We show that S. aureus strikingly not only modulates pro-inflammatory, but also inflammation-resolving LM pathways in murine osteomyelitis and osteoclasts as well as in human monocyte-derived macrophages (MDMs) with different phenotype. Targeted LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed massive generation of LM with distinct LM signature profiles in acute and chronic phases of S. aureus-induced murine osteomyelitis in vivo. In human MDM, S. aureus elevated cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1), but impaired the levels of 15-lipoxygenase-1 (15-LOX-1), with respective changes in LM signature profiles initiated by these enzymes, that is, elevated PGE2 and impaired specialized pro-resolving mediators, along with reduced M2-like phenotypic macrophage markers. The cell wall component, lipoteichoic acid (LTA), mimicked the impact of S. aureus elevating COX-2/mPGES-1 expression via NF-κB and p38 MAPK signalling in MDM, while the impairment of 15-LOX-1 correlates with reduced expression of Lamtor1. In conclusion, S. aureus dictates LM pathways via LTA resulting in a shift from anti-inflammatory M2-like towards pro-inflammatory M1-like LM signature profiles.
Collapse
Affiliation(s)
- Laura Miek
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Timo Beyer
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - David Kowalak
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Verena Hoerr
- Institute of Medical MicrobiologyJena University HospitalJenaGermany
| | - Bettina Löffler
- Institute of Medical MicrobiologyJena University HospitalJenaGermany
| | - Lorena Tuchscherr
- Institute of Medical MicrobiologyJena University HospitalJenaGermany
| | - Charles N. Serhan
- Department of Anesthesiology, Perioperative and Pain MedicineHarvard Medical SchoolCenter for Experimental Therapeutics and Reperfusion InjuryBrigham and Women’s HospitalBostonMassachusettsUSA
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| |
Collapse
|
24
|
Wang L, Wang A, Fu Q, Shi Z, Chen X, Wang Y, Xu W, Wang T, Zhang S, Hu S. Ferroptosis plays an important role in promoting ionizing radiation-induced intestinal injuries. Biochem Biophys Res Commun 2022; 595:7-13. [PMID: 35091109 DOI: 10.1016/j.bbrc.2022.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 01/01/2023]
Abstract
The intestinal tract is an essential component of the body's immune system, and is extremely sensitive to exposure of ionizing radiation. While ionizing radiation can effectively induce multiple forms of cell death, whether it can also promote ferroptosis in intestinal cells and the possible interrelationship between ferroptosis and intestinal immune function has not been reported so far. Here, we found that radiation-induced major ultrastructural changes in mitochondria of small intestinal epithelial cells and the changes induced in iron content and MDA levels in the small intestine were consistent with that observed during cellular ferroptosis, thus suggesting occurrence of ferroptosis in radiation-induced intestinal damage. Moreover, radiation caused a substantial increase in the expression of ferroptosis-related factors such as LPCAT3 and ALOX15 mRNA, augmented the levels of immune-related factors INF-γ and TGF-β mRNA, and decreased the levels of IL-17 mRNA thereby indicating that ionizing radiation induced ferroptosis and impairment of intestinal immune function. Liproxstatin-1 is a ferroptosis inhibitor that was found to ameliorate radiation-induced ferroptosis and promote the recovery from immune imbalances. These findings supported the role of ferroptosis in radiation-induced intestinal immune injury and provide novel strategies for protection against radiation injury through regulation of the ferroptosis pathway.
Collapse
MESH Headings
- 1-Acylglycerophosphocholine O-Acyltransferase/genetics
- 1-Acylglycerophosphocholine O-Acyltransferase/metabolism
- Animals
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/metabolism
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/metabolism
- Ferroptosis/drug effects
- Ferroptosis/physiology
- Ferroptosis/radiation effects
- Gene Expression/drug effects
- Gene Expression/radiation effects
- Glutathione/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intestine, Small/radiation effects
- Intestines/drug effects
- Intestines/pathology
- Intestines/radiation effects
- Male
- Malondialdehyde/metabolism
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission
- Mitochondria/drug effects
- Mitochondria/radiation effects
- Mitochondria/ultrastructure
- Quinoxalines/pharmacology
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/physiopathology
- Radiation Injuries, Experimental/prevention & control
- Radiation, Ionizing
- Reverse Transcriptase Polymerase Chain Reaction
- Spiro Compounds/pharmacology
- Superoxide Dismutase/metabolism
- Mice
Collapse
Affiliation(s)
- Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - An Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoying Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenhui Xu
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tieshan Wang
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
25
|
Golovanov A, Zhuravlev A, Cruz A, Aksenov V, Shafiullina R, Kakularam KR, Lluch JM, Kuhn H, González-Lafont À, Ivanov I. N-Substituted 5-(1H-Indol-2-yl)-2-methoxyanilines Are Allosteric Inhibitors of the Linoleate Oxygenase Activity of Selected Mammalian ALOX15 Orthologs: Mechanism of Action. J Med Chem 2022; 65:1979-1995. [DOI: 10.1021/acs.jmedchem.1c01563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alexey Golovanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Alexander Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Alejandro Cruz
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Vladislav Aksenov
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Rania Shafiullina
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Kumar R. Kakularam
- Department of Biochemistry, Charite─University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - José M. Lluch
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Hartmut Kuhn
- Department of Biochemistry, Charite─University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| |
Collapse
|
26
|
Montford JR, Bauer C, Rahkola J, Reisz JA, Floyd D, Hopp K, Soranno DE, Klawitter J, Weiser-Evans MCM, Nemenoff R, Faubel S, Furgeson SB. 15-Lipoxygenase worsens renal fibrosis, inflammation, and metabolism in a murine model of ureteral obstruction. Am J Physiol Renal Physiol 2022; 322:F105-F119. [PMID: 34866403 PMCID: PMC8742724 DOI: 10.1152/ajprenal.00214.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023] Open
Abstract
15-Lipoxygenase (15-LO) is a nonheme iron-containing dioxygenase that has both pro- and anti-inflammatory roles in many tissues and disease states. 15-LO is thought to influence macrophage phenotype, and silencing 15-LO reduces fibrosis after acute inflammatory triggers. The goal of the present study was to determine whether altering 15-LO expression influences inflammation and fibrogenesis in a murine model of unilateral ureteral obstruction (UUO). C57BL/6J mice, 15-LO knockout (Alox15-/-) mice, and 15-LO transgenic overexpressing (15LOTG) mice were subjected UUO, and kidneys were analyzed at 3, 10, and 14 days postinjury. Histology for fibrosis, inflammation, cytokine quantification, flow cytometry, and metabolomics were performed on injured tissues and controls. PD146176, a specific 15-LO inhibitor, was used to complement experiments involving knockout animals. Compared with wild-type animals undergoing UUO, Alox15-/- mouse kidneys had less proinflammatory, profibrotic message along with less fibrosis and macrophage infiltration. PD146176 inhibited 15-LO and resulted in reduced fibrosis and macrophage infiltration similar to Alox15-/- mice. Flow cytometry revealed that Alox15-/- UUO-injured kidneys had a dynamic change in macrophage phenotype, with an early blunting of CD11bHiLy6CHi "M1" macrophages and an increase in anti-inflammatory CD11bHiLy6CInt "M2c" macrophages and reduced expression of the fractalkine receptor chemokine (C-X3-C motif) receptor 1. Many of these findings were reversed when UUO was performed on 15LOTG mice. Metabolomics analysis revealed that wild-type kidneys developed a glycolytic shift postinjury, while Alox15-/- kidneys exhibited increased oxidative phosphorylation. In conclusion, 15-LO manipulation by genetic or pharmacological means induces dynamic changes in the inflammatory microenvironment in the UUO model and appears to be critical in the progression of UUO-induced fibrosis.NEW & NOTEWORTHY 15-Lipoxygenase (15-LO) has both pro- and anti-inflammatory functions in leukocytes, and its role in kidney injury and repair is unexplored. Our study showed that 15-LO worsens inflammation and fibrosis in a rodent model of chronic kidney disease using genetic and pharmacological manipulation. Silencing 15-LO promotes an increase in M2c-like wound-healing macrophages in the kidney and alters kidney metabolism globally, protecting against anaerobic glycolysis after injury.
Collapse
Affiliation(s)
- John R Montford
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Colin Bauer
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Jeremy Rahkola
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado
| | - Deanna Floyd
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Katharina Hopp
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado, Aurora, Colorado
| | - Danielle E Soranno
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado, Aurora, Colorado
- Pediatric Nephrology, Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Jelena Klawitter
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Mary C M Weiser-Evans
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado, Aurora, Colorado
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | - Raphael Nemenoff
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado, Aurora, Colorado
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | - Sarah Faubel
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Seth B Furgeson
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado, Aurora, Colorado
- Denver Health, Denver, Colorado
| |
Collapse
|
27
|
Kobayashi Y, Nakamura T, Yonezawa T, Kobayashi K, Murata T. The profile of urinary lipid metabolites in cats with bacterial cystitis. J Vet Med Sci 2021; 83:1977-1981. [PMID: 34744098 PMCID: PMC8762420 DOI: 10.1292/jvms.21-0433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial cystitis is one of the feline lower urinary tract diseases (FLUTDs). Polyunsaturated fatty acids, such as arachidonic acid (ARA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), are oxidized into various lipid mediators that modulate inflammation. Since the profile of lipid metabolites excreted in urine is useful for assessing inflammatory body conditions, we analyzed 126 types of urinary lipid metabolites in cats with bacterial cystitis. Using LC-MS/MS, we found that the levels of 11 metabolites were higher in the urine of cystitis cats than in the urine of healthy cats. In detail, the urinary levels of ARA, EPA, and DHA and eight of their metabolites were increased in cystitis cats. Focusing on the lipid oxidation pathway, the urinary levels of four cyclooxygenase-, three lipoxygenase-, and one cytochrome p450-dependent oxidated metabolites were increased in bacterial cystitis. These urinary lipid profiles can provide some insight into the pathology and future diagnosis of bacterial cystitis.
Collapse
Affiliation(s)
- Yui Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Tatsuro Nakamura
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
28
|
Proteomic and lipidomic profiling of demyelinating lesions identifies fatty acids as modulators in lesion recovery. Cell Rep 2021; 37:109898. [PMID: 34706241 PMCID: PMC8567315 DOI: 10.1016/j.celrep.2021.109898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
After demyelinating injury of the central nervous system, resolution of the mounting acute inflammation is crucial for the initiation of a regenerative response. Here, we aim to identify fatty acids and lipid mediators that govern the balance of inflammatory reactions within demyelinating lesions. Using lipidomics, we identify bioactive lipids in the resolution phase of inflammation with markedly elevated levels of n-3 polyunsaturated fatty acids. Using fat-1 transgenic mice, which convert n-6 fatty acids to n-3 fatty acids, we find that reduction of the n-6/n-3 ratio decreases the phagocytic infiltrate. In addition, we observe accelerated decline of microglia/macrophages and enhanced generation of oligodendrocytes in aged mice when n-3 fatty acids are shuttled to the brain. Thus, n-3 fatty acids enhance lesion recovery and may, therefore, provide the basis for pro-regenerative medicines of demyelinating diseases in the central nervous system.
Collapse
|
29
|
Ullah MA, Gul FZ, Khan T, Bajwa MN, Drouet S, Tungmunnithum D, Giglioli-Guivarc'h N, Liu C, Hano C, Abbasi BH. Differential induction of antioxidant and anti-inflammatory phytochemicals in agitated micro-shoot cultures of Ajuga integrifolia Buch. Ham. ex D.Don with biotic elicitors. AMB Express 2021; 11:137. [PMID: 34661766 PMCID: PMC8523646 DOI: 10.1186/s13568-021-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Ajuga integrifolia Buch. Ham. ex D.Don, a member of Lamiaceae family is pharmaceutically an active perennial herb widely spread in China, Afghanistan and Pakistan Himalayan region. The application of biotic elicitors is a promising approach to cover limitations of in vitro cell technology and challenges faced by pharmaceuticals industry for bulk up production. The current study involved the induction of agitated micro-shoot cultures with the aim to investigate the growth-promoting as well as phytochemicals enhancement role of yeast extract (YE) and pectin (PE). The results showed that both elicitors induced a considerable physiological response. Biomass accumulation was observed maximum (DW: 18.3 g/L) against PE (10 mg/L) compared to YE and control. Eleven secondary phytocompounds were quantified using high-performance liquid chromatography. PE (50 mg/L) was found to be effective in elicitation of rosmarinic acid (680.20 µg/g), chlorogenic acid (294.12 µg/g), apigenin (579.61 µg/g) and quercetin (596.89 µg/g). However, maximum caffeic acid (359.52 µg/g) and luteolin (546.12 µg/g accumulation was noted in PE (1 mg/L) treatment. Harpagide, aucubin, harpagoside and 8-O-acetyl-harpagoside production was suppressed by both elicitors except for YE (100 mg/L). Catalpol accumulation in micro-shoot cultures was also downregulated except in response to YE (50 and 100 mg/L). Antioxidant activity and anti-inflammatory activity remained higher under PE (50 mg/L) and YE (100 mg/L) respectively. Therefore, results suggested that Ajuga integrifolia micro-shoot cultures treated with yeast extract and pectin might be an efficient bio-factory to produce commercially potent specific secondary metabolites.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, Brisbane, 4343, Australia
| | - Faiza Zareen Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Taimoor Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Sultanate of Oman
| | - Muhammad Naeem Bajwa
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Chunzhao Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
30
|
Röhn TA, Numao S, Otto H, Loesche C, Thoma G. Drug discovery strategies for novel leukotriene A4 hydrolase inhibitors. Expert Opin Drug Discov 2021; 16:1483-1495. [PMID: 34191664 DOI: 10.1080/17460441.2021.1948998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
IntroductionLeukotriene A4 hydrolase (LTA4H) is the final and rate limiting enzyme regulating the biosynthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid mediator implicated in a large number of inflammatory pathologies. Inhibition of LTA4H not only prevents LTB4 biosynthesis but also induces a lipid mediator class-switch within the 5-lipoxygenase pathway, elevating biosynthesis of the anti-inflammatory lipid mediator Lipoxin A4. Ample preclinical evidence advocates LTA4H as attractive drug target for the treatment of chronic inflammatory diseases.Areas coveredThis review covers details about the biochemistry of LTA4H and describes its role in regulating pro- and anti-inflammatory mediator generation. It summarizes recent efforts in medicinal chemistry toward novel LTA4H inhibitors, recent clinical trials testing LTA4H inhibitors in pulmonary inflammatory diseases, and potential reasons for the discontinuation of former development programs.Expert opinionGiven the prominent role of LTB4 in initiating and perpetuating inflammation, LTA4H remains an appealing drug target. The reason former attempts targeting this enzyme have not met with success in the clinic can be attributed to compound-specific liabilities of first-generation inhibitors and/or choice of target indications to test this mode of action. A new generation of highly potent and selective LTA4H inhibitors is currently undergoing clinical testing in indications with a strong link to LTB4 biology.
Collapse
Affiliation(s)
- Till A Röhn
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Shin Numao
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Heike Otto
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Christian Loesche
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gebhard Thoma
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
31
|
Elzahhar PA, Alaaeddine RA, Nassra R, Ismail A, Labib HF, Temraz MG, Belal ASF, El-Yazbi AF. Challenging inflammatory process at molecular, cellular and in vivo levels via some new pyrazolyl thiazolones. J Enzyme Inhib Med Chem 2021; 36:669-684. [PMID: 33618602 PMCID: PMC7901699 DOI: 10.1080/14756366.2021.1887169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The work reported herein describes the synthesis of a new series of anti-inflammatory pyrazolyl thiazolones. In addition to COX-2/15-LOX inhibition, these hybrids exerted their anti-inflammatory actions through novel mechanisms. The most active compounds possessed COX-2 inhibitory activities comparable to celecoxib (IC50 values of 0.09-0.14 µM) with significant 15-LOX inhibitory activities (IC50s 1.96 to 3.52 µM). Upon investigation of their in vivo anti-inflammatory activities and ulcerogenic profiles, these compounds showed activity patterns equivalent or more superior to diclofenac and/or celecoxib. Intriguingly, the most active compounds were more effective than diclofenac in suppressing monocyte-to-macrophage differentiation and inflammatory cytokine production by activated macrophages, as well as their ability to induce macrophage apoptosis. The latter finding potentially adds a new dimension to the previously reported anti-inflammatory mechanisms of similar compounds. These compounds were effectively docked into COX-2 and 15-LOX active sites. Also, in silico predictions confirmed the appropriateness of these compounds as drug-like candidates.
Collapse
Affiliation(s)
- Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Rasha Nassra
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Azza Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hala F Labib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy of Science Technology and Maritime Transport, Alexandria, Egypt
| | | | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, E gypt
| |
Collapse
|
32
|
The pro-apoptotic ARTS protein induces neutrophil apoptosis, efferocytosis, and macrophage reprogramming to promote resolution of inflammation. Apoptosis 2021; 25:558-573. [PMID: 32564202 DOI: 10.1007/s10495-020-01615-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ARTS (Sept4_i2) is a pro-apoptotic protein and a product of the Sept4 gene. ARTS acts upstream of mitochondria to initiate caspase activation. ARTS induces apoptosis by specifically binding XIAP and allowing de-repression of active caspases required for Mitochondrial Outer Membrane Permeabilzation (MOMP). Moreover, ARTS promotes apoptosis by inducing ubiquitin-mediated degradation of both major anti-apoptotic proteins XIAP and Bcl-2. In the resolution phase of inflammation, the infiltrating leukocytes, which execute the acute innate response, undergo apoptosis and are subsequently cleared by phagocytic macrophages (i.e. efferocytosis). In this course, macrophages undergo reprogramming from inflammatory, to anti-inflammatory, and eventually to resolving macrophages that leave the injury sites. Since engulfment of apoptotic leukocytes is a key signaling step in macrophage reprogramming and resolution of inflammation, we hypothesized that a failed apoptosis in leukocytes in vivo would result in an impaired resolution process. To test this hypothesis, we utilized the Sept4/ARTS-/- mice, which exhibit resistance to apoptosis in many cell types. During zymosan A-induced peritonitis, Sept4/ARTS-/- mice exhibited impaired resolution of inflammation, characterized by reduced neutrophil apoptosis, macrophage efferocytosis and expression of pro-resolving mediators. This was associated with increased pro-inflammatory cytokines and reduced anti-inflammatory cytokines, secreted by resolution-phase macrophages. Moreover, ARTS overexpression in leukocytes in vitro promoted an anti-inflammatory behavior. Overall, our results suggest that ARTS is a key master-regulator necessary for neutrophil apoptosis, macrophage efferocytosis and reprogramming to the pro-resolving phenotype during the resolution of inflammation.
Collapse
|
33
|
Shi Z, Zhang L, Zheng J, Sun H, Shao C. Ferroptosis: Biochemistry and Biology in Cancers. Front Oncol 2021; 11:579286. [PMID: 33868986 PMCID: PMC8047310 DOI: 10.3389/fonc.2021.579286] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
The challenge of eradicating cancer is that cancer cells possess diverse mechanisms to protect themselves from clinical strategies. Recently, ferroptosis has been shown to exhibit appreciable anti-tumor activity that could be harnessed for cancer therapy in the future. Ferroptosis is an iron-dependent form of regulated cell death that is characterized by the oxidization of polyunsaturated fatty acids (PUFAs) and accumulation of lipid peroxides. Ferroptosis has been closely correlated with numerous biological processes, such as amino acid metabolism, glutathione metabolism, iron metabolism, and lipid metabolism, as well as key regulators including GPX4, FSP1, NRF2, and p53. Although ferroptosis could be involved in killing various cancer cells, multiple aspects of this phenomenon remain unresolved. In this review, we summarize the biochemistry and biology of ferroptosis in diverse cancers and discuss the potential mechanisms of ferroptosis, which might pave the way for guiding cancer therapeutics.
Collapse
Affiliation(s)
- Zhiyuan Shi
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Lei Zhang
- School of Public Health, Xiamen Univerisity, Xiamen, China
| | - Jianzhong Zheng
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Huimin Sun
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
34
|
Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005. Nutrients 2021; 13:nu13041132. [PMID: 33808153 PMCID: PMC8065858 DOI: 10.3390/nu13041132] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are attracting increasing attention due to their antioxidant, cardioprotective, and immunomodulatory properties. Nevertheless, little is known about their role in exercise performance in association with immune function. This systematic review firstly aimed to shed light on the ergogenic potential of flavonoids. A search strategy was run using SCOPUS database. The returned studies were screened by prespecified eligibility criteria, including intervention lasting at least one week and performance objectively quantified, among others. Fifty-one studies (54 articles) met the inclusion criteria, involving 1288 human subjects, either physically untrained or trained. Secondly, we aimed to associate these studies with the immune system status. Seventeen of the selected studies (18 articles) assessed changes in the immune system. The overall percentage of studies reporting an improved exercise performance following flavonoid supplementation was 37%, the proportion being 25% when considering quercetin, 28% for flavanol-enriched extracts, and 54% for anthocyanins-enriched extracts. From the studies reporting an enhanced performance, only two, using anthocyanin supplements, focused on the immune system and found certain anti-inflammatory effects of these flavonoids. These results suggest that flavonoids, especially anthocyanins, may exert beneficial effects for athletes’ performances, although further studies are encouraged to establish the optimal dosage and to clarify their impact on immune status.
Collapse
|
35
|
Rohwer N, Chiu CY, Huang D, Smyl C, Rothe M, Rund KM, Helge Schebb N, Kühn H, Weylandt KH. Omega-3 fatty acids protect from colitis via an Alox15-derived eicosanoid. FASEB J 2021; 35:e21491. [PMID: 33710695 DOI: 10.1096/fj.202002340rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
An increased omega-3 polyunsaturated fatty acid (n-3 PUFA) tissue status can lead to a significant formation of anti-inflammatory lipid mediators and effective reduction in inflammation and tissue injury in murine colitis. Arachidonic acid lipoxygenases (ALOX) have been implicated in the pathogenesis of inflammatory bowel disease as well as in the formation of pro- and anti-inflammatory lipid mediators. To explore the role of Alox15 in the protective response found in fat1 transgenic mice with endogenously increased n-3 PUFA tissue status fat1 transgenic mice were crossed with Alox15-deficient animals and challenged in the dextran sulfate sodium (DSS)- and the 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis model. Transgenic fat1 mice rich in endogenous n-3 PUFAs were protected from colitis. However, additional systemic inactivation of the Alox15 gene counteracted this protective effect. To explore the molecular basis for this effect Alox15 lipid metabolites derived from n-3 PUFA were analyzed in the different mice. Alox15 deficiency suppressed the formation of n-3 PUFA-derived 15-hydroxy eicosapentaenoic acid (15-HEPE). In contrast, treating mice with intraperitoneal injections of 15S-HEPE protected wild-type mice from DSS- and TNBS-induced colitis. These data suggest that the anti-colitis effect of increased n-3 PUFA in the transgenic fat1 mouse model is mediated in part via Alox15-derived 15-HEPE formation.
Collapse
Affiliation(s)
- Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.,Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, Brandenburg Medical School Theodor Fontane and University of Potsdam, Potsdam, Germany.,Division of Medicine, Department of Hepatology, Gastroenterology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Cheng-Ying Chiu
- Division of Medicine, Department of Hepatology, Gastroenterology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dan Huang
- Division of Medicine, Department of Hepatology, Gastroenterology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christopher Smyl
- Division of Medicine, Department of Hepatology, Gastroenterology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Hartmut Kühn
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karsten-Henrich Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.,Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, Brandenburg Medical School Theodor Fontane and University of Potsdam, Potsdam, Germany.,Division of Medicine, Department of Hepatology, Gastroenterology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
Shahid W, Ejaz SA, Al-Rashida M, Saleem M, Ahmed M, Rahman J, Riaz N, Ashraf M. Identification of NSAIDs as lipoxygenase inhibitors through highly sensitive chemiluminescence method, expression analysis in mononuclear cells and computational studies. Bioorg Chem 2021; 110:104818. [PMID: 33784531 DOI: 10.1016/j.bioorg.2021.104818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/14/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
Here we report the inhibitory effects of nine non-steroidal anti-inflammatory drugs (NSAIDs) on soybean 15-lipoxygenase (15-LOX) enzyme (EC 1.13.11.12) by three different methods; UV-absorbance, colorimetric and chemiluminescence methods. Only two drugs, Ibuprofen and Ketoprofen, exhibited enzyme inhibition by UV-absorbance method but none of the drug showed inhibition through colorimetric method. Chemiluminescence method was found highly sensitive for the identification of 15-LOX inhibitors and it was more sensitive and several fold faster than the other methods. All tested drugs showed 15-LOX-inhibition with IC50 values ranging from 3.52 ± 0.08 to 62.6 ± 2.15 µM by chemiluminescence method. Naproxen was the most active inhibitor (IC50 3.52 ± 0.08 µM) followed by Aspirin (IC50 4.62 ± 0.11 µM) and Acetaminophen (IC50 6.52 ± 0.14 µM). Ketoprofen, Diclofenac and Mefenamic acid showed moderate inhibitory profiles (IC50 24.8 ± 0.24 to 39.62 ± 0.27 µM). Piroxicam and Tenoxicam were the least active inhibitors with IC50 values of 62.6 ± 2.15 µM and 49.5 ± 1.13 µM, respectively. These findings are supported by expression analysis, molecular docking studies and density functional theory calculations. The expression analysis and flow cytometry apoptosis analysis were carried out using mononuclear cells (MNCs) which express both human 15-LOX and 5-LOX. Selected NSAIDs did not affect the cytotoxic activity of MNCs at IC50 concentrations and the cell death showed dose dependent effect. However, MNCs apoptosis increased only at the higher concentrations, demonstrating that these drugs may not induce loss of immunity in septic and other inflammatory conditions at the acceptable inhibitory concentrations. The data collectively suggests that NSAIDs not only inhibit COX enzymes as reported in the literature but soybean 15-LOX and MNCs LOXs are also inhibited at differential values. A comparison of the metabolomics studies of arachidonic acid pathway after inhibition of either COX or LOX enzymes may reconfirm these findings.
Collapse
Affiliation(s)
- Wardah Shahid
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600. Pakistan
| | - Muhammad Saleem
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Maqsood Ahmed
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jameel Rahman
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Naheed Riaz
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| |
Collapse
|
37
|
Wani K, AlHarthi H, Alghamdi A, Sabico S, Al-Daghri NM. Role of NLRP3 Inflammasome Activation in Obesity-Mediated Metabolic Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E511. [PMID: 33435142 PMCID: PMC7826517 DOI: 10.3390/ijerph18020511] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
NLRP3 inflammasome is one of the multimeric protein complexes of the nucleotide-binding domain, leucine-rich repeat (NLR)-containing pyrin and HIN domain family (PYHIN). When activated, NLRP3 inflammasome triggers the release of pro-inflammatory interleukins (IL)-1β and IL-18, an essential step in innate immune response; however, defective checkpoints in inflammasome activation may lead to autoimmune, autoinflammatory, and metabolic disorders. Among the consequences of NLRP3 inflammasome activation is systemic chronic low-grade inflammation, a cardinal feature of obesity and insulin resistance. Understanding the mechanisms involved in the regulation of NLRP3 inflammasome in adipose tissue may help in the development of specific inhibitors for the treatment and prevention of obesity-mediated metabolic diseases. In this narrative review, the current understanding of NLRP3 inflammasome activation and regulation is highlighted, including its putative roles in adipose tissue dysfunction and insulin resistance. Specific inhibitors of NLRP3 inflammasome activation which can potentially be used to treat metabolic disorders are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Nasser M. Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (H.A.); (A.A.); (S.S.)
| |
Collapse
|
38
|
Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the Brain with Iron. Antioxidants (Basel) 2021; 10:antiox10010061. [PMID: 33419006 PMCID: PMC7825317 DOI: 10.3390/antiox10010061] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron accumulation and neuroinflammation are pathological conditions found in several neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Iron and inflammation are intertwined in a bidirectional relationship, where iron modifies the inflammatory phenotype of microglia and infiltrating macrophages, and in turn, these cells secrete diffusible mediators that reshape neuronal iron homeostasis and regulate iron entry into the brain. Secreted inflammatory mediators include cytokines and reactive oxygen/nitrogen species (ROS/RNS), notably hepcidin and nitric oxide (·NO). Hepcidin is a small cationic peptide with a central role in regulating systemic iron homeostasis. Also present in the cerebrospinal fluid (CSF), hepcidin can reduce iron export from neurons and decreases iron entry through the blood-brain barrier (BBB) by binding to the iron exporter ferroportin 1 (Fpn1). Likewise, ·NO selectively converts cytosolic aconitase (c-aconitase) into the iron regulatory protein 1 (IRP1), which regulates cellular iron homeostasis through its binding to iron response elements (IRE) located in the mRNAs of iron-related proteins. Nitric oxide-activated IRP1 can impair cellular iron homeostasis during neuroinflammation, triggering iron accumulation, especially in the mitochondria, leading to neuronal death. In this review, we will summarize findings that connect neuroinflammation and iron accumulation, which support their causal association in the neurodegenerative processes observed in AD and PD.
Collapse
Affiliation(s)
- Pamela J. Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Daniel A. Bórquez
- Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, 8370007 Santiago, Chile;
| | - Marco Tulio Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Correspondence: ; Tel.: +56-2-29787360
| |
Collapse
|
39
|
Sezin T, Ferreirós N, Jennrich M, Ochirbold K, Seutter M, Attah C, Mousavi S, Zillikens D, Geisslinger G, Sadik CD. 12/15-Lipoxygenase choreographs the resolution of IgG-mediated skin inflammation. J Autoimmun 2020; 115:102528. [DOI: 10.1016/j.jaut.2020.102528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/11/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
|
40
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
41
|
Boff D, Oliveira VLS, Queiroz Junior CM, Galvão I, Batista NV, Gouwy M, Menezes GB, Cunha TM, Verri Junior WA, Proost P, Teixeira MM, Amaral FA. Lipoxin A 4 impairs effective bacterial control and potentiates joint inflammation and damage caused by Staphylococcus aureus infection. FASEB J 2020; 34:11498-11510. [PMID: 32741032 DOI: 10.1096/fj.201802830rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is the main cause of septic arthritis in humans, a disease associated with high morbidity and mortality. Inflammation triggered in response to infection is fundamental to control bacterial growth but may cause permanent tissue damage. Here, we evaluated the role of Lipoxin A4 (LXA4 ) in S aureus-induced arthritis in mice. Septic arthritis was induced by S aureus injection into tibiofemoral joints. At different time points, we evaluated cell recruitment and bacterial load in the joint, the production of pro-inflammatory molecules, and LXA4 in inflamed tissue and analyzed joint damage and dysfunction. LXA4 was investigated using genetically modified mice or by pharmacological blockade of its synthesis and receptor. CD11c+ cells were evaluated in lymph nodes by confocal microscopy and flow cytometry and dendritic cell chemotaxis using the Boyden chamber. Absence or pharmacological blockade of 5-lipoxygenase (5-LO) reduced joint inflammation and dysfunction and was associated with better control of infection at 4 to 7 days after the infection. There was an increase in LXA4 in joints of S aureus-infected mice and administration of LXA4 reversed the phenotype in 5-LO-/- mice. Blockade or absence of the LXA4 receptor FPR2 has a phenotype similar to 5-LO-/- mice. Mechanistically, LXA4 appeared to control migration and function of dendritic cells, cells shown to be crucial for adequate protective responses in the model. Thus, after the first days of infection when symptoms become evident therapies that inhibit LXA4 synthesis or action could be useful for treatment of S aureus-induced arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Louise Soares Oliveira
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz Junior
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathalia Vieira Batista
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Gustavo Batista Menezes
- Departamento de Morfologia, Centro de Biologia Gastrointestinal, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Faculdade de Medicina de Ribeirao Preto, Center for Research in Inflammatory Diseases, Universidade de São Paulo, São Paulo, Brazil
| | | | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mauro Martins Teixeira
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
42
|
Reisch F, Kakularam KR, Stehling S, Heydeck D, Kuhn H. Eicosanoid biosynthesis in marine mammals. FEBS J 2020; 288:1387-1406. [PMID: 32627384 DOI: 10.1111/febs.15469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
After 300 million years of evolution, the first land-living mammals reentered the marine environment some 50 million years ago. The driving forces for this dramatic lifestyle change are still a matter of discussion but the struggle for food resources and the opportunity to escape predators probably contributed. Reentering the oceans requires metabolic adaption putting evolutionary pressure on a number of genes. To explore whether eicosanoid signaling has been part of this adaptive response, we first explored whether the genomes of marine mammals involve functional genes encoding for key enzymes of eicosanoid biosynthesis. Cyclooxygenase (COX) and lipoxygenase (ALOX) genes are present in the genome of all marine mammals tested. Interestingly, ALOX12B, which has been implicated in skin development of land-living mammals, is lacking in whales and dolphins and genes encoding for its sister enzyme (ALOXE3) involve premature stop codons and/or frameshifting point mutations, which interrupt the open reading frames. ALOX15 orthologs have been detected in all marine mammals, and the recombinant enzymes exhibit similar catalytic properties as those of land-living species. All marine mammals express arachidonic acid 12-lipoxygenating ALOX15 orthologs, and these data are consistent with the Evolutionary Hypothesis of ALOX15 specificity. These enzymes exhibit membrane oxygenase activity and introduction of big amino acids at the triad positions altered the reaction specificity in favor of arachidonic acid 15-lipoxygenation. Thus, the ALOX15 orthologs of marine mammals follow the Triad concept explaining their catalytic specificity.
Collapse
Affiliation(s)
- Florian Reisch
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kumar Reddy Kakularam
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
43
|
Signini ÉF, Nieman DC, Silva CD, Sakaguchi CA, Catai AM. Oxylipin Response to Acute and Chronic Exercise: A Systematic Review. Metabolites 2020; 10:E264. [PMID: 32630487 PMCID: PMC7345129 DOI: 10.3390/metabo10060264] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023] Open
Abstract
Oxylipins are oxidized compounds of polyunsaturated fatty acids that play important roles in the body. Recently, metabololipidomic-based studies using advanced mass spectrometry have measured the oxylipins generated during acute and chronic physical exercise and described the related physiological effects. The objective of this systematic review was to provide a panel of the primary exercise-related oxylipins and their respective functions in healthy individuals. Searches were performed in five databases (Cochrane, PubMed, Science Direct, Scopus and Web of Science) using combinations of the Medical Subject Headings (MeSH) terms: "Humans", "Exercise", "Physical Activity", "Sports", "Oxylipins", and "Lipid Mediators". An adapted scoring system created in a previous study from our group was used to rate the quality of the studies. Nine studies were included after examining 1749 documents. Seven studies focused on the acute effect of physical exercise while two studies determined the effects of exercise training on the oxylipin profile. Numerous oxylipins are mobilized during intensive and prolonged exercise, with most related to the inflammatory process, immune function, tissue repair, cardiovascular and renal functions, and oxidative stress.
Collapse
Affiliation(s)
- Étore F. Signini
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil; (C.D.S.); (C.A.S.); (A.M.C.)
| | - David C. Nieman
- North Carolina Research Campus, Appalachian State University, Kannapolis, NC 28081, USA;
| | - Claudio D. Silva
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil; (C.D.S.); (C.A.S.); (A.M.C.)
| | - Camila A. Sakaguchi
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil; (C.D.S.); (C.A.S.); (A.M.C.)
| | - Aparecida M. Catai
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil; (C.D.S.); (C.A.S.); (A.M.C.)
| |
Collapse
|
44
|
Yaseen H, Butenko S, Polishuk-Zotkin I, Schif-Zuck S, Pérez-Sáez JM, Rabinovich GA, Ariel A. Galectin-1 Facilitates Macrophage Reprogramming and Resolution of Inflammation Through IFN-β. Front Pharmacol 2020; 11:901. [PMID: 32625094 PMCID: PMC7311768 DOI: 10.3389/fphar.2020.00901] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
During the resolution of acute inflammation, macrophages undergo reprogramming from pro-inflammatory, to anti-inflammatory/reparative, and eventually to pro-resolving macrophages. Galectin-1 (Gal-1) is a bona fide pro-resolving lectin while interferon β (IFN-β) was recently shown to facilitate macrophage reprogramming and resolution of inflammation. In this study, we found Gal-1null mice exhibit a hyperinflammatory phenotype during the resolution of zymosan A-induced peritonitis but not during the early inflammatory response. This phenotype was characterized by reduced macrophage numbers, increased secretion of pro-inflammatory cytokines, such as interleukin-12 (IL-12), and reduced secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10). In addition, we found a delayed expression of the pro-resolving enzyme 12/15-lipoxygenase in macrophages and heightened levels of the inflammatory protease proteinase-3 (PR3) in peritoneal fluids from Gal-1null mice. Moreover, we observed sex-dependent differences in the inflammatory profile of Gal-1null mice. Notably, we found that IFN-β levels were reduced in resolution-phase exudates from Gal-1null mice. Administration of IFN-β in vivo or ex vivo treatment was able to rescue, at least in part, the hyperinflammatory profile of Gal-1null mice. In particular, IFN-β recovered a subset of F4/80+GR-1+ macrophages, restored IL-12 and IL-10 secretion from macrophages to WT values and diminished abnormal peritoneal PR3 levels in Gal-1null mice. In conclusion, our results revealed a new Gal-1-IFN-β axis that facilitates the resolution of inflammation and might restrain uncontrolled inflammatory disorders.
Collapse
Affiliation(s)
- Hiba Yaseen
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Sergei Butenko
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | | | - Sagie Schif-Zuck
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Juan Manuel Pérez-Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriel Adrian Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amiram Ariel
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
45
|
Liu X, Sims HF, Jenkins CM, Guan S, Dilthey BG, Gross RW. 12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA 2γ knockout. J Biol Chem 2020; 295:5307-5320. [PMID: 32161117 PMCID: PMC7170522 DOI: 10.1074/jbc.ra119.012296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.
Collapse
Affiliation(s)
- Xinping Liu
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Harold F Sims
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Christopher M Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Shaoping Guan
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Beverly G Dilthey
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri 63110; Department of Chemistry, Washington University, Saint Louis, Missouri 63130.
| |
Collapse
|
46
|
Mackel JJ, Garth JM, Blackburn JP, Jones M, Steele C. 12/15-Lipoxygenase Deficiency Impairs Neutrophil Granulopoiesis and Lung Proinflammatory Responses to Aspergillus fumigatus. THE JOURNAL OF IMMUNOLOGY 2020; 204:1849-1858. [PMID: 32102903 PMCID: PMC8771824 DOI: 10.4049/jimmunol.1900808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Development of invasive aspergillosis correlates with impairments in innate immunity. We and others have recently shown that arachidonic acid metabolism pathways, specifically the cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) pathways, participate in the induction of protective innate immune responses during invasive aspergillosis. Based on the high degree of cooperation and interconnection within the eicosanoid network, we hypothesized that 12/15-LOX is also active during invasive aspergillosis. We report in this study that mice deficient in the gene encoding 12/15-LOX (Alox15) are profoundly susceptible to invasive aspergillosis. Decreased survival correlated with increased fungal burden and evidence of increased lung damage. These defects were associated with very early (6 and 12 h) 12/15-LOX-dependent inflammatory cytokine (IL-1α, IL-1β, and TNF-α) and chemokine (CCL3 and CCL4) production. Neutrophil levels in the lung were blunted in the absence of 12/15-LOX, although neutrophil antifungal activity was intact. However, lower neutrophil levels in the lungs of Alox15−/− mice were not a result of impaired recruitment or survival; rather, Alox15−/− mice demonstrated impaired neutrophil granulopoiesis in the bone marrow intrinsically and after fungal exposure. Employing a lower inoculum to allow for better survival allowed the identification of 12/15-LOX-dependent induction of IL-17A and IL-22. Impaired IL-17A and IL-22 production correlated with reduced invariant NKT cell numbers as well as lower IL-23 levels. Together, these data indicate that 12/15-LOX is a critical player in induction of the earliest aspects of the innate immune response to Aspergillus fumigatus.
Collapse
Affiliation(s)
- Joseph J Mackel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Jonathan P Blackburn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112
| |
Collapse
|
47
|
Gao Y, Cao X, Zhang X, Wang Y, Huang H, Meng Y, Chang J. Brozopine Inhibits 15-LOX-2 Metabolism Pathway After Transient Focal Cerebral Ischemia in Rats and OGD/R-Induced Hypoxia Injury in PC12 Cells. Front Pharmacol 2020; 11:99. [PMID: 32153408 PMCID: PMC7047151 DOI: 10.3389/fphar.2020.00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/28/2020] [Indexed: 01/14/2023] Open
Abstract
The goal of this study was to elucidate the mechanisms of protection of Sodium (±)-5-bromo-2-(α-hydroxypentyl) benzoate (trade name: Brozopine, BZP) against cerebral ischemia in vivo and in vitro. To explore the protective effect of BZP on focal cerebral ischemia-reperfusion injury, we evaluated the effects of various doses of BZP on neurobehavioral score, cerebral infarction volume, cerebral swelling in MCAO rats (ischemia for 2 h, reperfusion for 24 h). In addition, the effects of various doses of BZP on OGD/R-induced-PC12 cells injury (hypoglycemic medium containing 30 mmol Na2S2O4 for 2 h, reoxygenation for 24 h) were evaluated. Four in vivo and in vitro groups were evaluated to characterize targets of BZP: Control group, Model group, BZP group (10 mg/kg)/BZP group (30 μmol/L), C8E4 group (10 mg/kg)/C8E4 group (30 μmol/L). An ELISA kit was used to determine the levels of 15-HETE (a 15-LOX-2 metabolite) in vivo and in vitro. Rat nuclear factor κB subunit p65 (NF-κB p65), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and intercellular adhesion molecule-1 (ICAM-1) were also quantified in vivo and in vitro. The results showed that BZP improved focal cerebral ischemia-reperfusion injury in rats and PC12 cells treated with Na2S2O4 in dose/concentration-dependent manners through inhibition of production of 15-HETE and expression of NF-κB, IL-6, TNF-α, and ICAM-1. In conclusion, BZP exerted protective effects against cerebral ischemia via inhibition of 15-LOX-2 activity.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Pharmacology, Zhengzhou University, Henan, China
| | - Xinyu Cao
- Institute of Pharmacology, Zhengzhou University, Henan, China
| | - Xiaojiao Zhang
- Institute of Pharmacology, Zhengzhou University, Henan, China
| | - Yangjun Wang
- Institute of Pharmacology, Zhengzhou University, Henan, China
| | - He Huang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan, China
| | - Yonggang Meng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan, China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan, China
| |
Collapse
|
48
|
Marbach-Breitrück E, Kutzner L, Rothe M, Gurke R, Schreiber Y, Reddanna P, Schebb NH, Stehling S, Wieler LH, Heydeck D, Kuhn H. Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme. Antioxid Redox Signal 2020; 32:1-17. [PMID: 31642348 DOI: 10.1089/ars.2019.7751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aims: Most mammalian genomes involve several genes encoding for functionally distinct arachidonate lipoxygenase (ALOX isoforms). Proinflammatory leukotrienes are formed via the ALOX5 pathway, but 12/15-lipoxygenating ALOX isoforms have been implicated in the biosynthesis of pro-resolving mediators. In vitro mutagenesis of the triad determinants abolished the leukotriene synthesizing activity of ALOX5, but the biological consequences of these alterations have not been studied. To fill this gap, we created Alox5 knock-in mice, which express the 12/15-lipoxygenating Phe359Trp + Ala424Ile + Asn425Met Alox5 triple mutant and characterized its phenotypic alterations. Results: The mouse Alox5 triple mutant functions as arachidonic acid 15-lipoxygenating enzyme, which also forms 12S-hydroxy and 8S-hydroxy arachidonic acid. In contrast to the wild-type enzyme, the triple mutant effectively oxygenates linoleic acid to 13S-hydroxy linoleic acid (13S-HODE), which functions as activating ligand of the type-2 nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). Knock-in mice expressing the mutant enzyme are viable, fertile, and develop normally. The mice cannot synthesize proinflammatory leukotrienes but show significantly attenuated plasma levels of lipolytic endocannabinoids. When aging, the animals gained significantly more body weight, which may be related to the fivefold higher levels of 13-HODE in the adipose tissue. Innovation: These data indicate for the first time that in vivo mutagenesis of the triad determinants of mouse Alox5 abolished the biosynthetic capacity of the enzyme for proinflammatory leukotrienes and altered the catalytic properties of the protein favoring the formation of 13-HODE. Conclusion:In vivo triple mutation of the mouse Alox5 gene impacts the body weight homeostasis of aging mice via augmented formation of the activating PPARγ ligand 13-HODE.
Collapse
Affiliation(s)
- Eugenia Marbach-Breitrück
- Institute of Biochemistry, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Laura Kutzner
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | | | - Robert Gurke
- Pharmazentrum Frankfurt (ZAFES), Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad India
| | - Nils-Helge Schebb
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lothar H Wieler
- Robert Koch Institute, Berlin, Germany.,Institute of Microbiology and Epizootics, Center of Infection Medicine, Free University of Berlin, Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
49
|
Harb H, Chatila TA. Mechanisms of Dupilumab. Clin Exp Allergy 2020; 50:5-14. [PMID: 31505066 PMCID: PMC6930967 DOI: 10.1111/cea.13491] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
The Th2 cytokines interleukin 4 (IL-4) and IL-13 and the heterodimeric IL-4 receptor (IL-4R) complexes that they interact with play a key role in the pathogenesis of allergic disorders. Dupilumab is a humanized IgG4 monoclonal antibody that targets the IL-4 receptor alpha chain (IL-4Rα), common to both IL-4R complexes: type 1 (IL-4Rα/γc; IL-4 specific) and type 2 (IL-4Rα/IL-13Rα1; IL-4 and IL-13 specific). In this review, we detail the current state of knowledge of the different signalling pathways coupled to the IL-4R complexes and examine the possible mechanisms of Dupilumab action and survey its clinical efficacy in different allergic disorders. The development of Dupilumab and the widening spectrum of its clinical applications is relevant to the current emphasis on precision medicine approaches to the blockade of pathways involved in allergic diseases.
Collapse
Affiliation(s)
- Hani Harb
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Yang F, Zhang Y, Ren H, Wang J, Shang L, Liu Y, Zhu W, Shi X. Ischemia reperfusion injury promotes recurrence of hepatocellular carcinoma in fatty liver via ALOX12-12HETE-GPR31 signaling axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:489. [PMID: 31831037 PMCID: PMC6909624 DOI: 10.1186/s13046-019-1480-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ischemia reperfusion injury (IRI) has been shown to increase the risk of tumor recurrence after liver surgery. Also, nonalcoholic fatty liver disease (NAFLD) is associated with increased HCC recurrence. ALOX12-12-HETE pathway is activated both in liver IRI and NASH. Also, ALOX12-12-HETE has been shown to mediate tumorigenesis and progression. Therefore, our study aims to investigate whether the ALOX12-12-HETE-GPR31 pathway involved in IRI induced HCC recurrence in NAFLD. METHODS HCC mouse model was used to mimic the HCC recurrence in NAFLD. Western Blot, qPCR, Elisa and Immunofluorescence analysis were conducted to evaluate the changes of multiple signaling pathways during HCC recurrence, including ALOX12-12-HETE axis, EMT, MMPs and PI3K/AKT/NF-κB signaling pathway. We also measured the expression and functional changes of GPR31 by siRNA. RESULTS ALOX12-12-HETE pathway was activated in liver IRI and its activation was further enhanced in NAFLD, which induced more severe HCC recurrence in fatty livers than normal livers. Inhibition of ALOX12-12-HETE by ML355 reduced the HCC recurrence in fatty livers. In vitro studies showed that 12-HETE increased the expression of GPR31 and induced epithelial-mesenchymal transition (EMT) and matrix metalloprotein (MMPs) by activating PI3K/AKT/NF-κB pathway. Furthermore, knockdown of GPR31 in cancer cells inhibited the HCC recurrence in NAFLD. CONCLUSIONS ALOX12-12-HETE-GPR31 played an important role in HCC recurrence and might be a potential therapeutic target to reduce HCC recurrence after surgery in fatty livers.
Collapse
Affiliation(s)
- Faji Yang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Yuheng Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Wei Zhu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China.
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China.
| |
Collapse
|