1
|
Shooshtarian AK, O'Gallagher K, Shah AM, Zhang M. SERCA2a dysfunction in the pathophysiology of heart failure with preserved ejection fraction: a direct role is yet to be established. Heart Fail Rev 2025:10.1007/s10741-025-10487-1. [PMID: 39843817 DOI: 10.1007/s10741-025-10487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
With rising incidence, mortality and limited therapeutic options, heart failure with preserved ejection fraction (HFpEF) remains one of the most important topics in cardiovascular medicine today. Characterised by left ventricular diastolic dysfunction partially due to impaired Ca2+ homeostasis, one ion channel in particular, SarcoEndoplasmic Reticulum Ca2+-ATPase (SERCA2a), may play a significant role in its pathophysiology. A better understanding of the complex mechanisms interplaying to contribute to SERCA2a dysfunction will help develop treatments targeting it and thus address the growing clinical challenge HFpEF poses. This review examines the conflicting evidence present for changes in SERCA2a expression and activity in HFpEF, explores potential underlying mechanisms, and finally evaluates the drug and gene therapy trials targeting SERCA2a in heart failure. Recent positive results from trials involving widely used anti-diabetic agents such as sodium-glucose co-transporter protein 2 inhibitors (SGLT2i) and glucagon-like peptide-1 (GLP-1) agonists offer advancement in HFpEF management. The potential interplay between these agents and SERCA2a regulation presents a novel angle that could open new avenues for modulating diastolic function; however, the mechanistic research in this emerging field is limited. Overall, the direct role of SERCA2a dysfunction in HFpEF remains undetermined, highlighting the need for well-designed pre-clinical studies and robust clinical trials.
Collapse
Affiliation(s)
- Adam Kia Shooshtarian
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Kevin O'Gallagher
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Ajay M Shah
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Min Zhang
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
2
|
Mousavi Z, Arvanitis M, Duong T, Brody JA, Battle A, Sotoodehnia N, Shojaie A, Arking DE, Bader JS. Prioritization of causal genes from genome-wide association studies by Bayesian data integration across loci. PLoS Comput Biol 2025; 21:e1012725. [PMID: 39774334 PMCID: PMC11741684 DOI: 10.1371/journal.pcbi.1012725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 01/17/2025] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
MOTIVATION Genome-wide association studies (GWAS) have identified genetic variants, usually single-nucleotide polymorphisms (SNPs), associated with human traits, including disease and disease risk. These variants (or causal variants in linkage disequilibrium with them) usually affect the regulation or function of a nearby gene. A GWAS locus can span many genes, however, and prioritizing which gene or genes in a locus are most likely to be causal remains a challenge. Better prioritization and prediction of causal genes could reveal disease mechanisms and suggest interventions. RESULTS We describe a new Bayesian method, termed SigNet for significance networks, that combines information both within and across loci to identify the most likely causal gene at each locus. The SigNet method builds on existing methods that focus on individual loci with evidence from gene distance and expression quantitative trait loci (eQTL) by sharing information across loci using protein-protein and gene regulatory interaction network data. In an application to cardiac electrophysiology with 226 GWAS loci, only 46 (20%) have within-locus evidence from Mendelian genes, protein-coding changes, or colocalization with eQTL signals. At the remaining 180 loci lacking functional information, SigNet selects 56 genes other than the minimum distance gene, equal to 31% of the information-poor loci and 25% of the GWAS loci overall. Assessment by pathway enrichment demonstrates improved performance by SigNet. Review of individual loci shows literature evidence for genes selected by SigNet, including PMP22 as a novel causal gene candidate.
Collapse
Affiliation(s)
- Zeinab Mousavi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Marios Arvanitis
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - ThuyVy Duong
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Dan E. Arking
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joel S. Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Hu C, Ma L, Gao S, Yang MY, Mu MD, Chang L, Huang P, Ye X, Wang W, Tao X, Zhou BH, Chen W, Tang KL. PPP1R3A inhibits osteogenesis and negatively regulates intracellular calcium levels in calcific tendinopathy. iScience 2023; 26:107784. [PMID: 37876608 PMCID: PMC10590817 DOI: 10.1016/j.isci.2023.107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Calcific tendinopathy (CT) is defined by the progressive accumulation of calcium crystals in tendonic regions that results in severe pain in patients. The etiology of CT is not fully elucidated. In this study, we elucidate the role of PPP1R3A in CT. A significant decrease in PPP1R3A expression was observed in CT patient tissues, which was further confirmed in tissues from a CT-induced rat model. Overexpression of PPP1R3A ex vivo reduced the expression of osteo/chondrogenic markers OCN and Sox9, improved tendon tissue architecture, and reduced intracellular Ca2+ levels. Overexpression of SERCA2 and knockdown of Piezo1 decreased expression of osteo/chondrogenic markers and intracellular calcium in PPP1R3A-knockdown tendon cells. Lastly, PPP1R3A expression was regulated at the posttranscriptional level by binding of HuR. Collectively, the present study indicates that PPP1R3A plays an important role in regulating calcium homeostasis in tendon cells via Piezo1/SERCA2, rendering it a promising target for therapeutic interventions of CT.
Collapse
Affiliation(s)
- Chao Hu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
- Department of Orthopedics, 904 Hospital of PLA, Wuxi 214000 Jiangsu, China
| | - Lin Ma
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Shang Gao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Ming-Yu Yang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Mi-Duo Mu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Le Chang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Pan Huang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xiao Ye
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wei Wang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xu Tao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Bing-Hua Zhou
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wan Chen
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Kang-Lai Tang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| |
Collapse
|
4
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
5
|
Yamasan BE, Mercan T, Erkan O, Ozdemir S. Ellagic Acid Prevents Ca 2+ Dysregulation and Improves Functional Abnormalities of Ventricular Myocytes via Attenuation of Oxidative Stress in Pathological Cardiac Hypertrophy. Cardiovasc Toxicol 2021; 21:630-641. [PMID: 33909254 DOI: 10.1007/s12012-021-09654-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 01/25/2023]
Abstract
The aim of this study was to investigate whether ellagic acid (EA) treatment can prevent changes in contractile function and Ca2+ regulation of cardiomyocytes in pathologic cardiac hypertrophy. Groups were assigned as Con group; an ISO group in which the rats received isoproterenol alone (5 mg/kg/day); and an ISO + EA group in which the rats received isoproterenol and EA (20 mg/kg/day) for 4 weeks. Subsequently, fractional shortening, intracellular Ca2+ signals, and L-type Ca2+ currents of isolated ventricular myocytes were recorded. Protein expression levels were also determined by the Western blotting method. The survival rate was increased, and the upregulated cardiac hypertrophy markers were significantly attenuated with the EA treatment. The fractional shortening and relaxation rate of myocytes was decreased in the ISO group, whereas EA significantly improved these changes. Ventricular myocytes of the ISO + EA rats displayed lower diastolic Ca2+ levels, higher Ca2+ transients, shorter Ca2+ decay, and higher L-type Ca2+ currents than those of ISO rats. Protein expression analyses indicated that the upregulated p-PLB and p-CaMKII expressions were restored by EA treatment, suggesting improved calcium handling in the ISO + EA rat heart. Moreover, ISO rats displayed significantly increased expression of p-22phox and p47phox subunits of NOX2 protein. Expression of the p22phox subunit was reduced with EA administration, while the decrease in p47phox did not reach a significant level. The increased ROS impairs Ca2+ homeostasis and contractile activity of cardiac myocytes, whereas chronic EA administration prevents Ca2+ dysregulation and functional abnormalities associated with pathological cardiac hypertrophy via the diminution of oxidative stress.
Collapse
Affiliation(s)
- Bilge E Yamasan
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Tanju Mercan
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Orhan Erkan
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
6
|
Kheyfets VO, Dufva MJ, Boehm M, Tian X, Qin X, Tabakh JE, Truong U, Ivy D, Spiekerkoetter E. The left ventricle undergoes biomechanical and gene expression changes in response to increased right ventricular pressure overload. Physiol Rep 2021; 8:e14347. [PMID: 32367677 PMCID: PMC7198956 DOI: 10.14814/phy2.14347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Pulmonary hypertension (PH) results in right ventricular (RV) pressure overload and eventual failure. Current research efforts have focused on the RV while overlooking the left ventricle (LV), which is responsible for mechanically assisting the RV during contraction. The objective of this study is to evaluate the biomechanical and gene expression changes occurring in the LV due to RV pressure overload in a mouse model. Nine male mice were divided into two groups: (a) pulmonary arterial banding (PAB, N = 4) and (b) sham surgery (Sham, N = 5). Tagged and steady‐state free precision cardiac MRI was performed on each mouse at 1, 4, and 7 weeks after surgery. At/week7, the mice were euthanized following right/left heart catheterization with RV/LV tissue harvested for histology and gene expression (using RT‐PCR) studies. Compared to Sham mice, the PAB group revealed a significantly decreased LV and RV ejection fraction, and LV maximum torsion and torsion rate, within the first week after banding. In the PAB group, there was also a slight but significant increase in LV perivascular fibrosis, which suggests elevated myocardial stress. LV fibrosis was also accompanied with changes in gene expression in the hypertensive group, which was correlated with LV contractile mechanics. In fact, principal component (PC) analysis of LV gene expression effectively separated Sham and PAB mice along PC2. Changes in LV contractile mechanics were also significantly correlated with unfavorable changes in RV contractile mechanics, but a direct causal relationship was not established. In conclusion, a purely biomechanical insult of RV pressure overload resulted in biomechanical and transcriptional changes in both the RV and LV. Given that the RV relies on the LV for contractile energy assistance, considering the LV could provide prognostic and therapeutic targets for treating RV failure in PH.
Collapse
Affiliation(s)
- Vitaly O Kheyfets
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Melanie J Dufva
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Mario Boehm
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA.,German Center for Lung Research (DZL), Giessen, Germany
| | - Xuefeit Tian
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Xulei Qin
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Jennifer E Tabakh
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Uyen Truong
- Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA.,Department of Pediatrics - Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dunbar Ivy
- Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Pei J, Schuldt M, Nagyova E, Gu Z, El Bouhaddani S, Yiangou L, Jansen M, Calis JJA, Dorsch LM, Blok CS, van den Dungen NAM, Lansu N, Boukens BJ, Efimov IR, Michels M, Verhaar MC, de Weger R, Vink A, van Steenbeek FG, Baas AF, Davis RP, Uh HW, Kuster DWD, Cheng C, Mokry M, van der Velden J, Asselbergs FW, Harakalova M. Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations. Clin Epigenetics 2021; 13:61. [PMID: 33757590 PMCID: PMC7989210 DOI: 10.1186/s13148-021-01043-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common genetic disease of the cardiac muscle, frequently caused by mutations in MYBPC3. However, little is known about the upstream pathways and key regulators causing the disease. Therefore, we employed a multi-omics approach to study the pathomechanisms underlying HCM comparing patient hearts harboring MYBPC3 mutations to control hearts. RESULTS Using H3K27ac ChIP-seq and RNA-seq we obtained 9310 differentially acetylated regions and 2033 differentially expressed genes, respectively, between 13 HCM and 10 control hearts. We obtained 441 differentially expressed proteins between 11 HCM and 8 control hearts using proteomics. By integrating multi-omics datasets, we identified a set of DNA regions and genes that differentiate HCM from control hearts and 53 protein-coding genes as the major contributors. This comprehensive analysis consistently points toward altered extracellular matrix formation, muscle contraction, and metabolism. Therefore, we studied enriched transcription factor (TF) binding motifs and identified 9 motif-encoded TFs, including KLF15, ETV4, AR, CLOCK, ETS2, GATA5, MEIS1, RXRA, and ZFX. Selected candidates were examined in stem cell-derived cardiomyocytes with and without mutated MYBPC3. Furthermore, we observed an abundance of acetylation signals and transcripts derived from cardiomyocytes compared to non-myocyte populations. CONCLUSIONS By integrating histone acetylome, transcriptome, and proteome profiles, we identified major effector genes and protein networks that drive the pathological changes in HCM with mutated MYBPC3. Our work identifies 38 highly affected protein-coding genes as potential plasma HCM biomarkers and 9 TFs as potential upstream regulators of these pathomechanisms that may serve as possible therapeutic targets.
Collapse
Affiliation(s)
- J Pei
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
- Regenerative Medicine Utrecht (RMU), University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
- Department of Nephrology and Hypertension, DIG-D, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - M Schuldt
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - E Nagyova
- Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - Z Gu
- Department of Biostatistics and Research Support, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - S El Bouhaddani
- Department of Biostatistics and Research Support, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - L Yiangou
- Department of Anatomy and Embryology, LUMC, Leiden, The Netherlands
| | - M Jansen
- Department of Genetics, Division of Laboratories, Pharmacy and Biomedical Genetics, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - J J A Calis
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
- Regenerative Medicine Utrecht (RMU), University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
| | - L M Dorsch
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - C Snijders Blok
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
| | - N A M van den Dungen
- Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - N Lansu
- Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - B J Boukens
- Department of Medical Biology, AMC, Amsterdam, The Netherlands
| | - I R Efimov
- Department of Biomedical Engineering, GWU, Washington, DC, USA
| | - M Michels
- Department of Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - M C Verhaar
- Regenerative Medicine Utrecht (RMU), University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
- Department of Nephrology and Hypertension, DIG-D, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - R de Weger
- Department of Pathology, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - A Vink
- Department of Pathology, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - F G van Steenbeek
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
- Regenerative Medicine Utrecht (RMU), University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - A F Baas
- Department of Genetics, Division of Laboratories, Pharmacy and Biomedical Genetics, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - R P Davis
- Department of Anatomy and Embryology, LUMC, Leiden, The Netherlands
| | - H W Uh
- Department of Biostatistics and Research Support, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - D W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - C Cheng
- Regenerative Medicine Utrecht (RMU), University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
- Department of Nephrology and Hypertension, DIG-D, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, GWU, Washington, DC, USA
| | - M Mokry
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
- Regenerative Medicine Utrecht (RMU), University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
- Division of Paediatrics, UMC Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - J van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - F W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands.
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK.
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK.
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Room E03.818, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - M Harakalova
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands.
- Regenerative Medicine Utrecht (RMU), University Medical Center Utrecht, University of Utrecht, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Opisthorchis felineus genes differentially expressed under praziquantel shed light on the nature of tegument disruption and indicate the adaptive role of cGMP-dependent protein kinase. Parasitol Res 2020; 119:2695-2702. [PMID: 32556538 DOI: 10.1007/s00436-020-06764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
Opisthorchis felineus is a trematode flatworm that parasitises mammals, including humans, and is mainly spread throughout Eastern Europe and Western Siberia. The main drug used in treatment of opisthorchiasis and other trematode and cestode infestations is praziquantel (PZQ). We provide a possible explanation of PZQ-mediated tegument disruption. The idea is that the nature of tegument disruption is related to failure of surface renovation due to insufficiency of microtubule transport of vesicles. This insufficiency arises from microtubule destabilisation, which in the medium term leads to the decrease in tubulins alpha, beta and dynein mRNA amounts and deficiency of the corresponding proteins. We also found the upregulation of cGMP-dependent protein kinase gene, and we concluded that its protein product helped to overcome the effect of praziquantel and might be a promising target for combined anthelmintic therapy with PZQ. We concluded that function of saposin-like protein 2 (SAP2) is unlikely associated with membrane fusion, and SAP2 is probably able to bind some type of hydrophobic compounds including praziquantel.
Collapse
|
9
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Int J Mol Sci 2020; 21:ijms21114146. [PMID: 32532023 PMCID: PMC7313052 DOI: 10.3390/ijms21114146] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.
Collapse
|
10
|
Shati AA, Dallak M. Acylated Ghrelin Protects the Hearts of Rats from Doxorubicin-Induced Fas/FasL Apoptosis by Stimulating SERCA2a Mediated by Activation of PKA and Akt. Cardiovasc Toxicol 2020; 19:529-547. [PMID: 31093930 DOI: 10.1007/s12012-019-09527-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study investigated if the cardioprotective effect of acylated ghrelin (AG) against doxorubicin (DOX)-induced cardiac toxicity in rats involves inhibition of Fas/FasL-mediated cell death. It also investigated if such an effect is mediated by restoring Ca+2 homeostasis from the aspect of stimulation of SERCA2a receptors. Adult male Wistar rats were divided into 4 groups (20 rats/each) as control, control + AG, DOX, and DOX + AG. AG was co-administered to all rats consecutively for 35 days. In addition, isolated cardiomyocytes were cultured and treated with AG in the presence or absence of DOX with or without pre-incubation with [D-Lys3]-GHRP-6 (a AG receptor antagonist), VIII (]an Akt inhibitor), or KT-5720 (a PKA inhibitor). AG increased LVSP, dp/dtmax, and dp/dtmin in both control and DOX-treated animals and improved cardiac ultrastructural changes in DOX-treated rats. It also inhibited ROS in control rats and lowered LVEDP, intracellular levels of ROS and Ca2+, and activity of calcineurin in LVs of DOX-treated rats. Concomitantly, it inhibited LV NFAT-4 nuclear translocation and downregulated their protein levels of Fas and FasL. Mechanistically, in control or DOX-treated hearts or cells, AG upregulated the levels of SERCA2a and increased the activities of PKA and Akt, leading to increase phosphorylation of phospholamban at Ser16 and Thr17. All these effects were abolished by D-Lys3-GHRP-6, VIII, or KT-5720 and were independent of food intake or GH/IGF-1. In conclusion, AG cardioprotection against DOX involves inhibition of extrinsic cell death and restoring normal Ca+2 homeostasis.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.
| | - M Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Fransen P, Chen J, Vangheluwe P, Guns PJ. Contractile Behavior of Mouse Aorta Depends on SERCA2 Isoform Distribution: Effects of Replacing SERCA2a by SERCA2b. Front Physiol 2020; 11:282. [PMID: 32296344 PMCID: PMC7136392 DOI: 10.3389/fphys.2020.00282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/12/2020] [Indexed: 01/16/2023] Open
Abstract
The Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) actively pumps Ca2+ into the sarco/endoplasmic reticulum, thereby regulating intracellular Ca2+ concentrations and associated physiological processes. Different SERCA isoforms have been described (SERCA1, 2, and 3) with SERCA2 playing a pivotal role in Ca2+ homeostasis in cardiovascular tissues. In the heart, SERCA2a is the dominant isoform and has been proposed as therapeutic target in patients with heart failure. In the vasculature, both SERCA2a and SERCA2b are expressed with SERCA2b being the predominant isoform. The physiological role of SERCA2a in the vasculature, however, remains incompletely understood. In the present study, we used gene-modified mice in which the alternative splicing of the SERCA2-encoding gene (Atp2a2), underlying the expression of SERCA2a, is prevented and SERCA2a is replaced by SERCA2b. The resulting SERCA2b/b mice provide a unique opportunity to investigate the specific contribution of SERCA2a versus SERCA2b to vascular physiology. Aortic segments of SERCA2b/b (SERCA2a-deficient) and SERCA2a/b (control) mice were mounted in organ baths to evaluate vascular reactivity. SERCA2b/b aortic rings displayed higher contractions induced by phenylephrine (1 μM). Surprisingly, the initial inositol-3-phosphate mediated phasic contraction showed a faster decay of force in SERCA2b/b mice, while the subsequent tonic contraction was larger in SERCA2b/b segments. Moreover, in the presence of the calcium channel blocker diltiazem (35 μM) SERCA2b/b aortic rings showed higher contractions compared to SERCA2a/b, suggesting that SERCA2a (deficiency) modulates the activity of non-selective cation channels. Additionally, in endothelial cell (EC)-denuded aortic segments, the SERCA-inhibitor cyclopiazonic acid (CPA) caused markedly larger contractions in SERCA2b/b mice, while the increases of cytosolic Ca2+ were similar in both strains. Hence, aortas of SERCA2b/b mice appear to have a stronger coupling of intracellular Ca2+ to contraction, which may be in agreement with the reported difference in intracellular localization of SERCA2a versus SERCA2b. Finally, EC-mediated relaxation by acetylcholine and ATP was assessed. Concentration-response-curves for ATP showed a higher sensitivity of aortic segments of SERCA2b/b mice, while no difference in potency between strains were observed for acetylcholine. In summary, despite the relative low expression of SERCA2a in the murine aorta, our results point toward a distinct role in vascular physiology.
Collapse
Affiliation(s)
- Paul Fransen
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical Sciences and Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jialin Chen
- Laboratory of Cellular Transport Systems, KU Leuven, Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, KU Leuven, Leuven, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical Sciences and Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int J Mol Sci 2019; 20:ijms20184374. [PMID: 31489895 PMCID: PMC6770001 DOI: 10.3390/ijms20184374] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.
Collapse
|
13
|
Calcium as a Key Player in Arrhythmogenic Cardiomyopathy: Adhesion Disorder or Intracellular Alteration? Int J Mol Sci 2019; 20:ijms20163986. [PMID: 31426283 PMCID: PMC6721231 DOI: 10.3390/ijms20163986] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disease characterized by sudden death in young people and featured by fibro-adipose myocardium replacement, malignant arrhythmias, and heart failure. To date, no etiological therapies are available. Mutations in desmosomal genes cause abnormal mechanical coupling, trigger pro-apoptotic signaling pathways, and induce fibro-adipose replacement. Here, we discuss the hypothesis that the ACM causative mechanism involves a defect in the expression and/or activity of the cardiac Ca2+ handling machinery, focusing on the available data supporting this hypothesis. The Ca2+ toolkit is heavily remodeled in cardiomyocytes derived from a mouse model of ACM defective of the desmosomal protein plakophilin-2. Furthermore, ACM-related mutations were found in genes encoding for proteins involved in excitation‒contraction coupling, e.g., type 2 ryanodine receptor and phospholamban. As a consequence, the sarcoplasmic reticulum becomes more eager to release Ca2+, thereby inducing delayed afterdepolarizations and impairing cardiac contractility. These data are supported by preliminary observations from patient induced pluripotent stem-cell-derived cardiomyocytes. Assessing the involvement of Ca2+ signaling in the pathogenesis of ACM could be beneficial in the treatment of this life-threatening disease.
Collapse
|
14
|
Abstract
The natural history of heart failure (HF) is not linear, because changes in the heart structure and function start long before the disease becomes clinically evident. Many different cytokines originating from intracardiac tissues (cardiomyocytes, cardiac endothelial cells, cardiac fibroblasts, and cardiac infiltrated immune cells) or extracardiac tissues (adipose tissue, gut, and lymphoid organs) have been identified in HF. Because the levels of circulating cytokines correlate with the development and severity of HF, these mediators may have both pathophysiological importance, through their ability to modulate inflammation, myocyte stress/stretch, myocyte injury and apoptosis, fibroblast activation and extracellular matrix remodeling, and utility as clinical predictive biomarkers. A greater understanding of the mechanisms mediated by the multifaceted network of cytokines, leading to distinct HF phenotypes (HF with reduced or preserved ejection fraction), is urgently needed for the development of new treatment strategies. In this chapter, all these issues were thoroughly discussed, pointing on the practical considerations concerning the clinical use of the cytokines as prognostic biomarkers and potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Adina Elena Stanciu
- Department of Carcinogenesis and Molecular Biology, Institute of Oncology Bucharest, Bucharest, Romania.
| |
Collapse
|
15
|
Makarewich CA, Munir AZ, Schiattarella GG, Bezprozvannaya S, Raguimova ON, Cho EE, Vidal AH, Robia SL, Bassel-Duby R, Olson EN. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. eLife 2018; 7:e38319. [PMID: 30299255 PMCID: PMC6202051 DOI: 10.7554/elife.38319] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Calcium (Ca2+) dysregulation is a hallmark of heart failure and is characterized by impaired Ca2+ sequestration into the sarcoplasmic reticulum (SR) by the SR-Ca2+-ATPase (SERCA). We recently discovered a micropeptide named DWORF (DWarf Open Reading Frame) that enhances SERCA activity by displacing phospholamban (PLN), a potent SERCA inhibitor. Here we show that DWORF has a higher apparent binding affinity for SERCA than PLN and that DWORF overexpression mitigates the contractile dysfunction associated with PLN overexpression, substantiating its role as a potent activator of SERCA. Additionally, using a well-characterized mouse model of dilated cardiomyopathy (DCM) due to genetic deletion of the muscle-specific LIM domain protein (MLP), we show that DWORF overexpression restores cardiac function and prevents the pathological remodeling and Ca2+ dysregulation classically exhibited by MLP knockout mice. Our results establish DWORF as a potent activator of SERCA within the heart and as an attractive candidate for a heart failure therapeutic.
Collapse
Affiliation(s)
- Catherine A Makarewich
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Amir Z Munir
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Gabriele G Schiattarella
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Olga N Raguimova
- Department of Cell and Molecular PhysiologyLoyola University ChicagoMaywoodUnited States
| | - Ellen E Cho
- Department of Cell and Molecular PhysiologyLoyola University ChicagoMaywoodUnited States
| | - Alexander H Vidal
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Seth L Robia
- Department of Cell and Molecular PhysiologyLoyola University ChicagoMaywoodUnited States
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Eric N Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
16
|
Negative chronotropism, positive inotropism and lusitropism of 3,5-di-t-butyl-4-hydroxyanisole (DTBHA) on rat heart preparations occur through reduction of RyR2 Ca2+ leak. Biochem Pharmacol 2018; 155:434-443. [DOI: 10.1016/j.bcp.2018.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
|
17
|
Liu G, Li SQ, Hu PP, Tong XY. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy. Diab Vasc Dis Res 2018; 15:322-335. [PMID: 29762054 DOI: 10.1177/1479164118774313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Si Qi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
18
|
Dong J, Gao C, Liu J, Cao Y, Tian L. TSH inhibits SERCA2a and the PKA/PLN pathway in rat cardiomyocytes. Oncotarget 2018; 7:39207-39215. [PMID: 27206677 PMCID: PMC5129926 DOI: 10.18632/oncotarget.9393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/16/2016] [Indexed: 11/25/2022] Open
Abstract
Elevated thyroid-stimulating hormone (TSH) levels often accompany impaired LV diastolic function and subtle systolic dysfunction in subclinical hypothyroidism (sHT). These cardiac dysfunctions are characterized by increases in mean aortic acceleration and pre-ejection/ejection time ratios. To explore the mechanism underlying these pathologies, we investigated the effects of TSH on sarcoplasmic reticulum calcium ATPase (SERCA2a) activity and expression in neonatal rat cardiomyocytes. TSH inhibited SERCA2a activity and expression by binding to TSH receptors in cardiomyocyte membranes and inhibiting the protein kinase A/phoshpolamban (PKA/PLN) signaling pathway. These results suggest that increases in serum TSH levels contribute to the development of cardiac diastolic and systolic dysfunction.
Collapse
Affiliation(s)
- Jiajia Dong
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Cuixia Gao
- Department of Ultrasonic Diagnosis, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Jing Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Limin Tian
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Krzesiak A, Delpech N, Sebille S, Cognard C, Chatelier A. Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes to Chronic Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:75-90. [PMID: 29022258 DOI: 10.1007/978-981-10-4307-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cardiac beneficial effects of chronic exercise is well admitted. These effects mainly studied at the organ and organism integrated levels find their origin in cardiomyocyte adaptation. This chapter try to highlight the main trends of the data related to the different parameters subject to such adaptations. This is addressed through cardiomyocytes size and structure, calcium and contractile properties, and finally electrophysiological alterations induced by training as they transpire from the literature. Despite the clarifications needed to decipher healthy cardiomyocyte remodeling, this overview clearly show that cardiac cell plasticity ensure the cardiac adaptation to exercise training and offers an interesting mean of action to counteract physiological disturbances induced by cardiac pathologies.
Collapse
Affiliation(s)
- A Krzesiak
- Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Lab. Signalisation et Transports Ioniques Membranaires (STIM), ERL CNRS/Université de Poitiers n°7368, Faculté des Sciences Fondamentales et Appliquées, Pôle Biologie Santé Bât B36/B37, 1 rue Georges Bonnet TSA 51106, 86073, Poitiers Cedex 9, France.,Laboratoire Mobilité, Vieillissement & Exercice (MOVE) - EA 6314, Faculté des Sciences du Sport Bât C6, 8, allée Jean Monnet, TSA 31113, 86073, Poitiers Cedex 9, France
| | - N Delpech
- Laboratoire Mobilité, Vieillissement & Exercice (MOVE) - EA 6314, Faculté des Sciences du Sport Bât C6, 8, allée Jean Monnet, TSA 31113, 86073, Poitiers Cedex 9, France
| | - S Sebille
- Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Lab. Signalisation et Transports Ioniques Membranaires (STIM), ERL CNRS/Université de Poitiers n°7368, Faculté des Sciences Fondamentales et Appliquées, Pôle Biologie Santé Bât B36/B37, 1 rue Georges Bonnet TSA 51106, 86073, Poitiers Cedex 9, France
| | - C Cognard
- Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Lab. Signalisation et Transports Ioniques Membranaires (STIM), ERL CNRS/Université de Poitiers n°7368, Faculté des Sciences Fondamentales et Appliquées, Pôle Biologie Santé Bât B36/B37, 1 rue Georges Bonnet TSA 51106, 86073, Poitiers Cedex 9, France
| | - A Chatelier
- Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Lab. Signalisation et Transports Ioniques Membranaires (STIM), ERL CNRS/Université de Poitiers n°7368, Faculté des Sciences Fondamentales et Appliquées, Pôle Biologie Santé Bât B36/B37, 1 rue Georges Bonnet TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
20
|
Sato M, Yamanaka H, Iwasaki M, Miyata Y, Kamibayashi T, Fujino Y, Hayashi Y. Altered Phosphatidylinositol 3-Kinase and Calcium Signaling in Cardiac Dysfunction After Brain Death in Rats. Ann Thorac Surg 2016; 102:556-63. [PMID: 27130251 DOI: 10.1016/j.athoracsur.2016.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/02/2016] [Accepted: 02/08/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase is involved in myocardial function, including contractility. To date, myocardial regulation by phosphatidylinositol 3-kinase after brain death has not been investigated. The present study using a brain death model was designed to examine the role of phosphatidylinositol 3-kinase in myocardial function after brain death. METHODS After anesthesia with sevoflurane, a Fogarty catheter was placed intracranially for induction of brain death. A conductance catheter was inserted into the left ventricle for measurement of myocardial function. Rats were assigned to the following groups: one group undergoing sham operation (with catheter placement but no brain death introduction); one group receiving saline before brain death; and one group receiving wortmannin, an inhibitor of phosphatidylinositol 3-kinase, before brain death. Various measurements, including mean blood pressure, heart rate, maximal rate of rise of left ventricular pressure, and ejection fraction, were obtained every 30 minutes for 6 hours after brain death. The phosphorylation status of Akt and phospholamban was determined 360 minutes after brain death. RESULTS After induction of brain death, rats showed significant decreases in blood pressure, maximal rate of rise of left ventricular pressure, and ejection fraction. Inhibition of phosphatidylinositol 3-kinase using wortmannin significantly improved these measurements, resulting in increased survival. Western blot analysis demonstrated that brain death increased Akt phosphorylation and decreased phospholamban phosphorylation; these effects were abolished by wortmannin. CONCLUSIONS Inhibition of phosphatidylinositol 3-kinase prevented myocardial dysfunction after brain death in association with inhibition of the decrease in phosphorylation of myocardial phospholamban, characteristic of brain death.
Collapse
Affiliation(s)
- Masanori Sato
- Department of Anesthesiology, Osaka University Medical School, Osaka, Japan
| | - Hiroo Yamanaka
- Department of Anesthesia, Kansai Rosai Hospital, Osaka, Japan
| | - Mitsuo Iwasaki
- Department of Anesthesiology, Osaka University Medical School, Osaka, Japan
| | - Yuka Miyata
- Anesthesiology Service, Sakurabashi-Watanabe Hospital, Osaka, Japan
| | | | - Yuji Fujino
- Department of Anesthesiology, Osaka University Medical School, Osaka, Japan
| | - Yukio Hayashi
- Department of Anesthesiology, Osaka University Medical School, Osaka, Japan; Anesthesiology Service, Sakurabashi-Watanabe Hospital, Osaka, Japan.
| |
Collapse
|
21
|
Monteiro DA, Kalinin AL, Selistre-de-Araujo HS, Vasconcelos ES, Rantin FT. Alternagin-C (ALT-C), a disintegrin-like protein from Rhinocerophis alternatus snake venom promotes positive inotropism and chronotropism in fish heart. Toxicon 2015; 110:1-11. [PMID: 26615089 DOI: 10.1016/j.toxicon.2015.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022]
Abstract
Alternagin-C (ALT-C) is a disintegrin-like protein purified from the venom of the snake, Rhinocerophis alternatus. Recent studies showed that ALT-C is able to induce vascular endothelial growth factor (VEGF) expression, endothelial cell proliferation and migration, angiogenesis and to increase myoblast viability. This peptide, therefore, can play a crucial role in tissue regeneration mechanisms. The aim of this study was to evaluate the effects of a single dose of alternagin-C (0.5 mg kg(-1), via intra-arterial) on in vitro cardiac function of the freshwater fish traíra, Hoplias malabaricus, after 7 days. ALT-C treatment increased the cardiac performance promoting: 1) significant increases in the contraction force and in the rates of contraction and relaxation with concomitant decreases in the values of time to the peak tension and time to half- and 90% relaxation; 2) improvement in the cardiac pumping capacity and maximal electrical stimulation frequency, shifting the optimum frequency curve upward and to the right; 3) increases in myocardial VEGF levels and expression of key Ca(2+)-cycling proteins such as SERCA (sarcoplasmic reticulum Ca(2+)-ATPase), PLB (phospholamban), and NCX (Na(+)/Ca(2+) exchanger); 4) abolishment of the typical negative force-frequency relationship of fish myocardium. In conclusion, this study indicates that ALT-C improves cardiac function, by increasing Ca(2+) handling efficiency leading to a positive inotropism and chronotropism. The results suggest that ALT-C may lead to better cardiac output regulation indicating its potential application in therapies for cardiac contractile dysfunction.
Collapse
Affiliation(s)
- D A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| | - A L Kalinin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - H S Selistre-de-Araujo
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - E S Vasconcelos
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - F T Rantin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
22
|
Tóth A, Fodor J, Vincze J, Oláh T, Juhász T, Zákány R, Csernoch L, Zádor E. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells. PLoS One 2015; 10:e0123583. [PMID: 25893964 PMCID: PMC4404259 DOI: 10.1371/journal.pone.0123583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo gene silencing results in decreased skeletal muscle differentiation.
Collapse
Affiliation(s)
- Adrienn Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| | - Ernő Zádor
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Locatelli J, de Assis LVM, Isoldi MC. Calcium handling proteins: structure, function, and modulation by exercise. Heart Fail Rev 2014; 19:207-25. [PMID: 23436107 DOI: 10.1007/s10741-013-9373-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a serious public health issue with a growing prevalence, and it is related with the aging of the population. Hypertension is identified as the main precursor of left ventricular hypertrophy and therefore can lead to diastolic dysfunction and heart failure. Scientific studies have confirmed the beneficial effects of the physical exercise by reducing the blood pressure and improving the functional status of the heart in hypertension. Several proteins are involved in the mobilization of calcium during the coupling excitation-contraction process in the heart among those are sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban, calsequestrin, sodium-calcium exchanger, L-type calcium's channel, and ryanodine receptors. Our goal is to address the beneficial effects of exercise on the calcium handling proteins in a heart with hypertension.
Collapse
Affiliation(s)
- Jamille Locatelli
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Prêto, Brazil
| | | | | |
Collapse
|
24
|
Holemans T, Vandecaetsbeek I, Wuytack F, Vangheluwe P. Measuring Ca2+-dependent Ca2+-uptake activity in the mouse heart. Cold Spring Harb Protoc 2014; 2014:876-86. [PMID: 25086013 DOI: 10.1101/pdb.prot076893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The apparent Ca(2+) affinity of the isoforms of the sarco/endoplasmic reticulum Ca(2+) ATPase SERCA2 is controlled primarily by two proteins, phospholamban (PLB) and sarcolipin (SLN). The rate of ATP-driven Ca(2+) uptake into sarcoplasmic reticulum (SR)-derived vesicles can be monitored by a technique in which the net uptake of (45)Ca(2+) in the form of an intravesicular calcium oxalate precipitate is recorded. Here, we present details of a modification of such a protocol for determining the apparent Ca(2+) affinity of the Ca(2+) pump, and its control by various regulators, in crude homogenates of mouse heart.
Collapse
Affiliation(s)
- Tine Holemans
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B3000 Leuven, Belgium
| | - Ilse Vandecaetsbeek
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B3000 Leuven, Belgium
| | - Frank Wuytack
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B3000 Leuven, Belgium
| |
Collapse
|
25
|
Shareef MA, Anwer LA, Poizat C. Cardiac SERCA2A/B: Therapeutic targets for heart failure. Eur J Pharmacol 2014; 724:1-8. [DOI: 10.1016/j.ejphar.2013.12.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023]
|
26
|
Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban. Proc Natl Acad Sci U S A 2013; 110:17338-43. [PMID: 24101520 DOI: 10.1073/pnas.1303006110] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane protein complex between the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) and phospholamban (PLN) controls Ca(2+) transport in cardiomyocytes, thereby modulating cardiac contractility. β-Adrenergic-stimulated phosphorylation of PLN at Ser-16 enhances SERCA activity via an unknown mechanism. Using solid-state nuclear magnetic resonance spectroscopy, we mapped the physical interactions between SERCA and both unphosphorylated and phosphorylated PLN in membrane bilayers. We found that the allosteric regulation of SERCA depends on the conformational equilibrium of PLN, whose cytoplasmic regulatory domain interconverts between three different states: a ground T state (helical and membrane associated), an excited R state (unfolded and membrane detached), and a B state (extended and enzyme-bound), which is noninhibitory. Phosphorylation at Ser-16 of PLN shifts the populations toward the B state, increasing SERCA activity. We conclude that PLN's conformational equilibrium is central to maintain SERCA's apparent Ca(2+) affinity within a physiological window. This model represents a paradigm shift in our understanding of SERCA regulation by posttranslational phosphorylation and suggests strategies for designing innovative therapeutic approaches to enhance cardiac muscle contractility.
Collapse
|
27
|
Irnaten M, Barry RC, Wallace DM, Docherty NG, Quill B, Clark AF, O'Brien CJ. Elevated maxi-K+ ion channel current in glaucomatous lamina cribrosa cells. Exp Eye Res 2013; 115:224-9. [DOI: 10.1016/j.exer.2013.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
|
28
|
Chen Y, Zhao J, Du J, Xu G, Tang C, Geng B. Hydrogen sulfide regulates cardiac sarcoplasmic reticulum Ca(2+) uptake via K(ATP) channel and PI3K/Akt pathway. Life Sci 2012; 91:271-8. [PMID: 22884808 DOI: 10.1016/j.lfs.2012.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 07/05/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
AIMS To investigate the effects of hydrogen sulfide (H(2)S) on calcium uptake activity of the rat cardiac sarcoplasmic reticulum (SR) and possible signaling. MAIN METHODS Crude SR was isolated after treatment with H(2)S, then SR Ca(2+) uptake and SR Ca(2+)-ATPase (SERCA) activity was measured by the isotopic tracer method. The possible roles of the K(ATP) channel and PI3K/Akt and SR-membrane protein phospholamban (PLB) pathway were analyzed by specific blockers, and target protein activation was assayed by measuring protein phosphorylation. KEY FINDINGS Exogenous H(2)S lowered Ca(2+) uptake into the SR time or concentration dependently, which was associated with decreased SERCA activity. Inhibiting endogenous H(2)S production by DL-propargylglycine increased SR Ca(2+) uptake and SERCA activity. H(2)S inhibition of PLB phosphorylation was through SERCA activity and was reversed by two PI3K inhibitors, wortmannin and LY294002. Glibenclamide (a K(ATP) channel blocker) blocked the inhibitory effects of H(2)S on PLB and Akt phosphorylation. Pinacidil (a K(ATP) channel opener) reduced the phosphorylation of PLB and reversed the effects of DL-propargylglycine. H(2)S preconditioning increased PLB phosphorylation but did not affect SERCA activity. SIGNIFICANCE Endogenous H(2)S transiently and reversibly inhibits SR Ca(2+) uptake in rat heart SR because of downregulated SERCA activity associated with PLB phosphorylation by the PI3K/Akt or K(ATP) channel. The transient negative regulation of SR Ca(2+) uptake and the L-type Ca(2+) channel contributes to Ca(2+) cycle homeostasis, which might be an important molecular mechanism in ischemic diseases.
Collapse
Affiliation(s)
- Yu Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Seth M, Li T, Graham V, Burch J, Finch E, Stiber JA, Rosenberg PB. Dynamic regulation of sarcoplasmic reticulum Ca(2+) stores by stromal interaction molecule 1 and sarcolipin during muscle differentiation. Dev Dyn 2012; 241:639-47. [PMID: 22411552 PMCID: PMC3306055 DOI: 10.1002/dvdy.23760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During muscle development, the sarco/endoplasmic reticulum (SR/ER) undergoes remodeling to establish a specialized internal Ca(2+) store for muscle contraction. We hypothesized that store operated Ca(2+) entry (SOCE) is required to fill Ca(2+) stores and is, therefore, critical to creating a mature SR/ER. Stromal interaction molecule 1 (STIM1) functions as a sensor of internal Ca(2+) store content and an activator of SOCE channels. Myocytes lacking STIM1 display reduced SR Ca(2+) content and altered expression of key SR proteins. Sarcolipin (SLN), an inhibitor of the SR calcium pump, was markedly increased in the muscle of mutant STIM1 mice. SLN opposes the actions of STIM1 by limiting SOCE, reducing SR Ca(2+) content and delaying muscle differentiation. During mouse muscle development SLN is highly expressed in embryonic muscle, while the expression of STIM1 is up-regulated postnatally. These results suggest that SOCE regulates SR/ER specialization and that SLN and STIM1 act in opposing fashions to govern SOCE during myogenesis.
Collapse
Affiliation(s)
- Malini Seth
- Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Bai SZ, Sun J, Wu H, Zhang N, Li HX, Li GW, Li HZ, He W, Zhang WH, Zhao YJ, Wang LN, Tian Y, Yang BF, Yang GD, Wu LY, Wang R, Xu CQ. Decrease in calcium-sensing receptor in the progress of diabetic cardiomyopathy. Diabetes Res Clin Pract 2012; 95:378-85. [PMID: 22137362 DOI: 10.1016/j.diabres.2011.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 02/06/2023]
Abstract
To observe the dynamic expression of calcium-sensing receptor (CaSR) in myocardium of diabetic rats and explore its role in diabetic cardiomyopathy (DCM), 40 male Wistar rats were randomly divided into 4 groups including control, diabetic-4 weeks, diabetic-8 weeks and spermine treatment groups (240 μM of spermine in drinking water). The type 2 Diabetes mellitus (DM) models were established by intraperitoneal injection of streptozotocin (STZ, 30 mg/kg) after high-fat and high-sugar diet for one month. The echocardiographic parameters were measured, cardiac morphology was observed by electron microscope and HE staining. The intracellular calcium concentration ([Ca(2+)](i)) was detected by laser-scanning confocal microscope. Western blot analyzed the expression of CaSR, protein kinase C α(PKC-α) and calcium handling regulators, such as phospholamban (PLN), Ca(2+)-ATPase (SERCA), and ryanodine receptor (RyR). Compared with control group, [Ca(2+)](i) and the expression of CaSR, RyR and SERCA/PLN were decreased, while PKC-α and PLN were significantly increased in a time-dependent manner in diabetic groups. Meanwhile diabetic rats displayed abnormal cardiac structure and systolic and diastolic dysfunction, and spermine (CaSR agonist) could prevent or slow its progression. These results indicate that the CaSR expression of myocardium is reduced in the progress of DCM, and its potential mechanism is related to the impaired intracellular calcium homeostasis.
Collapse
Affiliation(s)
- Shu-zhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Improving cardiac Ca⁺² transport into the sarcoplasmic reticulum in heart failure: lessons from the ubiquitous SERCA2b Ca⁺² pump. Biochem Soc Trans 2011; 39:781-7. [PMID: 21599649 DOI: 10.1042/bst0390781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a major Ca2+ pump in the sarcoplasmic reticulum of the cardiomyocyte, SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a) controls the relaxation and contraction of the cardiomyocyte. It is meticulously regulated by adapting its expression levels and affinity for Ca2+ ions to the physiological demand of the heart. Dysregulation of the SERCA2a activity entails poor cardiomyocyte contractility, resulting in heart failure. Conversely, improving cardiac SERCA2a activity, e.g. by boosting its expression level or by increasing its affinity for Ca2+, is a promising strategy to rescue contractile dysfunction of the failing heart. The structures of the related SERCA1a Ca2+ pump and the Na+/K+-ATPase of the plasma membrane exposed the pumping mechanism and conserved domain architecture of these ion pumps. However, how the Ca2+ affinity of SERCA2a is regulated at the molecular level remained unclear. A structural and functional analysis of the closely related SERCA2b Ca2+ pump, i.e. the housekeeping Ca2+ pump found in the endoplasmic reticulum and the only SERCA isoform characterized by a high Ca2+ affinity, aimed to fill this gap. We demonstrated the existence of a novel and highly conserved site on the SERCA2 pump mediating Ca2+ affinity regulation by the unique C-terminus of SERCA2b (2b-tail). It differs from the earlier-described target site of the affinity regulator phospholamban. Targeting this novel site may provide a new approach to improve SERCA2a function in the failing heart. Strikingly, the intramembrane interaction site of the 2b-tail in SERCA2b shares sequence and structural homology with the binding site of the β-subunit on the α Na+/K+-ATPase. Thus P-type ATPases seem to have developed related mechanisms of regulation, and it is a future challenge for us to discover these general principles of P-type regulation.
Collapse
|
32
|
Wang Y, Ji Y, Xing Y, Li X, Gao X. Astragalosides rescue both cardiac function and sarcoplasmic reticulum Ca²⁺ transport in rats with chronic heart failure. Phytother Res 2011; 26:231-8. [PMID: 21656599 DOI: 10.1002/ptr.3492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/10/2022]
Abstract
The study investigated the beneficial effects of astragalosides (AS) on cardiac performance in rats with chronic heart failure. Chronic heart failure was produced by left anterior descending coronary artery ligation, and the therapeutic efficacy of astragalosides at 10, 20 and 40 mg/kg was evaluated. Five weeks after the operation, cardiac function was deficient and sarcoplasmic reticulum Ca²⁺-ATPase (SERCA) activity was significantly reduced. Moreover, SERCA mRNA decreased, while expression of the SERCA down-regulator phospholamban (PLB) was significantly increased. Phosphorylated phospholamban (P-PLB), the form that does not inhibit SERCA, was also reduced by chronic heart failure. Treatment with AS improved left ventricle function and cardiac structure, reversed the depression of SERCA activity, and increased P-PLB. These results suggest that the cardioprotective effect of AS may be due to the increase in P-PLB protein, which disinhibits SERCA activity. Rescue of sarcoplasmic reticulum Ca²⁺ cycling by astragalosides could normalize excitation-contraction coupling and improve overall cardiac function.
Collapse
Affiliation(s)
- Yi Wang
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | | | | | | | | |
Collapse
|
33
|
Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004184. [PMID: 21441596 DOI: 10.1101/cshperspect.a004184] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The various splice variants of the three SERCA- and the two SPCA-pump genes in higher vertebrates encode P-type ATPases of the P(2A) group found respectively in the membranes of the endoplasmic reticulum and the secretory pathway. Of these, SERCA2b and SPCA1a represent the housekeeping isoforms. The SERCA2b form is characterized by a luminal carboxy terminus imposing a higher affinity for cytosolic Ca(2+) compared to the other SERCAs. This is mediated by intramembrane and luminal interactions of this extension with the pump. Other known affinity modulators like phospholamban and sarcolipin decrease the affinity for Ca(2+). The number of proteins reported to interact with SERCA is rapidly growing. Here, we limit the discussion to those for which the interaction site with the ATPase is specified: HAX-1, calumenin, histidine-rich Ca(2+)-binding protein, and indirectly calreticulin, calnexin, and ERp57. The role of the phylogenetically older and structurally simpler SPCAs as transporters of Ca(2+), but also of Mn(2+), is also addressed.
Collapse
Affiliation(s)
- Ilse Vandecaetsbeek
- Laboratory of Ca-transport ATPases, Department of Molecular Cell Biology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
34
|
Shanmugam M, Gao S, Hong C, Fefelova N, Nowycky MC, Xie LH, Periasamy M, Babu GJ. Ablation of phospholamban and sarcolipin results in cardiac hypertrophy and decreased cardiac contractility. Cardiovasc Res 2010; 89:353-61. [PMID: 20833651 DOI: 10.1093/cvr/cvq294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS Improving the sarco(endo)plasmic reticulum (SR) Ca(2+)-ATPase (SERCA) function has clinical implications in treating heart failure. The present study aimed to determine the effect of constitutive activation of the SERCA pump on cardiac contractility in normal mice and during pressure-overload-induced cardiac hypertrophy. METHODS AND RESULTS The SERCA pump was constitutively activated in both atrial and ventricular chambers of the mouse heart by ablating its key regulators, phospholamban (PLN) and sarcolipin (SLN). The double-knockout (dKO) mice for PLN and SLN showed increased SERCA pump activity, Ca(2+) transients and SR Ca(2+) load, and developed cardiac hypertrophy. Echocardiographic measurements showed that the basal cardiac function was not affected in the young dKO mice. However, the cardiac function worsened upon ageing and when subjected to pressure overload. CONCLUSION Our studies suggest that the constitutive activation of the SERCA pump is detrimental to cardiac function. Our findings also emphasize the need for dynamic regulation of the SERCA pump by PLN and/or SLN to maintain cardiac contractility in normal conditions and during pathophysiological states.
Collapse
Affiliation(s)
- Mayilvahanan Shanmugam
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, MSB, G609, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Becucci L, Guidelli R, Karim CB, Thomas DD, Veglia G. The role of sarcolipin and ATP in the transport of phosphate ion into the sarcoplasmic reticulum. Biophys J 2010; 97:2693-9. [PMID: 19917222 DOI: 10.1016/j.bpj.2009.08.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/01/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022] Open
Abstract
In a previous study, sarcolipin (SLN) was shown to form channels selective toward chloride ion when incorporated in a mercury-supported tethered bilayer lipid membrane (tBLM). Its incorporation had only a modest permeabilizing effect on phosphate ion. In this note the resistance of a tBLM membrane incorporating sarcolipin was investigated by electrochemical impedance spectroscopy in aqueous solutions of 0.05 M sodium phosphate of pH ranging from 5.3 to 8, in the presence of ATP, adenosine monophosphate, and phenylphosphonic acid. At pH 5.3, submicromolar additions of ATP increase the conductivity of the tBLM incorporating SLN up to a maximum limiting value. The dependence of the conductivity on the ATP concentration satisfies the Michaelis-Menten equation, with an association constant of 0.1 microM. Phenylphosphonium ion and adenosine monophosphate exert an inhibitory effect on membrane permeabilization to phosphate ions by ATP if they are added before ATP, but not if they are added after it. An explanation for this behavior is provided. In conclusion, SLN acts as an ATP-induced phosphate carrier exhibiting a behavior quite similar to that of the unidentified P(i) transporter described previously. No ion-channel activity is exhibited by the T18A mutant of SLN.
Collapse
Affiliation(s)
- Lucia Becucci
- Chemistry Department, Florence University, Florence, Italy
| | | | | | | | | |
Collapse
|
37
|
Talukder MH, Zweier JL, Periasamy M. Targeting calcium transport in ischaemic heart disease. Cardiovasc Res 2009; 84:345-52. [PMID: 19640931 PMCID: PMC2777954 DOI: 10.1093/cvr/cvp264] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 01/14/2023] Open
Abstract
Ischaemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide. While timely reperfusion of acutely ischaemic myocardium is essential for myocardial salvage, it leads to a unique type of injury known as 'myocardial ischaemia/reperfusion (I/R) injury'. Growing evidence suggests that a defect in myocardial Ca(2+) transport system with cytosolic Ca(2+) overload is a major contributor to myocardial I/R injury. Progress in molecular genetics and medicine in past years has clearly demonstrated that modulation of Ca(2+) handling pathways in IHD could be cardioprotective. The potential benefits of these strategies in limiting I/R injury are vast, and the time is right for challenging in vivo systemic work both at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- M.A. Hassan Talukder
- Davis Heart and Lung Institute and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jay L. Zweier
- Davis Heart and Lung Institute and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Muthu Periasamy
- Davis Heart and Lung Institute and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Vandecaetsbeek I, Raeymaekers L, Wuytack F, Vangheluwe P. Factors controlling the activity of the SERCA2a pump in the normal and failing heart. Biofactors 2009; 35:484-99. [PMID: 19904717 DOI: 10.1002/biof.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure is the leading cause of death in western countries and is often associated with impaired Ca(2+) handling in the cardiomyocyte. In fact, cardiomyocyte relaxation and contraction are tightly controlled by the activity of the cardiac sarco(endo)plasmic reticulum (ER/SR) Ca(2+) pump SERCA2a, pumping Ca(2+) from the cytosol into the lumen of the ER/SR. This review addresses three important facets that control the SERCA2 activity in the heart. First, we focus on the alternative splicing of the SERCA2 messenger, which is strictly regulated in the developing heart. This splicing controls the formation of three SERCA2 splice variants with different enzymatic properties. Second, we will discuss the role and regulation of SERCA2a activity in the normal and failing heart. The two well-studied Ca(2+) affinity modulators phospholamban and sarcolipin control the activity of SERCA2a within a narrow window. An aberrantly high or low Ca(2+) affinity is often observed in and may even trigger cardiac failure. Correcting SERCA2a activity might therefore constitute a therapeutic approach to improve the contractility of the failing heart. Finally, we address the controversies and unanswered questions of other putative regulators of the cardiac Ca(2+) pump, such as sarcalumenin, HRC, S100A1, Bcl-2, HAX-1, calreticulin, calnexin, ERp57, IRS-1, and -2.
Collapse
Affiliation(s)
- Ilse Vandecaetsbeek
- Department of Molecular Cell Biology, Laboratory of Ca(2+)-transport ATPases, K.U.Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
39
|
Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump. Proc Natl Acad Sci U S A 2009; 106:18533-8. [PMID: 19846779 DOI: 10.1073/pnas.0906797106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA) Ca(2+) transporters pump cytosolic Ca(2+) into the endoplasmic reticulum, maintaining a Ca(2+) gradient that controls vital cell functions ranging from proliferation to death. To meet the physiological demand of the cell, SERCA activity is regulated by adjusting the affinity for Ca(2+) ions. Of all SERCA isoforms, the housekeeping SERCA2b isoform displays the highest Ca(2+) affinity because of a unique C-terminal extension (2b-tail). Here, an extensive structure-function analysis of SERCA2b mutants and SERCA1a2b chimera revealed how the 2b-tail controls Ca(2+) affinity. Its transmembrane (TM) segment (TM11) and luminal extension functionally cooperate and interact with TM7/TM10 and luminal loops of SERCA2b, respectively. This stabilizes the Ca(2+)-bound E1 conformation and alters Ca(2+)-transport kinetics, which provides the rationale for the higher apparent Ca(2+) affinity. Based on our NMR structure of TM11 and guided by mutagenesis results, a structural model was developed for SERCA2b that supports the proposed 2b-tail mechanism and is reminiscent of the interaction between the alpha- and beta-subunits of Na(+),K(+)-ATPase. The 2b-tail interaction site may represent a novel target to increase the Ca(2+) affinity of malfunctioning SERCA2a in the failing heart to improve contractility.
Collapse
|
40
|
Vangheluwe P, Sepúlveda MR, Missiaen L, Raeymaekers L, Wuytack F, Vanoevelen J. Intracellular Ca2+- and Mn2+-Transport ATPases. Chem Rev 2009; 109:4733-59. [DOI: 10.1021/cr900013m] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Vangheluwe
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - M. Rosario Sepúlveda
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ludwig Missiaen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Luc Raeymaekers
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Frank Wuytack
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo Vanoevelen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Yamasaki-Mann M, Demuro A, Parker I. cADPR stimulates SERCA activity in Xenopus oocytes. Cell Calcium 2009; 45:293-9. [PMID: 19131109 DOI: 10.1016/j.ceca.2008.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/18/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
The intracellular second messenger cyclic ADP-ribose (cADPR) induces Ca(2+) release through the activation of ryanodine receptors (RyRs). Moreover, it has been suggested that cADPR may serve an additional role to modulate sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump activity, but studies have been complicated by concurrent actions on RyR. Here, we explore the actions of cADPR in Xenopus oocytes, which lack RyRs. We examined the effects of cADPR on the sequestration of cytosolic Ca(2+) following Ca(2+) transients evoked by photoreleased inositol 1,4,5-trisphosphate (InsP(3)), and by Ca(2+) influx through expressed nicotinic acetylcholine receptors (nAChR) in the oocytes membrane. In both cases the decay of the Ca(2+) transients was accelerated by intracellular injection of a non-metabolizable analogue of cADPR, 3-Deaza-cADPR, and photorelease of cADPR from a caged precursor demonstrated that this action is rapid (a few s). The acceleration was abolished by pre-treatment with thapsigargin to block SERCA activity, and was inhibited by two specific antagonists of cADPR, 8-NH(2)-cADPR and 8-br-cADPR. We conclude that cADPR serves to modulate Ca(2+) sequestration by enhancing SERCA pump activity, in addition to its well-established action on RyRs to liberate Ca(2+).
Collapse
Affiliation(s)
- Michiko Yamasaki-Mann
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
42
|
Abstract
Calcium (Ca2+) signals are generated across a broad time range. Kinetic considerations impact how information is processed to encode and decode Ca2+ signals, the choreography of responses that ensure specific and efficient signaling and the overall temporal amplification such that ephemeral Ca2+ signals have lasting physiological value. The reciprocal importance of timing for Ca2+ signaling, and Ca2+ signaling for timing is exemplified by the altered kinetic profiles of Ca2+ signals in certain diseases and the likely role of basal Ca2+ fluctuations in the perception of time itself.
Collapse
|
43
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Hidalgo C, Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1275-312. [PMID: 18377233 DOI: 10.1089/ars.2007.1886] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies done many years ago established unequivocally the key role of calcium as a universal second messenger. In contrast, the second messenger roles of reactive oxygen and nitrogen species have emerged only recently. Therefore, their contributions to physiological cell signaling pathways have not yet become universally accepted, and many biological researchers still regard them only as cellular noxious agents. Furthermore, it is becoming increasingly apparent that there are significant interactions between calcium and redox species, and that these interactions modify a variety of proteins that participate in signaling transduction pathways and in other fundamental cellular functions that determine cell life or death. This review article addresses first the central aspects of calcium and redox signaling pathways in animal cells, and continues with the molecular mechanisms that underlie crosstalk between calcium and redox signals under a number of physiological or pathological conditions. To conclude, the review focuses on conditions that, by promoting cellular oxidative stress, lead to the generation of abnormal calcium signals, and how this calcium imbalance may cause a variety of human diseases including, in particular, degenerative diseases of the central nervous system and cardiac pathologies.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Centro FONDAP de Estudios Moleculares de la Célula and Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
46
|
Couchonnal LF, Anderson ME. The Role of Calmodulin Kinase II in Myocardial Physiology and Disease. Physiology (Bethesda) 2008; 23:151-9. [DOI: 10.1152/physiol.00043.2007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates a rich variety of downstream targets in heart. Ca2+ homeostatic proteins are important CaMKII targets that support myocardial excitation-contraction coupling. Under stress conditions, excessive CaMKII activity promotes heart failure and arrhythmias, in part through actions at Ca2+ homeostatic proteins. Here, we briefly review the molecular and cellular physiology of CaMKII in myocardium.
Collapse
Affiliation(s)
| | - Mark E. Anderson
- Departments of Internal Medicine and
- Molecular Physiology and Biophysics, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, Iowa,
| |
Collapse
|
47
|
Ottenheijm CAC, Fong C, Vangheluwe P, Wuytack F, Babu GJ, Periasamy M, Witt CC, Labeit S, Granzier H. Sarcoplasmic reticulum calcium uptake and speed of relaxation are depressed in nebulin-free skeletal muscle. FASEB J 2008; 22:2912-9. [PMID: 18434434 DOI: 10.1096/fj.07-104372] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous work suggested that altered Ca(2+) homeostasis might contribute to dysfunction of nebulin-free muscle, as gene expression analysis revealed that the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)-inhibitor sarcolipin (SLN) is up-regulated >70-fold in nebulin knockout mice, and here we tested this proposal. We investigated SLN protein expression in nebulin-free and wild-type skeletal muscle, as well as expression of other Ca(2+)-handling proteins. Ca(2+) uptake capacity was determined in isolated sarcoplasmic reticulum vesicles and in intact myofibers by measuring Ca(2+) transients. Muscle contractile performance was determined in skinned muscle activated with exogenous Ca(2+), as well as in electrically stimulated intact muscle. We found profound up-regulation of SLN protein in nebulin-free skeletal muscle, whereas expression of other Ca(2+)-handling proteins was not (calsequestrin and phospholamban) or was minimally (SERCA) affected. Speed of Ca(2+) uptake was >3-fold decreased in sarcoplasmic reticulum vesicles isolated from nebulin-free muscle as well as in nebulin-free intact myofibers. Ca(2+)-activated stress in skinned muscle and stress produced by intact nebulin-free muscle were reduced to a similar extent compared with wild type. Half-relaxation time was significantly longer in nebulin-free compared with wild-type muscle. Thus, the present study demonstrates for the first time that nebulin might also be involved in physiological Ca(2+) handling of the SR-myofibrillar system.
Collapse
Affiliation(s)
- Coen A C Ottenheijm
- Dept. of Molecular and Cellular Biology, University of Arizona, PO Box 245217, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Diastolic dysfunction is characterized by prolonged relaxation, increased filling pressure, decreased contraction velocity, and reduced cardiac output. Phenotypical features of diastolic dysfunction can be observed at the level of the isolated myocyte. This article reviews the cellular mechanisms that control relaxation at the level of the myocyte in the healthy situation and discusses the alterations that can affect physiologic function during disease. It focuses specifically on the mechanisms that regulate intracellular calcium handling, and the response of the myofilaments to calcium, including the changes in these components that can contribute to diastolic dysfunction.
Collapse
Affiliation(s)
- Muthu Periasamy
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH, USA.
| | | |
Collapse
|
49
|
Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc Natl Acad Sci U S A 2007; 104:17867-72. [PMID: 17971438 DOI: 10.1073/pnas.0707722104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sarcolipin is a novel regulator of cardiac sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) and is expressed abundantly in atria. In this study we investigated the physiological significance of sarcolipin in the heart by generating a mouse model deficient for sarcolipin. The sarcolipin-null mice do not show any developmental abnormalities or any cardiac pathology. The absence of sarcolipin does not modify the expression level of other Ca2+ handling proteins, in particular phospholamban, and its phosphorylation status. Calcium uptake studies revealed that, in the atria, ablation of sarcolipin resulted in an increase in the affinity of the SERCA pump for Ca2+ and the maximum velocity of Ca2+ uptake rates. An important finding is that ablation of sarcolipin resulted in an increase in atrial Ca2+ transient amplitudes, and this resulted in enhanced atrial contractility. Furthermore, atria from sarcolipin-null mice showed a blunted response to isoproterenol stimulation, implicating sarcolipin as a mediator of beta-adrenergic responses in atria. Our study documented that sarcolipin is a key regulator of SERCA2a in atria. Importantly, our data demonstrate the existence of distinct modulators for the SERCA pump in the atria and ventricles.
Collapse
|
50
|
Vangheluwe P, Schuermans M, Raeymaekers L, Wuytack F. Tight interplay between the Ca2+ affinity of the cardiac SERCA2 Ca2+ pump and the SERCA2 expression level. Cell Calcium 2007; 42:281-9. [PMID: 17306367 DOI: 10.1016/j.ceca.2007.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/27/2006] [Indexed: 10/23/2022]
Abstract
A reduced activity of the sarcoplasmic reticulum Ca2+ pump SERCA2a is a hallmark of cardiac dysfunction in heart failure. In SERCA2b/b mice, the normal SERCA2a isoform is replaced by SERCA2b, displaying a higher Ca2+ affinity. This elicited decreased cardiac SERCA2 expression and cardiac hypertrophy. Here, the interplay was studied between the increased Ca2+ affinity and a reduced expression of the pump and its role in the cardiac remodeling was investigated. First, SERCA2b/b mice were crossed with SERCA2b transgenes to boost cardiac SERCA2b expression. However, the enforced expression of SERCA2b was spontaneously countered by an increased inhibition by phospholamban (PLB), reducing the pump's Ca2+ affinity. Moreover, the higher SERCA2 content did not prevent hypertrophy. Second, we studied heterozygous SERCA2b/WT mice, which also express lower SERCA2 levels compared to wild-type. Hypertrophy was not observed. In heterozygotes, SERCA2b expression was specifically suppressed, explaining the reduced SERCA2 content. The SERCA2b/WT model strikingly differs from the homozygote models because SERCA2a (not SERCA2b) is the major isoform and because the inhibition of the pump by PLB is decreased instead of being increased. Thus, a tight correlation exists between the SERCA2 levels and Ca2+ affinity (controlled by PLB). This compensatory response may be important to prevent cardiac remodeling.
Collapse
Affiliation(s)
- Peter Vangheluwe
- Laboratory of Physiology, University of Leuven, Herestraat 49, Bus 802 B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|