1
|
Husak JF, Lailvaux SP. Stable isotopes reveal sex- and context-dependent amino acid routing in green anole lizards (Anolis carolinensis). J Exp Biol 2024; 227:jeb248024. [PMID: 39155675 DOI: 10.1242/jeb.248024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Allocation of acquired resources to phenotypic traits is affected by resource availability and current selective context. While differential investment in traits is well documented, the mechanisms driving investment at lower levels of biological organization, which are not directly related to fitness, remain poorly understood. We supplemented adult male and female Anolis carolinensis lizards with an isotopically labelled essential amino acid (13C-leucine) to track routing in four tissues (muscle, liver, gonads and spleen) under different combinations of resource availability (high- and low-calorie diets) and exercise training (sprint training and endurance capacity). We predicted sprint training should drive routing to muscle, and endurance training to liver and spleen, and that investment in gonads should be of lower priority in each of the cases of energetic stress. We found complex interactions between training regime, diet and tissue type in females, and between tissue type and training, and tissue type and diet in males, suggesting that males and females adjust their 13C-leucine routing strategies differently in response to similar environmental challenges. Importantly, our data show evidence of increased 13C-leucine routing in training contexts not to muscle as we expected, but to the spleen, which turns over blood cells, and to the liver, which supports metabolism under differing energetic scenarios. Our results reveal the context-specific nature of long-term trade-offs associated with increased chronic activity. They also illustrate the importance of considering the costs of locomotion in studies of life-history strategies.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St Thomas, St Paul, MN 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Hagve M, Pereira SL, Walker DK, Engelen MPKJ, Deutz NEP. Statin treatment reduces leucine turnover, but does not affect endogenous production of beta-hydroxy-beta-methylbutyrate (HMB). Metabolism 2024; 156:155920. [PMID: 38677663 DOI: 10.1016/j.metabol.2024.155920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Statins, or hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors, are one of the most commonly prescribed medications for lowering cholesterol. Myopathic side-effects ranging from pain and soreness to critical rhabdomyolysis are commonly reported and often lead to discontinuation. The pathophysiological mechanism is, in general, ascribed to a downstream reduction of Coenzyme Q10 synthesis. HMG-CoA is a metabolite of leucine and its corresponding keto acid α-ketoisocaproic acid (KIC) and β-hydroxy-β-methylbutyrate (HMB), however, little is known about the changes in the metabolism of leucine and its metabolites in response to statins. OBJECTIVE We aimed to investigate if statin treatment has implications on the upstream metabolism of leucine to KIC and HMB, as well as on other branched chain amino acids (BCAA). DESIGN 12 hyperlipidemic older adults under statin treatment were recruited. The study was conducted as a paired prospective study. Included participants discontinued their statin treatment for 4 weeks before they returned for baseline measurements (before). Statin treatment was then reintroduced, and the participants returned for a second study day 7 days after reintroduction (after statin). On study days, participants were injected with stable isotope pulses for measurement of the whole-body production (WBP) of all BCAA (leucine, isoleucine and valine), along with their respective keto acids and HMB. RESULTS We found a reduced leucine WBP (22 %, p = 0.0033), along with a reduction in valine WBP (13 %, p = 0.0224). All other WBP of BCAA and keto acids were unchanged. There were no changes in the WBP of HMB. CONCLUSIONS Our study shows that statin inhibition of HMG-CoA reductase has an upstream impact on the turnover of leucine and valine. Whether this impairment in WBP of leucine may contribute to the known pathophysiological side effects of statins on muscle remains to be further investigated.
Collapse
Affiliation(s)
- Martin Hagve
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | | | - Dillon K Walker
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Marielle P K J Engelen
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Tomaszewska E, Świątkiewicz S, Arczewska-Włosek A, Wojtysiak D, Dobrowolski P, Domaradzki P, Puzio I, Rudyk H, Brezvyn O, Muszyński S. ß-Hydroxy-ß-methylbutyrate: A feed supplement influencing performance, bone metabolism, intestinal morphology, and muscle quality of laying hens: a preliminary one-point study. Poult Sci 2024; 103:103597. [PMID: 38471225 PMCID: PMC11067770 DOI: 10.1016/j.psj.2024.103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Laying hens, selectively bred for high egg production, often suffer from bone fragility and fractures, impacting their welfare and causing economic losses. Additionally, gut health and muscle quality are crucial for overall health and productivity. This study aimed to evaluate the effects of ß-Hydroxy-ß-methylbutyrate (HMB) supplementation on performance, bone metabolism, intestinal morphology, and muscle quality in laying hens. Forty-eight Bovans Brown hens were divided into a control group and an HMB-supplemented group (0.02% HMB in diet). The study spanned from the 31st to the 60th wk of age. Assessments included bone mechanical testing, serum hormonal analysis, histological analysis of bone and intestine, and muscle quality analysis. The HMB supplementation led to decreased feed intake without affecting body weight or laying rate in laying hens. It caused an increase in both mean daily and total egg weight, indicating improved feed utilization, without influencing the feed intake to egg weight ratio. Enhanced bone formation markers and altered intestinal morphometric parameters were observed, along with improved trabecular bone structure. However, no changes in measured other bone quality indices, including geometric, densitometric, or mechanical properties were observed. Muscle analysis revealed no significant changes in overall meat quality, except for a decrease in cholesterol content and alterations in the fatty acid profile, notably a reduction in total n-3 polyunsaturated and total polyunsaturated fatty acids (PUFA). In conclusion, although not all effects of HMB supplementation were unequivocally beneficial, the positive changes in performance data and trabecular bone microarchitecture support further research into various doses and durations of supplementation. Such studies are necessary to fully understand and optimize the benefits of HMB for enhancing the health and productivity of laying hens.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Kraków, Cracow, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Piotr Domaradzki
- Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences in Lublin, Lublin, Poland
| | - Iwona Puzio
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Halyna Rudyk
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Oksana Brezvyn
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
4
|
Fernández-Landa J, Todorovic N, Santibañez-Gutierrez A, Ostojic SM, Calleja-González J, Sekulic D, Mielgo-Ayuso J. Effects of HMB on Endurance Performance in a Healthy Population: A Systematic Review and Meta-Analysis. J Strength Cond Res 2024; 38:e202-e210. [PMID: 38090973 DOI: 10.1519/jsc.0000000000004690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Fernández-Landa, J, Todorovic, N, Santibañez-Gutierrez, A, Ostojic, SM, Calleja-González, J, Sekulic, D, and Mielgo-Ayuso, J. Effects of HMB on endurance performance in a healthy population: a systematic review and meta-analysis. J Strength Cond Res 38(4): e202-e210, 2024-β-hydroxy-β-methylbutyrate (HMB) has been used extensively as a dietary supplement for athletes and physically active people. However, the ergogenic effect of HMB supplementation on endurance performance is still unclear. Therefore, this systematic review and meta-analysis (SRMA) aimed to assess HMB supplementation on endurance performance and V̇O 2 max . This SRMA followed PRISMA guidelines. Three electronic databases were searched (PubMed/Medline, Web of Science [WOS], and Scopus) from inception until April 3, 2023. In this SRMA, human experimental trials, controlled with a placebo group, assessing the effect of HMB supplementation on endurance performance in a healthy population were included. The quality of the studies was assessed by the Physiotherapy Evidence Database (PEDro) scale. The study protocol was registered in the Prospective Register of Systematic Review (PROSPERO): CRD42022341790. Eleven studies involving 279 participants met the inclusion criteria. The results displayed a significant improvement on endurance performance (pooled standardized mean difference [SMD] = 0.58 [0.28-0.87]) and V̇O 2 max (pooled SMD = 0.58 [0.21-0.95]) after HMB ingestion. Moreover, after the exclusion of the studies not evenly distributed around the base of the funnel plot, the results continued to be significantly positive in endurance performance (pooled SMD = 0.38 [0.22-0.53]) and V̇O 2 max (pooled SMD = 0.25 [0.09-0.42]). In conclusion, HMB (3 g·d -1 ) ingestion during 2-12 weeks significantly improves endurance performance and V̇O 2 max .
Collapse
Affiliation(s)
- Julen Fernández-Landa
- Department of Physical Activity and Sports, Faculty of Education and Sport, University of Deusto, Bilbo, Spain
| | - Nikola Todorovic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Asier Santibañez-Gutierrez
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway; and
| | - Julio Calleja-González
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Djordje Sekulic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
5
|
Kang MS, Yu Y, Park R, Heo HJ, Lee SH, Hong SW, Kim YH, Han DW. Highly Aligned Ternary Nanofiber Matrices Loaded with MXene Expedite Regeneration of Volumetric Muscle Loss. NANO-MICRO LETTERS 2024; 16:73. [PMID: 38175358 PMCID: PMC10767178 DOI: 10.1007/s40820-023-01293-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Current therapeutic approaches for volumetric muscle loss (VML) face challenges due to limited graft availability and insufficient bioactivities. To overcome these limitations, tissue-engineered scaffolds have emerged as a promising alternative. In this study, we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone) integrated with collagen and Ti3C2Tx MXene nanoparticles (NPs) (PCM matrices), and explored their myogenic potential for skeletal muscle tissue regeneration. The PCM matrices demonstrated favorable physicochemical properties, including structural uniformity, alignment, microporosity, and hydrophilicity. In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts. Moreover, in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury. Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices, leading to elevated intracellular Ca2+ levels in myoblasts through the activation of inducible nitric oxide synthase (iNOS) and serum/glucocorticoid regulated kinase 1 (SGK1), ultimately promoting myogenic differentiation via the mTOR-AKT pathway. Additionally, upregulated iNOS and increased NO- contributed to myoblast proliferation and fiber fusion, thereby facilitating overall myoblast maturation. These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yeuni Yu
- Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Rowoon Park
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- Osstem Implant Inc., Seoul, 07789, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
- Engineering Research Center for Color‑Modulated Extra‑Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Yun Hak Kim
- Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
- Periodontal Disease Signaling Network Research Center and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Guo D, Wei Y, Li X, Bai Y, Liu Z, Li J, Chen Z, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S, Zhao F. Comprehensive Analysis of miRNA and mRNA Expression Profiles during Muscle Development of the Longissimus Dorsi Muscle in Gannan Yaks and Jeryaks. Genes (Basel) 2023; 14:2220. [PMID: 38137042 PMCID: PMC10742600 DOI: 10.3390/genes14122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
A hybrid offspring of Gannan yak and Jersey cattle, the Jeryak exhibits apparent hybrid advantages over the Gannan yak in terms of production performance and other factors. The small non-coding RNAs known as miRNAs post-transcriptionally exert a significant regulatory influence on gene expression. However, the regulatory mechanism of miRNA associated with muscle development in Jeryak remains elusive. To elucidate the regulatory role of miRNAs in orchestrating skeletal muscle development in Jeryak, we selected longissimus dorsi muscle tissues from Gannan yak and Jeryak for transcriptome sequencing analysis. A total of 230 (DE) miRNAs were identified in the longissimus dorsi muscle of Gannan yak and Jeryak. The functional enrichment analysis revealed a significant enrichment of target genes from differentially expressed (DE)miRNAs in signaling pathways associated with muscle growth, such as the Ras signaling pathway and the MAPK signaling pathway. The network of interactions between miRNA and mRNA suggest that some (DE)miRNAs, including miR-2478-z, miR-339-x, novel-m0036-3p, and novel-m0037-3p, played a pivotal role in facilitating muscle development. These findings help us to deepen our understanding of the hybrid dominance of Jeryaks and provide a theoretical basis for further research on the regulatory mechanisms of miRNAs associated with Jeryak muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Dayan J, Melkman-Zehavi T, Goldman N, Soglia F, Zampiga M, Petracci M, Sirri F, Braun U, Inhuber V, Halevy O, Uni Z. In-ovo feeding with creatine monohydrate: implications for chicken energy reserves and breast muscle development during the pre-post hatching period. Front Physiol 2023; 14:1296342. [PMID: 38156069 PMCID: PMC10752974 DOI: 10.3389/fphys.2023.1296342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
The most dynamic period throughout the lifespan of broiler chickens is the pre-post-hatching period, entailing profound effects on their energy status, survival rate, body weight, and muscle growth. Given the significance of this pivotal period, we evaluated the effect of in-ovo feeding (IOF) with creatine monohydrate on late-term embryos' and hatchlings' energy reserves and post-hatch breast muscle development. The results demonstrate that IOF with creatine elevates the levels of high-energy-value molecules (creatine and glycogen) in the liver, breast muscle and yolk sac tissues 48 h post IOF, on embryonic day 19 (p < 0.03). Despite this evidence, using a novel automated image analysis tool on day 14 post-hatch, we found a significantly higher number of myofibers with lower diameter and area in the IOF creatine group compared to the control and IOF NaCl groups (p < 0.004). Gene expression analysis, at hatch, revealed that IOF creatine group had significantly higher expression levels of myogenin (MYOG) and insulin-like growth factor 1 (IGF1), related to differentiation of myogenic cells (p < 0.01), and lower expression of myogenic differentiation protein 1 (MyoD), related to their proliferation (p < 0.04). These results imply a possible effect of IOF with creatine on breast muscle development through differential expression of genes involved in myogenic proliferation and differentiation. The findings provide valuable insights into the potential of pre-hatch enrichment with creatine in modulating post-hatch muscle growth and development.
Collapse
Affiliation(s)
- Jonathan Dayan
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Melkman-Zehavi
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Goldman
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | | | | | - Orna Halevy
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zehava Uni
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
8
|
Chang CK, Kao SY, Wang CY. Beta-hydroxy-beta-methylbutyrate supplementation preserves fat-free mass in collegiate boxers during acute body mass loss. CHINESE J PHYSIOL 2023; 66:485-493. [PMID: 38149561 DOI: 10.4103/cjop.cjop-d-23-00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Acute body mass loss before competitions in combat sports usually leads to loss in fat-free mass. Beta-hydroxy-beta-methylbutyrate (HMB) has been shown to increase skeletal muscle mass and muscle strength in various muscle wasting conditions. This study investigated the effect of HMB supplementation on body composition and sport-specific performance in well-trained boxers consuming a hypocaloric diet. Twelve male college boxers were divided into the HMB and placebo (PLA) groups using a body weight-matched single-blind parallel design. The study comprised a 6-day weight loss period (days 1-6), followed by a 3-day competition period (days 7-9). The participants in both the groups consumed 16 kcal/kg/day, including 1.6-1.7 g/kg of carbohydrates, 1.2-1.3 g/kg of protein, and 0.45-0.5 g/kg of fat during the 9-day period. The HMB group consumed 3 g/day HMB. Body composition measurement, isometric mid-thigh pull (IMTP), and a simulated boxing match were performed at baseline and on days 7, 8, and 9. Fasting blood samples were collected on the day before day 1 and on days 7, 8, and 9. Body mass was significantly decreased after the 6-day weight loss period (HMB group: baseline: 69.4 ± 11.2 kg, day 7: 67.1 ± 11.2 kg; PLA group: baseline: 68.6 ± 12.1 kg, day 7: 65.7 ± 11.5 kg, P < 0.05) while it was unchanged on the 3-day competition period in both the groups. Fat-free mass in the HMB group was maintained throughout the 9-day period (baseline: 56.7 ± 9.3 kg, day 7: 56.3 ± 8.7 kg, day 9: 55.8 ± 9.5 kg) whereas it significantly decreased on days 7 and 9 compared to the baseline in the PLA group (baseline: 55.2 ± 6.4 kg, day 7: 54.1 ± 6.6 kg, day 9: 54.0 ± 6.6 kg, P < 0.05). In the PLA group, the average and maximal heart rates in round 1 and the average heart rate in round 2 on days 8 and 9 were significantly lower than those at baseline, while these parameters were unchanged in the HMB group. The maximal force and the rate of force development in the IMTP remained unchanged among the different timepoints in both the groups. The blood biochemical parameters were similar at any timepoint between the PLA and HMB groups. HMB supplementation during acute weight loss may preserve fat-free mass and maintain heart rate response in subsequent simulated matches in well-trained boxers. In addition, HMB supplementation had a nonsignificant effect on glucose, fat, and protein metabolism during energy restriction.
Collapse
Affiliation(s)
- Chen-Kang Chang
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Shih-Yen Kao
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Chung-Yuan Wang
- Department of Combat Sport, National Taiwan University of Sport, Taichung, Taiwan
| |
Collapse
|
9
|
Gorji AE, Ostaszewski P, Urbańska K, Sadkowski T. Does β-Hydroxy-β-Methylbutyrate Have Any Potential to Support the Treatment of Duchenne Muscular Dystrophy in Humans and Animals? Biomedicines 2023; 11:2329. [PMID: 37626825 PMCID: PMC10452677 DOI: 10.3390/biomedicines11082329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. The dystrophin gene is the largest gene and has a key role in skeletal muscle construction and function. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans, mice, dogs, and cats. Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular condition causing progressive muscle weakness and premature death. β-hydroxy β-methylbutyrate (HMB) prevents deleterious muscle responses under pathological conditions, including tumor and chronic steroid therapy-related muscle losses. The use of HMB as a dietary supplement allows for increasing lean weight gain; has a positive immunostimulatory effect; is associated with decreased mortality; and attenuates sarcopenia in elderly animals and individuals. This study aimed to identify some genes, metabolic pathways, and biological processes which are common for DMD and HMB based on existing literature and then discuss the consequences of that interaction.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Kaja Urbańska
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| |
Collapse
|
10
|
Kojima K, Ishikawa H, Watanabe S, Nosaka N, Mutoh T. A Randomized, Double-Blind, Controlled Trial Assessing If Medium-Chain Triglycerides in Combination with Moderate-Intensity Exercise Increase Muscle Strength in Healthy Middle-Aged and Older Adults. Nutrients 2023; 15:3275. [PMID: 37513691 PMCID: PMC10383836 DOI: 10.3390/nu15143275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
An adequate nutritional intake is recommended for the prevention of physical frailty and sarcopenia. In particular, medium-chain fatty acids (MCFAs) are reportedly important for muscle strength in nursing home residents. However, the effects of MCFAs on healthy adults at risk for frailty remain unknown. Hence, a randomized, placebo-controlled study was conducted to investigate the effects of 12 weeks of medium-chain triglycerides (MCTs) intake and walking on muscle mass and function in healthy, sedentary, middle-aged and older adults with a low body mass index. Three MCT intake groups with different amounts of octanoic and decanoic acid intake were compared with a control group. After 12 weeks, knee extension strength increased in all groups, with the increases in all MCT intake groups being significantly higher than those in the control group (p < 0.05). Grip strength significantly increased from baseline in the MCT 6 g/day intake group (p < 0.05). The combination of aerobic exercise and MCT intake may be effective in preventing decline in muscle strength and promoting increase in muscle strength as they can improve muscle energy production, thereby contributing to the maintenance of good health for middle-aged and older adults at high risk for frailty and sarcopenia.
Collapse
Affiliation(s)
- Keiichi Kojima
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Kanagawa, Japan
| | - Haruna Ishikawa
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Kanagawa, Japan
| | - Shinji Watanabe
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Kanagawa, Japan
| | - Naohisa Nosaka
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Kanagawa, Japan
| | - Tatsushi Mutoh
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8574, Miyagi, Japan
- Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita-City 010-0874, Akita, Japan
| |
Collapse
|
11
|
Stange K, Schumacher T, Miersch C, Whelan R, Klünemann M, Röntgen M. Methionine Sources Differently Affect Production of Reactive Oxygen Species, Mitochondrial Bioenergetics, and Growth of Murine and Quail Myoblasts In Vitro. Curr Issues Mol Biol 2023; 45:2661-2680. [PMID: 37185698 PMCID: PMC10136669 DOI: 10.3390/cimb45040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
An optimal supply of L-methionine (L-Met) improves muscle growth, whereas over-supplementation exerts adverse effects. To understand the underlying mechanisms, this study aims at exploring effects on the growth, viability, ROS production, and mitochondrial bioenergetics of C2C12 (mouse) and QM7 (quail) myoblasts additionally supplemented (100 or 1000 µM) with L-Met, DL-methionine (DL-Met), or DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA). In both cell lines, all the supplements stimulated cell growth. However, in contrast to DL-Met, 1000 µM of L-Met (C2C12 cells only) or DL-HMTBA started to retard growth. This negative effect was stronger with DL-HMTBA and was accompanied by significantly elevated levels of extracellular H2O2, an indicator for OS, in both cell types. In addition, oversupplementation with DL-HMTBA (1000 µM) induced adaptive responses in mitochondrial bioenergetics, including reductions in basal (C2C12 and QM7) and ATP-synthase-linked (C2C12) oxygen consumption, maximal respiration rate, and reserve capacity (QM7). Only QM7 cells switched to nonmitochondrial aerobic glycolysis to reduce ROS production. In conclusion, we found a general negative effect of methionine oversupplementation on cell proliferation. However, only DL-HMTBA-induced growth retardation was associated with OS and adaptive, species-specific alterations in mitochondrial functionality. OS could be better compensated by quail cells, highlighting the role of species differences in the ability to cope with methionine oversupplementation.
Collapse
Affiliation(s)
- Katja Stange
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Toni Schumacher
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Claudia Miersch
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Nutritional Physiology and Dietetics, International University of Applied Sciences (IU), Juri-Gagarin-Ring 152, 99084 Erfurt, Germany
| | - Rose Whelan
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Martina Klünemann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Monika Röntgen
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
12
|
Impact of ß-hydroxy-ß-methylbutyrate (HMB) in critically ill patients on the endocrine axis - A post-hoc cohort study of the HMB-ICU trial. Clin Nutr ESPEN 2023; 53:1-6. [PMID: 36657898 DOI: 10.1016/j.clnesp.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND β-hydroxy-β-methylbutyrate (HMB) might improve muscle function and maintain its mass in critically ill patients. We aimed to investigate whether the administration of HMB influenced the plasma levels of growth hormone (GH)/insulin-like growth factor-1 (IGF-1), C-peptide, and 25-OH vitamin-D. METHODS Post-hoc analysis of the study HMB-ICU, a randomized, placebo-controlled double-blind trial. INCLUSION CRITERIA Intensive care unit (ICU) patients depending on mechanical ventilation on day 3 with functional gastrointestinal tract. Patients were randomized to HMB (3 g/day) or placebo (maltodextrin) from day 4 on, for 30 days. Blood samples were collected on days 4 and 15. We determined the GH, C-peptide, 25-OH vitamin-D, and IGF-1. Statistics by ANCOVA. RESULTS Blood samples of 26 patients were available on day 4, and 23 on day 15. While age and severity of disease did not differ, diabetes was more frequent in the HMB group (p = 0.041), and obesity was more frequent in the placebo group (p = 0.021). Glucose intake, blood glucose (BG) and amount of insulin to maintain blood glucose between 6 and 8 mM did not differ between groups. There was no difference between groups for C-peptide, GH, IGF-1, and 25-OH vitamin-D. IGF-1 increased significantly from day 4-15 (p = 0.026) in both groups. CONCLUSION Subject to possible insufficient power of the study, we did not reach conclusive results. HMB intervention does not affect significantly the plasma concentrations of insulin, GH/IGF axis activity, C-peptide, and 25-OH vitamin-D. CLINICALTRIALS GOV IDENTIFIER NCT03628365.
Collapse
|
13
|
Beaudry KM, Binet ER, Collao N, De Lisio M. Nutritional Regulation of Muscle Stem Cells in Exercise and Disease: The Role of Protein and Amino Acid Dietary Supplementation. Front Physiol 2022; 13:915390. [PMID: 35874517 PMCID: PMC9301335 DOI: 10.3389/fphys.2022.915390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human skeletal muscle is a remarkedly plastic tissue that has a high capacity to adapt in response to various stimuli. These adaptations are due in part to the function of muscle-resident stem/progenitor cells. Skeletal muscle regeneration and adaptation is facilitated by the activation and expansion of muscle stem cells (MuSCs). MuSC fate is regulated by signals released from cells in their niche, such as fibro-adipogenic progenitors (FAPs), as well as a variety of non-cellular niche components. Sufficient dietary protein consumption is critical for maximizing skeletal muscle adaptation to exercise and maintaining skeletal muscle in disease; however, the role of dietary protein in altering MuSC and FAP responses to exercise in healthy populations and skeletal muscle disease states requires more research. The present review provides an overview of this emerging field and suggestions for future directions. The current literature suggests that in response to resistance exercise, protein supplementation has been shown to increase MuSC content and the MuSC response to acute exercise. Similarly, protein supplementation augments the increase in MuSC content following resistance training. Endurance exercise, conversely, is an area of research that is sparse with respect to the interaction of protein supplementation and exercise on muscle stem/progenitor cell fate. Initial evidence suggests that protein supplementation augments the early myogenic response to acute endurance exercise but does not enhance the MuSC response to endurance training. Resistance training increases the number of proliferating FAPs with no additional effect of protein supplementation. Future research should continue to focus on the nutritional regulation of skeletal muscle stem/progenitor cell fate paired with studies examining the effects of exercise on a variety of human populations.
Collapse
Affiliation(s)
| | | | - Nicolás Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Thermal stress affects proliferation and differentiation of turkey satellite cells through the mTOR/S6K pathway in a growth-dependent manner. PLoS One 2022; 17:e0262576. [PMID: 35025965 PMCID: PMC8758067 DOI: 10.1371/journal.pone.0262576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Satellite cells (SCs) are stem cells responsible for post-hatch muscle growth through hypertrophy and in birds are sensitive to thermal stress during the first week after hatch. The mechanistic target of rapamycin (mTOR) signaling pathway, which is highly responsive to thermal stress in differentiating turkey pectoralis major (p. major) muscle SCs, regulates protein synthesis and the activities of SCs through a downstream effector, S6 kinase (S6K). The objectives of this study were: 1) to determine the effect of heat (43°C) and cold (33°C) stress on activity of the mTOR/S6K pathway in SCs isolated from the p. major muscle of one-week-old faster-growing modern commercial (NC) turkeys compared to those from slower-growing Randombred Control Line 2 (RBC2) turkeys, and 2) to assess the effect of mTOR knockdown on the proliferation, differentiation, and expression of myogenic regulatory factors of the SCs. Heat stress increased phosphorylation of both mTOR and S6K in both turkey lines, with greater increases observed in the RBC2 line. With cold stress, greater reductions in mTOR and S6K phosphorylation were observed in the NC line. Early knockdown of mTOR decreased proliferation, differentiation, and expression of myoblast determination protein 1 and myogenin in both lines independent of temperature, with the RBC2 line showing greater reductions in proliferation and differentiation than the NC line at 38° and 43°C. Proliferating SCs are more dependent on mTOR/S6K-mediated regulation than differentiating SCs. Thus, thermal stress can affect breast muscle hypertrophic potential by changing satellite cell proliferation and differentiation, in part, through the mTOR/S6K pathway in a growth-dependent manner. These changes may result in irreversible effects on the development and growth of the turkey p. major muscle.
Collapse
|
15
|
Yamada AK, Ferretti R, Matsumura CY, Antunes L, Silva CAD, Pertille A. Beta-hydroxy-beta-methylbutyrate associated with low-intensity exercise training improves skeletal muscle regeneration through the IGF-Akt pathway. Braz J Med Biol Res 2022; 55:e11597. [PMID: 35019034 PMCID: PMC8851911 DOI: 10.1590/1414-431x2021e11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
The effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation associated with exercise training at different intensities and frequencies on skeletal muscle regeneration of muscle-injured rats was investigated. Male Wistar rats were divided into sedentary and trained groups. The sedentary groups were subdivided into non-injured (SED-Ct), non-injured supplemented with HMB (SED-Ct-HMB), injured (SED), and injured with HMB (SED-HMB), and the trained groups were injured, supplemented with HMB, and then divided into training three times a week without load (HT3) or with load (HT3L) and training five times a week without load (HT5) and with load (HT5L). The rats received a daily dose of HMB associated with 60 min of swimming with or without 5% body mass load for 14 days. On the 15th day, cryoinjury was performed in the right tibialis anterior muscle (TA), and 48 h later, supplementation and training continued for 15 days. After the last session, the TA was dissected and a cross-sectional area (CSA) of muscle fibers was used to determine the percentage of CSA fibers and connective tissue (%CT), as well as the total and phosphorylated protein contents. SED-HMB showed increased CSA and decreased %CT and TGF-β when compared to SED. HT3 showed increased CSA and reduced %CT accompanied by increased IGF-1/Akt, myogenin, and MuRF1, and decreased TGF-β. The CSA of HT5L also increased, but at the cost of a higher %CT compared to the other groups. Our results demonstrated that HMB associated with training without load and with lower frequency per week may be a valuable strategy for skeletal muscle regeneration.
Collapse
Affiliation(s)
- A K Yamada
- Programa de Pós-Graduação em Ciências do Movimento Humano, Laboratório de Plasticidade Neuromuscular, Universidade Metodista de Piracicaba, Piracicaba, SP, Brasil
| | - R Ferretti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - C Y Matsumura
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - L Antunes
- Programa de Pós-Graduação em Ciências do Movimento Humano, Laboratório de Plasticidade Neuromuscular, Universidade Metodista de Piracicaba, Piracicaba, SP, Brasil
| | - C A da Silva
- Instituto de Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade Paulista - Swift, Campinas, SP, Brasil
| | - A Pertille
- Programa de Pós-Graduação em Ciências do Movimento Humano, Laboratório de Plasticidade Neuromuscular, Universidade Metodista de Piracicaba, Piracicaba, SP, Brasil
| |
Collapse
|
16
|
Sánchez-Gómez Á, Jurado-Castro JM, Mata F, Sánchez-Oliver AJ, Domínguez R. Effects of β-Hydroxy β-Methylbutyric Supplementation in Combination with Conservative Non-Invasive Treatments in Athletes with Patellar Tendinopathy: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:471. [PMID: 35010730 PMCID: PMC8744953 DOI: 10.3390/ijerph19010471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to analyze the effect of conservative non-invasive treatments based on eccentric training, stretching and extracorporeal shock wave therapy (ESWT) supplemented with β-Hydroxy β-methylbutyric (HMB) or placebo (PLAC) on body composition, pain and muscular function (jump ability, muscular power and muscular strength) in athletes with patellar tendinopathy (PT). In a double-blind randomized trial, 8 athletes (4 males and 4 females) performed a physical rehabilitation for 4 weeks. They were randomly divided into two experimental groups (two males and two females in each one) that ingested HMB (HMBG) or PLAC (PLACG). In pre- and post-intervention were assessed body composition, pain, countermovement jump (CMJ), back-squat (BS) for analyzing peak power (W) (PPPP), load (kg) associated to PPPP (PPKG) and mean velocity (m/s) (PPMV) in addition to a 5-RM leg extension tests. An interaction intervention·supplementation (p = 0.049; Ƞ2p = 0.774) was observed in the height reached in the CMJ as an intervention effect in PPPP detected for the HMBG (p = 0.049). In addition, an enhancement in PPKG (p = 0.028; Ƞ2p = 0.842) was detected in the intervention, but not in PPMV, as an increase in the intervention in the 5-RM test (p = 0.001; Ƞ2p = 0.981) was observed. No changes were noted on body composition or pain (p > 0.05). The combination of eccentric training with stretching and ESWT increased concentric muscular power and strength after 4 weeks without changes in body lean mass or pain. In addition, HMB supplementation could enhance the power muscular performance in athletes with PT, optimizing the intervention adaptions.
Collapse
Affiliation(s)
- Ángela Sánchez-Gómez
- Departamento de Enfermería Farmacología y Fisioterapia, Facultad de Medicina y Enfermería, Universidad de Córdoba, 14004 Córdoba, Spain;
| | - Jose Manuel Jurado-Castro
- Metabolism and Investigation Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Córdoba, Spain;
- Centro Adscrito a la Universidad de Sevilla, Escuela Universitaria de Osuna, 41640 Osuna, Spain
| | - Fernando Mata
- Centro de Estudios Avanzados en Nutrición, 14010 Córdoba, Spain;
| | - Antonio Jesús Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, 41013 Seville, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, 41013 Seville, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| |
Collapse
|
17
|
Lattanzi B, Bruni A, Di Cola S, Molfino A, De Santis A, Muscaritoli M, Merli M. The Effects of 12-Week Beta-Hydroxy-Beta-Methylbutyrate Supplementation in Patients with Liver Cirrhosis: Results from a Randomized Controlled Single-Blind Pilot Study. Nutrients 2021; 13:nu13072296. [PMID: 34371806 PMCID: PMC8308449 DOI: 10.3390/nu13072296] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: Sarcopenia is considered an important risk factor for morbidity and mortality in liver cirrhosis. Beta-hydroxy-beta-methylbutyrate (HMB) has the potential to increase muscle mass and performance by stimulating protein synthesis and reducing muscle catabolism. The present study aimed at evaluating the effect of HMB supplementation on muscle mass and function in patients with liver cirrhosis. Changes in frailty during the study were also estimated, and the safety of HMB supplementation was verified. Methods: This is a randomized, single-blind, placebo-controlled pilot trial. Twenty-four patients (14 HMB and 10 placebo) affected by liver cirrhosis were enrolled in the study. Each patient received dedicated counseling, which included nutrition and physical activity recommendations for chronic liver disease patients. Patients were randomized to receive 3 g/day of HMB or placebo (sorbitol powder) for 12 consecutive weeks. A diet interview, anthropometry, electrical bioimpedance analysis (BIA), quadriceps ultrasound, physical performance battery, Liver Frailty Index (LFI), and cognitive tests were completed at enrolment (T0), at 12 weeks (T1), and 24 weeks after enrolment (T2). Results: At baseline, the two groups were similar in demography, severity of liver disease, muscle mass, muscle function, and cognitive tests. LFI at baseline was higher in patients in the HMB group vs. those in the placebo group (4.1 ± 0.4 vs. 3.4 ± 0.6, p < 0.01). After treatment, a statistically significant increase in muscle function was seen in the HMB group (chair stand test: 14.2 ± 5 s vs. 11.7 ± 2.6 s, p < 0.05; six-minute walk test: 361.8 ± 68 m vs. 409.4 ± 58 m, p < 0.05). Quadriceps muscle mass measured by ultrasound also increased (4.9 ± 1.8 vs. 5.4 ± 1.8 mm, p < 0.05) after HMB, while LFI decreased (4.1 ± 0.4 vs. 3.7 ± 0.4, p < 0.05). HMB was well tolerated by patients, and no adverse events were documented. Conclusions: Our study suggests the efficacy of 12-week beta-hydroxy-beta-methylbutyrate supplementation in promoting improvements in muscle performance in compensated cirrhotic patients. LFI was also ameliorated. Further studies with a greater number of patients are required to reinforce this hypothesis.
Collapse
Affiliation(s)
- Barbara Lattanzi
- Gastroenterology, Department of Translational and Precision Medicine, “Sapienza” University, 00185 Rome, Italy; (B.L.); (A.B.); (S.D.C.); (A.D.S.)
| | - Angelo Bruni
- Gastroenterology, Department of Translational and Precision Medicine, “Sapienza” University, 00185 Rome, Italy; (B.L.); (A.B.); (S.D.C.); (A.D.S.)
| | - Simone Di Cola
- Gastroenterology, Department of Translational and Precision Medicine, “Sapienza” University, 00185 Rome, Italy; (B.L.); (A.B.); (S.D.C.); (A.D.S.)
| | - Alessio Molfino
- Internal Medicine, Department of Translational and Precision Medicine, “Sapienza” University, 00185 Rome, Italy; (A.M.); (M.M.)
| | - Adriano De Santis
- Gastroenterology, Department of Translational and Precision Medicine, “Sapienza” University, 00185 Rome, Italy; (B.L.); (A.B.); (S.D.C.); (A.D.S.)
| | - Maurizio Muscaritoli
- Internal Medicine, Department of Translational and Precision Medicine, “Sapienza” University, 00185 Rome, Italy; (A.M.); (M.M.)
| | - Manuela Merli
- Gastroenterology, Department of Translational and Precision Medicine, “Sapienza” University, 00185 Rome, Italy; (B.L.); (A.B.); (S.D.C.); (A.D.S.)
- Correspondence: ; Tel.: +39-(06)-49972001
| |
Collapse
|
18
|
Serón Arbeloa C, Martínez de la Gándara A, León Cinto C, Flordelís Lasierra JL, Márquez Vácaro JA. Recommendations for specialized nutritional-metabolic management of the critical patient: Macronutrient and micronutrient requirements. Metabolism and Nutrition Working Group of the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC). Med Intensiva 2021; 44 Suppl 1:24-32. [PMID: 32532407 DOI: 10.1016/j.medin.2019.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 01/15/2023]
|
19
|
Nakanishi R, Tanaka M, Maeshige N, Kondo H, Roy RR, Fujino H. Nucleoprotein-enriched diet enhances protein synthesis pathway and satellite cell activation via ERK1/2 phosphorylation in unloaded rat muscles. Exp Physiol 2021; 106:1587-1596. [PMID: 33878233 DOI: 10.1113/ep089337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The purpose of this study was to determine whether the nucleotides in a nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in soleus muscle mass and fibre size. What is the main finding and its importance? The results indicate that the nucleotides in the nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in type I fibre size and muscle mass, most probably owing to the activation of protein synthesis pathways and satellite cell proliferation and differentiation via ERK1/2 phosphorylation. Thus, nucleotide supplementation appears to be an effective countermeasure for muscle atrophy. ABSTRACT Hindlimb unloading decreases both the protein synthesis pathway and satellite cell activation and results in muscle atrophy. Nucleotides are included in nucleoprotein and provide the benefits of increasing extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. ERK1/2 phosphorylation is also important in the activation of satellite cells, especially for myoblast proliferation and stimulating protein synthesis pathways. Therefore, we hypothesized that nucleotides in the nucleoproteins would ameliorate muscle atrophy by increasing the protein synthesis pathways and satellite cell activation during hindlimb unloading in rat soleus muscle. Twenty-four female Wistar rats were divided into four groups: control rats fed a basal diet without nucleoprotein (CON), control rats fed a nucleoprotein-enriched diet (CON+NP), hindlimb-unloaded rats fed a basal diet (HU) or hindlimb-unloaded rats fed a nucleoprotein-enriched diet (HU+NP). HU for 2 weeks resulted in reductions in phosphorylation of p70S6K and rpS6, the numbers of myoblast determination protein (MyoD)- and myogenin- positive nuclei, type I muscle fibre size and muscle mass. Both CON+NP and HU+NP rats showed an increase in ERK1/2, phosphorylation of p70S6K and rpS6, and the numbers of MyoD- and myogenin-positive nuclei compared with their basal diet groups. The NP diet also ameliorated the unloading-associated decrease in type I muscle fibre size and muscle mass. The results indicate that the nucleotides in the nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in type I fibre size and muscle mass, most probably owing to the activation of protein synthesis pathways and satellite cell proliferation and differentiation via ERK1/2 phosphorylation. Thus, nucleotide supplementation appears to be an effective countermeasure for muscle atrophy.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Kobe, Hyogo, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan.,Department of Physical Therapy, Faculty of Human Science, Osaka University of Human Science, Settsu, Osaka, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Hiroyo Kondo
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Roland R Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| |
Collapse
|
20
|
Kaczka P, Kubicka K, Batra A, Maciejczyk M, Kopera E, Bira J, Zając T. Effects of Co-Ingestion of β-Hydroxy-β-Methylbutyrate and L-Arginine α-Ketoglutarate on Jump Performance in Young Track and Field Athletes. Nutrients 2021; 13:nu13041064. [PMID: 33805883 PMCID: PMC8064357 DOI: 10.3390/nu13041064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
The aim of the study was to determine the effect of simultaneous supplementation of β-hydroxy-β-methylbutyrate and L-Arginine α-ketoglutarate on lower limb power and muscle damage in medium distance runners aged 15.3 (±0.9) years old. Methods: The study group consisted of 40 volunteers aged 14–17 years practicing medium distance running for at least two years. The study lasted 12 days and followed a randomized, double-blind, placebo-controlled, parallel design. All subjects attended a familiarization session on day 0 before the test. The subjects were randomly divided into two groups: supplements and placebo group. The same training cycle protocol was used in both groups during the 12-day training period. Morning warm-up involved 10 min jogging at 60–75% of maximal heart rate and countermovement jump height measurement. Main training units were carried out for both groups with the same volume. Training load assessment (the daily session Rating of Perceived Exertion (s-RPE) method) method takes into consideration the intensity and the duration of the training session to calculate the “training load” (TL). Results: At the end of the training cycle, a significant (p = 0.002) decrease in the countermovement jump (CMJ) height was found in the placebo group when compared to the baseline. In the supplement group, there was no decrease in the countermovement jump height. Creatine kinase and lactate dehydrogenase concentration increased during the training days similarly in both groups and decreased on rest days. There were no differences between groups in enzymes concentration. The research results indicate that the supplement combination used in the supplements group prevented a reduction in the CMJ values. In contrast to the supplements group, in the placebo group, the CMJ changes were statistically significant: a noticeable (p = 0.002) decrease in CMJ was noted between the baseline measurement and the 6th measurement. The well-being of the subjects from both groups changed significantly during the training period, and the intergroup differences in the mood level were similar and not statistically significant. Conclusions: The results of this study indicate that the daily co-supplementation with calcium salt of β-hydroxy-β-methylbutyrate (7.5 g) and L-Arginine α-ketoglutarate (10 g) during training might help to prevent decline in jump performance. No influence on muscle damage markers or mood was shown.
Collapse
Affiliation(s)
- Piotr Kaczka
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
- Correspondence:
| | - Katarzyna Kubicka
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| | - Amit Batra
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| | - Marcin Maciejczyk
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Jana Pawła II 78, 31-571 Kraków, Poland;
| | - Edyta Kopera
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| | - Justyna Bira
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| | - Tomasz Zając
- Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (K.K.); (A.B.); (E.K.); (J.B.); (T.Z.)
| |
Collapse
|
21
|
Abstract
The potential ergogenic effect of nutritional supplements depends on their dosage and the type of exercise executed. Aiming at reviewing the research literature regarding sport supplements utilized in judo in order to improve performance, a literature search was performed at the following databases: Dialnet, PubMed, Scielo, Scopus and SportDiscus. A total of 11 articles met the inclusion criteria and were selected. Evidence revised indicates that supplementation with caffeine, β-alanine, sodium bicarbonate, creatine, and β-hydroxy-β-methylbutyrate has a positive effect on judo-related performance. Moreover, there is evidence suggesting that combining some of these nutritional supplements may produce an additive effect.
Collapse
|
22
|
Shen J, Hao Z, Wang J, Hu J, Liu X, Li S, Ke N, Song Y, Lu Y, Hu L, Qiao L, Wu X, Luo Y. Comparative Transcriptome Profile Analysis of Longissimus dorsi Muscle Tissues From Two Goat Breeds With Different Meat Production Performance Using RNA-Seq. Front Genet 2021; 11:619399. [PMID: 33519920 PMCID: PMC7838615 DOI: 10.3389/fgene.2020.619399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Carcass weight, meat quality and muscle components are important traits economically and they underpin most of the commercial return to goat producers. In this study, the Longissimus dorsi muscle tissues were collected from five Liaoning cashmere (LC) goats and five Ziwuling black (ZB) goats with phenotypic difference in carcass weight, some meat quality traits and muscle components. The histological quantitative of collagen fibers and the transcriptome profiles in the Longissimus dorsi muscle tissues were investigated using Masson-trichrome staining and RNA-Seq, respectively. The percentage of total collagen fibers in the Longissimus dorsi muscle tissues from ZB goats was less than those from LC goats, suggesting that these ZB goats had more tender meat. An average of 15,919 and 15,582 genes were found to be expressed in Longissimus dorsi muscle tissues from LC and ZB goats, respectively. Compared to LC goats, the expression levels of 78 genes were up-regulated in ZB goats, while 133 genes were down-regulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in GO terms related to the muscle growth and development and the deposition of intramuscular fat and lipid metabolism, hippo signaling pathway and Jak-STAT signaling pathway. The results provide an improved understanding of the genetic mechanisms regulating meat production performance in goats, and will help us improve the accuracy of selection for meat traits in goats using marker-assisted selection based on these differentially expressed genes obtained.
Collapse
Affiliation(s)
- Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yize Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yujie Lu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liyan Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lirong Qiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xinmiao Wu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Bennett BT, Mohamed JS, Alway SE. The Effects of Calcium- β-Hydroxy- β-Methylbutyrate on Aging-Associated Apoptotic Signaling and Muscle Mass and Function in Unloaded but Nonatrophied Extensor Digitorum Longus Muscles of Aged Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3938672. [PMID: 32774671 PMCID: PMC7396042 DOI: 10.1155/2020/3938672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a naturally occurring leucine metabolite, has been shown to attenuate plantar flexor muscle loss and increase myogenic stem cell activation during reloading after a period of significant muscle wasting by disuse in old rodents. However, it was less clear if HMB would alter dorsiflexor muscle response to unloading or reloading when there was no significant atrophy that was induced by unloading. In this study, we tested if calcium HMB (Ca-HMB) would improve muscle function and alter apoptotic signaling in the extensor digitorum longus (EDL) of aged animals that were unloaded but did not undergo atrophy. The EDL muscle was unloaded for 14 days by hindlimb suspension (HS) in aged (34-36 mo.) male Fisher 344 × Brown Norway rats. The rats were removed from HS and allowed normal cage ambulation for 14 days of reloading (R). Throughout the study, the rats were gavaged daily with 170 mg of Ca-HMB or water 7 days prior to HS, then throughout 14 days of HS and 14 days of recovery after removing HS. The animals' body weights were significantly reduced by ~18% after 14 days of HS and continued to decline by ~22% during R as compared to control conditions; however, despite unloading, EDL did not atrophy by HS, nor did it increase in mass after R. No changes were observed in EDL twitch contraction time, force production, fatigue resistance, fiber cross-sectional area, or markers of nuclear apoptosis (myonuclei + satellite cells) after HS or R. While HS and R increased the proapoptotic Bax protein abundance, BCL-2 abundance was also increased as was the frequency of TUNEL-positive myonuclei and satellite cells, yet muscle mass and fiber cross-sectional area did not change and Ca-HMB treatment had no effect reducing apoptotic signaling. These data indicate that (i) increased apoptotic signaling preceded muscle atrophy or occurred without significant EDL atrophy and (ii) that Ca-HMB treatment did not improve EDL signaling, muscle mass, or muscle function in aged rats, when HS and R did not impact mass or function.
Collapse
Affiliation(s)
- Brian T. Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
| | - Junaith S. Mohamed
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Nerve and Muscle, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| | - Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| |
Collapse
|
24
|
Kamo N, Kaido T, Uozumi R, Ito T, Yagi S, Hata K, Taura K, Uemoto S. Effect of administration of β-hydroxy-β-methyl butyrate-enriched formula after liver transplantation: A pilot randomized controlled trial. Nutrition 2020; 79-80:110871. [PMID: 32593895 DOI: 10.1016/j.nut.2020.110871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Most patients undergoing liver transplantation (LT) have decreased skeletal muscle mass, malnutrition, and decreased physical activity levels. These comorbidities may prevent early recovery after surgery. The aim of this study was to examine the effects of oral nutritional formula-enriched β-hydroxy-β-methyl-butyrate (HMB), a leucine metabolite that promotes muscle synthesis and suppresses proteolysis, on postoperative sarcopenia and other outcomes after adult-to-adult living donor LT (LDLT). METHODS Thirty-three consecutive patients who underwent adult LDLT between March 2017 and October 2018 and who met inclusion criteria were randomly assigned in a 1:1 ratio to the HMB or control group. Patients in the HMB group received two packs of HMB-rich nutrients per day, which contained calcium-HMB (1500 mg), l-arginine (7000 mg), and l -glutamine (7000 mg) per pack orally or enterally from postoperative day 1 to 30 with postoperative rehabilitation. The primary endpoint was grip strength (GS) at 2 mo after LDLT. Secondary endpoints included GS at 1 mo after LDLT, skeletal muscle mass index (SMI) at 1 and 2 mo after LDLT, laboratory findings, incidence of postoperative bacteremia, and postoperative hospital length of stay (LOS). RESULTS Twelve patients in the HMB group and 11 in the control group were included in the final analysis. GS at 1 and 2 mo and SMI values at 2 mo were significantly higher in the HMB group than in the control group (GS: both P < 0.001, SMI: P = 0.04). In the HMB group, white blood cell count 3 wk after LDLT was significantly lower (P = 0.005), and postoperative hospital LOS was significantly shorter (P = 0.028) compared with the control group. The incidence of postoperative bacteremia was lower in the HMB group. CONCLUSIONS Postoperative administration of HMB-enriched formula with rehabilitation significantly increased GS at 1 and 2 mo and SMI at 2 mo and shortened postoperative hospital LOS after LDLT.
Collapse
Affiliation(s)
- Naoko Kamo
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshimi Kaido
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Gastroenterological and General Surgery, St Luke's International University and Hospital, Tokyo, Japan.
| | - Ryuji Uozumi
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Ito
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Hata
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kojiro Taura
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Mannelli LDC, Micheli L, Lucarini E, Parisio C, Toti A, Tenci B, Zanardelli M, Branca JJV, Pacini A, Ghelardini C. Effects of the Combination of β-Hydroxy-β-Methyl Butyrate and R(+) Lipoic Acid in a Cellular Model of Sarcopenia. Molecules 2020; 25:E2117. [PMID: 32366049 PMCID: PMC7249096 DOI: 10.3390/molecules25092117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
: Sarcopenia is a clinical problem associated with several pathological and non-pathological conditions. The aim of the present research is the evaluation of the pharmacological profile of the leucine metabolite β-hydroxy-β-methyl butyrate (HMB) associated with the natural R(+) stereoisomer of lipoic acid (R(+)LA) in a cellular model of muscle wasting. The C2C12 cell line is used as myoblasts or is differentiated in myotubes, sarcopenia is induced by dexamethasone (DEX). A Bonferroni significant difference procedure is used for a post hoc comparison. DEX toxicity (0.01-300 µM concentration range) is evaluated in myoblasts to measure cell viability and caspase 3 activation after 24 h and 48 h; cell incubation with 1 µM DEX for 48 h is chosen as optimal treatment for decreasing cell viability and increasing caspase 3 activity. R(+)LA or HMB significantly prevents DEX-induced cell mortality; the efficacy is improved when 100 µM R(+)LA is combined with 1 mM HMB. Regarding myoblasts, this combination significantly reduces DEX-evoked O2- production and protein oxidative damage. During the early phase of myotube formation, the mixture preserves the number of myogenin-positive cells, whereas it completely prevents the DEX-dependent damage in a later phase of myotube differentiation (7 days), as evaluated by cell diameter and percentage of multinucleated cells. R(+)LA in association with HMB is suggested for sarcopenia therapy.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Elena Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Carmen Parisio
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Alessandra Toti
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Barbara Tenci
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Matteo Zanardelli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| |
Collapse
|
26
|
Liu P, Choi JW, Lee MK, Choi YH, Nam TJ. Spirulina protein promotes skin wound repair in a mouse model of full-thickness dermal excisional wound. Int J Mol Med 2020; 46:351-359. [PMID: 32319537 PMCID: PMC7255466 DOI: 10.3892/ijmm.2020.4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/02/2020] [Indexed: 11/11/2022] Open
Abstract
The skin protects body from environmental damage. Skin wounds lead to microbial infection and harmful agent injury. Thus, wound repair is crucial for the recovery of the normal function of skin tissue. The present study investigated the promoting effects of spirulina protein (SPCP) in mice on skin wound repair and also aimed to elucidate the potential underlying mechanisms. The results revealed that SPCP promoted the skin wound repair in a mouse model of full-thickness excisional wounds. SPCP induced an increase in the expression level of α-smooth muscle actin (α-SMA). The activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced by SPCP treatment in the granulation tissue. In addition, SPCP decreased the level of malondialdehyde (MDA) in the granulation tissue. Western blot analysis revealed that SPCP enhanced the phosphorylation and activation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK). Moreover, the expression level of transforming growth factor β1 (TGF-β1) was increased in the SPCP-treated groups. The phosphorylation level of Smad2 was also increased by treatment of SPCP. Furthermore, SPCP promoted the expression of collagen in the granulation tissue. Taken together, these findings indicate that SPCP exerts a promoting effect on skin wound repair. The Akt, ERK and TGF-β1 signaling pathways are involved in this process.
Collapse
Affiliation(s)
- Ping Liu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Jeong-Wook Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Min-Kyeong Lee
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Youn Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
27
|
Tsuchiya Y, Ueda H, Sugita N, Ochi E. Low Dose of β-Hydroxy-β-Methylbutyrate (HMB) Alleviates Muscle Strength Loss and Limited Joint Flexibility following Eccentric Contractions. J Am Coll Nutr 2020; 40:211-218. [PMID: 32281915 DOI: 10.1080/07315724.2020.1752330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The optimal dose of β-hydroxy-β-methylbutyrate (HMB) required for decreasing muscle damage remains unknown. Therefore, this study investigated the supplemental effect of low-dose HMB on muscle damage following eccentric contractions (ECCs) of human elbow flexors.Methods: Twenty untrained men (aged 20-26; height, 169.4 ± 5.7 cm; weight, 68.2 ± 11.3 kg; body mass index, 23.7 ± 3.3) completed the double-blind, placebo-controlled, parallel design study. The subjects were randomly assigned to the ingestion of HMB supplement (HMB, n = 10) or placebo group (PL, n = 10). After the subjects of 1.5 g HMB or placebo pills per day for 2 weeks, they performed six sets of 10 ECCs at 100% maximal voluntary contraction (MVC) using dumbbell. Changes in MVC torque, range of motion (ROM), upper arm circumference, muscle soreness, and muscle stiffness were assessed before, immediately after, 1, 2, 3, 5 days after exercise.Results: MVC torque was significantly higher in the HMB group than in the PL group immediately after (HMB, -56.8%; PL, -67.1%) as well as 3 (HMB: -25.5%, PL: -48.7%) and 5 (HMB: -22.5%, PL: -44.0%) days after performing ECCs (p < 0.05). Additionally, ROM was significantly higher in the HMB group than in the PL group immediately after (HMB, -29.8%; PL, -50.5%) and 5 (HMB: -26.1%, PL: -43.3%) days after performing ECCs (p < 0.05). No between-group differences were observed in other muscle damage markers.Conclusion: The low-dose HMB supplementation demonstrated a moderate overall impact and played a beneficial role in muscle dysfunction and joint flexibility following ECCs.
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Faculty of Modern Life, Teikyo Heisei University, Tokyo, Japan
| | - Hisashi Ueda
- Faculty of Health and Medical Science, Teikyo Heisei University, Chiba, Japan
| | - Naoki Sugita
- Fine Chemical Research & Development Section, Kobayashi Perfumery Co., Ltd, Tokyo, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| |
Collapse
|
28
|
Zhu J, Wang Y, Cao Z, Du M, Hao Y, Pan J, He H. Irisin promotes cementoblast differentiation via p38 MAPK pathway. Oral Dis 2020; 26:974-982. [DOI: 10.1111/odi.13307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/25/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Jiaqi Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Yunlong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Mingyuan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Yunru Hao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Jiawen Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
29
|
Ma YB, Zhang FD, Wang J, Wu SG, Qi GH, Zhang HJ. Effect of in ovo feeding of β-hydroxy-β-methylbutyrate on hatchability, muscle growth and performance in prenatal and posthatch broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:755-763. [PMID: 31605375 DOI: 10.1002/jsfa.10080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 08/19/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND β-Hydroxy-β-methylbutyrate (HMB) is the metabolite of leucine that plays an important role in muscle protein metabolism. The objective of the present study was to determine the effects of in ovo feeding (IOF) of HMB at 7 days of incubation (DOI) via air cell or 18 DOI via amnion on hatchability, muscle growth and performance in prenatal and posthatch broilers. RESULTS IOF of HMB via air cell at 7 DOI increased hatchability by 4.34% compared with the control (89.67% versus 85.33%). Birds in IOF groups exhibited higher body weight, average daily body weight gain and pectoral muscle percentage. Furthermore, IOF of HMB significantly increased the level of plasma growth hormone, insulin and insulin-like growth factor-1. Chicks hatched from IOF treatment had larger diameters of muscle fiber and higher mitotic activity of satellite cells at early posthatch age. IOF of HMB activated satellite cells by upregulation of mRNA expression of myogenic transcription factors, myogenic differentiation one (MyoD) and myogenin. Chicks hatched from air cell injection group had higher pectoral muscle percentage at 5 d posthatch and greater satellite cell mitotic activity at 7 d posthatch than counterparts from amnion injection group. CONCLUSIONS IOF of HMB via amnion at 18 DOI or especially via air cell at 7 DOI could be used as an effective approach to enhance hatchability, productive performance and breast muscle yield in broilers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- You-Biao Ma
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Feng-Dong Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Jing Wang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Shu-Geng Wu
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Guang-Hai Qi
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Hai-Jun Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| |
Collapse
|
30
|
Suryawan A, Rudar M, Fiorotto ML, Davis TA. Differential regulation of mTORC1 activation by leucine and β-hydroxy-β-methylbutyrate in skeletal muscle of neonatal pigs. J Appl Physiol (1985) 2020; 128:286-295. [PMID: 31944890 DOI: 10.1152/japplphysiol.00332.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leucine (Leu) and its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-dependent protein synthesis in the skeletal muscle of neonatal pigs. This study aimed to determine whether HMB and Leu utilize common nutrient-sensing mechanisms to activate mTORC1. In study 1, neonatal pigs were fed one of five diets for 24 h: low protein (LP), high protein (HP), or LP supplemented with 4 (LP+HMB4), 40 (LP+HMB40), or 80 (LP+HMB80) μmol HMB·kg body wt-1·day-1. In study 2, neonatal pigs were fed for 24 h: LP, LP supplemented with Leu (LP+Leu), or HP diets delivering 9, 18, and 18 mmol Leu·kg body wt-1·day-1, respectively. The upstream signaling molecules that regulate mTORC1 activity were analyzed. mTOR phosphorylation on Ser2448 and Ser2481 was greater in LP+HMB40, LP+HMB80, and LP+Leu than in LP and greater in HP than in HMB-supplemented groups (P < 0.05), whereas HP and LP+Leu were similar. Rheb-mTOR complex formation was lower in LP than in HP (P < 0.05), with no enhancement by HMB or Leu supplementation. The Sestrin2-GATOR2 complex was more abundant in LP than in HP and was reduced by Leu (P < 0.05) but not HMB supplementation. RagA-mTOR and RagC-mTOR complexes were higher in LP+Leu and HP than in LP and HMB groups (P < 0.05). There were no treatment differences in RagB-SH3BP4, Vps34-LRS, and RagD-LRS complex abundances. Phosphorylation of Erk1/2 and TSC2, but not AMPK, was lower in LP than HP (P < 0.05) and unaffected by HMB or Leu supplementation. Our results demonstrate that HMB stimulates mTORC1 activation in neonatal muscle independent of the leucine-sensing pathway mediated by Sestrin2 and the Rag proteins.NEW & NOTEWORTHY Dietary supplementation with either leucine or its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulates protein synthesis in skeletal muscle of the neonatal pig. Our results demonstrate that both leucine and HMB stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) phosphorylation in neonatal muscle. This leucine-stimulated process involves dissociation of the Sestrin2-GATOR2 complex and increased binding of Rag A/C to mTOR. However, HMB's activation of mTORC1 is independent of this leucine-sensing pathway.
Collapse
Affiliation(s)
- Agus Suryawan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marko Rudar
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
31
|
Zhang Y, Yang M, Zhou P, Yan H, Zhang Z, Zhang H, Qi R, Liu J. β-Hydroxy-β-methylbutyrate-Induced Upregulation of miR-199a-3p Contributes to Slow-To-Fast Muscle Fiber Type Conversion in Mice and C2C12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:530-540. [PMID: 31891490 DOI: 10.1021/acs.jafc.9b05104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The influence of β-hydroxy-β-methylbutyrate (HMB) on proliferation and differentiation of myogenic cells has been well-studied. However, the role of HMB in myofiber specification and potential mechanisms is largely unknown. Thus, the objective of this research was to explore the role of HMB supplementation in myofiber specification. Results showed that HMB treatment significantly increased the fast MyHC protein level (mice: 1.59 ± 0.08, P < 0.01; C2C12: 2.26 ± 0.11, P < 0.001), decreased the slow MyHC protein level (mice: 0.76 ± 0.05, P < 0.05; C2C12: 0.52 ± 0.02, P < 0.001), and increased the miR-199a-3p level (mice: 4.93 ± 0.37, P < 0.001; C2C12: 11.25 ± 0.57, P < 0.001). Besides, we also observed that HMB promoted the activity of glycolysis-related enzymes and reduced the activities of oxidation-related enzymes in mice and C2C12 cells. Overexpression of miR-199a-3p downregulated the slow MyHC protein level (0.71 ± 0.02, P < 0.01) and upregulated the fast MyHC protein level (2.13 ± 0.09, P < 0.001), while repression of miR-199a-3p exhibited the opposite effect. Target identification results verified that miR-199a-3p targets the 3'UTR of the TEA domain family member 1 (TEAD1) to cause its post-transcriptional inhibition (0.41 ± 0.07, P < 0.01). Knockdown of TEAD1 exhibited a similar effect with miR-199a-3p on myofiber specification. Moreover, suppression of miR-199a-3p blocked slow-to-fast myofiber type transition induced by HMB. Together, our finding revealed that miR-199-3p is induced by HMB and contributes to the action of HMB on slow-to-fast myofiber type conversion via targeting TEAD1.
Collapse
Affiliation(s)
- Yong Zhang
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Min Yang
- Chengdu Agricultural College , Chengdu 611130 , China
| | - Pan Zhou
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Honglin Yan
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Zhenzhen Zhang
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Hongfu Zhang
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing 100000 , China
| | - Renli Qi
- Chongqing Academy of Animal Science , Rongchang 402460 , China
| | - Jingbo Liu
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing 100000 , China
| |
Collapse
|
32
|
Fernández-Landa J, Fernández-Lázaro D, Calleja-González J, Caballero-García A, Córdova Martínez A, León-Guereño P, Mielgo-Ayuso J. Effect of Ten Weeks of Creatine Monohydrate Plus HMB Supplementation on Athletic Performance Tests in Elite Male Endurance Athletes. Nutrients 2020; 12:nu12010193. [PMID: 31936727 PMCID: PMC7019716 DOI: 10.3390/nu12010193] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/09/2023] Open
Abstract
Creatine monohydrate (CrM) and β-hydroxy β-methylbutyrate (HMB) are common ergogenic aids in the field of sports and are frequently used in an isolated way. However, there are a few studies that have investigated the effect of combining both supplements on different variables related to performance, with controversial results. Therefore, the main purpose of this study was to determine the efficacy and the degree of potentiation of 10 weeks of CrM plus HMB supplementation on sports performance, which was measured by an incremental test to exhaustion in elite male traditional rowers. In this placebo-controlled, double-blind trial, 10-week study, participants (n = 28) were randomized to a placebo group (PLG; n = 7), CrM group (0.04 g/kg/day of CrM; n = 7), HMB group (3 g/day of HMB; n = 7) and CrM-HMB group (0.04 g/kg/day of CrM plus 3 g/day of HMB; n = 7). Before and after 10 weeks of different treatments, an incremental test was performed on a rowing ergometer to calculate the power that each rower obtained at the anaerobic threshold (WAT), and at 4 mmol (W4) and 8 mmol (W8) of blood lactate concentration. There were no significant differences in WAT and W4 among groups or in body composition. However, it was observed that the aerobic power achieved at W8 was significantly higher in the CrM-HMB group than in the PLG, CrM and HMB groups (p < 0.001; η2p = 0.766). Likewise, a synergistic effect of combined supplementation was found for the sum of the two supplements separately at WAT (CrM-HMBG = 403.19% vs. CrMG+HMBG = 337.52%), W4 (CrM-HMBG = 2736.17% vs. CrMG+HMBG = 1705.32%) and W8 (CrM-HMBG = 1293.4% vs. CrMG+HMBG = 877.56%). In summary, CrM plus HMB supplementation over 10 weeks showed a synergistic effect on aerobic power (measured as WAT, W4, and W8) during an incremental test but had no influence muscle mass.
Collapse
Affiliation(s)
- Julen Fernández-Landa
- Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain; (J.F.-L.); (J.C.-G.)
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Julio Calleja-González
- Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain; (J.F.-L.); (J.C.-G.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Alfredo Córdova Martínez
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Patxi León-Guereño
- Faculty of Psychology and Education, University of Deusto, Campus of Donostia-San Sebastián, 20012 San Sebastián, Guipúzcoa, Spain;
| | - Juan Mielgo-Ayuso
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
- Correspondence: ; Tel.: +34-975-129-187
| |
Collapse
|
33
|
Dhanani ZN, Mann G, Adegoke OAJ. Depletion of branched-chain aminotransferase 2 (BCAT2) enzyme impairs myoblast survival and myotube formation. Physiol Rep 2019; 7:e14299. [PMID: 31833233 PMCID: PMC6908738 DOI: 10.14814/phy2.14299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Much is known about the positive effects of branched-chain amino acids (BCAA) in regulating muscle protein metabolism. Comparatively much less is known about the effects of these amino acids and their metabolites in regulating myotube formation. Using cultured myoblasts, we showed that although leucine is required for myotube formation, this requirement is easily met by α-ketoisocaproic acid, the ketoacid of leucine. We then demonstrated increases in the expression of the first two enzymes in the catabolism of the three BCAA, branched-chain amino transferase (BCAT2) and branched-chain α-ketoacid dehydrogenase (BCKD), with ~3× increase in BCKD protein expression (p < .05) during differentiation. Furthermore, depletion of BCAT2 abolished myoblast differentiation, as indicated by reduction in the levels of myosin heavy chain-1, troponin and myogenin. Supplementation of incubation medium with branched-chain α-ketoacids or related metabolites derivable from BCAT2 functions did not rescue the defects. However, co-depletion of BCKD kinase partially rescued the defects. Collectively, our data indicate a requirement for BCAA catabolism during myotube formation and that this requirement for BCAT2 likely goes beyond the need for this enzyme to generate the α-ketoacids of the BCAA.
Collapse
Affiliation(s)
- Zameer N. Dhanani
- School of Kinesiology and Health ScienceMuscle Health Research CentreYork UniversityTorontoONCanada
| | - Gagandeep Mann
- School of Kinesiology and Health ScienceMuscle Health Research CentreYork UniversityTorontoONCanada
| | | |
Collapse
|
34
|
Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review. Nutrients 2019; 11:nu11102528. [PMID: 31635165 PMCID: PMC6835217 DOI: 10.3390/nu11102528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Although there are many studies showing the isolated effect of creatine monohydrate (CrM) and β-hydroxy β-methylbutyrate (HMB), it is not clear what effect they have when they are combined. The main purpose of this systematic review was to determine the efficacy of mixing CrM plus HMB in comparison with their isolated effects on sports performance, body composition, exercise induced markers of muscle damage, and anabolic-catabolic hormones. This systematic review was carried out in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement guidelines and the PICOS model, for the definition of the inclusion criteria. Studies were found by searching PubMed/MEDLINE, Web of Science (WOS), and Scopus electronic databases from inception to July 3rd 2019. Methodological quality and risk of bias were assessed by two authors independently, and disagreements were resolved by third-party evaluation, in accordance with the Cochrane Collaboration Guidelines samples. The literature was examined regarding the effects of the combination of CrM plus HMB on sport performance using several outcome variables (athletic performance, body composition, markers of muscle damage, and hormone status). This systematic review included six articles that investigated the effects of CrM plus HMB on sport performance (two on strength performance, showing improvements in one of them; three on anaerobic performance, presenting enhancements in two of them; and one on aerobic performance, not presenting improvements), body composition (three on body mass, showing improvements in one of them; two on fat free mass, presenting increases in one of them; and two on fat mass, showing decreases in one of them) and markers of muscle damage and hormone status (four on markers of muscle damage and one on anabolic-catabolic hormones, not showing benefits in any of them). In summary, the combination of 3–10 g/day of CrM plus 3 g/day of HMB for 1–6 weeks could produce potential positive effects on sport performance (strength and anaerobic performance) and for 4 weeks on body composition (increasing fat free mass and decreasing fat mass). However, this combination seems to not show positive effects relating to markers of exercise-induced muscle damage and anabolic-catabolic hormones.
Collapse
|
35
|
|
36
|
Damanti S, Azzolino D, Roncaglione C, Arosio B, Rossi P, Cesari M. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia. Nutrients 2019; 11:E1991. [PMID: 31443594 PMCID: PMC6770476 DOI: 10.3390/nu11091991] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is an age-related and accelerated process characterized by a progressive loss of muscle mass and strength/function. It is a multifactorial process associated with several adverse outcomes including falls, frailty, functional decline, hospitalization, and mortality. Hence, sarcopenia represents a major public health problem and has become the focus of intense research. Unfortunately, no pharmacological treatments are yet available to prevent or treat this age-related condition. At present, the only strategies for the management of sarcopenia are mainly based on nutritional and physical exercise interventions. The purpose of this review is, thus, to provide an overview on the role of proteins and other key nutrients, alone or in combination with physical exercise, on muscle parameters.
Collapse
Affiliation(s)
- Sarah Damanti
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy.
| | - Carlotta Roncaglione
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Paolo Rossi
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
37
|
Mechanism of Action and the Effect of Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation on Different Types of Physical Performance - A Systematic Review. J Hum Kinet 2019; 68:211-222. [PMID: 31531146 PMCID: PMC6724588 DOI: 10.2478/hukin-2019-0070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) has been used extensively as a dietary supplement for athletes and physically active people. HMB is a leucine metabolite, which is one of three branched chain amino acids. HMB plays multiple roles in the human body of which most important ones include protein metabolism, insulin activity and skeletal muscle hypertrophy. The ergogenic effects of HMB supplementation are related to the enhancement of sarcolemma integrity, inhibition of protein degradation (ubiquitin pathway), decreased cell apoptosis, increased protein synthesis (mTOR pathway), stimulation of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and enhancement of muscle stem cells proliferation and differentiation. HMB supplementation has been carried out with various groups of athletes. In endurance and martial arts athletes, HMB supplementation revealed positive effects on specific aerobic capacity variables. Positive results were also disclosed in resistance trained athletes, where changes in strength, body fat and muscle mass as well as anaerobic performance and power output were observed. The purpose of this review was to present the main mechanisms of HMB action, especially related to muscle protein synthesis and degradation, and ergogenic effects on different types of sports and physical activities.
Collapse
|
38
|
Sato S, Nomura M, Yamana I, Uchiyama A, Furuichi Y, Manabe Y, Fujii NL. A new in vitro muscle contraction model and its application for analysis of mTORC1 signaling in combination with contraction and beta-hydroxy-beta-methylbutyrate administration. Biosci Biotechnol Biochem 2019; 83:1851-1857. [PMID: 31159662 DOI: 10.1080/09168451.2019.1625261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several food constituents augment exercise-induced muscle strength improvement; however, the detailed mechanism underlying these combined effects is unknown because of the lack of a cultured cell model for evaluating the contraction-induced muscle protein synthesis level. Here, we aimed to establish a new in vitro muscle contraction model for analyzing the activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. We adopted the tetanic electric stimulation of 50 V at 100 Hz for 10 min in L6.C11 myotubes. Akt, ERK1/2, and p70S6K phosphorylation increased significantly after electrical pulse stimulation (EPS), compared to untreated cells. Next, we used this model to analyze mTORC1 signaling in combination with exercise and beta-hydroxy-beta-methylbutyrate (HMB), an l-leucine metabolite. p70S6K phosphorylation increased significantly in the EPS+HMB group compared to that in the EPS-alone group. These findings show that our model could be used to analyze mTORC1 signaling and that HMB enhances muscle contraction-activated mTORC1 signaling.
Collapse
Affiliation(s)
- Satoko Sato
- Research and Development Headquarters, Lion Corporation , Odawara , Japan
| | - Mitsuru Nomura
- Research and Development Headquarters, Lion Corporation , Odawara , Japan
| | - Ikko Yamana
- Research and Development Headquarters, Lion Corporation , Odawara , Japan
| | - Akira Uchiyama
- Research and Development Headquarters, Lion Corporation , Odawara , Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University , Hachioji , Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University , Hachioji , Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University , Hachioji , Japan
| |
Collapse
|
39
|
Kop-Bozbay C, Ocak N. In ovo injection of branched-chain amino acids: Embryonic development, hatchability and hatching quality of turkey poults. J Anim Physiol Anim Nutr (Berl) 2019; 103:1135-1142. [PMID: 31050076 DOI: 10.1111/jpn.13111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/01/2023]
Abstract
In this study, the influence of a branched-chain amino acid blend (BCAA composed of 3 l-leucine:1 l-valine:2 l-isoleucine) injected into the amniotic fluid was evaluated for embryonic growth, yolk-sac (YS) utilization and development of gastrointestinal tract (GIT) and skeletal muscles of turkey embryos from day 24 of incubation (24E) to hatching, together with hatchability, poult quality and liver L* (lightness), a* (redness) and b* (yellowness) values at hatch. At day 22 of incubation, embryonated eggs (n = 240) were assigned to three treatments, that is, eggs were not injected (control, NC) or injected with 1.5 ml sterile solution with 0.9% salt (SA) or 0.2% BCAA blend (BCAAb). These solutions were injected manually into the amniotic fluid of the embryonated eggs. To determine weights and lengths (where appropriate) of the studied organs and tissues, four embryonated eggs and poults per treatment were selected at 24E and at hatch. While the BCAAb decreased the YS and embryo weight, hatchability and the liver L* value, it increased the weight and quality of poults and the weights of breast and thigh muscles at hatch. In conclusion, the in ovo feeding of the BCAA blend negatively affected hatchability but positively affected hatching weight and poult quality by improving development of skeletal muscles and by regulating energy metabolism.
Collapse
Affiliation(s)
- Canan Kop-Bozbay
- Department of Animal Science, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nuh Ocak
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
40
|
Leucine promotes differentiation of porcine myoblasts through the protein kinase B (Akt)/Forkhead box O1 signalling pathway. Br J Nutr 2019; 119:727-733. [PMID: 29569540 DOI: 10.1017/s0007114518000181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leucine, one of the branched-chain amino acids, is the only amino acid to regulate protein turnover in skeletal muscle. Leucine not only increases muscle protein synthesis, but also decreases muscle protein degradation. It is well documented that leucine plays a positive role in differentiation of murine muscle cells. However, the role of leucine on porcine myoblast differentiation and its mechanism remains unclear. In this study, porcine myoblasts were induced to differentiate with differentiation medium containing different concentrations of leucine, and wortmannin was used to interdict the activity of protein kinase B (Akt). We found that leucine increased the number of myosin heavy chain-positive cells and creatine kinase activity. Moreover, leucine increased the mRNA and protein levels of myogenin and myogenic determining factor (MyoD). In addition, leucine increased the levels of phosphorylated Akt/Akt and phosphorylated Forkhead box O1 (P-FoxO1)/FoxO1, as well as decreased the protein level of FoxO1. However, wortmannin, a specific repressor of PI3K/Akt signalling pathway, attenuated the positive role of leucine on porcine myoblast differentiation. Our results suggest that leucine promotes porcine myoblast differentiation through the Akt/FoxO1 signalling pathway.
Collapse
|
41
|
Maternal β-hydroxy-β-methylbutyrate (HMB) supplementation during pregnancy affects early folliculogenesis in the ovary of newborn piglets. Theriogenology 2019; 128:91-100. [PMID: 30743108 DOI: 10.1016/j.theriogenology.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with protein anabolic effects. This study was designed to determine whether prenatal HMB treatment has an effect on oogenesis and folliculogenesis in the ovary of newborn piglets. HMB decreased the number of egg nests and primordial follicles and increased the pool of developing follicles compared to the control group. Although the percentage of TUNEL-positive oocytes within the egg nests was higher in HMB-treated group no increase in the Bax/Bcl-2 ratio and active caspase-3 expression was observed. Moreover, the granulosa cell proliferation index and StAR protein expression were higher in HMB-treated group. In contrast to the control group, the expression of E-cadherins was reduced after the HMB treatment. In addition, a significant increase in the serum level of gonadotropins and steroid hormones was detected in HMB-treated piglets. In conclusion, prenatal HMB treatment dysregulates hormonal homeostasis which impairs early folliculogenesis in piglets.
Collapse
|
42
|
Tomaszewska E, Muszyński S, Dobrowolski P, Wiącek D, Tomczyk-Warunek A, Świetlicka I, Pierzynowski SG. Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J Anim Physiol Anim Nutr (Berl) 2019; 103:626-643. [PMID: 30659706 DOI: 10.1111/jpn.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 01/14/2023]
Abstract
It has been demonstrated in animal studies that prenatal administration of β-hydroxy-β-methylbutyrate (HMB, metabolite of leucine) influences general growth and mechanical endurance of long bones in newborn offspring in sex-dependent manner. The present experiment was conducted to evaluate the effect of HMB treatment of pregnant sows on bone development in offspring at weaning. From 70th day until the 90th day of gestation, sows received either a basal diet (n = 12) or the same diet supplemented with HMB (n = 12) at the dose of 0.2 g/kg of body weight/day. Femora obtained from six males and females in each group weaned at the age of 35 days were examined. Maternal HMB treatment significantly enhanced body weight and changed bone morphology increasing femur mechanical strength in both sexes. Maternal HMB supplementation also elevated bone micro- and macroelement concentrations and enhanced content of proteoglycans in articular cartilage. Based on the obtained results, it can be concluded that maternal HMB supplementation in the mid-gestation period significantly accelerated bone development in both sexes by upregulation of a multifactorial system including leptin and osteoprotegerin. However, the sex (irrespective of the HMB treatment) was the factor which influenced the collagen structure in cartilages and trabecular bone, as demonstrated both by the Picrosirius red staining and performed analysis of thermal stability of collagenous tissues. The structural differences in collagen between males and females were presumably related to a different collagen maturity. No studies conducted so far provided a detailed morphological analysis of bone, articular cartilage, growth plate and the activities of the somatotropic and pituitary-gonadal axes, as well as leptin/osteoprotegerin system in weaned offspring prenatally treated with HMB. This study showed also the relationship between the maternal HMB treatment and bone osteometric and mechanical traits, hormones, and growth and bone turnover markers such as leptin, osteoprotegerin and insulin-like growth factor-1.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dariusz Wiącek
- Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Lublin, Poland
| | - Agnieszka Tomczyk-Warunek
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Izabela Świetlicka
- Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | | |
Collapse
|
43
|
Zhang Z, Zhao LD, Johnson SE, Rhoads ML, Jiang H, Rhoads RP. Oxytocin is involved in steroid hormone-stimulated bovine satellite cell proliferation and differentiation in vitro. Domest Anim Endocrinol 2019; 66:1-13. [PMID: 30195176 DOI: 10.1016/j.domaniend.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/12/2018] [Accepted: 07/28/2018] [Indexed: 11/17/2022]
Abstract
Sex steroid hormones are used in the meat industry due to their ability to regulate muscle hypertrophy. However, the mechanisms underlying their action are not fully elucidated. Recent reports demonstrate that steroid hormones increase oxytocin (OXT) expression in skeletal muscle, indicating that OXT may play a role in satellite cell activity. This hypothesis was tested using steroid hormones (17β-estradiol [E2]; trenbolone acetate [TBA]), tamoxifen (TAM), OXT, and atosiban (A: OXT receptor inhibitor) applied to bovine satellite cells (BSCs) to investigate BSC regulation by OXT. Oxytocin alone increased fusion index (P < 0.05) but not BSC proliferation. Oxytocin reduced (P < 0.05) apoptotic nuclei and stimulated migration rate (P < 0.05). Similarly, E2 and TBA increased (P < 0.05) BSC proliferation rate, fusion index, and migration and decreased (P < 0.05) apoptotic nuclei. 17β-Estradiol or TBA supplemented with A had lower (P < 0.05) BSC proliferation rate, fusion index, and migration and more (P < 0.05) apoptotic nuclei compared with E2 or TBA alone. Furthermore, OXT expression increased (P < 0.05) in E2 or TBA-treated proliferating BSC. Oxytocin, E2, and TBA increased (P < 0.05) MyoD and MyoG expression in proliferating BSC. During BSC differentiation, OXT expression increased (P < 0.05) with E2 or TBA treatments. MyoG expression increased (P < 0.05) in OXT, E2, and TBA compared with control. However, A, OXT + A, TAM, TAM + OXT, E2 + TAM, E2 + A, and TBA + A decreased (P < 0.05) MyoG expression during BSC differentiation. These results indicate that OXT is involved in steroid hormone-stimulated BSC activity.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lidan D Zhao
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Michelle L Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
44
|
Jung HW, Kim SW, Kim IY, Lim JY, Park HS, Song W, Yoo HJ, Jang HC, Kim K, Park Y, Park YJ, Yang SJ, Lee HJ, Won CW. Protein Intake Recommendation for Korean Older Adults to Prevent Sarcopenia: Expert Consensus by the Korean Geriatric Society and the Korean Nutrition Society. Ann Geriatr Med Res 2018; 22:167-175. [PMID: 32743269 PMCID: PMC7387625 DOI: 10.4235/agmr.18.0046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
Sarcopenia, a common clinical syndrome in older adults, is defined as decreased muscle mass, strength, and physical performance. Since sarcopenia is associated with the incidence of functional decline, falls, and even mortality in older adults, researchers and health care providers have been keen to accumulate clinical evidence to advocate the screening and prevention of sarcopenia progression in older adults. The factors that may accelerate the loss of muscle mass and function include chronic diseases, inactivity, and deficiency in appropriate nutritional support. Among these, nutritional support is considered an initial step to delay the progression of muscle wasting and improve physical performance in community-dwelling older adults. However, a nationwide study suggested that most Korean older adults do not consume sufficient dietary protein to maintain their muscle mass. Furthermore, considering age-associated anabolic resistance to dietary protein, higher protein intake should be emphasized in older adults than in younger people. To develop a dietary protein recommendation for older adults in Korea, we reviewed the relevant literature, including interventional studies from Korea. From these, we recommend that older adults consume at least 1.2 g of protein per kg of body weight per day (g/kg/day) to delay the progression of muscle wasting. The amount we recommend (1.2 g/kg/day) is 31.4% higher than the previously suggested recommended daily allowance (i.e., 0.91 g/kg/day) for the general population of Korea. Also, evidence to date suggests that the combination of exercise and nutritional support may enhance the beneficial effects of protein intake in older adults in Korea. We found that the current studies are insufficient to build population-based guidelines for older adults, and we call for further researches in Korea.
Collapse
Affiliation(s)
- Hee-Won Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sun-Wook Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Il-Young Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon, Korea
| | - Jae-Young Lim
- Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Seoul National University College of Medicine, Seoul, Korea
| | - Hyoung-Su Park
- Sarcopenia Research Center, Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek, Korea
| | - Wook Song
- Institute of Sport Science, Institute on Aging, Seoul National University, Seoul, Korea
| | - Hyung Joon Yoo
- Endocrine Division, Department of Internal Medicine, CM Hospital, Seoul, Korea
| | - Hak-Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Seoul National University College of Medicine, Seoul, Korea
| | - Kirang Kim
- Department of Food Science and Nutrition, Dankook University, Seoul, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul, Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Seongnam, Korea
| | - Chang Won Won
- Department of Family Medicine, Kyung Hee University Medical Center, Seoul, Korea
| |
Collapse
|
45
|
Rudar M, Fiorotto ML, Davis TA. Regulation of Muscle Growth in Early Postnatal Life in a Swine Model. Annu Rev Anim Biosci 2018; 7:309-335. [PMID: 30388025 DOI: 10.1146/annurev-animal-020518-115130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle growth during the early postnatal period is rapid in the pig and dependent on the capacity of muscle to respond to anabolic and catabolic stimuli. Muscle mass is driven by the balance between protein synthesis and degradation. Among these processes, muscle protein synthesis in the piglet is exceptionally sensitive to the feeding-induced postprandial changes in insulin and amino acids, whereas muscle protein degradation is affected only during specific catabolic states. The developmental decline in the response of muscle to feeding is associated with changes in the signaling pathways located upstream and downstream of the mechanistic target of rapamycin protein complex. Additionally, muscle growth is supported by an accretion of nuclei derived from satellite cells. Activated satellite cells undergo proliferation, differentiation, and fusion with adjacent growing muscle fibers. Enhancing early muscle growth through modifying protein synthesis, degradation, and satellite cell activity is key to maximizing performance, productivity, and lifelong pig health.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| |
Collapse
|
46
|
Gepner Y, Varanoske AN, Boffey D, Hoffman JR. Benefits of β-hydroxy-β-methylbutyrate supplementation in trained and untrained individuals. Res Sports Med 2018; 27:204-218. [PMID: 30348016 DOI: 10.1080/15438627.2018.1533470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
β-Hydroxy-β-Methylbutyrate (HMB) is a metabolite of the branched-chain amino acid leucine and its ketoacid α-ketoisocaproate. HMB has been widely used as an ergogenic supplement to increase muscle strength, muscle hypertrophy and enhance recovery. The physiological mechanisms that underlie these benefits are related to HMB's ability to stimulate muscle protein synthesis and minimize muscle breakdown. Although evidence supporting the benefits of HMB supplementation is not conclusive, many of these studies have suffered from methodological flaws including different formulations, supplement duration and population studied. HMB in its free acid formulation is suggestive of having a greater potential for efficacy in both trained and untrained populations than its calcium-salt form. However, the evidence regarding HMB's role in limiting muscle degradation and increasing muscle protein synthesis has created an exciting interest in examining its efficacy among untrained individuals. Recent investigations examining intense training have demonstrated efficacy in maintaining muscle mass and attenuating the inflammatory response.
Collapse
Affiliation(s)
- Yftach Gepner
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| | - Alyssa N Varanoske
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| | - David Boffey
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| | - Jay R Hoffman
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| |
Collapse
|
47
|
Arazi H, Taati B, Suzuki K. A Review of the Effects of Leucine Metabolite (β-Hydroxy-β-methylbutyrate) Supplementation and Resistance Training on Inflammatory Markers: A New Approach to Oxidative Stress and Cardiovascular Risk Factors. Antioxidants (Basel) 2018; 7:antiox7100148. [PMID: 30347824 PMCID: PMC6210682 DOI: 10.3390/antiox7100148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/03/2018] [Accepted: 10/18/2018] [Indexed: 01/03/2023] Open
Abstract
β-hydroxy β-methylbutyrate (HMB) is a bioactive metabolite formed from the breakdown of the branched-chain amino acid, leucine. Given the popularity of HMB supplements among different athletes, specifically, those who participate in regular resistance training, this review was performed to summarize current literature on some aspects of HMB supplementation that have received less attention. Because of the small number of published studies, it has not been possible to conclude the exact effects of HMB on cardiovascular parameters, oxidative stress, and inflammatory markers. Thus, the interpretation of outcomes should be taken cautiously. However, the data presented here suggest that acute HMB supplementation may attenuate the pro-inflammatory response following an intense bout of resistance exercise in athletes. Also, the available findings collectively indicate that chronic HMB consumption with resistance training does not improve cardiovascular risk factors and oxidative stress markers greater than resistance training alone. Taken together, there is clearly a need for further well-designed, long-term studies to support these findings and determine whether HMB supplementation affects the adaptations induced by resistance training associated with the body’s inflammatory condition, antioxidative defense system, and cardiovascular risk factors in humans.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran.
| | - Behzad Taati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| |
Collapse
|
48
|
Wang J, Tan J, Qi Q, Yang L, Wang Y, Zhang C, Hu L, Chen H, Fang X. miR-487b-3p Suppresses the Proliferation and Differentiation of Myoblasts by Targeting IRS1 in Skeletal Muscle Myogenesis. Int J Biol Sci 2018; 14:760-774. [PMID: 29910686 PMCID: PMC6001677 DOI: 10.7150/ijbs.25052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are endogenous, small non-coding RNAs that can play critical gene-regulatory roles during skeletal muscle development and are highly conserved. miR-487b-3p is expressed in muscle, and the detailed mechanism by which it regulates myoblast proliferation and differentiation has not been explored. Here, we found that miR-487b-3p expression was significantly higher in goat muscle tissues than in other tissues and was higher in fetal goat muscle tissues than in mature goat tissues, suggesting that miR-487b-3p has an important effect on skeletal muscle myogenesis. Functional studies showed that miR-487b-3p overexpression significantly suppressed C2C12 myoblast proliferation and differentiation, which was accompanied by the down-regulation of functional genes related to proliferation (MyoD, Pax7 and PCNA) and differentiation (Myf5, MyoG and Mef2c), whereas the inhibition of miR-487b-3p accelerated C2C12 myoblast proliferation and differentiation and was accompanied by the up-regulation of functional genes. Using Target-Scan and David, we found that miR-487b-3p targeted the 3'-UTR of IRS1, an essential regulator in the PI3K/Akt and MAPK/Erk pathways. We then confirmed the targeting of IRS1 by miR-487b-3p using dual-luciferase assays, RT-qPCR and western blotting. Furthermore, IRS1 silencing markedly inhibited proliferation and differentiation in cultured C2C12 myoblasts, confirming the important role of IRS1 in myogenesis. These results reveal an IRS1-mediated regulatory link between miR-487b-3p and the PI3K/Akt and MAPK/Erk pathways during skeletal muscle myogenesis.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jiaoyan Tan
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Qi Qi
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lingzhi Yang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| |
Collapse
|
49
|
Chodkowska KA, Ciecierska A, Majchrzak K, Ostaszewski P, Sadkowski T. Effect of β-hydroxy-β-methylbutyrate on miRNA expression in differentiating equine satellite cells exposed to hydrogen peroxide. GENES AND NUTRITION 2018; 13:10. [PMID: 29662554 PMCID: PMC5892041 DOI: 10.1186/s12263-018-0598-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Background Skeletal muscle injury activates satellite cells to initiate processes of proliferation, differentiation, and hypertrophy in order to regenerate muscle fibers. The number of microRNAs and their target genes are engaged in satellite cell activation. β-Hydroxy-β-methylbutyrate (HMB) is known to prevent exercise-induced muscle damage. The purpose of this study was to evaluate the effect of HMB on miRNA and relevant target gene expression in differentiating equine satellite cells exposed to H2O2. We hypothesized that HMB may regulate satellite cell activity, proliferation, and differentiation, hence attenuate the pathological processes induced during an in vitro model of H2O2-related injury by changing the expression of miRNAs. Methods Equine satellite cells (ESC) were isolated from the samples of skeletal muscle collected from young horses. ESC were treated with HMB (24 h) and then exposed to H2O2 (1 h). For the microRNA and gene expression assessment microarrays, technique was used. Identified miRNAs and genes were validated using real-time qPCR. Cell viability, oxidative stress, and cell damage were measured using colorimetric method and flow cytometry. Results Analysis of miRNA and gene profile in differentiating ESC pre-incubated with HMB and then exposed to H2O2 revealed difference in the expression of 27 miRNAs and 4740 genes, of which 344 were potential target genes for identified miRNAs. Special attention was focused on differentially expressed miRNAs and their target genes involved in processes related to skeletal muscle injury. Western blot analysis showed protein protection in HMB-pre-treated group compared to control. The viability test confirmed that HMB enhanced cell survival after the hydrogen peroxide exposition. Conclusions Our results suggest that ESC pre-incubated with HMB and exposed to H2O2 could affect expression on miRNA levels responsible for skeletal muscle development, cell proliferation and differentiation, and activation of tissue repair after injury. Enrichment analyses for targeted genes revealed that a large group of genes was associated with the regulation of signaling pathways crucial for muscle tissue development, protein metabolism, muscle injury, and regeneration, as well as with oxidative stress response.
Collapse
Affiliation(s)
- Karolina A Chodkowska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
50
|
Reidy PT, Fry CS, Dickinson JM, Drummond MJ, Rasmussen BB. Postexercise essential amino acid supplementation amplifies skeletal muscle satellite cell proliferation in older men 24 hours postexercise. Physiol Rep 2018; 5:5/11/e13269. [PMID: 28596299 PMCID: PMC5471431 DOI: 10.14814/phy2.13269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022] Open
Abstract
Aged skeletal muscle has an attenuated and delayed ability to proliferate satellite cells in response to resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a focal point for cell growth, however, the effect of postexercise mTORC1 activation on human skeletal muscle satellite cell (SC) proliferation is unknown. To test the proliferative capacity of skeletal muscle SC in aging muscle to a potent mTORC1 activator (i.e., EAA; essential amino acids) we recruited older (~72y) men to conduct leg resistance exercise (8setsx10reps) without (−EAA; n = 8) and with (+EAA: n = 11) ingestion of 10 g of EAA 1 h postexercise. Muscle biopsies were taken before exercise (Pre) and 24 h postexercise (Post) for assessment of expression and fiber type‐specific Pax7+SC, Ki67+Pax7+SC and MyoD+SC. −EAA did not show an increase in Pax7+ satellite cells at Post(P > 0.82). Although statistical significance for an increase in Pax7 + SC at 24 h post‐RE was not observed in +EAA versus −EAA, we observed trends for a treatment difference (P < 0.1). When examining the change from Pre to Post trends were demonstrated (#/myofiber: P = 0.076; and %/myonuclei: P = 0.065) for a greater increase in +EAA versus −EAA. Notably, we found an increase SC proliferation in +EAA, but not −EAA with increase in Ki67+SC and MyoD+ cells (P < 0.05). Ki67+SC also exhibited a significant group difference Post (P < 0.010). Pax7+SC in fast twitch myofibers did not change and were not different between groups (P > 0.10). CDK2, MEF2C, RB1 mRNA only increased in +EAA (P < 0.05). Acute muscle satellite cell proliferative capacity may be partially rescued with postexercise EAA ingestion in older men.
Collapse
Affiliation(s)
- Paul T Reidy
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas.,Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Jared M Dickinson
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas.,Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Micah J Drummond
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Blake B Rasmussen
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas .,Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|