1
|
Stejerean-Todoran I, Gibhardt CS, Bogeski I. Calcium signals as regulators of ferroptosis in cancer. Cell Calcium 2024; 124:102966. [PMID: 39504596 DOI: 10.1016/j.ceca.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The field of ferroptosis research has grown exponentially since this form of cell death was first identified over a decade ago. Ferroptosis, an iron- and ROS-dependent type of cell death, is controlled by various metabolic pathways, including but not limited to redox and calcium (Ca2+) homeostasis, iron fluxes, mitochondrial function and lipid metabolism. Importantly, therapy-resistant tumors are particularly susceptible to ferroptotic cell death, rendering ferroptosis a promising therapeutic strategy against numerous malignancies. Calcium signals are important regulators of both cancer progression and cell death, with recent studies indicating their involvement in ferroptosis. Cells undergoing ferroptosis are characterized by plasma membrane rupture and the formation of nanopores, which facilitate influx of ions such as Ca2+ into the affected cells. Furthermore, mitochondrial Ca²⁺ levels have been implicated in directly influencing the cellular response to ferroptosis. Despite the remarkable progress made in the field, our understanding of the contribution of Ca2+ signals to ferroptosis remains limited. Here, we summarize key connections between Ca²⁺ signaling and ferroptosis in cancer pathobiology and discuss their potential therapeutic significance.
Collapse
Affiliation(s)
- Ioana Stejerean-Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
2
|
Serwach K, Nurowska E, Klukowska M, Zablocka B, Gruszczynska-Biegala J. STIM2 regulates NMDA receptor endocytosis that is induced by short-term NMDA receptor overactivation in cortical neurons. Cell Mol Life Sci 2023; 80:368. [PMID: 37989792 PMCID: PMC10663207 DOI: 10.1007/s00018-023-05028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Recent findings suggest an important role for the dysregulation of stromal interaction molecule (STIM) proteins, activators of store-operated Ca2+ channels, and the prolonged activation of N-methyl-D-aspartate receptors (NMDARs) in the development of neurodegenerative diseases. We previously demonstrated that STIM silencing increases Ca2+ influx through NMDAR and STIM-NMDAR2 complexes are present in neurons. However, the interplay between NMDAR subunits (GluN1, GluN2A, and GluN2B) and STIM1/STIM2 with regard to intracellular trafficking remains unknown. Here, we found that the activation of NMDAR endocytosis led to an increase in STIM2-GluN2A and STIM2-GluN2B interactions in primary cortical neurons. STIM1 appeared to migrate from synaptic to extrasynaptic sites. STIM2 silencing inhibited post-activation NMDAR translocation from the plasma membrane and synaptic spines and increased NMDAR currents. Our findings reveal a novel molecular mechanism by which STIM2 regulates NMDAR synaptic trafficking by promoting NMDAR endocytosis after receptor overactivation, which may suggest protection against excessive uncontrolled Ca2+ influx through NMDARs.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Nurowska
- Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Marta Klukowska
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Zablocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
3
|
Augustynek B, Gyimesi G, Dernič J, Sallinger M, Albano G, Klesse GJ, Kandasamy P, Grabmayr H, Frischauf I, Fuster DG, Peinelt C, Hediger MA, Bhardwaj R. Discovery of novel gating checkpoints in the Orai1 calcium channel by systematic analysis of constitutively active mutants of its paralogs and orthologs. Cell Calcium 2022; 105:102616. [PMID: 35792401 DOI: 10.1016/j.ceca.2022.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
In humans, there are three paralogs of the Orai Ca2+ channel that form the core of the store-operated calcium entry (SOCE) machinery. While the STIM-mediated gating mechanism of Orai channels is still under active investigation, several artificial and natural variants are known to cause constitutive activity of the human Orai1 channel. Surprisingly, little is known about the conservation of the gating checkpoints among the different human Orai paralogs and orthologs in other species. In our work, we show that the mutation corresponding to the activating mutation H134A in transmembrane helix 2 (TM2) of human Orai1 also activates Orai2 and Orai3, likely via a similar mechanism. However, this cross-paralog conservation does not apply to the "ANSGA" nexus mutations in TM4 of human Orai1, which is reported to mimic the STIM1-activated state of the channel. In investigating the mechanistic background of these differences, we identified two positions, H171 and F246 in human Orai1, that are not conserved among paralogs and that seem to be crucial for the channel activation triggered by the "ANSGA" mutations in Orai1. However, mutations of the same residues still allow gating of Orai1 by STIM1, suggesting that the ANSGA mutant of Orai1 may not be a surrogate for the STIM1-activated state of the Orai1 channel. Our results shed new light on these important gating checkpoints and show that the gating mechanism of Orai channels is affected by multiple factors that are not necessarily conserved among orai homologs, such as the TM4-TM3 coupling.
Collapse
Affiliation(s)
- Bartłomiej Augustynek
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Jan Dernič
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Giuseppe Albano
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gabriel J Klesse
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Daniel G Fuster
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland.
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland; Current address: Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, 111 TW Alexander Drive, NC 27709, USA.
| |
Collapse
|
4
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
5
|
Knörck A, Schäfer G, Alansary D, Richter J, Thurner L, Hoth M, Schwarz EC. Cytotoxic Efficiency of Human CD8+ T Cell Memory Subtypes. Front Immunol 2022; 13:838484. [PMID: 35493468 PMCID: PMC9043813 DOI: 10.3389/fimmu.2022.838484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
Immunological memory is important to protect humans against recurring diseases. Memory CD8+ T cells are required for quick expansion into effector cells but also provide immediate cytotoxicity against their targets. Whereas many functions of the two main cytotoxic subtypes, effector memory CD8+ T cells (TEM) and central memory CD8+ T cells (TCM), are well defined, single TEM and TCM cell cytotoxicity has not been quantified. To quantify cytotoxic efficiency of TEM and TCM, we developed a FRET-based single cell fluorescent assay with NALM6 target cells which allows analysis of target cell apoptosis, secondary necrosis following apoptosis, and primary necrosis after TEM- or TCM-target cell contact. Both, single cell and population cytotoxicity assays reveal a higher cytotoxic efficiency of TEM compared to TCM, as quantified by target cell apoptosis and secondary necrosis. Perforin, granzyme B, FasL, but not TRAIL expression are higher in TEM compared to TCM. Higher perforin levels (likely in combination with higher granzyme levels) mediate higher cytotoxic efficiency of TEM compared to TCM. Both, TEM and TCM need the same time to find their targets, however contact time between CTL and target, time to induce apoptosis, and time to induce secondary necrosis are all shorter for TEM. In addition, immune synapse formation in TEM appears to be slightly more efficient than in TCM. Defining and quantifying single TEM and TCM cytotoxicity and the respective mechanisms is important to optimize future subset-based immune therapies.
Collapse
Affiliation(s)
- Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Gertrud Schäfer
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Josephine Richter
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Lorenz Thurner
- Internal Medicine I, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Eva C. Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
- *Correspondence: Eva C. Schwarz,
| |
Collapse
|
6
|
Souza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022; 11:1190. [PMID: 35406753 PMCID: PMC8997886 DOI: 10.3390/cells11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.
Collapse
Affiliation(s)
- Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Barbara A. Niemeyer
- Department of Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany;
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
7
|
Title: p53 alters intracellular Ca2+ signaling through regulation of TRPM4. Cell Calcium 2022; 104:102591. [DOI: 10.1016/j.ceca.2022.102591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
|
8
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
9
|
Fresquez AM, White C. Extracellular cysteines C226 and C232 mediate hydrogen sulfide-dependent inhibition of Orai3-mediated store-operated calcium entry. Am J Physiol Cell Physiol 2022; 322:C38-C48. [PMID: 34788146 PMCID: PMC8759961 DOI: 10.1152/ajpcell.00490.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) physiologically regulates store-operated Ca2+ entry (SOCE). The SOCE machinery consists of the plasma membrane-localized Orai channels (Orai1-3) and endoplasmic reticulum-localized stromal interaction molecule (STIM)1 and STIM2 proteins. H2S inhibits Orai3- but not Orai1- or Orai2-mediated SOCE. The current objective was to define the mechanism by which H2S selectively modifies Orai3. We measured SOCE and STIM1/Orai3 dynamics and interactions in HEK293 cells exogenously expressing fluorescently tagged human STIM1 and Orai3 in the presence and absence of the H2S donor GYY4137. Two cysteines (C226 and C232) are present in Orai3 that are absent in the Orai1 and Orai2. When we mutated either of these cysteines to serine, alone or in combination, SOCE inhibition by H2S was abolished. We also established that inhibition was dependent on an interaction with STIM1. To further define the effects of H2S on STIM1/Orai3 interaction, we performed a series of fluorescence recovery after photobleaching (FRAP), colocalization, and fluorescence resonance energy transfer (FRET) experiments. Treatment with H2S did not affect the mobility of Orai3 in the membrane, nor did it influence STIM1/Orai3 puncta formation or STIM1-Orai3 protein-protein interactions. These data support a model in which H2S modification of Orai3 at cysteines 226 and 232 limits SOCE evoked upon store depletion and STIM1 engagement, by a mechanism independent of the interaction between Orai3 and STIM1.
Collapse
Affiliation(s)
- Adriana M. Fresquez
- 1Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois,2Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Carl White
- 1Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois,2Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
10
|
Orai2 Modulates Store-Operated Ca 2+ Entry and Cell Cycle Progression in Breast Cancer Cells. Cancers (Basel) 2021; 14:cancers14010114. [PMID: 35008277 PMCID: PMC8749845 DOI: 10.3390/cancers14010114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is a heterogeneous disease from the histological and molecular expression point of view, and this heterogeneity determines cancer aggressiveness. Store-operated Ca2+ entry (SOCE), a major mechanism for Ca2+ entry in non-excitable cells, is significantly remodeled in cancer cells and plays an important role in the development and support of different cancer hallmarks. The store-operated CRAC (Ca2+ release-activated Ca2+) channels are predominantly comprised of Orai1 but the participation of Orai2 and Orai3 subunits has been reported to modulate the magnitude of Ca2+ responses. Here we provide evidence for a heterogeneous expression of Orai2 among different breast cancer cell lines. In the HER2 and triple negative breast cancer cell lines SKBR3 and BT20, respectively, where the expression of Orai2 was greater, Orai2 modulates the magnitude of SOCE and sustain Ca2+ oscillations in response to carbachol. Interestingly, in these cells Orai2 modulates the activation of NFAT1 and NFAT4 in response to high and low agonist concentrations. Finally, we have found that, in cells with high Orai2 expression, Orai2 knockdown leads to cell cycle arrest at the G0-G1 phase and decreases apoptosis resistance upon cisplatin treatment. Altogether, these findings indicate that, in breast cancer cells with a high Orai2 expression, Orai2 plays a relevant functional role in agonist-evoked Ca2+ signals, cell proliferation and apoptosis resistance.
Collapse
|
11
|
Hunanyan L, Ghamaryan V, Makichyan A, Popugaeva E. Computer-Based Drug Design of Positive Modulators of Store-Operated Calcium Channels to Prevent Synaptic Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222413618. [PMID: 34948414 PMCID: PMC8707499 DOI: 10.3390/ijms222413618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Store-operated calcium entry (SOCE) constitutes a fine-tuning mechanism responsible for the replenishment of intracellular stores. Hippocampal SOCE is regulated by store-operated channels (SOC) organized in tripartite complex TRPC6/ORAI2/STIM2. It is suggested that in neurons, SOCE maintains intracellular homeostatic Ca2+ concentration at resting conditions and is needed to support the structure of dendritic spines. Recent evidence suggests that positive modulators of SOC are prospective drug candidates to treat Alzheimer’s disease (AD) at early stages. Although STIM2 and ORAI2 are definitely involved in the regulation of nSOC amplitude and a play major role in AD pathogenesis, growing evidence suggest that it is not easy to target these proteins pharmacologically. Existing positive modulators of TRPC6 are unsuitable for drug development due to either bad pharmacokinetics or side effects. Thus, we concentrate the review on perspectives to develop specific nSOC modulators based on available 3D structures of TRPC6, ORAI2, and STIM2. We shortly describe the structural features of existing models and the methods used to prepare them. We provide commonly used steps applied for drug design based on 3D structures of target proteins that might be used to develop novel AD preventing therapy.
Collapse
Affiliation(s)
- Lernik Hunanyan
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Viktor Ghamaryan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Ani Makichyan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
12
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
13
|
West SJ, Kodakandla G, Wang Q, Tewari R, Zhu MX, Boehning D, Akimzhanov AM. S-acylation of Orai1 regulates store-operated Ca2+ entry. J Cell Sci 2021; 135:269207. [PMID: 34156466 DOI: 10.1242/jcs.258579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Store-operated Ca2+ entry is a central component of intracellular Ca2+ signaling pathways. The Ca2+ release-activated channel (CRAC) mediates store-operated Ca2+ entry in many different cell types. The CRAC channel is composed of the plasma membrane (PM)-localized Orai1 channel and endoplasmic reticulum (ER)-localized STIM1 Ca2+ sensor. Upon ER Ca2+ store depletion, Orai1 and STIM1 form complexes at ER-PM junctions, leading to the formation of activated CRAC channels. Although the importance of CRAC channels is well described, the underlying mechanisms that regulate the recruitment of Orai1 to ER-PM junctions are not fully understood. Here, we describe the rapid and transient S-acylation of Orai1. Using biochemical approaches, we show that Orai1 is rapidly S-acylated at cysteine 143 upon ER Ca2+ store depletion. Importantly, S-acylation of cysteine 143 is required for Orai1-mediated Ca2+ entry and recruitment to STIM1 puncta. We conclude that store depletion-induced S-acylation of Orai1 is necessary for recruitment to ER-PM junctions, subsequent binding to STIM1 and channel activation.
Collapse
Affiliation(s)
- Savannah J West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Qioachu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ritika Tewari
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Askar M Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
14
|
Sánchez-Collado J, López JJ, Rosado JA. The Orai1-AC8 Interplay: How Breast Cancer Cells Escape from Orai1 Channel Inactivation. Cells 2021; 10:1308. [PMID: 34070268 PMCID: PMC8225208 DOI: 10.3390/cells10061308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
The interplay between the Ca2+-sensitive adenylyl cyclase 8 (AC8) and Orai1 channels plays an important role both in the activation of the cAMP/PKA signaling and the modulation of Orai1-dependent Ca2+ signals. AC8 interacts with a N-terminal region that is exclusive to the Orai1 long variant, Orai1α. The interaction between both proteins allows the Ca2+ that enters the cell through Orai1α to activate the generation of cAMP by AC8. Subsequent PKA activation results in Orai1α inactivation by phosphorylation at serine-34, thus shaping Orai1-mediated cellular functions. In breast cancer cells, AC8 plays a relevant role supporting a variety of cancer hallmarks, including proliferation and migration. Breast cancer cells overexpress AC8, which shifts the AC8-Orai1 stoichiometry in favor of the former and leads to the impairment of PKA-dependent Orai1α inactivation. This mechanism contributes to the enhanced SOCE observed in triple-negative breast cancer cells. This review summarizes the functional interaction between AC8 and Orai1α in normal and breast cancer cells and its relevance for different cancer features.
Collapse
Affiliation(s)
| | - José J. López
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain;
| | - Juan A. Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain;
| |
Collapse
|
15
|
Ye Z, Shen Y, Jin K, Qiu J, Hu B, Jadhav RR, Sheth K, Weyand CM, Goronzy JJ. Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation. Nat Commun 2021; 12:907. [PMID: 33568645 PMCID: PMC7875984 DOI: 10.1038/s41467-021-21242-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are two distinct autoimmune diseases that manifest with chronic synovial inflammation. Here, we show that CD4+ T cells from patients with RA and PsA have increased expression of the pore-forming calcium channel component ORAI3, thereby increasing the activity of the arachidonic acid-regulated calcium-selective (ARC) channel and making T cells sensitive to arachidonic acid. A similar increase does not occur in T cells from patients with systemic lupus erythematosus. Increased ORAI3 transcription in RA and PsA T cells is caused by reduced IKAROS expression, a transcriptional repressor of the ORAI3 promoter. Stimulation of the ARC channel with arachidonic acid induces not only a calcium influx, but also the phosphorylation of components of the T cell receptor signaling cascade. In a human synovium chimeric mouse model, silencing ORAI3 expression in adoptively transferred T cells from patients with RA attenuates tissue inflammation, while adoptive transfer of T cells from healthy individuals with reduced expression of IKAROS induces synovitis. We propose that increased ARC activity due to reduced IKAROS expression makes T cells more responsive and contributes to chronic inflammation in RA and PsA. ORAI3 is part of pore forming calcium channels involved in T cell activation. Here the authors show that there is increased expression of ORAI3 in T cells from patients with rheumatoid arthritis and that the transcription factor IKAROS negatively regulates the ORAI3 promoter, indicating a regulatory loop that can control auto-reactivity of T cells in these patients.
Collapse
Affiliation(s)
- Zhongde Ye
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Yi Shen
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ke Jin
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jingtao Qiu
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Bin Hu
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rohit R Jadhav
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Khushboo Sheth
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M Weyand
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jörg J Goronzy
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA. .,Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Hodeify R, Dib M, Alcantara-Adap E, Courjaret R, Nader N, Reyes CZ, Hammad AS, Hubrack S, Yu F, Machaca K. The carboxy terminal coiled-coil modulates Orai1 internalization during meiosis. Sci Rep 2021; 11:2290. [PMID: 33504898 PMCID: PMC7840751 DOI: 10.1038/s41598-021-82048-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Regulation of Ca2+ signaling is critical for the progression of cell division, especially during meiosis to prepare the egg for fertilization. The primary Ca2+ influx pathway in oocytes is Store-Operated Ca2+ Entry (SOCE). SOCE is tightly regulated during meiosis, including internalization of the SOCE channel, Orai1. Orai1 is a four-pass membrane protein with cytosolic N- and C-termini. Orai1 internalization requires a caveolin binding motif (CBM) in the N-terminus as well as the C-terminal cytosolic domain. However, the molecular determinant for Orai1 endocytosis in the C-terminus are not known. Here we show that the Orai1 C-terminus modulates Orai1 endocytosis during meiosis through a structural motif that is based on the strength of the C-terminal intersubunit coiled coil (CC) domains. Deletion mutants show that a minimal C-terminal sequence after transmembrane domain 4 (residues 260–275) supports Orai1 internalization. We refer to this region as the C-terminus Internalization Handle (CIH). Access to CIH however is dependent on the strength of the intersubunit CC. Mutants that increase the stability of the coiled coil prevent internalization independent of specific mutation. We further used human and Xenopus Orai isoforms with different propensity to form C-terminal CC and show a strong correlation between the strength of the CC and Orai internalization. Furthermore, Orai1 internalization does not depend on clathrin, flotillin or PIP2. Collectively these results argue that Orai1 internalization requires both the N-terminal CBM and C-terminal CIH where access to CIH is controlled by the strength of intersubunit C-terminal CC.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Biotechnology, American University of Ras Al Khaimah, Ras al Khaimah, UAE
| | - Maya Dib
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ethel Alcantara-Adap
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nancy Nader
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Cleo Z Reyes
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Lehigh Valley Health Network, Allentown, PA, USA
| | - Ayat S Hammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Satanay Hubrack
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Sidra Medicine, Doha, Qatar
| | - Fang Yu
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
17
|
Wang WA, Demaurex N. Proteins Interacting with STIM1 and Store-Operated Ca 2+ Entry. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:51-97. [PMID: 34050862 DOI: 10.1007/978-3-030-67696-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) interacts with ORAI Ca2+ channels at the plasma membrane to regulate immune and muscle cell function. The conformational changes underlying STIM1 activation, translocation, and ORAI1 trapping and gating, are stringently regulated by post-translational modifications and accessory proteins. Here, we review the recent progress in the identification and characterization of ER and cytosolic proteins interacting with STIM1 to control its activation and deactivation during store-operated Ca2+ entry (SOCE).
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. Semin Cell Dev Biol 2020; 115:10-18. [PMID: 33358089 DOI: 10.1016/j.semcdb.2020.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells are required for host defense. They destroy malignant target cells like cancer cells. Among metal cations, Ca2+ plays a prescinded role for CTL and NK cytotoxicity as it is the only cation used as ubiquitous second messenger. Measuring intracellular Ca2+ concentrations [Ca2+]int in single cells has greatly changed our understanding of Ca2+ signaling. Yet, comparing the role of Ca2+ in the pre-[Ca2+]int and [Ca2+]int measurement era reveals that even in the pre-[Ca2+]int measurement era (before 1980), the functions of Ca2+ and some other metal cations for the cytotoxic immune response were well established. It was even shown that Ca2+ influx across the plasma membrane but not Ca2+ release from intracellular sources is relevant for lymphocyte cytotoxicity and that very little Ca2+ is needed for efficient lymphocyte cytotoxicity against cancer cells. In the [Ca2+]int measurement era after 1980, many of the important findings were better and more quantitatively refined and in addition the molecules important for Ca2+ transport were defined. The unexpected finding that there is a Ca2+ optimum of CTL and NK cell cytotoxicity deserves some attention and may be important for anti-cancer therapy.
Collapse
|
19
|
|
20
|
Zou H, Yang W, Schwär G, Zhao R, Alansary D, Yin D, Schwarz EC, Niemeyer BA, Qu B. High glucose distinctively regulates Ca 2+ influx in cytotoxic T lymphocytes upon target recognition and thapsigargin stimulation. Eur J Immunol 2020; 50:2095-2098. [PMID: 32697355 DOI: 10.1002/eji.202048577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022]
Abstract
In CTLs: High glucose-culture enhances thapsigargin-induced SOCE but decreases target recognition-induced Ca2+ influx. High glucose-culture regulates expression of ORAIs and STIMs without affecting glucose uptake. More high glucose-cultured CTLs are prone to necrosis after execution of killing.
Collapse
Affiliation(s)
- Huajiao Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Wenjuan Yang
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Deling Yin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
21
|
Niu L, Wu F, Li K, Li J, Zhang SL, Hu J, Wang Q. STIM1 interacts with termini of Orai channels in a sequential manner. J Cell Sci 2020; 133:jcs239491. [PMID: 32107289 DOI: 10.1242/jcs.239491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is critical for numerous Ca2+-related processes. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated channel (CRAC) Orai on the plasma membrane. However, the molecular details of their interactions remain elusive. Here, we analyzed STIM1-Orai interactions using synthetic peptides derived from the N- and C-termini of Orai channels (Orai-NT and Orai-CT, respectively) and purified fragments of STIM1. The binding of STIM1 to Orai-NT is hydrophilic based, whereas binding to the Orai-CT is mostly hydrophobic. STIM1 decreases its affinity for Orai-CT when Orai-NT is present, supporting a stepwise interaction. Orai3-CT exhibits stronger binding to STIM1 than Orai1-CT, largely due to the shortness of one helical turn. The role of newly identified residues was confirmed by co-immunoprecipitation and Ca2+ imaging using full-length molecules. Our results provide important insight into CRAC gating by STIM1.
Collapse
Affiliation(s)
- Liling Niu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, and Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin 300070, China
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fuyun Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Kaili Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Junjie Hu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, and Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin 300070, China
| |
Collapse
|
22
|
Kappel S, Kilch T, Baur R, Lochner M, Peinelt C. The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca 2+ Channels Alter the Pharmacology of I CRAC. Int J Mol Sci 2020; 21:ijms21072458. [PMID: 32252254 PMCID: PMC7178029 DOI: 10.3390/ijms21072458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Store-operated heteromeric Orai1/Orai3 channels have been discussed in the context of aging, cancer, and immune cell differentiation. In contrast to homomeric Orai1 channels, they exhibit a different pharmacology upon application of reactive oxygen species (ROS) or 2-aminoethoxydiphenyl borate (2-APB) in various cell types. In endogenous cells, subunit composition and arrangement may vary and cannot be defined precisely. In this study, we used patch-clamp electrophysiology to investigate the 2-APB profile of store-operated and store-independent homomeric Orai1 and heteromeric Orai1/Orai3 concatenated channels with defined subunit compositions. As has been shown previous, one or more Orai3 subunit(s) within the channel result(s) in decreased Ca2+ release activated Ca2+ current (ICRAC). Upon application of 50 µM 2-APB, channels with two or more Orai3 subunits exhibit large outward currents and can be activated by 2-APB independent from storedepletion and/or the presence of STIM1. The number and position of Orai3 subunits within the heteromeric store-operated channel change ion conductivity of 2-APB-activated outward current. Compared to homomeric Orai1 channels, one Orai3 subunit within the channel does not alter 2-APB pharmacology. None of the concatenated channel constructs were able to exactly simulate the complex 2-APB pharmacology observed in prostate cancer cells. However, 2-APB profiles of prostate cancer cells are similar to those of concatenated channels with Orai3 subunit(s). Considering the presented and previous results, this indicates that distinct subtypes of heteromeric SOCE channels may be selectively activated or blocked. In the future, targeting distinct heteromeric SOCE channel subtypes may be the key to tailored SOCE-based therapies.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | | | - Roland Baur
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
- Correspondence: ; Tel.: +41-31-631-3415
| |
Collapse
|
23
|
Alansary D, Peckys DB, Niemeyer BA, de Jonge N. Detecting single ORAI1 proteins within the plasma membrane reveals higher-order channel complexes. J Cell Sci 2020; 133:jcs.240358. [PMID: 31822631 DOI: 10.1242/jcs.240358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
ORAI1 proteins form highly selective Ca2+ channels in the plasma membrane. Crystallographic data point towards a hexameric stoichiometry of ORAI1 channels, whereas optical methods postulated ORAI1 channels to reside as dimers at rest, and other data suggests that they have a tetrameric configuration. Here, liquid-phase scanning transmission electron microscopy (STEM) and quantum dot (QD) labeling was utilized to study the conformation of ORAI1 proteins at rest. To address the question of whether ORAI1 was present as a dimer, experiments were designed using single ORAI1 monomers and covalently linked ORAI1 dimers with either one or two label-binding positions. The microscopic data was statistically analyzed via the pair correlation function. Label pairs were found in all cases, even for concatenated dimers with one label-binding position, which is only possible if a significant fraction of ORAI1 was assembled in larger order oligomers than dimers, binding at least two QDs. This interpretation of the data was consistent with Blue Native PAGE analysis showing that ORAI1 is mainly present as a complex of an apparent molecular mass larger than that calculated for a dimer.
Collapse
Affiliation(s)
- Dalia Alansary
- Molecular Biophysics, University of Saarland, Center for Integrative Physiology and Molecular Medicine, 66421 Homburg/Saar, Germany
| | - Diana B Peckys
- Molecular Biophysics, University of Saarland, Center for Integrative Physiology and Molecular Medicine, 66421 Homburg/Saar, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, University of Saarland, Center for Integrative Physiology and Molecular Medicine, 66421 Homburg/Saar, Germany
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany .,Department of Physics, University of Saarland, 66123 Saarbrücken, Germany
| |
Collapse
|
24
|
Diener C, Hart M, Alansary D, Poth V, Walch-Rückheim B, Menegatti J, Grässer F, Fehlmann T, Rheinheimer S, Niemeyer BA, Lenhof HP, Keller A, Meese E. Modulation of intracellular calcium signaling by microRNA-34a-5p. Cell Death Dis 2018; 9:1008. [PMID: 30262862 PMCID: PMC6160487 DOI: 10.1038/s41419-018-1050-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Adjusting intracellular calcium signaling is an important feature in the regulation of immune cell function and survival. Here we show that miR-34a-5p, a small non-coding RNA that is deregulated in many common diseases, is a regulator of store-operated Ca2+ entry (SOCE) and calcineurin signaling. Upon miR-34a-5p overexpression, we observed both a decreased depletion of ER calcium content and a decreased Ca2+ influx through Ca2+ release-activated Ca2+ channels. Based on an in silico target prediction we identified multiple miR-34a-5p target genes within both pathways that are implicated in the balance between T-cell activation and apoptosis including ITPR2, CAMLG, STIM1, ORAI3, RCAN1, PPP3R1, and NFATC4. Functional analysis revealed a decrease in Ca2+ activated calcineurin pathway activity measured by a reduced IL-2 secretion due to miR-34a-5p overexpression. Impacting SOCE and/or downstream calcineurin/NFAT signaling by miR-34a-5p offers a possible future approach to manipulate immune cells for clinical interventions.
Collapse
Affiliation(s)
- Caroline Diener
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany.
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Vanessa Poth
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Jennifer Menegatti
- Institute of Virology and Center of Human and Molecular Biology, Medical School, Saarland University, 66421, Homburg, Germany
| | - Friedrich Grässer
- Institute of Virology and Center of Human and Molecular Biology, Medical School, Saarland University, 66421, Homburg, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | | | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
25
|
CRAC channels as targets for drug discovery and development. Cell Calcium 2018; 74:147-159. [PMID: 30075400 DOI: 10.1016/j.ceca.2018.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Calcium release-activated calcium (CRAC) channels have been the target of drug discovery for many years. The identification of STIM and Orai proteins as key components of CRAC channels greatly facilitated this process because their co-expression in cell lines produced electrophysiological currents (ICRAC) much larger than those in native cells, making it easier to confirm and characterize the effects of modulatory compounds. A driving force in the quest for CRAC channel drugs has been the immunocompromised phenotype displayed by humans and mice with null or loss-of-function mutations in STIM1 or Orai1, suggesting that CRAC channel inhibitors could be useful therapeutics for autoimmune or inflammatory conditions. Emerging data also suggests that other therapeutic conditions may benefit from CRAC channel inhibition. However, only recently have CRAC channel inhibitors reached clinical trials. This review discusses the challenges associated with drug discovery and development on CRAC channels and the approaches employed to date, as well as the results, starting from initial high-throughput screens for CRAC channel modulators and progressing through target selection and justification, descriptions of pharmacological, safety and toxicological profiles of compounds, and finally the entry of CRAC channel inhibitors into clinical trials.
Collapse
|
26
|
Profiling calcium signals of in vitro polarized human effector CD4 + T cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:932-943. [PMID: 29626493 DOI: 10.1016/j.bbamcr.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Differentiation of naïve CD4+ T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca2+ signals, mainly mediated by the store operated Ca2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4+ T cell subsets show differential Ca2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4+ effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca2+ release activated Ca2+ currents (ICRAC) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca2+ profiles of helper CD4+ Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4+ T cells.
Collapse
|
27
|
Kappel S, Marques IJ, Zoni E, Stokłosa P, Peinelt C, Mercader N, Kruithof-de Julio M, Borgström A. Store-Operated Ca 2+ Entry as a Prostate Cancer Biomarker - a Riddle with Perspectives. ACTA ACUST UNITED AC 2017; 3:208-217. [PMID: 29951353 PMCID: PMC6010502 DOI: 10.1007/s40610-017-0072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose of Review Store-operated calcium entry (SOCE) is dysregulated in prostate cancer, contributing to increased cellular migration and proliferation and preventing cancer cell apoptosis. We here summarize findings on gene expression levels and functions of SOCE components, stromal interaction molecules (STIM1 and STIM2), and members of the Orai protein family (Orai1, 2, and 3) in prostate cancer. Moreover, we introduce new research models that promise to provide insights into whether dysregulated SOCE signaling has clinically relevant implications in terms of increasing the migration and invasion of prostate cancer cells. Recent Findings Recent reports on Orai1 and Orai3 expression levels and function were in part controversial probably due to the heterogeneous nature of prostate cancer. Lately, in prostate cancer cells, transient receptor melastatin 4 channel was shown to alter SOCE and play a role in migration and proliferation. We specifically highlight new cancer research models: a subpopulation of cells that show tumor initiation and metastatic potential in mice and zebrafish models. Summary This review focuses on SOCE component dysregulation in prostate cancer and analyzes several preclinical, cellular, and animal cancer research models.
Collapse
Affiliation(s)
- Sven Kappel
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | | | - Eugenio Zoni
- 3Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Paulina Stokłosa
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Christine Peinelt
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- 2Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- 3Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Bern, Switzerland.,4Department of Urology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anna Borgström
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Orai3 channel is the 2-APB-induced endoplasmic reticulum calcium leak. Cell Calcium 2017; 65:91-101. [DOI: 10.1016/j.ceca.2017.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
|
29
|
Vaeth M, Yang J, Yamashita M, Zee I, Eckstein M, Knosp C, Kaufmann U, Karoly Jani P, Lacruz RS, Flockerzi V, Kacskovics I, Prakriya M, Feske S. ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat Commun 2017; 8:14714. [PMID: 28294127 PMCID: PMC5355949 DOI: 10.1038/ncomms14714] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels is critical for lymphocyte function and immune responses. CRAC channels are hexamers of ORAI proteins that form the channel pore, but the contributions of individual ORAI homologues to CRAC channel function are not well understood. Here we show that deletion of Orai1 reduces, whereas deletion of Orai2 increases, SOCE in mouse T cells. These distinct effects are due to the ability of ORAI2 to form heteromeric channels with ORAI1 and to attenuate CRAC channel function. The combined deletion of Orai1 and Orai2 abolishes SOCE and strongly impairs T cell function. In vivo, Orai1/Orai2 double-deficient mice have impaired T cell-dependent antiviral immune responses, and are protected from T cell-mediated autoimmunity and alloimmunity in models of colitis and graft-versus-host disease. Our study demonstrates that ORAI1 and ORAI2 form heteromeric CRAC channels, in which ORAI2 fine-tunes the magnitude of SOCE to modulate immune responses.
Collapse
Affiliation(s)
- Martin Vaeth
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Jun Yang
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Isabelle Zee
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Miriam Eckstein
- NYU College of Dentistry, New York University, New York, New York 10010, USA
| | - Camille Knosp
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Ulrike Kaufmann
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | | | - Rodrigo S. Lacruz
- NYU College of Dentistry, New York University, New York, New York 10010, USA
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, School of Medicine, Saarland University, Homburg 66421, Germany
| | | | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Stefan Feske
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| |
Collapse
|
30
|
Hempel N, Trebak M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 2017; 63:70-96. [PMID: 28143649 DOI: 10.1016/j.ceca.2017.01.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 02/07/2023]
Abstract
The interplay between Ca2+ and reactive oxygen species (ROS) signaling pathways is well established, with reciprocal regulation occurring at a number of subcellular locations. Many Ca2+ channels at the cell surface and intracellular organelles, including the endoplasmic reticulum and mitochondria are regulated by redox modifications. In turn, Ca2+ signaling can influence the cellular generation of ROS, from sources such as NADPH oxidases and mitochondria. This relationship has been explored in great depth during the process of apoptosis, where surges of Ca2+ and ROS are important mediators of cell death. More recently, coordinated and localized Ca2+ and ROS transients appear to play a major role in a vast variety of pro-survival signaling pathways that may be crucial for both physiological and pathophysiological functions. While much work is required to firmly establish this Ca2+-ROS relationship in cancer, existing evidence from other disease models suggests this crosstalk is likely of significant importance in tumorigenesis. In this review, we describe the regulation of Ca2+ channels and transporters by oxidants and discuss the potential consequences of the ROS-Ca2+ interplay in tumor cells.
Collapse
Affiliation(s)
- Nadine Hempel
- Department of Pharmacology, Penn State College of Medicine, Hershey PA 17033, United States; Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States.
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey PA 17033, United States; Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States.
| |
Collapse
|
31
|
Niemeyer BA. The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:99-116. [PMID: 28900911 DOI: 10.1007/978-3-319-57732-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteines are among the least abundant amino acids found in proteins. Due to their unique nucleophilic thiol group, they are able to undergo a broad range of chemical modifications besides their known role in disulfide formation, such as S-sulfenylation (-SOH), S-sulfinylation (-SO(2)H), S-sufonylation (-SO(3)H), S-glutathionylation (-SSG), and S-sulfhydration (-SSH), among others. These posttranslational modifications can be irreversible and act as transitional modifiers or as reversible on-off switches for the function of proteins. Disturbances of the redox homeostasis, for example, in situations of increased oxidative stress, can contribute to a range of diseases. Because Ca2+ signaling mediated by store-operated calcium entry (SOCE) is involved in a plethora of cellular responses, the cross-talk between reactive oxygen species (ROS) and Ca2+ is critical for homeostatic control. Identification of calcium regulatory protein targets of thiol redox modifications is needed to understand their role in biology and disease.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
32
|
Alansary D, Schmidt B, Dörr K, Bogeski I, Rieger H, Kless A, Niemeyer BA. Thiol dependent intramolecular locking of Orai1 channels. Sci Rep 2016; 6:33347. [PMID: 27624281 PMCID: PMC5022029 DOI: 10.1038/srep33347] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022] Open
Abstract
Store-operated Ca(2+) entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca(2+) selective Orai1 with the oxidant H2O2 reduces ICRAC with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.
Collapse
Affiliation(s)
- Dalia Alansary
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Barbara Schmidt
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
- Department of Biophysics, Saarland University, 66421 Homburg, Germany
- Department of Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Kathrin Dörr
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Ivan Bogeski
- Department of Biophysics, Saarland University, 66421 Homburg, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Achim Kless
- Gruenenthal Innovation, Drug Discovery Technologies, Gruenenthal GmbH, 52078 Aachen, Germany
| | | |
Collapse
|
33
|
Holzmann C, Kilch T, Kappel S, Dörr K, Jung V, Stöckle M, Bogeski I, Peinelt C. Differential Redox Regulation of Ca²⁺ Signaling and Viability in Normal and Malignant Prostate Cells. Biophys J 2016; 109:1410-9. [PMID: 26445441 DOI: 10.1016/j.bpj.2015.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
In prostate cancer, reactive oxygen species (ROS) are elevated and Ca(2+) signaling is impaired. Thus, several novel therapeutic strategies have been developed to target altered ROS and Ca(2+) signaling pathways in prostate cancer. Here, we investigate alterations of intracellular Ca(2+) and inhibition of cell viability caused by ROS in primary human prostate epithelial cells (hPECs) from healthy tissue and prostate cancer cell lines (LNCaP, DU145, and PC3). In hPECs, LNCaP and DU145 H2O2 induces an initial Ca(2+) increase, which in prostate cancer cells is blocked at high concentrations of H2O2. Upon depletion of intracellular Ca(2+) stores, store-operated Ca(2+) entry (SOCE) is activated. SOCE channels can be formed by hexameric Orai1 channels; however, Orai1 can form heteromultimers with its homolog, Orai3. Since the redox sensor of Orai1 (Cys-195) is absent in Orai3, the Orai1/Orai3 ratio in T cells determines the redox sensitivity of SOCE and cell viability. In prostate cancer cells, SOCE is blocked at lower concentrations of H2O2 compared with hPECs. An analysis of data from hPECs, LNCaP, DU145, and PC3, as well as previously published data from naive and effector TH cells, demonstrates a strong correlation between the Orai1/Orai3 ratio and the SOCE redox sensitivity and cell viability. Therefore, our data support the concept that store-operated Ca(2+) channels in hPECs and prostate cancer cells are heteromeric Orai1/Orai3 channels with an increased Orai1/Orai3 ratio in cells derived from prostate cancer tumors. In addition, ROS-induced alterations in Ca(2+) signaling in prostate cancer cells may contribute to the higher sensitivity of these cells to ROS.
Collapse
Affiliation(s)
- Christian Holzmann
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Tatiana Kilch
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany; Center of Human and Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Kappel
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Kathrin Dörr
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Volker Jung
- Clinics of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Michael Stöckle
- Clinics of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Christine Peinelt
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany; Center of Human and Molecular Biology, Saarland University, Homburg, Germany.
| |
Collapse
|
34
|
Peckys DB, Alansary D, Niemeyer BA, de Jonge N. Visualizing Quantum Dot Labeled ORAI1 Proteins in Intact Cells Via Correlative Light and Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:902-912. [PMID: 27515473 DOI: 10.1017/s1431927616011491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
ORAI1 proteins are ion channel subunits and the essential pore-forming units of the calcium release-activated calcium channel complex essential for T-cell activation and many other cellular processes. In this study, we used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to image plasma membrane expressed ORAI1 proteins in whole Jurkat T cells in the liquid state. Utilizing a stably transfected Jurkat T cell clone expressing human ORAI1 with an extracellular human influenza hemagglutinin (HA) tag we investigated if liquid-phase STEM can be applied to detect recombinant surface expressed protein. Streptavidin coated quantum dots were coupled in a one-to-one stoichiometry to ORAI1 proteins detected by biotinylated anti-HA fragmented antibody fragments. High-resolution electron microscopic images revealed the individual label locations from which protein pair distances were determined. These data were analyzed using the pair correlation function and, in addition, an analysis of cluster size and frequency was performed. ORAI1 was found to be present in hexamers in a small fraction only, and ORAI1 resided mostly in monomers and dimers.
Collapse
Affiliation(s)
- Diana B Peckys
- 1Department of Molecular Biophysics,Saarland University,CIPMM,66421 Homburg,Germany
| | - Dalia Alansary
- 1Department of Molecular Biophysics,Saarland University,CIPMM,66421 Homburg,Germany
| | - Barbara A Niemeyer
- 1Department of Molecular Biophysics,Saarland University,CIPMM,66421 Homburg,Germany
| | - Niels de Jonge
- 2INM - Leibniz Institute for New Materials,66123 Saarbrücken,Germany
| |
Collapse
|
35
|
Bhardwaj R, Hediger MA, Demaurex N. Redox modulation of STIM-ORAI signaling. Cell Calcium 2016; 60:142-52. [DOI: 10.1016/j.ceca.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022]
|
36
|
Dörr K, Kilch T, Kappel S, Alansary D, Schwär G, Niemeyer BA, Peinelt C. Cell type-specific glycosylation of Orai1 modulates store-operated Ca2+ entry. Sci Signal 2016; 9:ra25. [PMID: 26956484 DOI: 10.1126/scisignal.aaa9913] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-glycosylation of cell surface proteins affects protein function, stability, and interaction with other proteins. Orai channels, which mediate store-operated Ca(2+) entry (SOCE), are composed of N-glycosylated subunits. Upon activation by Ca(2+) sensor proteins (stromal interaction molecules STIM1 or STIM2) in the endoplasmic reticulum, Orai Ca(2+) channels in the plasma membrane mediate Ca(2+) influx. Lectins are carbohydrate-binding proteins, and Siglecs are a family of sialic acid-binding lectins with immunoglobulin-like repeats. Using Western blot analysis and lectin-binding assays from various primary human cells and cancer cell lines, we found that glycosylation of Orai1 is cell type-specific. Ca(2+) imaging experiments and patch-clamp experiments revealed that mutation of the only glycosylation site of Orai1 (Orai1N223A) enhanced SOCE in Jurkat T cells. Knockdown of the sialyltransferase ST6GAL1 reduced α-2,6-linked sialic acids in the glycan structure of Orai1 and was associated with increased Ca(2+) entry in Jurkat T cells. In human mast cells, inhibition of sialyl sulfation altered the N-glycan of Orai1 (and other proteins) and increased SOCE. These data suggest that cell type-specific glycosylation influences the interaction of Orai1 with specific lectins, such as Siglecs, which then attenuates SOCE. In summary, the glycosylation state of Orai1 influences SOCE-mediated Ca(2+) signaling and, thus, may contribute to pathophysiological Ca(2+) signaling observed in immune disease and cancer.
Collapse
Affiliation(s)
- Kathrin Dörr
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Center of Human and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - Tatiana Kilch
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Center of Human and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - Sven Kappel
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Center of Human and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Christine Peinelt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Center of Human and Molecular Biology, Saarland University, Homburg 66421, Germany.
| |
Collapse
|
37
|
Saul S, Gibhardt CS, Schmidt B, Lis A, Pasieka B, Conrad D, Jung P, Gaupp R, Wonnenberg B, Diler E, Stanisz H, Vogt T, Schwarz EC, Bischoff M, Herrmann M, Tschernig T, Kappl R, Rieger H, Niemeyer BA, Bogeski I. A calcium-redox feedback loop controls human monocyte immune responses: The role of ORAI Ca2+ channels. Sci Signal 2016; 9:ra26. [PMID: 26956485 DOI: 10.1126/scisignal.aaf1639] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In phagocytes, pathogen recognition is followed by Ca(2+) mobilization and NADPH oxidase 2 (NOX2)-mediated "oxidative burst," which involves the rapid production of large amounts of reactive oxygen species (ROS). We showed that ORAI Ca(2+) channels control store-operated Ca(2+) entry, ROS production, and bacterial killing in primary human monocytes. ROS inactivate ORAI channels that lack an ORAI3 subunit. Staphylococcal infection of mice reduced the expression of the gene encoding the redox-sensitive Orai1 and increased the expression of the gene encoding the redox-insensitive Orai3 in the lungs or in bronchoalveolar lavages. A similar switch from ORAI1 to ORAI3 occurred in primary human monocytes exposed to bacterial peptides in culture. These alterations in ORAI1 and ORAI3 abundance shifted the channel assembly toward a more redox-insensitive configuration. Accordingly, silencing ORAI3 increased the redox sensitivity of the channel and enhanced oxidation-induced inhibition of NOX2. We generated a mathematical model that predicted additional features of the Ca(2+)-redox interplay. Our results identified the ORAI-NOX2 feedback loop as a determinant of monocyte immune responses.
Collapse
Affiliation(s)
- Stephanie Saul
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Christine S Gibhardt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Barbara Schmidt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany. Department of Theoretical Physics, Saarland University, Saarbrücken 66123, Germany. Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Bastian Pasieka
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - David Conrad
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Rosmarie Gaupp
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Bodo Wonnenberg
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Ebru Diler
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Hedwig Stanisz
- Department of Dermatology, Venereology and Allergology, University Hospital of Saarland, Homburg 66421, Germany
| | - Thomas Vogt
- Department of Dermatology, Venereology and Allergology, University Hospital of Saarland, Homburg 66421, Germany
| | - Eva C Schwarz
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Thomas Tschernig
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, Saarbrücken 66123, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Ivan Bogeski
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany.
| |
Collapse
|
38
|
Niemeyer BA. Changing calcium: CRAC channel (STIM and Orai) expression, splicing, and posttranslational modifiers. Am J Physiol Cell Physiol 2016; 310:C701-9. [PMID: 26911279 DOI: 10.1152/ajpcell.00034.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A wide variety of cellular function depends on the dynamics of intracellular Ca(2+) signals. Especially for relatively slow and lasting processes such as gene expression, cell proliferation, and often migration, cells rely on the store-operated Ca(2+) entry (SOCE) pathway, which is particularly prominent in immune cells. SOCE is initiated by the sensor proteins (STIM1, STIM2) located within the endoplasmic reticulum (ER) registering the Ca(2+) concentration within the ER, and upon its depletion, cluster and trap Orai (Orai1-3) proteins located in the plasma membrane (PM) into ER-PM junctions. These regions become sites of highly selective Ca(2+) entry predominantly through Orai1-assembled channels, which, among other effector functions, is necessary for triggering NFAT translocation into the nucleus. What is less clear is how the spatial and temporal spread of intracellular Ca(2+) is shaped and regulated by differential expression of the individual SOCE genes and their splice variants, their heteromeric combinations and pre- and posttranslational modifications. This review focuses on principle mechanisms regulating expression, splicing, and targeting of Ca(2+) release-activated Ca(2+) (CRAC) channels.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
39
|
Kilch T, Kappel S, Peinelt C. Regulation of Ca(2+) signaling in prostate cancer cells. Channels (Austin) 2016; 10:170-1. [PMID: 26745455 PMCID: PMC4954580 DOI: 10.1080/19336950.2015.1137176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 10/26/2022] Open
Affiliation(s)
- Tatiana Kilch
- a Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University , Homburg , Germany
| | - Sven Kappel
- a Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University , Homburg , Germany
| | - Christine Peinelt
- a Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University , Homburg , Germany
| |
Collapse
|
40
|
Hoth M. CRAC channels, calcium, and cancer in light of the driver and passenger concept. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1408-17. [PMID: 26705695 DOI: 10.1016/j.bbamcr.2015.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of “Ca(2+) genes” might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Building 48, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|