1
|
Lyu J, MacDonald ML, Ruiz S, Chou S, Gilardi J, Buchwald SC, Grubisha MJ, Sweet RA. Deciphering the alteration of MAP2 interactome caused by a schizophrenia-associated phosphorylation. Neurobiol Dis 2024; 203:106731. [PMID: 39532265 DOI: 10.1016/j.nbd.2024.106731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Microtubule-associated protein 2 (MAP2) is a crucial regulator of dendritic structure and neuronal function, orchestrating diverse protein interactions within the microtubule network. We have shown MAP2 is hyperphosphorylated at serine 1782 (S1782) in schizophrenia and phosphomimetic mutation of S1782 in mice (MAP2S1782E) is sufficient to impair dendritic architecture. We sought to determine how this hyperphosphorylation affects the MAP2 interactome to provide insights into the disorder's mechanisms. We investigated the MAP2 interactome using co-immunoprecipitation and mass spectrometry in MAP2S1782E and MAP2WT mice. We found that S1782E MAP2 led to a substantial disruption of protein-protein interactions relative to WT MAP2. Reduced interactions with PDZ domain-containing proteins, calmodulin-binding proteins, ribosome proteins, and kinesin proteins may all contribute to dendritic impairments induced by S1782E, and may be linked to schizophrenia pathogenesis. Interestingly, novel gain-of-function interactions with PPM1L and KLHL8 nominated these as regulators of phosphoS1782 MAP2 abundance and potential therapeutic targets in schizophrenia.
Collapse
Affiliation(s)
- Jiali Lyu
- School of Medicine, Tsinghua University, China; Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, United States of America
| | - Matthew L MacDonald
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, United States of America; Health Sciences Mass Spectrometry Core, University of Pittsburgh, United States of America
| | - Shelby Ruiz
- Department of Neurobiology, University of Pittsburgh, United States of America
| | - Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, United States of America
| | - Jordan Gilardi
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, United States of America
| | - Serena C Buchwald
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, United States of America
| | - Melanie J Grubisha
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, United States of America
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, United States of America; Department of Neurology, University of Pittsburgh, United States of America.
| |
Collapse
|
2
|
Yang JL, Sun X, Shi JX, Cui QX, Cao XY, Wang KT, An MX, Wu SJ, Yang YL, Sun HZ, Zhao WD. Calmodulin Triggers Activity-Dependent rRNA Biogenesis via Interaction with DDX21. J Neurosci 2024; 44:e1841232024. [PMID: 39060175 PMCID: PMC11358605 DOI: 10.1523/jneurosci.1841-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and memory formation. However, the signaling cascades that couple neuronal activity to the translational events remain elusive. In this study, we identified the role of calmodulin (CaM), a conserved Ca2+-binding protein, in ribosomal RNA (rRNA) biogenesis in neurons. We found the CaM-regulated rRNA synthesis is Ca2+-dependent and necessary for nascent protein synthesis and axon growth in hippocampal neurons. Mechanistically, CaM interacts with nucleolar DEAD (Asp-Glu-Ala-Asp) box RNA helicase (DDX21) in a Ca2+-dependent manner to regulate nascent rRNA transcription within nucleoli. We further found CaM alters the conformation of DDX21 to liberate the DDX21-sequestered RPA194, the catalytic subunit of RNA polymerase I, to facilitate transcription of ribosomal DNA. Using high-throughput screening, we identified the small molecules batefenterol and indacaterol that attenuate the CaM-DDX21 interaction and suppress nascent rRNA synthesis and axon growth in hippocampal neurons. These results unveiled the previously unrecognized role of CaM as a messenger to link the activity-induced Ca2+ influx to the nucleolar events essential for protein synthesis. We thus identified the ability of CaM to transmit information to the nucleoli of neurons in response to stimulation.
Collapse
Affiliation(s)
- Jia-Lin Yang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Xue Sun
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jun-Xiu Shi
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Qing-Xu Cui
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Xin-Yu Cao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Kai-Tuo Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Ming-Xin An
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Si-Jin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yong-Liang Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
3
|
Da'as SI, Thanassoulas A, Calver BL, Saleh A, Abdelrahman D, Hasan W, Safieh-Garabedian B, Kontogianni I, Nasrallah GK, Nounesis G, Lai FA, Nomikos M. Divergent Biochemical Properties and Disparate Impact of Arrhythmogenic Calmodulin Mutations on Zebrafish Cardiac Function. J Cell Biochem 2024; 125:e30619. [PMID: 38946237 DOI: 10.1002/jcb.30619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Brian L Calver
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Alaaeldin Saleh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Iris Kontogianni
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
- National Technical University of Athens, Athens, Greece
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biological Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Nounesis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - F Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Szodorai E, Hevesi Z, Wagner L, Hökfelt TGM, Harkany T, Schnell R. A hydrophobic groove in secretagogin allows for alternate interactions with SNAP-25 and syntaxin-4 in endocrine tissues. Proc Natl Acad Sci U S A 2024; 121:e2309211121. [PMID: 38593081 PMCID: PMC11032447 DOI: 10.1073/pnas.2309211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
Vesicular release of neurotransmitters and hormones relies on the dynamic assembly of the exocytosis/trans-SNARE complex through sequential interactions of synaptobrevins, syntaxins, and SNAP-25. Despite SNARE-mediated release being fundamental for intercellular communication in all excitable tissues, the role of auxiliary proteins modulating the import of reserve vesicles to the active zone, and thus, scaling repetitive exocytosis remains less explored. Secretagogin is a Ca2+-sensor protein with SNAP-25 being its only known interacting partner. SNAP-25 anchors readily releasable vesicles within the active zone, thus being instrumental for 1st phase release. However, genetic deletion of secretagogin impedes 2nd phase release instead, calling for the existence of alternative protein-protein interactions. Here, we screened the secretagogin interactome in the brain and pancreas, and found syntaxin-4 grossly overrepresented. Ca2+-loaded secretagogin interacted with syntaxin-4 at nanomolar affinity and 1:1 stoichiometry. Crystal structures of the protein complexes revealed a hydrophobic groove in secretagogin for the binding of syntaxin-4. This groove was also used to bind SNAP-25. In mixtures of equimolar recombinant proteins, SNAP-25 was sequestered by secretagogin in competition with syntaxin-4. Kd differences suggested that secretagogin could shape unidirectional vesicle movement by sequential interactions, a hypothesis supported by in vitro biological data. This mechanism could facilitate the movement of transport vesicles toward release sites, particularly in the endocrine pancreas where secretagogin, SNAP-25, and syntaxin-4 coexist in both α- and β-cells. Thus, secretagogin could modulate the pace and fidelity of vesicular hormone release by differential protein interactions.
Collapse
Affiliation(s)
- Edit Szodorai
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, ViennaA-1090, Austria
| | - Tomas G. M. Hökfelt
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| | - Tibor Harkany
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Robert Schnell
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| |
Collapse
|
5
|
Kannan A, Chaurasiya DK, Naganathan AN. Conflicting Interfacial Electrostatic Interactions as a Design Principle to Modulate Long-Range Interdomain Communication. ACS BIO & MED CHEM AU 2024; 4:53-67. [PMID: 38404745 PMCID: PMC10885104 DOI: 10.1021/acsbiomedchemau.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/27/2024]
Abstract
The extent and molecular basis of interdomain communication in multidomain proteins, central to understanding allostery and function, is an open question. One simple evolutionary strategy could involve the selection of either conflicting or favorable electrostatic interactions across the interface of two closely spaced domains to tune the magnitude of interdomain connectivity. Here, we study a bilobed domain FF34 from the eukaryotic p190A RhoGAP protein to explore one such design principle that mediates interdomain communication. We find that while the individual structural units in wild-type FF34 are marginally coupled, they exhibit distinct intrinsic stabilities and low cooperativity, manifesting as slow folding. The FF3-FF4 interface harbors a frustrated network of highly conserved electrostatic interactions-a charge troika-that promotes the population of multiple, decoupled, and non-native structural modes on a rugged native landscape. Perturbing this network via a charge-reversal mutation not only enhances stability and cooperativity but also dampens the fluctuations globally and speeds up the folding rate by at least an order of magnitude. Our work highlights how a conserved but nonoptimal network of interfacial electrostatic interactions shapes the native ensemble of a bilobed protein, a feature that could be exploited in designing molecular systems with long-range connectivity and enhanced cooperativity.
Collapse
Affiliation(s)
- Adithi Kannan
- Department of Biotechnology,
Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dhruv Kumar Chaurasiya
- Department of Biotechnology,
Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N. Naganathan
- Department of Biotechnology,
Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
6
|
Hau B, Symonds K, Teresinski H, Janssen A, Duff L, Smith M, Benidickson K, Plaxton W, Snedden WA. Arabidopsis Calmodulin-like Proteins CML13 and CML14 Interact with Calmodulin-Binding Transcriptional Activators and Function in Salinity Stress Response. PLANT & CELL PHYSIOLOGY 2024; 65:282-300. [PMID: 38036467 DOI: 10.1093/pcp/pcad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Eukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied. We recently demonstrated that Arabidopsis CML13 and CML14 interact with proteins containing isoleucine/glutamine (IQ) domains, including CaM-binding transcriptional activators (CAMTAs). Here, we show that CaM, CML13 and CML14 bind all six members of the Arabidopsis CAMTA family. Using a combination of in planta and in vitro protein-interaction assays, we tested 11 members of the CaM/CML family and demonstrated that only CaM, CML13 and CML14 bind to CAMTA IQ domains. CaM, CML13 and CML14 showed Ca2+-independent binding to the IQ region of CAMTA6 and CAMTA3, and CAMTA6 in vitro exhibited some specificity toward individual IQ domains within CAMTA6 in split-luciferase in planta assays. We show that cml13 mutants exhibited enhanced salinity tolerance during germination compared to wild-type plants, a phenotype similar to camta6 mutants. In contrast, plants overexpressing CML13-GFP or CML14-GFP in the wild-type background showed increased NaCl sensitivity. Under mannitol stress, cml13 mutants were more susceptible than camta6 mutants or wild-type plants. The phenotype of cml13 mutants could be rescued with the wild-type CML13 gene. Several salinity-marker genes under CAMTA6 control were similarly misregulated in both camta6 and cml13 mutants, further supporting a role for CML13 in CAMTA6 function. Collectively, our data suggest that CML13 and CML14 participate in abiotic stress signaling as CAMTA effectors.
Collapse
Affiliation(s)
- Bryan Hau
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Kyle Symonds
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Howard Teresinski
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Abby Janssen
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Liam Duff
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Milena Smith
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | | | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| |
Collapse
|
7
|
Loh SN, Anthony IR, Gavor E, Lim XS, Kini RM, Mok YK, Sivaraman J. Recognition of Aedes aegypti Mosquito Saliva Protein LTRIN by the Human Receptor LTβR for Controlling the Immune Response. BIOLOGY 2024; 13:42. [PMID: 38248473 PMCID: PMC10813304 DOI: 10.3390/biology13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Salivary proteins from mosquitoes have received significant attention lately due to their potential to develop therapeutic treatments or vaccines for mosquito-borne diseases. Here, we report the characterization of LTRIN (lymphotoxin beta receptor inhibitor), a salivary protein known to enhance the pathogenicity of ZIKV by interrupting the LTβR-initiated NF-κB signaling pathway and, therefore, diminish the immune responses. We demonstrated that the truncated C-terminal LTRIN (ΔLTRIN) is a dimeric protein with a stable alpha helix-dominant secondary structure, which possibly aids in withstanding the temperature fluctuations during blood-feeding events. ΔLTRIN possesses two Ca2+ binding EF-hand domains, with the second EF-hand motif playing a more significant role in interacting with LTβR. Additionally, we mapped the primary binding regions of ΔLTRIN on LTβR using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and identified that 91QEKAHIAEHMDVPIDTSKMSEQELQFHY118 from the N-terminal of ΔLTRIN is the major interacting region. Together, our studies provide insight into the recognition of LTRIN by LTβR. This finding may aid in a future therapeutic and transmission-blocking vaccine development against ZIKV.
Collapse
Affiliation(s)
- Su Ning Loh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Ian Russell Anthony
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Edem Gavor
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Xin Shan Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - R. Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| |
Collapse
|
8
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
9
|
Belloso-Iguerategui A, Zamarbide M, Merino-Galan L, Rodríguez-Chinchilla T, Gago B, Santamaria E, Fernández-Irigoyen J, Cotman CW, Prieto GA, Quiroga-Varela A, Rodríguez-Oroz MC. Hippocampal synaptic failure is an early event in experimental parkinsonism with subtle cognitive deficit. Brain 2023; 146:4949-4963. [PMID: 37403195 PMCID: PMC10690043 DOI: 10.1093/brain/awad227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Learning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson's disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson's disease.
Collapse
Affiliation(s)
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | | - Belén Gago
- Faculty of Medicine, IBIMA Plataforma BIONAND, Universidad de Málaga, 29016 Málaga, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
| | - G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76010 Querétaro, México
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
10
|
Ono K, Sato J, Suzuki H, Sawada M. Distribution of Signal Peptides in Microvesicles from Activated Macrophage Cells. Int J Mol Sci 2023; 24:12131. [PMID: 37569508 PMCID: PMC10418841 DOI: 10.3390/ijms241512131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Extracellular vesicles, such as microvesicles (LEV) and exosomes (SEV), play an important role in intercellular signaling by encapsulating functional molecules and delivering them to specific cells. Recent studies showed that signal peptides (SPs), which are derived from sequences at the N-terminal of newly synthesized proteins, exhibited biological activity in the extracellular fluid. We previously reported that SPs were secreted into the extracellular fluid via SEV; however, it remains unclear whether the release of SPs occurs via LEV. In the present study, we demonstrated that SP fragments from human placental secreted alkaline phosphatase (SEAP) were present in LEV as well as SEV released from RAW-Blue cells, which stably express an NF-κB-inducible SEAP reporter. When RAW-Blue cells were treated with LPS at 0-10,000 ng/mL, SEAP SP fragments per particle were more abundant in LEV than in SEV, with fragments in LEV and SEV reaching a maximum at 1000 and 100 ng/mL, respectively. The content of SEAP SP fragments in LEV from IFNγ-stimulated RAW-Blue cells was higher than those from TNFα-stimulated cells, whereas that in SEV from TNFα-stimulated RAW-Blue cells was higher than those from IFNγ-stimulated cells. Moreover, the content of SEAP SP fragments in LEV and SEV decreased in the presence of W13, a calmodulin inhibitor. Collectively, these results indicate that the transportation of SP fragments to extracellular vesicles was changed by cellular activation, and calmodulin was involved in their transportation to LEV and SEV.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Junpei Sato
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Hiromi Suzuki
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Makoto Sawada
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
11
|
Lai P, Yang X, Li YH, Yin YL, Yao Q, Huang S, Fan YY, Song JK, Zhao GH. Characterization of CpCaM, a protein potentially involved in the growth of Cryptosporidium parvum. Parasitol Res 2023; 122:989-996. [PMID: 36879147 DOI: 10.1007/s00436-023-07803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Cryptosporidium parvum is an important apicomplexan parasite causing severe diarrhea in both humans and animals. Calmodulin (CaM), a multifunctional and universal calcium-binding protein, contributes to the growth and development of apicomplexan parasites, but the role of CaM in C. parvum remains unknown. In this study, the CaM of C. parvum encoded by the cgd2_810 gene was expressed in Escherichia coli, and the biological functions of CpCaM were preliminarily investigated. The transcriptional level of the cgd2_810 gene peaked at 36 h post infection (pi), and the CpCaM protein was mainly located around the nucleus of the whole oocysts, in the middle of sporozoites and around the nucleus of merozoites. Anti-CpCaM antibody reduced the invasion of C. parvum sporozoites by 30.69%. The present study indicates that CpCaM is potentially involved in the growth of C. parvum. Results of the study expand our knowledge on the interaction between host and Cryptosporidium.
Collapse
Affiliation(s)
- Peng Lai
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xin Yang
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yun-Hui Li
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yan-Ling Yin
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Qian Yao
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shuang Huang
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Ying-Ying Fan
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jun-Ke Song
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Guang-Hui Zhao
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
12
|
Kameyama M, Minobe E, Shao D, Xu J, Gao Q, Hao L. Regulation of Cardiac Cav1.2 Channels by Calmodulin. Int J Mol Sci 2023; 24:ijms24076409. [PMID: 37047381 PMCID: PMC10094977 DOI: 10.3390/ijms24076409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel ‘rundown’ phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed.
Collapse
Affiliation(s)
- Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
- Correspondence:
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| |
Collapse
|
13
|
Villalobo A. Regulation of ErbB Receptors by the Ca2+ Sensor Protein Calmodulin in Cancer. Biomedicines 2023; 11:biomedicines11030661. [PMID: 36979639 PMCID: PMC10045772 DOI: 10.3390/biomedicines11030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Overexpression and mutations of the epidermal growth factor receptor (EGFR/ErbB1/HER1) and other tyrosine kinase receptors of the ErbB family (ErbB2/HER2, ErbB3/HER3 and ErbB4/HER4) play an essential role in enhancing the proliferation, the migratory capacity and invasiveness of many tumor cells, leading to cancer progression and increased malignancy. To understand these cellular processes in detail is essential to understand at a molecular level the signaling pathways and regulatory mechanisms controlling these receptors. In this regard, calmodulin (CaM) is a Ca2+-sensor protein that directly interacts with and regulates ErbB receptors, as well as some CaM-dependent kinases that also regulate these receptors, particularly EGFR and ErbB2, adding an additional layer of CaM-dependent regulation to this system. In this short review, an update of recent advances in this area is presented, covering the direct action of Ca2+/CaM on the four ErbB family members mostly in tumor cells and the indirect action of Ca2+/CaM on the receptors via CaM-regulated kinases. It is expected that further understanding of the CaM-dependent mechanisms regulating the ErbB receptors in future studies could identify new therapeutic targets in these systems that could help to control or delay cancer progression.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
14
|
Costa MGS, Batista PR, Gomes A, Bastos LS, Louet M, Floquet N, Bisch PM, Perahia D. MDexciteR: Enhanced Sampling Molecular Dynamics by Excited Normal Modes or Principal Components Obtained from Experiments. J Chem Theory Comput 2023; 19:412-425. [PMID: 36622950 DOI: 10.1021/acs.jctc.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular dynamics with excited normal modes (MDeNM) is an enhanced sampling method for exploring conformational changes in proteins with minimal biases. The excitation corresponds to injecting kinetic energy along normal modes describing intrinsic collective motions. Herein, we developed a new automated open-source implementation, MDexciteR (https://github.com/mcosta27/MDexciteR), enabling the integration of MDeNM with two commonly used simulation programs with GPU support. Second, we generalized the method to include the excitation of principal components calculated from experimental ensembles. Finally, we evaluated whether the use of coarse-grained normal modes calculated with elastic network representations preserved the performance and accuracy of the method. The advantages and limitations of these new approaches are discussed based on results obtained for three different protein test cases: two globular and a protein/membrane system.
Collapse
Affiliation(s)
- Mauricio G S Costa
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Av. Brasil 4365, Residência Oficial, Manguinhos, 21040-900Rio de Janeiro, Brasil
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, 4 Avenue des Sciences, 91190Gif-sur-Yvette, France
| | - Paulo R Batista
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Av. Brasil 4365, Residência Oficial, Manguinhos, 21040-900Rio de Janeiro, Brasil
| | - Antoniel Gomes
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brasil
| | - Leonardo S Bastos
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Av. Brasil 4365, Residência Oficial, Manguinhos, 21040-900Rio de Janeiro, Brasil
| | - Maxime Louet
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex 0534095, France
| | - Nicolas Floquet
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex 0534095, France
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brasil
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, 4 Avenue des Sciences, 91190Gif-sur-Yvette, France
| |
Collapse
|
15
|
Abstract
Ca2+ is a universal second messenger that plays a wide variety of fundamental roles in cellular physiology. Thus, to warrant selective responses and to allow rapid mobilization upon specific stimuli, Ca2+ is accumulated in organelles to keep it at very low levels in the cytoplasm during resting conditions. Major Ca2+ storage organelles include the endoplasmic reticulum (ER), the mitochondria, and as recently demonstrated, the lysosome (Xu and Ren, Annu Rev Physiol 77:57-80, 2015). The importance of Ca2+ signaling deregulation in human physiology is underscored by its involvement in several human diseases, including lysosomal storage disorders, neurodegenerative disease and cancer (Shen et al., Nat Commun 3:731, 2012; Bae et al., J Neurosci 34:11485-11503, 2014). Recent evidence strongly suggests that lysosomal Ca2+ plays a major role in the regulation of lysosomal adaptation to nutrient availability through a lysosomal signaling pathway involving the lysosomal Ca2+ channel TRPML1 and the transcription factor TFEB, a master regulator for lysosomal function and autophagy (Sardiello et al., Science 325:473-477, 2009; Settembre et al., Science 332:1429-1433, 2011; Medina et al., Nat Cell Biol 17:288-299, 2015; Di Paola et al., Cell Calcium 69:112-121, 2018). Due to the tight relationship of this lysosomal Ca2+ channel and TFEB, in this chapter, we will focus on the role of the TRPML1/TFEB pathway in the regulation of lysosomal function and autophagy.
Collapse
Affiliation(s)
- Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
16
|
Ono K, Niwa M, Suzuki H, Kobayashi NB, Yoshida T, Sawada M. Calmodulin as a Key Regulator of Exosomal Signal Peptides. Cells 2022; 12:cells12010158. [PMID: 36611951 PMCID: PMC9818429 DOI: 10.3390/cells12010158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Signal peptides (SPs) and their fragments play important roles as biomarkers and substances with physiological functions in extracellular fluid. We previously reported that SP fragments were released into extracellular fluid via exosomes and bound to calmodulin (CaM), an exosomal component, in a cell-free system. However, it currently remains unclear whether CaM intracellularly interacts with SP fragments or is involved in the trafficking of these fragments to exosomes. Therefore, the present study examined the binding of CaM to SP fragments in T-REx AspALP cells, transformed HEK293 cells expressing amyloid precursor protein (APP) SP flanking a reporter protein, and their exosomes. APP SP fragments were detected in exosomes from T-REx AspALP cells in the absence of W13, a CaM inhibitor, but were present in lower amounts in exosomes from W13-treated cells. Cargo proteins, such as Alix, CD63, and CD81, were increased in W13-treated T-REx AspALP cells but were decreased in their exosomes. Furthermore, CaM interacted with heat shock protein 70 and CD81 in T-REx AspALP cells and this increased in the presence of W13. APP SP fragments were detected in intracellular CaM complexes in the absence of W13, but not in its presence. These results indicate that CaM functions as a key regulator of the transport of SP fragments into exosomes and plays novel roles in the sorting of contents during exosomal biogenesis.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Department of Molecular Pharmacokinetics, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Correspondence: ; Tel.: +81-52-789-5002; Fax: +81-52-789-3994
| | - Mikio Niwa
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba 300-2611, Ibaraki, Japan
| | - Hiromi Suzuki
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Department of Molecular Pharmacokinetics, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
| | | | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba 300-2611, Ibaraki, Japan
| | - Makoto Sawada
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Department of Molecular Pharmacokinetics, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
17
|
Mantilla G, Peréz-Gordones MC, Cisneros-Montufar S, Benaim G, Navarro JC, Mendoza M, Ramírez-Iglesias JR. Structural Analysis and Diversity of Calmodulin-Binding Domains in Membrane and Intracellular Ca2+-ATPases. J Membr Biol 2022; 256:159-174. [PMID: 36454258 DOI: 10.1007/s00232-022-00275-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
The plasma membrane and autoinhibited Ca2+-ATPases contribute to the Ca2+ homeostasis in a wide variety of organisms. The enzymatic activity of these pumps is stimulated by calmodulin, which interacts with the target protein through the calmodulin-binding domain (CaMBD). Most information about this region is related to all calmodulin modulated proteins, which indicates general chemical properties and there is no established relation between Ca2+ pump sequences and taxonomic classification. Thus, the aim of this study was to perform an in silico analysis of the CaMBD from several Ca2+-ATPases, in order to determine their diversity and to detect specific patterns and amino acid selection in different species. Patterns related to potential and confirmed CaMBD were detected using sequences retrieved from the literature. The occurrence of these patterns was determined across 120 sequences from 17 taxonomical classes, which were analyzed by a phylogenetic tree to establish phylogenetic groups. Predicted physicochemical characteristics including hydropathy and net charge were calculated for each group of sequences. 22 Ca2+-ATPases sequences from animals, unicellular eukaryotes, and plants were retrieved from bioinformatic databases. These sequences allow us to establish the Patterns 1(GQILWVRGLTRLQTQ), 3(KNPSLEALQRW), and 4(SRWRRLQAEHVKK), which are present at the beginning of putative CaMBD of metazoan, parasites, and land plants. A pattern 2 (IRVVNAFR) was consistently found at the end of most analyzed sequences. The amino acid preference in the CaMBDs changed depending on the phylogenetic groups, with predominance of several aliphatic and charged residues, to confer amphiphilic properties. The results here displayed show a conserved mechanism to contribute to the Ca2+ homeostasis across evolution and may help to detect putative CaMBDs.
Collapse
Affiliation(s)
- Génesis Mantilla
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - María C Peréz-Gordones
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Soledad Cisneros-Montufar
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Gustavo Benaim
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Juan-Carlos Navarro
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Marta Mendoza
- Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela
| | - José R Ramírez-Iglesias
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador.
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador.
| |
Collapse
|
18
|
Bautista Saiz C, Mora Gómez MM, Polo JF, Gutiérrez Castañeda LD. La proteína 7 unida al receptor del factor de crecimiento (GRB7) en cáncer de mama. REPERTORIO DE MEDICINA Y CIRUGÍA 2022. [DOI: 10.31260/repertmedcir.01217372.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
El cáncer de mama debe considerarse como un problema de salud pública ya que es la causa principal de muerte en mujeres en el mundo. Se conoce que es multifactorial y heterogéneo de manera que cada tumor tiene características genéticas y moleculares propias, lo cual se refleja en el comportamiento clínico, respuesta al tratamiento y pronóstico. La proteína 7 unida al receptor del factor de crecimiento (GRB7) hace parte de un grupo de proteínas GRB que median la interacción entre receptores tirosina cinasa y proteínas efectoras en algunas vías de señalización involucradas en transducción de señales, migración celular y angiogénesis. Esta proteína es codificada por el gen GRB7 localizado en el cromosoma 17 en el locus 17q11–21, cerca del gen ERBB2, lo que sugiere coamplificación y coexpresión de estos dos genes en el desarrollo del cáncer. Se ha visto que la proteína GRB7 por sí sola está presente en la biología molecular implícita del cáncer de mama, interviniendo en la proliferación y migración celular facilitando así la invasión y posibles metástasis. Se considera como un factor de mal pronóstico en esta enfermedad.
Collapse
|
19
|
Munk M, Villalobo E, Villalobo A, Berchtold MW. Differential expression of the three independent CaM genes coding for an identical protein: Potential relevance of distinct mRNA stability by different codon usage. Cell Calcium 2022; 107:102656. [DOI: 10.1016/j.ceca.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
20
|
Calmodulin in Paramecium: Focus on Genomic Data. Microorganisms 2022; 10:microorganisms10101915. [PMID: 36296191 PMCID: PMC9608856 DOI: 10.3390/microorganisms10101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger that plays a key role in cellular signaling. However, Ca2+ signals are transduced with the help of Ca2+-binding proteins, which serve as sensors, transducers, and elicitors. Among the collection of these Ca2+-binding proteins, calmodulin (CaM) emerged as the prototypical model in eukaryotic cells. This is a small protein that binds four Ca2+ ions and whose functions are multiple, controlling many essential aspects of cell physiology. CaM is universally distributed in eukaryotes, from multicellular organisms, such as human and land plants, to unicellular microorganisms, such as yeasts and ciliates. Here, we review most of the information gathered on CaM in Paramecium, a group of ciliates. We condense the information here by mentioning that mature Paramecium CaM is a 148 amino acid-long protein codified by a single gene, as in other eukaryotic microorganisms. In these ciliates, the protein is notoriously localized and regulates cilia function and can stimulate the activity of some enzymes. When Paramecium CaM is mutated, cells show flawed locomotion and/or exocytosis. We further widen this and additional information in the text, focusing on genomic data.
Collapse
|
21
|
Insight into the Mammalian Aquaporin Interactome. Int J Mol Sci 2022; 23:ijms23179615. [PMID: 36077012 PMCID: PMC9456110 DOI: 10.3390/ijms23179615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane water channels expressed in all living organisms. AQPs facilitate osmotically driven water flux across biological membranes and, in some cases, the movement of small molecules (such as glycerol, urea, CO2, NH3, H2O2). Protein-protein interactions play essential roles in protein regulation and function. This review provides a comprehensive overview of the current knowledge of the AQP interactomes and addresses the molecular basis and functional significance of these protein-protein interactions in health and diseases. Targeting AQP interactomes may offer new therapeutic avenues as targeting individual AQPs remains challenging despite intense efforts.
Collapse
|
22
|
Léger C, Pitard I, Sadi M, Carvalho N, Brier S, Mechaly A, Raoux-Barbot D, Davi M, Hoos S, Weber P, Vachette P, Durand D, Haouz A, Guijarro JI, Ladant D, Chenal A. Dynamics and structural changes of calmodulin upon interaction with the antagonist calmidazolium. BMC Biol 2022; 20:176. [PMID: 35945584 PMCID: PMC9361521 DOI: 10.1186/s12915-022-01381-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.
Collapse
Affiliation(s)
- Corentin Léger
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Irène Pitard
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Nicolas Carvalho
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Sébastien Brier
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Ariel Mechaly
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Dorothée Raoux-Barbot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Sylviane Hoos
- Plateforme de Biophysique Moléculaire, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrick Weber
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrice Vachette
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - J Iñaki Guijarro
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
23
|
Computational Analysis of Short Linear Motifs in the Spike Protein of SARS-CoV-2 Variants Provides Possible Clues into the Immune Hijack and Evasion Mechanisms of Omicron Variant. Int J Mol Sci 2022; 23:ijms23158822. [PMID: 35955954 PMCID: PMC9368778 DOI: 10.3390/ijms23158822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
Short linear motifs (SLiMs) are short linear sequences that can mediate protein–protein interaction. Mimicking eukaryotic SLiMs to compete with extra- or intracellular binding partners, or to sequester host proteins is the crucial strategy of viruses to pervert the host system. Evolved proteins in viruses facilitate minimal protein–protein interactions that significantly affect intracellular signaling networks. Unfortunately, very little information about SARS-CoV-2 SLiMs is known, especially across SARS-CoV-2 variants. Through the ELM database-based sequence analysis of spike proteins from all the major SARS-CoV-2 variants, we identified four overriding SLiMs in the SARS-CoV-2 Omicron variant, namely, LIG_TRFH_1, LIG_REV1ctd_RIR_1, LIG_CaM_NSCaTE_8, and MOD_LATS_1. These SLiMs are highly likely to interfere with various immune functions, interact with host intracellular proteins, regulate cellular pathways, and lubricate viral infection and transmission. These cellular interactions possibly serve as potential therapeutic targets for these variants, and this approach can be further exploited to combat emerging SARS-CoV-2 variants.
Collapse
|
24
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
25
|
Thines L, Gorisse L, Li Z, Sayedyahossein S, Sacks DB. Calmodulin activates the Hippo signaling pathway by promoting LATS1 kinase-mediated inhibitory phosphorylation of the transcriptional coactivator YAP. J Biol Chem 2022; 298:101839. [PMID: 35307353 PMCID: PMC9019248 DOI: 10.1016/j.jbc.2022.101839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022] Open
Abstract
The Hippo signaling pathway regulates tissue growth and cell fate, and its dysregulation can induce tumorigenesis. When Hippo is activated by cell–cell contact, extracellular signals, or cell polarity among others, the large tumor suppressor 1 (LATS1) kinase catalyzes inhibitory phosphorylation of the transcriptional coactivator Yes-associated protein (YAP) to maintain YAP in the cytoplasm or promote its degradation. Separately, calmodulin is a Ca2+-dependent protein that modulates the activity of target proteins and regulates several signaling cascades; however, its potential role in the Hippo pathway has not been identified. Here, using diverse experimental approaches, including in vitro binding analyses, kinase assays, RT–PCR, and confocal microscopy, we reveal that calmodulin promotes Hippo signaling. We show that purified YAP and LATS1 bind directly to calmodulin and form a Ca2+-dependent ternary complex in vitro. Importantly, Ca2+/calmodulin directly stimulated the activity of LATS1 kinase. In cultured mammalian cells, we demonstrated that endogenous YAP and LATS1 coimmunoprecipitate with endogenous calmodulin. In cells with activated Hippo signaling, we show that calmodulin antagonism significantly (i) decreases YAP phosphorylation, (ii) increases expression of two Hippo target genes (connective tissue growth factor [CTGF] and cysteine-rich angiogenic inducer 61 [CYR61]) that regulate cell proliferation and tumor progression, and (iii) enhances the interaction of YAP with its major transcription factor, thereby facilitating transcription of target genes. Collectively, our data demonstrate that calmodulin activates the Hippo kinase cascade and inhibits YAP activity via a direct interaction with LATS1 and YAP, thereby uncovering previously unidentified crosstalk between the Ca2+/calmodulin and Hippo signaling pathways.
Collapse
Affiliation(s)
- Louise Thines
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Laëtitia Gorisse
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
26
|
TRPC1 promotes the genesis and progression of colorectal cancer via activating CaM-mediated PI3K/AKT signaling axis. Oncogenesis 2021; 10:67. [PMID: 34642309 PMCID: PMC8511127 DOI: 10.1038/s41389-021-00356-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
Transient receptor potential canonical (TRPC) channels are the most prominent nonselective cation channels involved in various diseases. However, the function, clinical significance, and molecular mechanism of TRPCs in colorectal cancer (CRC) progression remain unclear. In this study, we identified that TRPC1 was the major variant gene of the TRPC family in CRC patients. TRPC1 was upregulated in CRC tissues compared with adjacent normal tissues and high expression of TRPC1 was associated with more aggressive tumor progression and poor overall survival. TRPC1 knockdown inhibited cell proliferation, cell-cycle progression, invasion, and migration in vitro, as well as tumor growth in vivo; whereas TRPC1 overexpression promoted colorectal tumor growth and metastasis in vitro and in vivo. In addition, colorectal tumorigenesis was significantly attenuated in Trpc1-/- mice. Mechanistically, TRPC1 could enhance the interaction between calmodulin (CaM) and the PI3K p85 subunit by directly binding to CaM, which further activated the PI3K/AKT and its downstream signaling molecules implicated in cell cycle progression and epithelial-mesenchymal transition. Silencing of CaM attenuated the oncogenic effects of TRPC1. Taken together, these results provide evidence that TRPC1 plays a pivotal oncogenic role in colorectal tumorigenesis and tumor progression by activating CaM-mediated PI3K/AKT signaling axis. Targeting TRPC1 represents a novel and specific approach for CRC treatment.
Collapse
|
27
|
Collu G, Bierig T, Krebs AS, Engilberge S, Varma N, Guixà-González R, Sharpe T, Deupi X, Olieric V, Poghosyan E, Benoit RM. Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology. Structure 2021; 30:95-106.e7. [PMID: 34587504 DOI: 10.1016/j.str.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/17/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Chimeric fusion proteins are essential tools for protein nanotechnology. Non-optimized protein-protein connections are usually flexible and therefore unsuitable as structural building blocks. Here we show that the ER/K motif, a single α-helical domain (SAH), can be seamlessly fused to terminal helices of proteins, forming an extended, partially free-standing rigid helix. This enables the connection of two domains at a defined distance and orientation. We designed three constructs termed YFPnano, T4Lnano, and MoStoNano. Analysis of experimentally determined structures and molecular dynamics simulations reveals a certain degree of plasticity in the connections that allows the adaptation to crystal contact opportunities. Our data show that SAHs can be stably integrated into designed structural elements, enabling new possibilities for protein nanotechnology, for example, to improve the exposure of epitopes on nanoparticles (structural vaccinology), to engineer crystal contacts with minimal impact on construct flexibility (for the study of protein dynamics), and to design novel biomaterials.
Collapse
Affiliation(s)
- Gabriella Collu
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Tobias Bierig
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Anna-Sophia Krebs
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sylvain Engilberge
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Niveditha Varma
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Timothy Sharpe
- Biophysics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Emiliya Poghosyan
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Roger M Benoit
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
28
|
Nde J, Zhang P, Ezerski JC, Lu W, Knapp K, Wolynes PG, Cheung MS. Coarse-Grained Modeling and Molecular Dynamics Simulations of Ca 2+-Calmodulin. Front Mol Biosci 2021; 8:661322. [PMID: 34504868 PMCID: PMC8421859 DOI: 10.3389/fmolb.2021.661322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) is a calcium-binding protein that transduces signals to downstream proteins through target binding upon calcium binding in a time-dependent manner. Understanding the target binding process that tunes CaM’s affinity for the calcium ions (Ca2+), or vice versa, may provide insight into how Ca2+-CaM selects its target binding proteins. However, modeling of Ca2+-CaM in molecular simulations is challenging because of the gross structural changes in its central linker regions while the two lobes are relatively rigid due to tight binding of the Ca2+ to the calcium-binding loops where the loop forms a pentagonal bipyramidal coordination geometry with Ca2+. This feature that underlies the reciprocal relation between Ca2+ binding and target binding of CaM, however, has yet to be considered in the structural modeling. Here, we presented a coarse-grained model based on the Associative memory, Water mediated, Structure, and Energy Model (AWSEM) protein force field, to investigate the salient features of CaM. Particularly, we optimized the force field of CaM and that of Ca2+ ions by using its coordination chemistry in the calcium-binding loops to match with experimental observations. We presented a “community model” of CaM that is capable of sampling various conformations of CaM, incorporating various calcium-binding states, and carrying the memory of binding with various targets, which sets the foundation of the reciprocal relation of target binding and Ca2+ binding in future studies.
Collapse
Affiliation(s)
- Jules Nde
- Department of Physics, University of Houston, Houston, TX, United States.,Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Pengzhi Zhang
- Department of Physics, University of Houston, Houston, TX, United States
| | - Jacob C Ezerski
- Department of Physics, University of Houston, Houston, TX, United States
| | - Wei Lu
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Kaitlin Knapp
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Margaret S Cheung
- Department of Physics, University of Houston, Houston, TX, United States.,Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| |
Collapse
|
29
|
Wu X, Hong L. Calmodulin Interactions with Voltage-Gated Sodium Channels. Int J Mol Sci 2021; 22:ijms22189798. [PMID: 34575961 PMCID: PMC8472079 DOI: 10.3390/ijms22189798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Calmodulin (CaM) is a small protein that acts as a ubiquitous signal transducer and regulates neuronal plasticity, muscle contraction, and immune response. It interacts with ion channels and plays regulatory roles in cellular electrophysiology. CaM modulates the voltage-gated sodium channel gating process, alters sodium current density, and regulates sodium channel protein trafficking and expression. Many mutations in the CaM-binding IQ domain give rise to diseases including epilepsy, autism, and arrhythmias by interfering with CaM interaction with the channel. In the present review, we discuss CaM interactions with the voltage-gated sodium channel and modulators involved in CaM regulation, as well as summarize CaM-binding IQ domain mutations associated with human diseases in the voltage-gated sodium channel family.
Collapse
|
30
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
31
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
32
|
Calmodulin and Its Binding Proteins in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22063016. [PMID: 33809535 PMCID: PMC8001340 DOI: 10.3390/ijms22063016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that manifests with rest tremor, muscle rigidity and movement disturbances. At the microscopic level it is characterized by formation of specific intraneuronal inclusions, called Lewy bodies (LBs), and by a progressive loss of dopaminergic neurons in the striatum and substantia nigra. All living cells, among them neurons, rely on Ca2+ as a universal carrier of extracellular and intracellular signals that can initiate and control various cellular processes. Disturbances in Ca2+ homeostasis and dysfunction of Ca2+ signaling pathways may have serious consequences on cells and even result in cell death. Dopaminergic neurons are particularly sensitive to any changes in intracellular Ca2+ level. The best known and studied Ca2+ sensor in eukaryotic cells is calmodulin. Calmodulin binds Ca2+ with high affinity and regulates the activity of a plethora of proteins. In the brain, calmodulin and its binding proteins play a crucial role in regulation of the activity of synaptic proteins and in the maintenance of neuronal plasticity. Thus, any changes in activity of these proteins might be linked to the development and progression of neurodegenerative disorders including PD. This review aims to summarize published results regarding the role of calmodulin and its binding proteins in pathology and pathogenesis of PD.
Collapse
|
33
|
Rimessi A, Vitto VAM, Patergnani S, Pinton P. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Front Pharmacol 2021; 12:581645. [PMID: 33776759 PMCID: PMC7990772 DOI: 10.3389/fphar.2021.581645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by mutations in the cystic fibrosis transmembrane conductance regulator gene, which causes multifunctional defects that preferentially affect the airways. Abnormal viscosity of mucus secretions, persistent pathogen infections, hyperinflammation, and lung tissue damage compose the classical pathological manifestation referred to as CF lung disease. Among the multifunctional defects associated with defective CFTR, increasing evidence supports the relevant role of perturbed calcium (Ca2+) signaling in the pathophysiology of CF lung disease. The Ca2+ ion is a critical player in cell functioning and survival. Its intracellular homeostasis is maintained by a fine balance between channels, transporters, and exchangers, mediating the influx and efflux of the ion across the plasma membrane and the intracellular organelles. An abnormal Ca2+ profile has been observed in CF cells, including airway epithelial and immune cells, with heavy repercussions on cell function, viability, and susceptibility to pathogens, contributing to proinflammatory overstimulation, organelle dysfunction, oxidative stress, and excessive cytokines release in CF lung. This review discusses the role of Ca2+ signaling in CF and how its dysregulation in airway epithelial and immune cells contributes to hyperinflammation in the CF lung. Finally, we provide an outlook on the therapeutic options that target the Ca2+ signaling to treat the CF lung disease.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Sjøgaard-Frich LM, Prestel A, Pedersen ES, Severin M, Kristensen KK, Olsen JG, Kragelund BB, Pedersen SF. Dynamic Na +/H + exchanger 1 (NHE1) - calmodulin complexes of varying stoichiometry and structure regulate Ca 2+-dependent NHE1 activation. eLife 2021; 10:60889. [PMID: 33655882 PMCID: PMC8009664 DOI: 10.7554/elife.60889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022] Open
Abstract
Calmodulin (CaM) engages in Ca2+-dependent interactions with numerous proteins, including a still incompletely understood physical and functional interaction with the human Na+/H+-exchanger NHE1. Using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimetry, and fibroblasts stably expressing wildtype and mutant NHE1, we discovered multiple accessible states of this functionally important complex existing in different NHE1:CaM stoichiometries and structures. We determined the NMR solution structure of a ternary complex in which CaM links two NHE1 cytosolic tails. In vitro, stoichiometries and affinities could be tuned by variations in NHE1:CaM ratio and calcium ([Ca2+]) and by phosphorylation of S648 in the first CaM-binding α-helix. In cells, Ca2+-CaM-induced NHE1 activity was reduced by mimicking S648 phosphorylation and by mutation of the first CaM-binding α-helix, whereas it was unaffected by inhibition of Akt, one of several kinases phosphorylating S648. Our results demonstrate a diversity of NHE1:CaM interaction modes and suggest that CaM may contribute to NHE1 dimerization and thereby augment NHE1 regulation. We propose that a similar structural diversity is of relevance to many other CaM complexes.
Collapse
Affiliation(s)
- Lise M Sjøgaard-Frich
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Emilie S Pedersen
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Johan G Olsen
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Abstract
Lead (Pb2+) is a non-essential metal with numerous industrial applications that have led to ts ubiquity in the environment. Thus, not only occupational-exposed individuals' health is compromised, but also that of the general population and in particular children. Notably, although the central nervous system is particularly susceptible to Pb2+, other systems are affected as well. The present study focuses on molecular mechanisms that underlie the effects that arise from the presence of Pb2+ in situ in the brain, and the possible toxic effects that follows. As the brain barriers represent the first target of systemic Pb2+, mechanisms of Pb2+ entry into the brain are discussed, followed by a detailed discussion on neurotoxic mechanisms, with special emphasis on theories of ion mimicry, mitochondrial dysfunction, redox imbalance, and neuroinflammation. Most importantly, the confluence and crosstalk between these events is combined into a cogent mechanism of toxicity, by intertwining recent and old evidences from humans, in vitro cell culture and experimental animals. Finally, pharmacological interventions, including chelators, antioxidants substances, anti-inflammatory drugs, or their combination are reviewed as integrated approaches to ameliorate Pb2+ harmful effects in both developing or adult organisms.
Collapse
Affiliation(s)
- Miriam B. Virgolini
- IFEC CONICET. IFEC-CONICET. Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA and IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia
| |
Collapse
|
36
|
Promotion of cancer cell stemness by Ras. Biochem Soc Trans 2021; 49:467-476. [PMID: 33544116 PMCID: PMC7925005 DOI: 10.1042/bst20200964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSC) may be the most relevant and elusive cancer cell population, as they have the exquisite ability to seed new tumors. It is plausible, that highly mutated cancer genes, such as KRAS, are functionally associated with processes contributing to the emergence of stemness traits. In this review, we will summarize the evidence for a stemness driving activity of oncogenic Ras. This activity appears to differ by Ras isoform, with the highly mutated KRAS having a particularly profound impact. Next to established stemness pathways such as Wnt and Hedgehog (Hh), the precise, cell cycle dependent orchestration of the MAPK-pathway appears to relay Ras activation in this context. We will examine how non-canonical activities of K-Ras4B (hereafter K-Ras) could be enabled by its trafficking chaperones calmodulin and PDE6D/PDEδ. Both dynamically localize to the cellular machinery that is intimately linked to cell fate decisions, such as the primary cilium and the centrosome. Thus, it can be speculated that oncogenic K-Ras disrupts fundamental polarized signaling and asymmetric apportioning processes that are necessary during cell differentiation.
Collapse
|
37
|
Parvathaneni S, Li Z, Sacks DB. Calmodulin influences MAPK signaling by binding KSR1. J Biol Chem 2021; 296:100577. [PMID: 33766558 PMCID: PMC8079274 DOI: 10.1016/j.jbc.2021.100577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 03/21/2021] [Indexed: 11/24/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is a fundamental signaling pathway that regulates cell fate decisions in response to external stimuli. Several scaffold proteins bind directly to kinase components of this pathway and regulate their activation by growth factors. One of the best studied MAPK scaffolds is kinase suppressor of Ras1 (KSR1), which is induced by epidermal growth factor (EGF) to translocate to the plasma membrane where it activates extracellular signal-regulated kinase (ERK). While Ca2+ has been shown to modulate MAPK signaling, the molecular mechanisms by which this occurs are incompletely understood. Here we tested the hypothesis that Ca2+ alters MAPK activity at least in part via KSR1. Using several approaches, including fusion proteins, immunoprecipitation, confocal microscopy, and a cell-permeable chemical inhibitor, we investigated the functional interaction between KSR1 and calmodulin. In vitro analysis with pure proteins reveals that calmodulin binds directly to KSR1. Moreover, endogenous calmodulin and KSR1 co-immunoprecipitate from mammalian cell lysates. Importantly, Ca2+ is required for the association between calmodulin and KSR1, both in vitro and in cells. The cell-permeable calmodulin antagonist CGS9343B significantly reduced activation of ERK by EGF in mouse embryo fibroblasts that overexpress KSR1, but not in control cells. Moreover, CGS9343B impaired the ability of EGF to induce KSR1 translocation to the plasma membrane and to stimulate formation of KSR1-ERK and KSR1-pERK (phosphorylated ERK) complexes in cells. Collectively, our data identify a previously unrecognized mechanism by which the scaffold protein KSR1 couples Ca2+ and calmodulin signaling to the MAPK cascade.
Collapse
Affiliation(s)
- Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
38
|
Adiga D, Radhakrishnan R, Chakrabarty S, Kumar P, Kabekkodu SP. The Role of Calcium Signaling in Regulation of Epithelial-Mesenchymal Transition. Cells Tissues Organs 2020; 211:134-156. [PMID: 33316804 DOI: 10.1159/000512277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Despite substantial advances in the field of cancer therapeutics, metastasis is a significant challenge for a favorable clinical outcome. Epithelial to mesenchymal transition (EMT) is a process of acquiring increased motility, invasiveness, and therapeutic resistance by cancer cells for their sustained growth and survival. A plethora of intrinsic mechanisms and extrinsic microenvironmental factors drive the process of cancer metastasis. Calcium (Ca2+) signaling plays a critical role in dictating the adaptive metastatic cell behavior comprising of cell migration, invasion, angiogenesis, and intravasation. By modulating EMT, Ca2+ signaling can regulate the complexity and dynamics of events leading to metastasis. This review summarizes the role of Ca2+ signal remodeling in the regulation of EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.,Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India, .,Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
39
|
Vinayagam D, Quentin D, Yu-Strzelczyk J, Sitsel O, Merino F, Stabrin M, Hofnagel O, Yu M, Ledeboer MW, Nagel G, Malojcic G, Raunser S. Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. eLife 2020; 9:e60603. [PMID: 33236980 PMCID: PMC7735759 DOI: 10.7554/elife.60603] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Canonical transient receptor potential channels (TRPC) are involved in receptor-operated and/or store-operated Ca2+ signaling. Inhibition of TRPCs by small molecules was shown to be promising in treating renal diseases. In cells, the channels are regulated by calmodulin (CaM). Molecular details of both CaM and drug binding have remained elusive so far. Here, we report structures of TRPC4 in complex with three pyridazinone-based inhibitors and CaM. The structures reveal that all the inhibitors bind to the same cavity of the voltage-sensing-like domain and allow us to describe how structural changes from the ligand-binding site can be transmitted to the central ion-conducting pore of TRPC4. CaM binds to the rib helix of TRPC4, which results in the ordering of a previously disordered region, fixing the channel in its closed conformation. This represents a novel CaM-induced regulatory mechanism of canonical TRP channels.
Collapse
Affiliation(s)
| | - Dennis Quentin
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Jing Yu-Strzelczyk
- Department of Neurophysiology, Physiological Institute, Julius-Maximilians-Universität WürzburgWürzburgGermany
| | - Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | | | | | - Georg Nagel
- Department of Neurophysiology, Physiological Institute, Julius-Maximilians-Universität WürzburgWürzburgGermany
| | | | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
40
|
Saljic A, Muthukumarasamy KM, la Cour JM, Boddum K, Grunnet M, Berchtold MW, Jespersen T. Impact of arrhythmogenic calmodulin variants on small conductance Ca 2+ -activated K + (SK3) channels. Physiol Rep 2020; 7:e14210. [PMID: 31587513 PMCID: PMC6778599 DOI: 10.14814/phy2.14210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca2+‐sensing protein regulating many important cellular processes. Several CaM‐associated variants have been identified in a small group of patients with cardiac arrhythmias. The mechanism remains largely unknown, even though a number of ion channels, including the ryanodine receptors and the L‐type calcium channels have been shown to be functionally affected by the presence of mutant CaM. CaM is constitutively bound to the SK channel, which underlies the calcium‐gated ISK contributing to cardiac repolarization. The CaM binding to SK channels is essential for gating, correct assembly, and membrane expression. To elucidate the effect of nine different arrhythmogenic CaM variants on SK3 channel function, HEK293 cells stably expressing SK3 were transiently co‐transfected with CaMWT or variant and whole‐cell patch‐clamp recordings were performed with a calculated free Ca2+ concentration of 400 nmol/L. MDCK cells were transiently transfected with SK3 and/or CaMWT or variant to address SK3 and CaM localization by immunocytochemistry. The LQTS‐associated variants CaMD96V, CaMD130G, and CaMF142L reduced ISK,Ca compared with CaMWT (P < 0.01, P < 0.001, and P < 0.05, respectively). The CPVT associated variant CaMN54I also reduced the ISK,Ca (P < 0.05), which was linked to an accumulation of SK3/CaMN54I channel complexes in intracellular compartments (P < 0.05). The CPVT associated variants, CaMA103V and CaMD132E only revealed a tendency toward reduced current, while the variants CaMF90L and CaMN98S, causing LQTS syndrome, did not have any impact on ISK,Ca. In conclusion, we found that the arrhythmogenic CaM variants CaMN54I, CaMD96V, CaMD130G, and CaMF142L significantly down‐regulate the SK3 channel current, but with distinct mechanism.
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kalai Mangai Muthukumarasamy
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Marstrand la Cour
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Boddum
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Werner Berchtold
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Bollella P, Edwardraja S, Guo Z, Katz E. Control of Allosteric Protein Electrochemical Switches with Biomolecular and Electronic Signals. J Phys Chem Lett 2020; 11:5549-5554. [PMID: 32602718 DOI: 10.1021/acs.jpclett.0c01223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The construction of allosteric protein switches is a key goal of synthetic biology. Such switches can be compiled into signaling systems mimicking information and energy processing systems of living organisms. Here we demonstrate construction of a biocatalytic electrode functionalized with a recombinant chimeric protein between pyrroloquinoline quinone-dependent glucose dehydrogenase and calmodulin. This electrode could be activated by calmodulin-binding peptide and showed a high bioelectrocatalytic current (ca. 300 μA) due to efficient direct electron transfer. In order to expand the types of inputs that can be used to activate the developed electrode, we constructed a caged version of calmodulin-binding peptide that could be proteolytically uncaged using a protease of choice. Finally, the complexity of the switchable bioelectrochemical system was further increased by the use of almost any kind of molecule/biomolecule or electronic signal, unequivocally proving the orthogonality of the aforementioned system.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
42
|
García-Palmero I, Shah N, Ali NA, Daly RJ, Wilce JA, Villalobo A. Partners of wild type Grb7 and a mutant lacking its calmodulin-binding domain. Arch Biochem Biophys 2020; 687:108386. [PMID: 32360748 DOI: 10.1016/j.abb.2020.108386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 11/28/2022]
Abstract
Growth factor receptor bound protein 7 (Grb7) is a mammalian adaptor protein participating in signaling pathways implicated in cell migration, metastatic invasion, cell proliferation and tumor-associated angiogenesis. We expressed tagged versions of wild type Grb7 and the mutant Grb7Δ, lacking its calmodulin-binding domain (CaM-BD), in human embryonic kidney (HEK) 293 cells and rat glioma C6 cells to identify novel binding partners using shot-gun proteomics. Among the new identified proteins, we validated the ubiquitin-ligase Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4), the heat-shock protein Hsc70/HSPA8 (heat shock cognate protein 70) and the cell cycle regulatory protein caprin-1 (cytoplasmic activation/proliferation-associated protein 1) in rat glioma C6 cells. Our results suggest a role of Grb7 in pathways where these proteins are implicated. These include protein trafficking and degradation, stress-response, chaperone-mediated autophagy, apoptosis and cell proliferation.
Collapse
Affiliation(s)
- Irene García-Palmero
- Life Length, Parque Científico de Madrid, c/ Faraday 7, Campus de Cantoblanco, E-28049, Madrid, Spain
| | - Neelam Shah
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Naveid A Ali
- The Garvan Institute of Medical Research, Darlinghurst Sydney NSW, 2010, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046, Madrid, Spain.
| |
Collapse
|
43
|
Grb7-derived calmodulin-binding peptides inhibit proliferation, migration and invasiveness of tumor cells while they enhance attachment to the substrate. Heliyon 2020; 6:e03922. [PMID: 32420488 PMCID: PMC7215194 DOI: 10.1016/j.heliyon.2020.e03922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/05/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
The growth factor receptor bound protein 7 (Grb7) is a Ca2+-dependent calmodulin (CaM)-binding adaptor protein implicated, among other functions, in cell proliferation, migration and tumor-associated angiogenesis. The goal of this study was to determine whether a peptide based on the CaM binding site of Grb7 disrupts cellular processes, relevant for the malignancy of tumor cells, in which this adaptor protein is implicated. We designed synthetic myristoylated and non-myristoylated peptides corresponding to the CaM-binding domain of human Grb7 with the sequence 243RKLWKRFFCFLRRS256 and a variant peptide with the mutated sequence RKLERFFCFLRRE (W246E-ΔK247-S256E). The two non-myristoylated peptides bind dansyl-CaM with higher efficiency in the presence than in the absence of Ca2+ and they enter into the cell, as tested with 5(6)-carboxytetramethylrhodamine (TAMRA)-labeled peptides. The myristoylated and non-myristoylated peptides inhibit the proliferation, migration and invasiveness of A431 tumor cells while they enhance their adhesion to the substrate. The myristoylated peptides have stronger inhibitory effect than the non-myristoylated counterparts, in agreement with their expected higher cell-permeant capacity. The myristoylated and non-myristoylated W246E-ΔK247-S256E mutant peptide has a lesser inhibitory effect on cell proliferation as compared to the wild-type peptide. We also demonstrated that the myristoylated peptides were more efficient than the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibiting cell migration and equally efficient inhibiting cell proliferation.
Collapse
|
44
|
Bao B, Gao D, Li N, Wu M, Xing C. Near-Infrared Light Regulation of Tumor PI3K/Akt Signaling Pathway for Enhancing Cancer Cell Apoptosis through Conjugated Polymer Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:2428-2437. [PMID: 35025292 DOI: 10.1021/acsabm.0c00161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calmodulin (CaM), as a calcium binding protein involved in the signal pathways of many life activities such as cell proliferation and apoptosis, can be regulated with the near-infrared (NIR) light-based photothermal conversion. Here, we build a conjugated polymer nanoparticle (CPNs-C) by assembling polypyrrole dione and dipalmitoyl phosphatidylethanolamine-polyethylene glycol-maleimide with a calmodulin antibody modified on the surface, which is NIR light-responsive for photothermally inducing apoptosis of cancer cells. Under near-infrared light irradiation, protein kinase B (Akt) and phosphatidylinositol 3-kinase, which bind to CaM, reduce the degree of phosphorylation due to the photothermal effect of CPNs-C, thus inhibiting the recruitment of Akt on the cell membrane. Therefore, the phosphorylation of GSK-3β downstream of the signaling pathway is reduced, and the phosphorylation of FoxO3a is enhanced, which can promote apoptosis of cancer cells. Compared with the photothermal effect of traditional CPNs, CPNs-C exhibits higher efficiency to regulate signaling pathways to promote cancer cells toward apoptosis. This strategy of utilizing NIR light to regulate the tumor apoptotic signaling pathway provides an effective way to enhance cancer cell apoptosis with high efficiency.
Collapse
Affiliation(s)
- Benkai Bao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300400, P.R. China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300400, P.R. China
| | - Ning Li
- School of Materials Science and Engineering, Hebei University of Technology Tianjin 300130, P. R. China
| | - Manman Wu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300400, P.R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300400, P.R. China
| |
Collapse
|
45
|
Song X, Zhang Y, Dai E. Therapeutic targets of thunder god vine (Tripterygium wilfordii hook) in rheumatoid arthritis (Review). Mol Med Rep 2020; 21:2303-2310. [PMID: 32323812 DOI: 10.3892/mmr.2020.11052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/02/2020] [Indexed: 11/05/2022] Open
Abstract
Celastrol and triptolide, chemical compounds isolated from Tripterygium wilfordii hook (also known as thunder god vine), are effective against rheumatoid arthritis (RA). Celastrol targets numerous signaling pathways involving NF‑κB, endoplasmic reticulum Ca2+‑ATPase, myeloid differentiation factor 2, toll‑like receptor 4, pro‑inflammatory chemokines, DNA damage, cell cycle arrest and apoptosis. Triptolide, inhibits NF‑κB, the receptor activator of NF‑κB (RANK)/RANK ligand/osteoprotegerin signaling pathway, cyclooxygenase‑2, matrix metalloproteases and cytokines. The present review examined the chemistry and bioavailability of celastrol and triptolide, and their molecular targets in treating RA. Clinical studies have demonstrated that T. wilfordii has several promising bioactivities, but its multi‑target toxicity has restricted its application. Thus, dosage control and structural modification of T. wilfordii are required to reduce the toxicity. In this review, future directions for research into these promising natural products are discussed.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Yu Zhang
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Erqin Dai
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| |
Collapse
|
46
|
Zimova L, Barvikova K, Macikova L, Vyklicka L, Sinica V, Barvik I, Vlachova V. Proximal C-Terminus Serves as a Signaling Hub for TRPA1 Channel Regulation via Its Interacting Molecules and Supramolecular Complexes. Front Physiol 2020; 11:189. [PMID: 32226391 PMCID: PMC7081373 DOI: 10.3389/fphys.2020.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the general principles of the polymodal regulation of transient receptor potential (TRP) ion channels has grown impressively in recent years as a result of intense efforts in protein structure determination by cryo-electron microscopy. In particular, the high-resolution structures of various TRP channels captured in different conformations, a number of them determined in a membrane mimetic environment, have yielded valuable insights into their architecture, gating properties and the sites of their interactions with annular and regulatory lipids. The correct repertoire of these channels is, however, organized by supramolecular complexes that involve the localization of signaling proteins to sites of action, ensuring the specificity and speed of signal transduction events. As such, TRP ankyrin 1 (TRPA1), a major player involved in various pain conditions, localizes into cholesterol-rich sensory membrane microdomains, physically interacts with calmodulin, associates with the scaffolding A-kinase anchoring protein (AKAP) and forms functional complexes with the related TRPV1 channel. This perspective will contextualize the recent biochemical and functional studies with emerging structural data with the aim of enabling a more thorough interpretation of the results, which may ultimately help to understand the roles of TRPA1 under various physiological and pathophysiological pain conditions. We demonstrate that an alteration to the putative lipid-binding site containing a residue polymorphism associated with human asthma affects the cold sensitivity of TRPA1. Moreover, we present evidence that TRPA1 can interact with AKAP to prime the channel for opening. The structural bases underlying these interactions remain unclear and are definitely worth the attention of future studies.
Collapse
Affiliation(s)
- Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Kristyna Barvikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Lucie Macikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Lenka Vyklicka
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Viktor Sinica
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Ivan Barvik
- Division of Biomolecular Physics, Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czechia
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
47
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
48
|
Bollella P, Edwardraja S, Guo Z, Alexandrov K, Katz E. Control of allosteric electrochemical protein switch using magnetic signals. Chem Commun (Camb) 2020; 56:9206-9209. [PMID: 32662462 DOI: 10.1039/d0cc04284f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The artificial chimeric enzyme with allosteric features was activated with a magnetic field applied at a distance.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance
- ARC Centre of Excellence in Synthetic Biology
- Centre for Agriculture and the Bioeconomy
- Institute of Health and Biomedical Innovation
- Institute for Future Environments
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance
- ARC Centre of Excellence in Synthetic Biology
- Centre for Agriculture and the Bioeconomy
- Institute of Health and Biomedical Innovation
- Institute for Future Environments
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
49
|
Bollella P, Bellare M, Kadambar VK, Guo Z, Alexandrov K, Melman A, Katz E. Boolean Logic Networks Mimicked with Chimeric Enzymes Activated/Inhibited by Several Input Signals. Chemphyschem 2019; 21:589-593. [DOI: 10.1002/cphc.201901050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Madhura Bellare
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | | | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane 4001, QLD Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane 4001, QLD Australia
| | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| |
Collapse
|
50
|
Maki M. Structures and functions of penta-EF-hand calcium-binding proteins and their interacting partners: enigmatic relationships between ALG-2 and calpain-7. Biosci Biotechnol Biochem 2019; 84:651-660. [PMID: 31814542 DOI: 10.1080/09168451.2019.1700099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The penta-EF-hand (PEF) protein family includes ALG-2 (gene name, PDCD6) and its paralogs as well as classical calpain family members. ALG-2 is a prototypic PEF protein that is widely distributed in eukaryotes and interacts with a variety of proteins in a Ca2+-dependent manner. Mammalian ALG-2 and its interacting partners have various modulatory roles including roles in cell death, signal transduction, membrane repair, ER-to-Golgi vesicular transport, and RNA processing. Some ALG-2-interacting proteins are key factors that function in the endosomal sorting complex required for transport (ESCRT) system. On the other hand, mammalian calpain-7 (CAPN7) lacks the PEF domain but contains two microtubule-interacting and trafficking (MIT) domains in tandem. CAPN7 interacts with a subset of ESCRT-III proteins through the MIT domains and regulates EGF receptor downregulation. Structures and functions of ALG-2 and those of its interacting partners as well as relationships with the calpain family are reviewed in this article.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|