1
|
Shi H, Zhao Y. Astaxanthin inhibits apoptosis in a cell model of tauopathy by attenuating endoplasmic reticulum stress and unfolded protein response. Eur J Pharmacol 2024; 983:176962. [PMID: 39214273 DOI: 10.1016/j.ejphar.2024.176962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The accumulation of misfolded proteins is a common pathological characteristic shared by many neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. The disruption of proteostasis triggers endoplasmic reticulum (ER) stress, during which the unfolded protein response (UPR) is initiated by the activation of protein kinase R-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6). These three branches of UPR signals act in concert to reduce the levels of abnormal proteins and restore ER homeostasis. However, the overactivation of UPR impairs cell function and induces apoptosis, which has been implicated in neurodegeneration. Astaxanthin is a xanthophyll carotenoid which has been shown to have neuroprotective effects in both cell and animal models; however, its effects on ER stress and UPR induced by disrupted proteostasis remain unclear. In this study, the effects of astaxanthin on ER stress and cytotoxicity were investigated in N2a cells stably expressing the pro-aggregant tau repeat domain carrying FTDP-17 mutation ΔK280 (Tau4RDΔK280). The results demonstrated that astaxanthin significantly inhibited Tau4RDΔK280-induced loss of cell viability and apoptosis, attenuating Tau4RDΔK280-induced caspase-3 activation and decrease of Bcl-2. Further studies revealed that astaxanthin treatment alleviated Tau4RDΔK280-induced ER stress and suppressed the activation of PERK, IRE1 and ATF6 signaling pathways. These findings suggested that astaxanthin might inhibit Tau4RDΔK280-induced cytotoxicity by attenuating UPR and ER stress. In addition, astaxanthin treatment resulted in a great reduction in the production of intracellular reactive oxygen species and a significant decrease in calcium influx induced by Tau4RDΔK280, which also contributed to the protective effects of astaxanthin against Tau4RDΔK280-induced cytotoxicity.
Collapse
Affiliation(s)
- Huahua Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
2
|
Tepebaşı MY, Savran M, Coşan S, Taştan ŞA, Aydın B. The protective role of selenium against high-fructose corn syrup-induced kidney damage: a histopathological and molecular analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7829-7837. [PMID: 38734838 PMCID: PMC11450133 DOI: 10.1007/s00210-024-03149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
With the growth of the food industry, fructose, the intake of which increases with food, causes obesity and metabolic syndrome. Kidney damage may develop from metabolic syndrome. Selenium (Se) participates in the structure of antioxidant enzymes and has a medicinal effect. In this work, the protective impact of Se on kidney damage produced by high-fructose corn syrup (HFCS) via endoplasmic reticulum (ER) stress was examined. The study comprised four groups, each consisting of ten experimental animals: control, HFCS (20%-HFCS), HFCS (20%-HFCS), + Se (0.3 mg/kg/day/po), and Se (0.3 mg/kg/day/po) alone. The duration of the experiment was 6 weeks. Kidney tissues were stained with hematoxylin and eosin for histological examination. Immunohistochemical analysis was conducted to assess TNF-α and caspase-3 levels. The spectrophotometric evaluation was performed to measure TOS (total oxidant status), TAS (total antioxidant status), and OSI (oxidative stress index) levels. The PERK, ATF4, CHOP, BCL-2, and caspase-9 gene expression levels were assessed by the RT-qPCR method. After Se treatment, histopathological abnormalities and TNF-α and caspase-3 levels in the HFCS+Se group decreased (p < 0.001). While TOS and OSI levels increased dramatically in the HFCS group, TAS values decreased significantly but improved after Se application (p < 0.001). The expression levels of the genes PERK, ATF4, CHOP, and caspase-9 were significantly lower in the HFCS group when compared to the HFCS+Se group (p < 0.05). Our findings suggest that Se may protect against ER stress, oxidative stress, apoptosis, and kidney damage caused by high-dose fructose consumption.
Collapse
Affiliation(s)
| | - Mehtap Savran
- Department of Medical Pharmacology, University of Süleyman Demirel, Isparta, Turkey
| | - Samet Coşan
- Department of Medical Pharmacology, University of Süleyman Demirel, Isparta, Turkey
| | | | - Bünyamin Aydın
- Department of Internal Medicine, Kütahya University of Health Sciences, Kütahya, Turkey
| |
Collapse
|
3
|
Wang L, Hao X, Li X, Li Q, Fang X. Effects of ginsenoside Rh2 on cisplatin-induced nephrotoxicity in renal tubular epithelial cells by inhibiting endoplasmic reticulum stress. J Biochem Mol Toxicol 2024; 38:e23768. [PMID: 39015062 DOI: 10.1002/jbt.23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/23/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Nephrotoxicity remains a major adverse reaction of the anticancer drug cisplatin (CDDP) chemotherapy, which is an important risk factor for chronic renal disease. Ginsenoside Rh2 from Panax ginseng has been shown to protect against CDDP-induced nephrotoxicity in vivo, but its pharmacological effect on renal tubular epithelial cells is not clearly understood. This study examined the molecular mechanisms underlying the nephroprotective effects of Rh2 on CDDP-induced HK-2 cells and acute kidney injury (AKI) mice. As a result of Rh2 treatment, CDDP-induced HK-2 cells showed increased cell viability and reduced lactate dehydrogenase release. Moreover, Rh2 ameliorated CDDP-induced mitochondrial membrane potential, increased antioxidant enzyme activities, and reduced pro-inflammatory cytokine expression to reduce damage. Rh2 inhibited apoptosis and enhanced the antioxidant capacity of HK-2 cells by reducing proteins associated with endoplasmic reticulum (ER) stress, as well as by attenuating tunicamycin-induced ER stress. In addition, treatment of CDDP-induced AKI mice with Rh2 substantially reduced blood urea nitrogen and serum creatinine levels, attenuated histological damage of kidney. Further, Rh2 also improved kidney function by inhibiting ER stress to support in vitro findings. These results consistently demonstrated that Rh2 protects renal tubular epithelial cells from CDDP-induced nephrotoxicity and apoptosis by restoring ER homeostasis, which might suggest a therapeutic potential and providing new insights into AKI alternative therapies.
Collapse
Affiliation(s)
- Lianping Wang
- School of Life Sciences, Jilin University, Changchun, China
- School of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Changchun, China
| | - Xiaogang Hao
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiangxin Li
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qingjie Li
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Yuan J, Meng H, Liu Y, Wang L, Zhu Q, Wang Z, Liu H, Zhang K, Zhao J, Li W, Wang Y. Bacillus amyloliquefaciens attenuates the intestinal permeability, oxidative stress and endoplasmic reticulum stress: transcriptome and microbiome analyses in weaned piglets. Front Microbiol 2024; 15:1362487. [PMID: 38808274 PMCID: PMC11131103 DOI: 10.3389/fmicb.2024.1362487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is related to oxidative stress (OS) and leads to intestinal injury. Bacillus amyloliquefaciens SC06 (SC06) can regulate OS, but its roles in intestinal ER stress remains unclear. Using a 2 × 2 factorial design, 32 weaned piglets were treated by two SC06 levels (0 or 1 × 108 CFU/g), either with or without diquat (DQ) injection. We found that SC06 increased growth performance, decreased ileal permeability, OS and ER stress in DQ-treated piglets. Transcriptome showed that differentially expressed genes (DEGs) induced by DQ were enriched in NF-κB signaling pathway. DEGs between DQ- and SC06 + DQ-treated piglets were enriched in glutathione metabolism pathway. Ileal microbiome revealed that the SC06 + DQ treatment decreased Clostridium and increased Actinobacillus. Correlations were found between microbiota and ER stress genes. In conclusion, dietary SC06 supplementation increased the performance, decreased the permeability, OS and ER stress in weaned piglets by regulating ileal genes and microbiota.
Collapse
Affiliation(s)
- Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yu Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Li Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Qizhen Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Zhengyu Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Yue F, Xu J, Meng L, Wang Q, Tan M, Zhang A, Yan S, Jiang D. A new insight into Cd exposure-induced hemocyte reduction in Lymantria dispar larvae: Involvement of the ROS-ATF6-ER stress-apoptosis pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134061. [PMID: 38508113 DOI: 10.1016/j.jhazmat.2024.134061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Hemocytes are important targets for heavy metal-induced immunotoxicity in insects. This study aimed to investigate the mechanism by which cadmium (Cd) exposure affects the hemocyte count in Lymantria dispar larvae. The results showed that the number of larval hemocytes was significantly decreased under Cd exposure, accompanied by a significant increase in the apoptosis rate and the expression of Caspase-3. The endoplasmic reticulum (ER) of hemocytes in the Cd-treated group showed irregular swelling. Expression levels of ER stress indicator genes (CHOP, Bip1, Bip2, Bip3, and Bip4) were significantly higher in the Cd-treated group. Among the three pathways that potentially mediate ER stress, only the key genes in the ATF6 pathway (ATF6, S1P-1, S1P-2, and WFS1) exhibited differential responses to Cd exposure. Cd exposure significantly increased the levels of reactive oxygen species (ROS) and the expression of oxidative stress-related genes (CNCC, P38, and ATF2) in hemocytes. Studies using inhibitors confirmed that apoptosis mediated the decrease in hemocyte count, ER stress mediated apoptosis, ATF6 pathway mediated ER stress, and ROS or oxidative stress mediated ER stress through the activation of the ATF6 pathway. Taken together, the ROS-ATF6-ER stress-apoptosis pathway is responsible for the reduction in the hemocyte count of Cd-treated L. dispar larvae.
Collapse
Affiliation(s)
- Fusen Yue
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Linyi Meng
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Qi Wang
- Forest Conservation Institute, Chinese Academy of Forestry, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
6
|
Murillo-González FE, García-Aguilar R, Limón-Pacheco J, Cabañas-Cortés MA, Elizondo G. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and kynurenine induce Parkin expression in neuroblastoma cells through different signaling pathways mediated by the aryl hydrocarbon receptor. Toxicol Lett 2024; 394:114-127. [PMID: 38437907 DOI: 10.1016/j.toxlet.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Parkin regulates protein degradation and mitophagy in dopaminergic neurons. Deficiencies in Parkin expression or function lead to cellular stress, cell degeneration, and the death of dopaminergic neurons, which promotes Parkinson's disease. In contrast, Parkin overexpression promotes neuronal survival. Therefore, the mechanisms of Parkin upregulation are crucial to understand. We describe here the molecular mechanism of AHR-mediated Parkin regulation in human SH-SY5Y neuroblastoma cells. Specifically, we report that the human Parkin gene (PRKN) is transcriptionally upregulated by the aryl hydrocarbon receptor (AHR) through two different selective ligand-dependent pathways. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a stress-inducing AHR ligand, indirectly promotes PRKN transcription by inducing ATF4 expression via TCDD-mediated endoplasmic reticulum (ER) stress. In contrast, kynurenine, a nontoxic AHR agonist, induces PRKN transcription by promoting AHR binding to the PRKN promoter without activating ER stress. Our results demonstrate that AHR activation may be a potential pharmacological pathway to induce human Parkin, but such a strategy must carefully consider the choice of AHR ligand to avoid neurotoxic side effects.
Collapse
Affiliation(s)
| | - Rosario García-Aguilar
- Departamento de Toxicología, CINVESTAV-IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico
| | - Jorge Limón-Pacheco
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico
| | | | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
7
|
Guo J, Li R, Ouyang Z, Tang J, Zhang W, Chen H, Zhu Q, Zhang J, Zhu G. Insights into the mechanism of transcription factors in Pb 2+-induced apoptosis. Toxicology 2024; 503:153760. [PMID: 38387706 DOI: 10.1016/j.tox.2024.153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The health risks associated with exposure to heavy metals, such as Pb2+, are increasingly concerning the public. Pb2+ can cause significant harm to the human body through oxidative stress, autophagy, inflammation, and DNA damage, disrupting cellular homeostasis and ultimately leading to cell death. Among these mechanisms, apoptosis is considered crucial. It has been confirmed that transcription factors play a central role as mediators during the apoptosis process. Interestingly, these transcription factors have different effects on apoptosis depending on the concentration and duration of Pb2+ exposure. In this article, we systematically summarize the significant roles of several transcription factors in Pb2+-induced apoptosis. This information provides insights into therapeutic strategies and prognostic biomarkers for diseases related to Pb2+ exposure.
Collapse
Affiliation(s)
- Jingchong Guo
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Ruikang Li
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Zhuqing Ouyang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiawen Tang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Jing Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
8
|
Subbarayalu P, Yadav P, Timilsina S, Medina D, Baxi K, Hromas R, Vadlamudi RK, Chen Y, Sung P, Rao MK. The RNA Demethylase ALKBH5 Maintains Endoplasmic Reticulum Homeostasis by Regulating UPR, Autophagy, and Mitochondrial Function. Cells 2023; 12:1283. [PMID: 37174684 PMCID: PMC10177234 DOI: 10.3390/cells12091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Eukaryotic cells maintain cellular fitness by employing well-coordinated and evolutionarily conserved processes that negotiate stress induced by internal or external environments. These processes include the unfolded protein response, autophagy, endoplasmic reticulum-associated degradation (ERAD) of unfolded proteins and altered mitochondrial functions that together constitute the ER stress response. Here, we show that the RNA demethylase ALKBH5 regulates the crosstalk among these processes to maintain normal ER function. We demonstrate that ALKBH5 regulates ER homeostasis by controlling the expression of ER lipid raft associated 1 (ERLIN1), which binds to the activated inositol 1, 4, 5,-triphosphate receptor and facilitates its degradation via ERAD to maintain the calcium flux between the ER and mitochondria. Using functional studies and electron microscopy, we show that ALKBH5-ERLIN-IP3R-dependent calcium signaling modulates the activity of AMP kinase, and consequently, mitochondrial biogenesis. Thus, these findings reveal that ALKBH5 serves an important role in maintaining ER homeostasis and cellular fitness.
Collapse
Affiliation(s)
- Panneerdoss Subbarayalu
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Pooja Yadav
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Santosh Timilsina
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Daisy Medina
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Kunal Baxi
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Robert Hromas
- Department of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K. Rao
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Habshi T, Shelke V, Kale A, Anders HJ, Gaikwad AB. Role of endoplasmic reticulum stress and autophagy in the transition from acute kidney injury to chronic kidney disease. J Cell Physiol 2023; 238:82-93. [PMID: 36409755 DOI: 10.1002/jcp.30918] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health concerns with increasing rates in morbidity and mortality. Transition from AKI-to-CKD is common and requires awareness in the management of AKI survivors. AKI-to-CKD transition is a main risk factor for the development of cardiovascular disease and progression to end-stage kidney disease. The mechanisms driving AKI-to-CKD transition are being explored to identify potential molecular and cellular targets for renoprotective drug interventions. Endoplasmic reticulum (ER) stress and autophagy are involved in the process of AKI-to-CKD transition. Excessive ER stress results in the persistent activation of unfolded protein response, which is an underneath cause of kidney cell death. Moreover, ER stress modulates autophagy and vice-versa. Autophagy is a degradation defensive mechanism protecting cells from malfunction. However, the underlying pathological mechanism involved in this interplay in the context of AKI-to-CKD transition is still unclear. In this review, we discuss the crosstalk between ER stress and autophagy in AKI, AKI-to-CKD transition, and CKD progression. In addition, we explore possible therapeutic targets that can regulate ER stress and autophagy to prevent AKI-to-CKD transition to improve the long-term prognosis of AKI survivors.
Collapse
Affiliation(s)
- Tahib Habshi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| |
Collapse
|
10
|
Zhu H, Gao M, Sun W, Liu H, Xu S, Li X. ROS/ER stress contributes to trimethyltin chloride-mediated hepatotoxicity; Tea polyphenols alleviate apoptosis and immunosuppression. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109505. [PMID: 36370998 DOI: 10.1016/j.cbpc.2022.109505] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Trimethyltin chloride (TMT) is an organotin-based contaminant present in the water environment that poses a great threat to aquatic organisms and humans. The liver is the detoxification organ of the body and TMT exposure accumulates in the liver. Tea polyphenol (TP) is a natural antioxidant extracted from tea leaves and has been widely used as a food and feed additive. To investigate the mechanism of toxicity caused by TMT exposure on grass carp hepatocytes (L8824 cells) and the mitigating effect of TP, we established a hepatocyte model of TMT toxicity and/or TP treatment. L8824 cells were treated with 0.5 μM of TMT and/or 4 μg/mL of TP for 24 h and assayed for relevant indices. The results showed that TMT exposure caused oxidative stress, resulting in increased intracellular ROS content, resulting in intracellular ROS accumulation and increased MDA content, and inhibiting the activities of T-AOC, SOD, CAT, and GSH. Meanwhile, TMT exposure activated the endoplasmic reticulum apoptotic signaling pathway, resulting in abnormal expression of GRP78, ATF-6, IRE1, PERK, Caspase-3 and Caspase-12. In addition, TMT exposure also led to up-regulation of cytokines IL-1β, IL-6, TNF-α, and decreased expression of IL-2, IFN-γ, and antimicrobial peptides Hepcidin, β-defensin, and LEAP2. However, the addition of TP could mitigate the above changes. In conclusion, TP can alleviate TMT exposure-mediated hepatotoxicity by inhibiting ROS/ER stress in L8824 cells. In addition, this trial enriches the cytotoxicity study of TMT and provides a new theoretical basis for the use of TP as a mitigating agent for TMT.
Collapse
Affiliation(s)
- Huijun Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Li N, Wen L, Yu Z, Li T, Wang T, Qiao M, Song L, Huang X. Effects of folic acid on oxidative damage of kidney in lead-exposed rats. Front Nutr 2022; 9:1035162. [PMID: 36458173 PMCID: PMC9705793 DOI: 10.3389/fnut.2022.1035162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION Lead (Pb) has many applications in daily life, but in recent years, various problems caused by lead exposure have aroused people's concern. Folic acid is widely found in fruits and has received more attention for its antioxidant function. However, the role of folic acid in lead-induced kidney injury in rats is unclear. This study was designed to investigate the effects of folic acid on oxidative stress and endoplasmic reticulum stress in the kidney of rats caused by lead exposure. METHODS Forty specific pathogen-free male Rattus norvegicus rats were randomly divided into control, lead, intervention, and folic acid groups. The levels of SOD, GSH-Px, GSH, and MDA were measured by biochemical kits. The protein levels of Nrf2, HO-1, CHOP, and GRP78 were measured by immunofluorescence. RESULTS This study showed that lead exposure increased the blood levels of lead in mice. However, the intervention of folic acid decreased the levels of lead, but the difference was not statistically significant. Lead exposure causes oxidative stress by decreasing kidney SOD, GSH-Px, and GSH levels and increasing MDA levels. However, folic acid alleviated the oxidative damage caused by lead exposure by increasing the levels of GSH-Px and GSH and decreasing the levels of MDA. Immunofluorescence results showed that folic acid intervention downregulated the upregulation of kidney Nrf2, HO-1, GRP78, and CHOP expression caused by lead exposure. DISCUSSION Overall, folic acid alleviates kidney oxidative stress induced by lead exposure by regulating Nrf2 and HO-1, while regulating CHOP and GRP78 to mitigate apoptosis caused by excessive endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Liuding Wen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Zhang H, Zheng Y, Zha X, Liu X, Ma Y, Loor JJ, Elsabagh M, Wang M, Wang H, Jiang H. Dietary N-carbamylglutamate and L-arginine supplementation improves redox status and suppresses apoptosis in the colon of intrauterine growth-retarded suckling lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:359-368. [PMID: 36329684 PMCID: PMC9618968 DOI: 10.1016/j.aninu.2022.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 01/09/2023]
Abstract
Previous studies have revealed that dietary N-carbamylglutamate (NCG) or L-arginine (Arg) improves small intestinal integrity and immune function in suckling Hu lambs that have experienced intrauterine growth retardation (IUGR). Whether these nutrients alter redox status and apoptosis in the colon of IUGR lambs is still unknown. This study, therefore, aimed at investigating whether dietary supplementation of Arg or NCG alters colonic redox status, apoptosis and endoplasmic reticulum (ER) stress and the underlying mechanism of these alterations in IUGR suckling Hu lambs. Forty-eight 7-d old Hu lambs, including 12 with normal birth weight (4.25 ± 0.14 kg) and 36 with IUGR (3.01 ± 0.12 kg), were assigned to 4 treatment groups (n = 12 each; 6 males and 6 females) for 3 weeks. The treatment groups were control (CON), IUGR, IUGR + Arg and IUGR + NCG. Relative to IUGR lambs, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) content, as well as proliferation index, were higher (P < 0.05) whereas reactive oxygen species (ROS), malondialdehyde (MDA) levels and apoptotic cell numbers were lower (P < 0.05) in colonic tissue for both IUGR + Arg and NCG lambs. Both mRNA and protein levels of C/EBP homologous protein 10 (CHOP10), B-cell lymphoma/leukaemia 2 (Bcl-2) -associated X protein (Bax), apoptosis antigen 1 (Fas), activating transcription factor 6 (ATF6), caspase 3, and glucose-regulated protein 78 (GRP78) were lower (P < 0.05) while glutathione peroxidase 1 (GPx1), Bcl-2 and catalase (CAT) levels were higher (P < 0.05) in colonic tissue for IUGR + Arg and IUGR + NCG lambs compared with IUGR lambs. Based on our results, dietary NCG or Arg supplementation can improve colonic redox status and suppress apoptosis via death receptor-dependent, mitochondrial and ER stress pathways in IUGR suckling lambs.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey,Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Honghua Jiang
- Department of Pediatrics, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China,Corresponding author.
| |
Collapse
|
13
|
Zhao X, Shi X, Yao Y, Li X, Xu S. Autophagy flux inhibition mediated by lysosomal dysfunction participates in the cadmium exposure-induced cardiotoxicity in swine. Biofactors 2022; 48:946-958. [PMID: 35286732 DOI: 10.1002/biof.1834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd), a common toxic heavy metal, is believed as a risk factor for the induction and progression of cardiovascular disease. Autophagy is a highly ordered intracellular lysosomal-mediated degradation pathway that is crucial for protein and organelle quality control. Autophagy dysfunction could develop exacerbated cardiac dysfunction. However, the role of autophagy in Cd exposure-induced cardiotoxicity remains largely unknown. In this study, the Cd-induced swine cardiotoxicity model was established by feeding with a CdCl2 suppled diet (20 mg Cd/kg diet). The results showed that Cd exposure increased the expression of endoplasmic reticulum stress-related genes (GRP78, GRP94, IRE1, XBP1, PERK, ATF4, and ATF6), increased the expression of Ca2+ release channels IP3R and RYR1 and decreased the expression of Ca2+ uptake pump SERCA1. Cd exposure upregulated the expression of autophagy-related genes (CAMKKII, AMPK, ATG5, ATG7, ATG12, Beclin1, LC3-II, and P62) and downregulated mTOR expression. Cd exposure inhibited the expression of V-ATPase and cathepsins (CTSB and CTSD), and increased the expression of cathepsins in cytoplasm. Cd exposure decreased the colocalization of autophagosome and lysosome. This study revealed that autophagy flux inhibition caused by lysosomal dysfunction participates in the cardiotoxicity induced by Cd exposure in swine.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
He T, Wang Q, Ao J, Chen K, Li X, Zhang J, Duan C. Endoplasmic reticulum stress contributes to autophagy and apoptosis in cantharidin-induced nephrotoxicity. Food Chem Toxicol 2022; 163:112986. [PMID: 35398186 DOI: 10.1016/j.fct.2022.112986] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Mylabris, as a natural product of traditional Chinese medicine (TCM), exhibiting typical antitumor activity, and cantharidin (CTD) is the major bioactive component. However, drug-induced nephrotoxicity (DIN) extremely limited its clinical application. In this study, we proved that activation of the endoplasmic reticulum (ER) stress-dependent PERK/CHOP pathway exerts a toxic role in rats and HK-2 cells through inducing autophagy and apoptosis. Results showed that CTD could cause renal function damage, cytotoxicity, and apoptosis. The ER dilatation and autolysosomes were observed after CTD treatment. Furthermore, the distribution of LC3, ATF4, and CHOP proteins was observed in the nucleus and cytoplasm. In addition, the mRNA levels of ER stress-regulated genes (PERK, eIF2α, CHOP, and ATF4) were increased, and the expression levels of GRP78, ATF4, CHOP, LC3, Beclin-1, Atg3, Atg7, Caspase 3, and Bax/Bcl-2 proteins were increased both in vitro and in vivo. Consistently, this upregulation could be inhibited by an ER stress inhibitor 4-Phenylbutyric acid (4-PBA), indicating that ER stress is partly responsible for activation of autophagy and apoptosis in CTD-induced DIN. In conclusion, CTD could induce DIN by triggering ER stress, further activating autophagy and apoptosis both in vivo and in vitro.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Qiyi Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jingwen Ao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Kuan Chen
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofei Li
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Cancan Duan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
15
|
Liao J, Hu Z, Li Q, Li H, Chen W, Huo H, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. Endoplasmic Reticulum Stress Contributes to Copper-Induced Pyroptosis via Regulating the IRE1α-XBP1 Pathway in Pig Jejunal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1293-1303. [PMID: 35075900 DOI: 10.1021/acs.jafc.1c07927] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is a common additive in food products, which poses a potential concern to animal and human health when it is in excess. Here, we investigated the relationship between endoplasmic reticulum (ER) stress and pyroptosis in Cu-induced toxicity of jejunum in vivo and in vitro. In in vivo experiments, excess intake of dietary Cu caused ER cavity expansion, elevated fluorescence signals of GRP78 and Caspase-1, and increased the mRNA and protein expression levels related to ER stress and pyroptosis in pig jejunal epithelium. Simultaneously, similar effects were observed in IPEC-J2 cells under excess Cu treatment. Importantly, 4-phenylbutyric acid (ER stress inhibitor) and MKC-3946 (IRE1α inhibitor) significantly inhibited the ER stress-triggered IRE1α-XBP1 pathway, which also alleviated the Cu-induced pyroptosis in IPEC-J2 cells. In general, these results suggested that ER stress participated in regulating Cu-induced pyroptosis in jejunal epithelial cells via the IRE1α-XBP1 pathway, which provided a novel view into the toxicology of Cu.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Hongji Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Weijin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| |
Collapse
|
16
|
Liu X, Wang Z, Wang X, Yan X, He Q, Liu S, Ye M, Li X, Yuan Z, Wu J, Yi J, Wen L, Li R. Involvement of endoplasmic reticulum stress-activated PERK-eIF2α-ATF4 signaling pathway in T-2 toxin-induced apoptosis of porcine renal epithelial cells. Toxicol Appl Pharmacol 2021; 432:115753. [PMID: 34637808 DOI: 10.1016/j.taap.2021.115753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
T-2 toxin is a highly toxic trichothecene that can induce toxic effects in a variety of organs and tissues, but the pathogenesis of its nephrotoxicity has not been elucidated. In this study, we assessed the involvement of protein kinase RNA-like ER kinase (PERK)-mediated endoplasmic reticulum (ER) stress and apoptosis in PK-15 cells cultured at different concentrations of T-2 toxin. Cell viability, antioxidant capacity, intracellular calcium (Ca2+) content, apoptotic rate, levels of ER stress, and apoptosis-related proteins were studied. T-2 toxin inhibited cell proliferation; increased the apoptosis rate; and was accompanied by increased cleaved caspase-3 expression, altered intracellular oxidative stress marker levels, and intracellular Ca2+ overloading. The ER stress inhibitor 4-phenylbutyrate (4-PBA) and PERK selective inhibitor GSK2606414 prevented the decrease of cell activity and apoptosis caused by T-2 toxin. The altered expression of glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12 proved that ER stress was involved in cell injury triggered by T-2 toxin. T-2 toxin activated the phosphorylation of PERK and the alpha subunit of eukaryotic initiation factor 2 (eIF2α) and upregulated the activating transcription factor 4 (ATF4), thereby triggering ER stress via the GRP78/PERK/CHOP signaling pathway. This study provides a new perspective for understanding the nephrotoxicity of T-2 toxin.
Collapse
Affiliation(s)
- Xiangyan Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Ze Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xianglin Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xiaona Yan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qing He
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Sha Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Mengke Ye
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xiaowen Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Rongfang Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China.
| |
Collapse
|
17
|
Han Q, Liu H, Zhang R, Yang X, Bao J, Xing H. Selenomethionine protects against ammonia-induced apoptosis through inhibition of endoplasmic reticulum stress in pig kidneys. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112596. [PMID: 34352572 DOI: 10.1016/j.ecoenv.2021.112596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Ammonia (NH3) emission is a common threat to farm animals. Selenium (Se) is known for its antioxidant property and can resist several stressors affecting farm animals. The aims of this study were (Ⅰ) to determine how excess NH3 exert nephrotoxic effects in pigs and (Ⅱ) to investigate whether selenomethionine has an alleviative effect on NH3 toxicity. Two diets supplemented with different doses of Se (0.22 mg/kg or 0.50 mg/kg) and two concentrations of NH3 (< 5 mg/m3 or 89.8 mg/m3) were used in a 2 × 2 factorial design trial for a period of 30 days. The results showed that NH3 exposure caused apoptosis and increased the number of apoptotic cells in pig kidneys. Further, the activities of antioxidant enzymes were decreased, and the transcriptional and translational levels of endoplasmic reticulum stress-related genes, Bcl-2 and Caspase family members were increased under NH3 exposure. In addition, Wnt/β-catenin signaling pathway was suppressed after NH3 treatment. Dietary supplement with selenomethionine appears to offer protection against NH3-induced kidney injury in pigs and the pathologic changes above were alleviated. Our findings provide additional insight into the mechanism of NH3 toxicity in pigs while elucidating the role of Se as a potential antidote against NH3 poisoning.
Collapse
Affiliation(s)
- Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xuesong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Regulation of Fibroblast Activation Protein-α Expression: Focus on Intracellular Protein Interactions. J Med Chem 2021; 64:14028-14045. [PMID: 34523930 DOI: 10.1021/acs.jmedchem.1c01010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prolyl-specific peptidase fibroblast activation protein-α (FAP-α) is expressed at very low or undetectable levels in nondiseased human tissues but is selectively induced in activated (myo)fibroblasts at sites of tissue remodeling in fibrogenic processes. In normal regenerative processes involving transient fibrosis FAP-α+(myo)fibroblasts disappear from injured tissues, replaced by cells with a normal FAP-α- phenotype. In chronic uncontrolled pathological fibrosis FAP-α+(myo)fibroblasts permanently replace normal tissues. The mechanisms of regulation and elimination of FAP-α expression in(myo)fibroblasts are unknown. According to a yeast two-hybrid screen and protein databanks search, we propose that the intracellular (co)-chaperone BAG6/BAT3 can interact with FAP-α, mediated by the BAG6/BAT3 Pro-rich domain, inducing proteosomal degradation of FAP-α protein under tissue homeostasis. In this Perspective, we discuss our findings in the context of current knowledge on the regulation of FAP-α expression and comment potential therapeutic strategies for uncontrolled fibrosis, including small molecule degraders (PROTACs)-modified FAP-α targeted inhibitors.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland.,University Institute of Pathology, CHUV and UNIL, CH1011 Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters-Paris, 1 rue Pierre Fontaine, 91000 Evry, France.,Hybrigenics Corporation, Cambridge Innovation Center, 50 Milk Street, Cambridge, Massachusetts 02142, United States
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland
| |
Collapse
|
19
|
Li Y, Lv H, Xue C, Dong N, Bi C, Shan A. Plant Polyphenols: Potential Antidotes for Lead Exposure. Biol Trace Elem Res 2021; 199:3960-3976. [PMID: 33236294 DOI: 10.1007/s12011-020-02498-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Lead is one of the most common heavy metal elements and has high biological toxicity. Long-term lead exposure will induce the contamination of animal feed, water, and food, which can cause chronic lead poisoning including nephrotoxicity, hepatotoxicity, neurotoxicity, and reproductive toxicity in humans and animals. In the past few decades, lead has caused widespread concern because of its significant threat to health. A large number of in vitro and animal experiments have shown that oxidative stress plays a key role in lead toxicity, and endoplasmic reticulum (ER) stress and the mitochondrial apoptosis pathway can also be induced by lead toxicity. Therefore, plant polyphenols have attracted attention, with their advantages of being natural antioxidants and having low toxicity. Plant polyphenols can resist lead toxicity by chelating lead with their special chemical molecular structure. In addition, scavenging active oxygen and improving the level of antioxidant enzymes, anti-inflammatory, and anti-apoptosis are also the key to relieving lead poisoning by plant polyphenols. Various plant polyphenols have been suggested to be useful in alleviating lead toxicity in animals and humans and are believed to have good application prospects.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Chongpeng Bi
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
20
|
He L, Liu N, Wang K, Zhang L, Li D, Wang Z, Xu G, Liu Y, Xu Q. Rosamultin from Potentilla anserine L. exhibits nephroprotection and antioxidant activity by regulating the reactive oxygen species/C/EBP homologous protein signaling pathway. Phytother Res 2021; 35:6343-6358. [PMID: 34533242 DOI: 10.1002/ptr.7285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Rosamultin, a major bioactive constituent from Potentilla anserine L., has antioxidative and hepatoprotective activities. However, its protective effects on cisplatin-induced acute renal injury and the underlying mechanisms remain elusive. In this work, rosamultin could enhance the viability of HEK293 cells treated by cisplatin. In vivo experiment showed that rosamultin effectively decreased kidney index, reduced blood urea nitrogen level, decreased urinary protein excretion, and ameliorated the histopathological damage and fibrosis of renal tissue induced by cisplatin. Besides, rosamultin showed no obvious toxicity in mice. SILAC-based quantitative proteomic analysis identified 4,461 proteins and eight proteins including C/EBP homologous protein (CHOP) were markedly decreased in cisplatin-treated HEK293 cells when exposed to rosamultin. Biochemical experiments further discovered that rosamultin could inhibit p38 and JNK activation, and downregulate the levels of CHOP and proteins in its upstream PERK-eIF2α-ATF4 signaling pathway stimulated by cisplatin or tunicamycin. At the same time, rosamultin reduced the generation of intracellular ROS induced by cisplatin and enhanced the activities of antioxidant enzymes such as SOD, GSH, and CAT. Moreover, rosamultin markedly suppressed the expression of CHOP, apoptosis-associated proteins, and activation of p38 and JNK in renal tissue. These findings suggest that rosamultin might be a potential protectant against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Luan He
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ning Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Kexin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ling Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Dan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Zhixiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Wang WW, Liu YL, Wang MZ, Li H, Liu BH, Tu Y, Yuan CC, Fang QJ, Chen JX, Wang J, Fu Y, Wan ZY, Wan YG, Wu W. Inhibition of Renal Tubular Epithelial Mesenchymal Transition and Endoplasmic Reticulum Stress-Induced Apoptosis with Shenkang Injection Attenuates Diabetic Tubulopathy. Front Pharmacol 2021; 12:662706. [PMID: 34408650 PMCID: PMC8367077 DOI: 10.3389/fphar.2021.662706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The proximal renal tubule plays a critical role in diabetic kidney disease (DKD) progression. Early glomerular disease in DKD triggers a cascade of injuries resulting in renal tubulointerstitial disease. These pathophysiological responses are collectively described as diabetic tubulopathy (DT). Thus, therapeutic strategies targeting DT hold significant promise for early DKD treatment. Shenkang injection (SKI) has been widely used to treat renal tubulointerstitial fibrosis in patients with chronic kidney disease in China. However, it is still unknown whether SKI can alleviate DT. We designed a series of experiments to investigate the beneficial effects of SKI in DT and the mechanisms that are responsible for its effect on epithelial-to-mesenchymal transition (EMT) and endoplasmic reticulum (ER) stress-induced apoptosis in DT. Methods: The modified DKD rat models were induced by uni-nephrectomy, streptozotocin intraperitoneal injection, and a high-fat diet. Following the induction of renal injury, these animals received either SKI, rosiglitazone (ROS), or vehicle, for 42 days. For in vitro research, we exposed NRK-52E cells to high glucose (HG) and 4-phenylbutyric acid (4-PBA) with or without SKI or ROS. Changes in parameters related to renal tubular injury and EMT were analyzed in vivo. Changes in the proportion of apoptotic renal tubular cells and ER stress, and the signaling pathways involved in these changes, were analyzed both in vivo and in vitro. Results: SKI and ROS improved the general condition, the renal morphological appearance and the key biochemical parameters, and attenuated renal injury and EMT in the rat model of DKD. In addition, SKI and ROS alleviated apoptosis, inhibited ER stress, and suppressed PERK-eIF2α-ATF4-CHOP signaling pathway activation both in vivo and in vitro. Notably, our data showed that the regulatory in vitro effects of SKI on PERK-eIF2α-ATF4-CHOP signaling were similar to those of 4-PBA, a specific inhibitor of ER stress. Conclusion: This study confirmed that SKI can alleviate DT in a similar manner as ROS, and SKI achieves this effect by inhibiting EMT and ER stress-induced apoptosis. Our findings thereby provide novel information relating to the clinical value of SKI in the treatment of DT.
Collapse
Affiliation(s)
- Wen-Wen Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Nephrology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Ying-Lu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mei-Zi Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huan Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bu-Hui Liu
- Nephrology Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Tu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Can-Can Yuan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Xin Chen
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Fu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi-Yue Wan
- Graduate School of Social Sciences, Faculty of Social Sciences, Hitotsubashi University, Tokyo, Japan
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
22
|
Peterson C, Kim YC, Ensign LM, Jun AS, Foster J. Induction of the integrated stress response in the rat cornea. Exp Eye Res 2021; 210:108722. [PMID: 34370978 DOI: 10.1016/j.exer.2021.108722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
Keratoconus (KC), a progressive, degenerative corneal disease, represents the second leading indication for corneal transplantation globally. We have previously demonstrated that components of the Integrated Stress Response (ISR) are upregulated in human keratoconic donor tissue, and treatment of normal tissue with ISR agonists attenuates collagen production. With no consistently accepted animal models available for translational KC research, we sought to establish an in vivo model based on ISR activation to elucidate its role in the development of the KC phenotype. Four-week-old female SD rats were treated with topical SAL003 formulated as a nanosuspension or vehicle every 48 h for four doses. Animals were subject to monitoring for ocular inflammation and discomfort before being euthanized at 1, 14, or 28 days after treatment was withdrawn. Schirmer's tear test, intraocular pressure, and body weight measurements were obtained at baseline and prior to euthanasia. Globes were subject to routine histopathology, immunohistochemistry for ATF4, and qPCR for Col1a1 expression. ANOVAs and Student's t tests were used to assess statistical significance (α = 0.05). SAL003 treatment did not produce any adverse ocular or systemic phenotype but did result in decreased keratocyte density. Col1a1 transcripts were reduced, corresponding to nuclear ATF4 expression within the axial cornea. In vivo topical treatment with a gel-formulated ISR agonist recapitulates key features of the activated ISR including nuclear ATF4 expression and decreased extracellular matrix (ECM) production. Exogenous ISR agonists may present one approach to establishing a rodent model for keratoconus, a charge essential for future evaluations of pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- C Peterson
- Department of Molecular & Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Y C Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - L M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A S Jun
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Foster
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Su J, Liao D, Su Y, Liu S, Jiang L, Wu J, Liu Z, Wu Y. Novel polysaccharide extracted from Sipunculus nudus inhibits HepG2 tumour growth in vivo by enhancing immune function and inducing tumour cell apoptosis. J Cell Mol Med 2021; 25:8338-8351. [PMID: 34302428 PMCID: PMC8419178 DOI: 10.1111/jcmm.16793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
A novel polysaccharide was extracted from Sipunculus nudus (SNP). The molecular weight (MW) of SNP was determined to be 9223 Da by high‐performance gel permeation chromatography analyses, and the structure of the SNP repeat units was determined to be →3,4‐β‐D‐GlcpNAC (1→ and →4) ‐α‐D‐Glcp (1→ in the ratio of 15:1; →2) ‐α ‐D‐Galp ‐ (1→ as a side chain; and β‐D‐Galp‐(1→ and α‐ D‐Glcp ‐ (1→ as end groups by GC‐MS analysis and NMR assays. The effect of SNP on hepatoma HepG2‐bearing mice was analysed to verify its potential in the clinical treatment of liver cancer. A total of 90 male athymic nu/nu mice were divided into therapeutic and preventive groups and fed with different amounts of SNP. The antitumour effect of SNP on HepG2‐bearing mice and mechanism of such were studied by analysing the tumour size, spleen index, thymus index, immune factors in the blood, tumour apoptosis factors, etc. The results suggest that SNP not only increased the index of immune organs in the body, but also enhanced the secretion of immune factors, including interleukin‐2, interferon gamma and tumour necrosis factor‐alpha in the serum. SNP induced the apoptosis of tumour cells via the mitochondrial apoptosis pathway, which upregulated caspase‐3, caspase‐8, caspase‐9 and BCL2‐associated X, but downregulated B‐cell lymphoma‐2 and vascular endothelial growth factor protein expression. In conclusion, SNP inhibited tumour growth by enhancing immune function and inducing tumour cell apoptosis in HepG2‐bearing mice. Therefore, SNP may be further investigated as a promising candidate for future antitumour drugs.
Collapse
Affiliation(s)
- Jie Su
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Dengyuan Liao
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Yongchang Su
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Shuji Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Linlin Jiang
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Jingna Wu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Yuping Wu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
24
|
Xu C, Dai Y, Bai J, Ren B, Xu J, Gao F, Wang L, Zhang W, Wang R. 17β-oestradiol alleviates endoplasmic reticulum stress injury induced by chronic cerebral hypoperfusion through the Haemoglobin/HIF 1α signalling pathway in ovariectomized rats. Neurochem Int 2021; 148:105119. [PMID: 34224805 DOI: 10.1016/j.neuint.2021.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Endoplasmic reticulum stress (ERS) is known to be an essential target in protecting against ischaemic brain injury. In this study, using a vascular dementia (VaD) animal model induced by bilateral common carotid artery occlusion (BCCAO), we evaluated the effect and mechanism of 17β-oestradiol (E2) against VaD by inhibiting ERS at the early stage (14 d, 21 d, 28 d) and late stage (3 m) after BCCAO in the hippocampal CA1 region of ovariectomized rats. The results showed that the activation of the PERK-eIF2α-ATF4-CHOP axis, a typical ERS pathway, was significantly increased at the early and late stages after BCCAO. JNK (c-Jun N-terminal kinase)-cJun, a pro-death pathway, also displayed the same pattern as the ERS axis. E2 treatment profoundly suppressed the impairments caused by BCCAO. Further mechanistic studies revealed that cerebral blood flow (CBF) was sharply decreased at 14 d and returned to the normal level at 21 d after BCCAO. E2 could not change CBF, while it unexpectedly enhanced the ability to carry oxygen. This is evidenced by the fact that the protein expression of haemoglobin α/β (Hα/β), an oxygen carrier, robustly increased at BCCAO 21 d and 3 m after E2 treatment. The oxygen carrier increased strongly after 21 d and 3 m of BCCAO treated with E2. Moreover, E2 correspondingly enhanced the protein expression of hypoxia-inducible factor 1α (HIF 1α) in both the early and late stage after BCCAO in the hippocampal CA1 region. Finally, E2 administration markedly decreased the activities of caspase-8, caspase-3, and caspase-12 and increased the number of NeuN-positive cells. These findings suggest that E2 serves as a neuroprotectant to alleviate VaD by suppressing ERS injury involving the haemoglobin/HIF 1α signalling pathway.
Collapse
Affiliation(s)
- Chao Xu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Yongxin Dai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Jing Bai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Bo Ren
- School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Jing Xu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Fujia Gao
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Lu Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Wenli Zhang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
25
|
Chang X, Tian M, Zhang Q, Liu F, Gao J, Li S, Liu H, Hou X, Li L, Li C, Sun Y. Grape seed proanthocyanidin extract ameliorates cisplatin-induced testicular apoptosis via PI3K/Akt/mTOR and endoplasmic reticulum stress pathways in rats. J Food Biochem 2021; 45:e13825. [PMID: 34152018 DOI: 10.1111/jfbc.13825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Testicular toxicity is an adverse reaction of the effective chemotherapy drug cisplatin (CIS). Our previous study found that grape seed proanthocyanidin extract (GSPE) had a protective effect on CIS-induced testicular toxicity. However, the protective mechanism of GSPE against CIS-induced testicular toxicity remains unknown. In this study, we aimed to investigate whether GSPE can reduce CIS-induced testicular toxicity and its potential mechanism in rats. The results showed that GSPE ameliorated CIS-induced the apoptosis of testicular cells and inhibited the protein levels of Bad, Cyt c, caspase-9, caspase-3, caspase-12, GRP78, CHOP, IRE1α, p-IRE1α, XBP-1S, PERK, p-PERK, eIF2α, and p-eIF2α. Besides, GSPE reversed the downregulation of PI3K, p-PI3K, Akt, p-Akt, mTOR, and p-mTOR protein expression induced by CIS. These results indicated that GSPE can improve CIS-induced testicular cells apoptosis via activating PI3K/Akt/mTOR and inhibiting Bad/Cyt c/caspase-9/caspase-3 pathways. And GSPE relieved endoplasmic reticulum stress-mediated apoptosis via inhibiting PREK/eIF2α and IRE1α/XBP-1S/caspase-12 pathways. In conclusion, the evidence suggested that GSPE can act as a protective agent against testicular toxicity induced by CIS. PRACTICAL APPLICATIONS: Testicular toxicity was a well-known adverse effect of cisplatin (CIS) in cancer treatment. Grape seed proanthocyanidin extract (GSPE) has been reported to serve as one of the most therapeutic potentials agents. In present study, we explored the regulatory effects of GSPE on the apoptosis induced by CIS, which involved testicular apoptosis mechanisms in rats. Our results indicated that CIS caused testicular toxicity via PI3K/AKT/mTOR and ERS mediated apoptosis pathway in rats. This toxicity was attenuated by GSPE treatment via activated PI3K/Akt/mTOR pathway, and inhibiting Bad/CytC/caspase-9/caspase-3 as well as PREK/eIF2α, IRE1α/XBP-1S/caspase-12 pathways. Our findings suggest that GSPE may be a novel protective agent against testicular toxicity induced by CIS.
Collapse
Affiliation(s)
- Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Fangfang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinxia Gao
- Department of Occupational Diseases, Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiangbo Hou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Lei Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
26
|
Guo Y, Yang C, Guo R, Huang R, Su Y, Wang S, Kong Y, Wang J, Tan C, Mo C, Wu C, Zhao B. CHOP Regulates Endoplasmic Reticulum Stress-Mediated Hepatoxicity Induced by Monocrotaline. Front Pharmacol 2021; 12:685895. [PMID: 34108882 PMCID: PMC8181757 DOI: 10.3389/fphar.2021.685895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Monocrotaline (MCT), a pyrrolizidine alkaloid, is the major toxin in Crotalaria, which causes cell apoptosis in humans and animals. It has been reported that the liver is a vulnerable target of MCT. However, the exact molecular mechanism of the interaction between endoplasmic reticulum (ER) stress and liver injury induced by MCT is still unclear. In this study, the cytotoxicity of MCT on primary rat hepatocytes was analyzed by a CCK-8 assay and Annexin V-FITC/PI assay. Protein expression was detected by western blotting and immunofluorescence staining. As a result, MCT significantly decreased the cell viability and mediated the apoptosis of primary rat hepatocytes. Meanwhile, MCT could also induce ER stress in hepatocytes, indicated by the expression of ER stress-related proteins, including GRP78, p-IRE1α, ATF6, p-eIF2α, ATF4, and CHOP. Pretreatment with 4-PBA, an inhibitor of ER stress, or knockdown of CHOP by siRNA could partly enhance cell viability and relieve the apoptosis. Our findings indicate that ER stress is involved in the hepatotoxicity induced by MCT, and CHOP plays an important role in this process.
Collapse
Affiliation(s)
- Yazhou Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Chen Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Rong Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Ruijie Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Yongxia Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Chengjian Tan
- Department of Biotechnology, Guizhou Minzu University, Guiyang, China
| | - Chonghui Mo
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Chenchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Yin S, Li L, Tao Y, Yu J, Wei S, Liu M, Li J. The Inhibitory Effect of Artesunate on Excessive Endoplasmic Reticulum Stress Alleviates Experimental Colitis in Mice. Front Pharmacol 2021; 12:629798. [PMID: 33767628 PMCID: PMC7985062 DOI: 10.3389/fphar.2021.629798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) stress may contribute to the pathogenesis and perpetuation of ulcerative colitis (UC). Previous studies have shown artesuante (ARS) has the protective effect on experimental UC. Therefore, it can be assumed that ARS can regulate ER stress and its related reactions. Dextran sulfate sodium (DSS) induced UC model in mice was used to testify this hypothesis. The results clearly showed that DSS exposure caused excessive ER stress evidenced by a markedly increase of GRP78 and CHOP expression, and then activated the ER stress sensors PERK, IRE1, ATF6 and their respective signaling pathways, followed by upregulated caspases12 and lowered Bcl-2/Bax ratio. However, ARS treatment significantly inhibited the occurrence of ER stress via preventing the activation of PERK-eIF2α-ATF4-CHOP and IRE1α-XBP1 signaling pathways, concurrently ER-stress-associated apoptosis in colon tissues. Moreover, ARS treatment remarkably inhibited the activation of NF-κB and the expression levels of pro-inflammatory cytokines, improved the clinical and histopathological alterations as well as maintained the expression of claudin-1 and Muc2 in mucosal layer of colon. Notably, the classic ER stress inhibitor 4-phenyhlbutyric acid enhanced the beneficial effects of ARS; in contrast, the ER stress inducer 2-deoxy-d-glucose substantially abrogated the above-mentioned effects, uncovering the involvement of ER stress in the response. These findings indicated the protection of ARS on UC is associated with its suppressing excessive ER stress mediated intestinal barrier damage and inflammatory response. This study provides a novel aspect to understand the mechanism of ARS against UC.
Collapse
Affiliation(s)
- Shaojie Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Liuhui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ya Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jie Yu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Simin Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Victor P, Umapathy D, George L, Juttada U, Ganesh GV, Amin KN, Viswanathan V, Ramkumar KM. Crosstalk between endoplasmic reticulum stress and oxidative stress in the progression of diabetic nephropathy. Cell Stress Chaperones 2021; 26:311-321. [PMID: 33161510 PMCID: PMC7925747 DOI: 10.1007/s12192-020-01176-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence in substantiating the roles of endoplasmic reticulum stress, oxidative stress, and inflammatory responses and their interplay is evident in various diseases. However, an in-depth mechanistic understanding of the crosstalk between the intracellular stress signaling pathways and inflammatory responses and their participation in disease progression has not yet been explored. Progress has been made in our understanding of the cross talk and integrated stress signaling network between endoplasmic reticulum stress and oxidative stress towards the pathogenesis of diabetic nephropathy. In this present study, we studied the crosstalk between the endoplasmic reticulum stress and oxidative stress by understanding the role of protein disulfide isomerase and endoplasmic reticulum oxidase 1α, a key player in redox protein folding in the endoplasmic reticulum. We had recruited a total of 90 subjects and divided into three groups (control (n = 30), type 2 diabetes mellitus (n = 30), and diabetic nephropathy (n = 30)). We found that endoplasmic reticulum stress markers, activating transcription factor 6, inositol-requiring enzyme 1α, protein kinase RNA-like endoplasmic reticulum kinase, C/EBP homologous protein, and glucose-regulated protein-78; oxidative stress markers, thioredoxin-interacting protein and cytochrome b-245 light chain; and the crosstalk markers, protein disulfide isomerase and endoplasmic reticulum oxidase-1α, were progressively elevated in type 2 diabetes mellitus and diabetic nephropathy subjects. The association between the crosstalk markers showed a positive correlation with endoplasmic reticulum stress and oxidative stress markers. Further, the interplay between endoplasmic reticulum stress and oxidative stress was investigated in vitro using a human leukemic monocytic cell line under a hyperglycemic environment and examined the expression of protein disulfide isomerase and endoplasmic reticulum oxidase-1α. DCFH-DA assay and flow cytometry were performed to detect the production of free radicals. Further, phosphorylation of eIF2α in high glucose-exposed cells was studied using western blot. In conclusion, our results shed light on the crosstalk between endoplasmic reticulum stress and oxidative stress and significantly contribute to the onset and progression of diabetic nephropathy and therefore represent the major therapeutic targets for alleviating micro- and macrovascular complications associated with this metabolic disturbance. Graphical abstract.
Collapse
Affiliation(s)
- Paul Victor
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dhamodharan Umapathy
- Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Leema George
- Department of Biochemistry and Molecular Genetics, Prof. M. Viswanathan Diabetes Research Centre and M.V. Hospital for Diabetes (WHO Collaborating Centre for Research, Education & Training in Diabetes), Royapuram, Chennai, Tamil Nadu, 600013, India
| | - Udyama Juttada
- Department of Biochemistry and Molecular Genetics, Prof. M. Viswanathan Diabetes Research Centre and M.V. Hospital for Diabetes (WHO Collaborating Centre for Research, Education & Training in Diabetes), Royapuram, Chennai, Tamil Nadu, 600013, India
| | - Goutham V Ganesh
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Karan Naresh Amin
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Vijay Viswanathan
- Department of Biochemistry and Molecular Genetics, Prof. M. Viswanathan Diabetes Research Centre and M.V. Hospital for Diabetes (WHO Collaborating Centre for Research, Education & Training in Diabetes), Royapuram, Chennai, Tamil Nadu, 600013, India.
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
- Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
29
|
Yan H, Hales BF. Effects of an Environmentally Relevant Mixture of Organophosphate Esters Derived From House Dust on Endochondral Ossification in Murine Limb Bud Cultures. Toxicol Sci 2021; 180:62-75. [PMID: 33367866 PMCID: PMC7916738 DOI: 10.1093/toxsci/kfaa180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Organophosphate esters (OPEs) are used widely as flame retardants and plasticizers but much remains unknown about their potential toxicity. Previously, we reported that 4 individual OPEs suppress endochondral ossification in murine limb bud cultures. However, real-life exposure is to complex OPE mixtures. In the present study, we tested the hypothesis that a Canadian household dust-based OPE mixture will affect endochondral ossification in gestation day 13 CD1 mouse embryo limb buds expressing fluorescent markers for the major cell populations involved in the process: collagen type II alpha 1-enhanced cyan fluorescent protein (proliferative chondrocytes), collagen type X alpha 1-mCherry (hypertrophic chondrocytes), and collagen type I alpha 1-yellow fluorescent protein (osteoblasts). Limbs were cultured for 6 days in the presence of vehicle or dilutions of the OPE mixture (1/1 000 000, 1/600 000, and 1/300 000). All 3 OPE mixture dilutions affected cartilage template development and the progression of endochondral ossification, as indicated by the fluorescent markers. The expression of Sox9, the master regulator of chondrogenesis, was unchanged, but the expression of Runx2 and Sp7, which drive chondrocyte hypertrophy and osteoblastogenesis, was dilution-dependently suppressed. RNA-seq revealed that exposure to the 1/300 000 dilution of the OPE mixture for 24 h downregulated 153 transcripts and upregulated 48 others by at least 1.5-fold. Downregulated transcripts were enriched for those related to the immune system and bone formation. In contrast, upregulated transcripts were enriched for those with stress response functions known to be regulated by ATF4 activation. Thus, exposure to the mixture of OPEs commonly found in house dust may have adverse effects on bone formation.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
30
|
The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med 2021; 53:151-167. [PMID: 33558590 PMCID: PMC8080639 DOI: 10.1038/s12276-021-00560-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an essential organelle of eukaryotic cells. Its main functions include protein synthesis, proper protein folding, protein modification, and the transportation of synthesized proteins. Any perturbations in ER function, such as increased demand for protein folding or the accumulation of unfolded or misfolded proteins in the ER lumen, lead to a stress response called the unfolded protein response (UPR). The primary aim of the UPR is to restore cellular homeostasis; however, it triggers apoptotic signaling during prolonged stress. The core mechanisms of the ER stress response, the failure to respond to cellular stress, and the final fate of the cell are not yet clear. Here, we discuss cellular fate during ER stress, cross talk between the ER and mitochondria and its significance, and conditions that can trigger ER stress response failure. We also describe how the redox environment affects the ER stress response, and vice versa, and the aftermath of the ER stress response, integrating a discussion on redox imbalance-induced ER stress response failure progressing to cell death and dynamic pathophysiological changes. The endoplasmic reticulum (ER), a cellular organelle responsible for protein folding, is sensitive to chemical imbalances that can induce stress, leading to cell death and disease. Researchers in South Korea, led by Han-Jung Chae from Jeonbuk National University in Jeonju and Hyung-Ryong Kim from Dankook University in Cheonan, review how the ER counters changes in its environment that spur protein folding defects by activating a series of signaling pathways, known collectively as the unfolded protein response. Redox imbalance, may fail adaptive ER stress response that can damage the ER and surrounding mitochondria by modifying cysteine residues. The interaction between the two stress systems, ER stress and oxidative stress, has profound negative impacts on normal physiology. Targeting one or both of these stress mechanisms may therefore be an effective means of treating disease.
Collapse
|
31
|
Wang Y, Zhao H, Nie X, Guo M, Jiang G, Xing M. Zinc application alleviates the adverse renal effects of arsenic stress in a protein quality control way in common carp. ENVIRONMENTAL RESEARCH 2020; 191:110063. [PMID: 32818499 DOI: 10.1016/j.envres.2020.110063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The potential antagonistic mechanism between zinc (Zn) and arsenic (As) on renal toxicity was investigated in common carp. The results showed that by increased Zn efflux and retention (as reflected by zinc transporter 1 (ZnT-1), Zrt- and Irt- 1ike protein (ZIP) and metallothionein (MT) expression), Zn co-administration significantly recovered the antioxidant function (catalase, CAT) and the level of renal barrier function (Occludin, Claudins and Zonula Occludens) in comparison to As treatment. Interestingly, Zn co-administration with As resulted in carps undergoing reduction of heat shock response (HSPs), a low induction of autophagy flux (Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (P62)) and decreased endoplasmic reticulum (ER) stress (activating transcription factor 6 (ATF-6), inositol requiring-1α (IRE1) and PKR-like ER kinase (PERK)) in the aspect of mRNA or protein levels. All these alleviated protein quality control processes induced by Zn under As stress was correlated with the no longer loosen tight connection, less swollen endoplasmic reticulum as well as reduced formation of autophagosomes and autophagic vesicles. Mechanically, post-transcriptional regulated protein quantities compromising phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway was demonstrated true causative forces inside the cell for Zn against As poisoning. In conclusion, we suggested the potential renal protective effect of Zn supplementation against As exposure by the modulation of protein quality control processes.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Xiaopan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Guangshun Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
32
|
Zhong Y, Wang B, Hu S, Wang T, Zhang Y, Wang J, Liu Y, Zhang H. The role of endoplasmic reticulum stress in renal damage caused by acute mercury chloride poisoning. J Toxicol Sci 2020; 45:589-598. [PMID: 32879258 DOI: 10.2131/jts.45.589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acute mercury chloride (HgCl2) poisoning may lead to kidney injury, but the underlying mechanism remains largely unknown. Endoplasmic reticulum (ER) stress plays a role in some heavy metal poisoning. Whether it mediates kidney injury in acute HgCl2 poisoning remains unknown. In this study, we examined the kidney injury and the corresponding ER stress in the mouse model of different doses of acute HgCl2 poisoning. To further confirm the role of ER stress, we tested the effects of its chemical chaperone [4-phenylbutyric acid (4-PBA)]. The results revealed that acute HgCl2 poisoning caused more severe kidney injury with dose on and activated ER stress, as indicated by increased expression of GRP78 and CHOP. Inhibition of ER stress restored the functional and morphological changes of kidneys, and partly attenuated renal tubular epithelial cell apoptosis. In summary, ER stress contributes to the acute kidney injury following HgCl2 poisoning, and inhibition of ER stress may alleviate the kidney injury via reducing apoptosis.
Collapse
Affiliation(s)
- Yuxin Zhong
- Department of Clinic Pathology, Weifang Medical University, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, China
| | - Baoqiang Wang
- Department of Laboratory, Affiliated Hospital of Weifang Medical University, China
| | - Shan Hu
- Department of Clinic Pathology, Weifang Medical University, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, China
| | - Tingting Wang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, China.,Department of Histology and Embryology, Weifang Medical University, China
| | - Yumiao Zhang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, China.,Department of Nephrology, Affiliated Hospital of Weifang Medical University, China
| | - Jinling Wang
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, China
| | - Yuqing Liu
- Department of Clinic Pathology, Weifang Medical University, China
| | - Hongxia Zhang
- Department of Clinic Pathology, Weifang Medical University, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, China
| |
Collapse
|
33
|
Liu C, Zhang A. ROS-mediated PERK-eIF2α-ATF4 pathway plays an important role in arsenite-induced L-02 cells apoptosis via regulating CHOP-DR5 signaling. ENVIRONMENTAL TOXICOLOGY 2020; 35:1100-1113. [PMID: 32506763 DOI: 10.1002/tox.22946] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chronic exposure to arsenic remains a worldwide environmental health issue, affecting hundreds of millions of people. Although, arsenic-induced oxidative stress and apoptosis have been determined, the underlying apoptosis mechanism has not been fully elucidated yet. Oxidative stress integrated-ER stress plays an important role in Life-and-Death decision of cells. The current study was to investigate whether NaAsO2 utilizes oxidative stress integrated-ER stress signaling to exert pro-apoptotic activity in L-02 cells. Results showed that death receptor 5 (DR5) was a mediator of NaAsO2 -induced apoptosis by enhancing construction of the death-inducing signaling complex (DISC). NaAsO2 -sensitized DR5 elevation required maintainable transcription and its transcription factor C/EBP homologous protein (CHOP). Further results showed that NaAsO2 increased expression in biomarker of endoplasmic reticulum (ER) stress and activated the protein kinase R-like ER kinase (PERK)-eukaryotic translation initiation 2α (eIF2α)-activating transcription factor 4 (ATF4) pathway. PERK inhibitor and ATF4 siRNA significantly attenuated NaAsO2 -induced CHOP and DR5 expressions. In addition, the antioxidant N-acetyl-l-cysteine (NAC) treatment led to amelioration of NaAsO2 -induced production of reactive oxygen species (ROS) and some ER stress- and apoptosis- related protein levels and cell viability. Taken together, the results indicate that ROS-mediated PERK-eIF2α-ATF4 pathway activated by NaAsO2 is the critical upstream event for subsequent apoptosis induction via regulating CHOP-DR5 signaling in L-02 cells when chronic exposure to arsenic, and support that antioxidants might be potential therapeutic agents for preventing or delaying the onset and progress of arsenic-induced hepatotoxicity.
Collapse
Affiliation(s)
- Chunyan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
34
|
Naringin Combined with NF-κB Inhibition and Endoplasmic Reticulum Stress Induces Apoptotic Cell Death via Oxidative Stress and the PERK/eIF2α/ATF4/CHOP Axis in HT29 Colon Cancer Cells. Biochem Genet 2020; 59:159-184. [PMID: 32979141 DOI: 10.1007/s10528-020-09996-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Currently, combination therapy is considered the most effective solution for a selective chemotherapeutic effect in the treatment of colon cancer. This study investigated the death of both colon cancer HT29 cells and healthy vascular smooth muscle TG-Ha-VSMC cells (VSMCs) induced by naringin combined with endoplasmic reticulum (ER) stress and NF-κB inhibition. Naringin combined with tunicamycin and BAY 11-7082 suppressed the proliferation of HT29 cells in a dose-dependent manner and induced particularly apoptotic death without significantly affecting healthy VSMCs according to Annexin V/PI staining and AO/EB staining analyses. Insufficient antioxidant defense and heat shock response as well as excessive ROS generation were observed in HT29 cells following combination therapy. Quantitative real-time PCR and western blot analysis demonstrated that drug combination-induced mitochondrial apoptosis was activated through the ROS-mediated PERK/eIF2α/ATF4/CHOP pathway. Additionally, naringin combination significantly reduced the sXBP expression induced by tunicamycin+BAY 11-7082 in a dose-dependent manner. In conclusion, this study found that naringin combined with tunicamycin+BAY 11-7082 efficiently induced apoptotic cell death in HT29 colon cancer cells via oxidative stress and the PERK/eIF2α/ATF4/CHOP pathway, suggesting that naringin combined with tunicamycin plus BAY 11-7082 could be a new combination therapy strategy for effective colon cancer treatment with minimal side effects on healthy cells.
Collapse
|
35
|
Barabutis N. Unfolded Protein Response in Lung Health and Disease. Front Med (Lausanne) 2020; 7:344. [PMID: 32850879 PMCID: PMC7406640 DOI: 10.3389/fmed.2020.00344] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is a complex element, destined to protect the cells against a diverse variety of extracellular and intracellular challenges. UPR activation devises highly efficient responses to counteract cellular threats. If those activities fail, it will dictate cellular execution. The current work focuses on the role of UPR in pulmonary function, by immersing into the highly interrelated network that operates toward the endothelial barrier function. A highly sophisticated UPR manipulation shall reveal new therapeutic possibilities against inflammatory lung disease, such as acute lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
36
|
Molecular Insights of Copper Sulfate Exposure-Induced Nephrotoxicity: Involvement of Oxidative and Endoplasmic Reticulum Stress Pathways. Biomolecules 2020; 10:biom10071010. [PMID: 32650488 PMCID: PMC7407214 DOI: 10.3390/biom10071010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The precise pathogenic mechanism in Cu exposure-cause nephrotoxicity remains unclear. This study investigated the underlying molecular mechanism of copper sulfate (CuSO4)-induced nephrotoxicity. Mice were treated with CuSO4 at 50, 100, 200 mg/kg/day or co-treated with CuSO4 (200 mg/kg/day) and 4-phenylbutyric acid (4-PBA, 100 mg/kg/day) for 28 consecutive days. HEK293 cells were treated with CuSO4 (400 μM) with or without superoxide dismutase, catalase or 4-PBA for 24 h. Results showed that CuSO4 exposure can cause renal dysfunction and tubular necrosis in the kidney tissues of mice. CuSO4 exposure up-regulated the activities and mRNA expression of caspases-9 and -3 as well as the expression of glucose-regulated protein 78 (GRP78), GRP94, DNA damage-inducible gene 153 (GADD153/CHOP), caspase-12 mRNAs in the kidney tissues. Furthermore, superoxide dismutase and catalase pre-treatments partly inhibited CuSO4-induced cytotoxicity by decreasing reactive oxygen species (ROS) production, activities of caspases-9 and -3 and DNA fragmentations in HEK293 cells. 4-PBA co-treatment significantly improved CuSO4-induced cytotoxicity in HEK293 cells and inhibited CuSO4 exposure-induced renal dysfunction and pathology damage in the kidney tissues. In conclusion, our results reveal that oxidative stress and endoplasmic reticulum stress contribute to CuSO4-induced nephrotoxicity. Our study highlights that targeting endoplasmic reticulum and oxidative stress may offer an approach for Cu overload-caused nephrotoxicity.
Collapse
|
37
|
Liu Y, Wen D, Gao J, Xie B, Yu H, Shen Q, Zhang J, Jing W, Cong B, Ma C. Methamphetamine induces GSDME-dependent cell death in hippocampal neuronal cells through the endoplasmic reticulum stress pathway. Brain Res Bull 2020; 162:73-83. [PMID: 32544512 DOI: 10.1016/j.brainresbull.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is an illegal amphetamine-typed psychostimulant that is abused worldwide and causes serious public health problems. METH exposure induces apoptosis and autophagy in neuronal cells. However, the role of pyroptosis in METH-induced neurotoxicity is still unclear. Here, we investigate whether pyroptosis is involved in METH-induced hippocampal neurotoxicity and the potential mechanisms of Endoplasmic reticulum (ER) stress in hippocampal neuronal cells. For this purpose, the expression levels of pyroptosis-related proteins, GSDMD and GSDME, were analyzed by immunoblotting and immunohistochemistry in the hippocampal neuron cell line HT-22. Next, we explored METH-induced pyroptosis in HT-22 using immunoblotting, LDH assays and SYTOX green acid staining. Further, the relationship between pyroptosis and ER stress in METH-induced hippocampal neuron damage was studied in HT-22 cells using inhibitors including TUDCA, a specific inhibitor of ER stress, GSK-2656157, a PERK pathway inhibitor and STF-0803010, an inhibitor of IRE1α endoribonuclease activity. This relationship was also studied using siRNAs, including siTRAF2, an siRNA against IRE1α kinase activity and siATF6 against the ATF6 pathway, which were analyzed by immunoblotting, LDH assays and SYTOX green acid staining. GSDME but not GSDMD was found to be expressed in HT-22 cells. METH treatment induced the upregulation of cleaved GSDME-NT and LDH release, as well as the increase of SYTOX green positive cells in HT-22 cells, which was partly reversed by inhibitors and siRNAs, indicating that the ER stress signaling pathway was involved in GSDME-dependent cell death induced by METH. In summary, these results revealed that METH induced ER stress that mediated GSDME-dependent cell death in hippocampal neuronal cells. These findings provide novel insight into the mechanisms of METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Yi Liu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Jingqi Gao
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Qianchao Shen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Jingjing Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Weiwei Jing
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China.
| |
Collapse
|
38
|
Zhang XM, Wang YZ, Tong JD, Ning XC, Zhou FQ, Yang XH, Jin HM. Pyruvate alleviates high glucose-induced endoplasmic reticulum stress and apoptosis in HK-2 cells. FEBS Open Bio 2020; 10:827-834. [PMID: 32150786 PMCID: PMC7193158 DOI: 10.1002/2211-5463.12834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum (ER) stress plays a critical role in the development of diabetic nephropathy (DN). We previously demonstrated that pyruvate (Pyr)-enriched oral rehydration solution improved glucometabolic disorders and ameliorated DN outcome in db/db mice. Here, we investigated the effects of Pyr on high glucose-induced ER stress and apoptosis in HK-2 cells. Our results suggest that high glucose can induce reactive oxygen species production, apoptosis and ER stress in HK-2 cells, and that Pyr treatment can ameliorate these effects and restore the expression of key proteins involved in ER stress. Thus, Pyr may have potential for the development of novel strategies for the prevention and treatment of clinical DN.
Collapse
Affiliation(s)
- Xiao Meng Zhang
- Department of NephrologyPudong Medical CenterShanghai Pudong HospitalFudan UniversityShanghaiChina
| | - Yi Zhen Wang
- Department of Clinical MedicineAffiliated Hospital of Qingdao UniversityShandongChina
| | - Jin Dong Tong
- Division of Vascular SurgeryPudong Medical CenterShanghai Pudong HospitalFudan UniversityShanghaiChina
| | - Xu Chao Ning
- Department of Clinical MedicineAffiliated Hospital of Qingdao UniversityShandongChina
| | - Fang Qiang Zhou
- Shanghai Sandai Pharmaceutical R&D Co., Ltd.PudongChina
- Present address:
US officeLas VegasNVUSA
| | - Xiu Hong Yang
- Department of NephrologyPudong Medical CenterShanghai Pudong HospitalFudan UniversityShanghaiChina
| | - Hui Min Jin
- Department of NephrologyPudong Medical CenterShanghai Pudong HospitalFudan UniversityShanghaiChina
| |
Collapse
|
39
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Liu J, Liao G, Tu H, Huang Y, Peng T, Xu Y, Chen X, Huang Z, Zhang Y, Meng X, Zou F. A protective role of autophagy in Pb-induced developmental neurotoxicity in zebrafish. CHEMOSPHERE 2019; 235:1050-1058. [PMID: 31561294 DOI: 10.1016/j.chemosphere.2019.06.227] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is one of the most toxic heavy metals and has aroused widespread concern as it can cause severe impairments in the developing nervous system. Autophagy has been proposed as an injury factor in Pb-induced neurotoxicity. In this study, we used zebrafish embryo as a model, measured the general toxic effects of Pb, and investigated the effect of Pb exposure on autophagy, and its role in Pb-induced developmental neurotoxicity. Zebrafish embryos were exposed to Pb at concentrations of 0, 0.1, 1 or 10 μM until 4 days post-fertilization. Our data showed that exposure to 10 μM Pb significantly reduced survival rates and impaired locomotor activity. Uptake of Pb was enhanced as the concentration and duration of exposure increased. Inhibition of lysosomal degradation with bafilomycin A1 treatment abolished the suppression of Lc3-II protein expression by Pb. Furthermore, autophagosome formation was inhibited by Pb in the brain. In addition, mRNA expression of beclin1, one of the critical genes in autophagy, were decreased in Pb exposure groups at 72 h post-fertilization. Whole-mount in situ hybridization assay showed that beclin1 gene expression in the brain was reduced by Pb. Rapamycin, an autophagy inducer, partly resolved developmental neurotoxicity induced by Pb exposure. Our results suggest that autophagy plays a protective role in the developmental neurotoxicity of Pb in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Jiaxian Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Tu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhibin Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|