1
|
Hall PR, Jouen-Tachoire T, Schewe M, Proks P, Baukrowitz T, Carpenter EP, Newstead S, Rödström KEJ, Tucker SJ. Structures of TASK-1 and TASK-3 K2P channels provide insight into their gating and dysfunction in disease. Structure 2025; 33:115-122.e4. [PMID: 39637865 DOI: 10.1016/j.str.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
TASK-1 and TASK-3 are pH-sensitive two-pore domain (K2P/KCNK) K+ channels. Their functional roles make them promising targets for treatment of multiple disorders including sleep apnea, pain, and atrial fibrillation. Mutations in these channels are also associated with neurodevelopmental and hypertensive disorders. A previous crystal structure of TASK-1 revealed a lower "X-gate" as a hotspot for missense gain-of-function (GoF) mutations associated with DDSA (developmental delay with sleep apnea). However, the mechanisms of gating in TASK channels are still not fully understood. Here, we resolve structures for both human TASK-1 and TASK-3 by cryoelectron microscopy (cryo-EM), as well as a recurrent TASK-3 variant (G236R) associated with KCNK9 imprinting syndrome (KIS) (formerly known as Birk-Barel syndrome). Combined with functional studies of the X-gating mechanism, we provide evidence for how a highly conserved gating mechanism becomes defective in disease, and also provide further insight into the pathway of conformational changes that underlie the pH-dependent inhibition of TASK channel activity.
Collapse
Affiliation(s)
- Peter Rory Hall
- Department of Biochemistry, University of Oxford, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Scripps Institute, San Diego, CA, USA; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Thibault Jouen-Tachoire
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Department of Pharmacology, University of Oxford, Oxford, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Marcus Schewe
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Peter Proks
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | | | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Karin E J Rödström
- Department of Biochemistry, University of Oxford, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Renart ML, Giudici AM, González-Ros JM, Poveda JA. Steady-state and time-resolved fluorescent methodologies to characterize the conformational landscape of the selectivity filter of K + channels. Methods 2024; 225:89-99. [PMID: 38508347 DOI: 10.1016/j.ymeth.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
A variety of equilibrium and non-equilibrium methods have been used in a multidisciplinary approach to study the conformational landscape associated with the binding of different cations to the pore of potassium channels. These binding processes, and the conformational changes resulting therefrom, modulate the functional properties of such integral membrane properties, revealing these permeant and blocking cations as true effectors of such integral membrane proteins. KcsA, a prototypic K+ channel from Streptomyces lividans, has been extensively characterized in this regard. Here, we revise several fluorescence-based approaches to monitor cation binding under different experimental conditions in diluted samples, analyzing the advantages and disadvantages of each approach. These studies have contributed to explain the selectivity, conduction, and inactivation properties of K+ channels at the molecular level, together with the allosteric communication between the two gates that control the ion channel flux, and how they are modulated by lipids.
Collapse
Affiliation(s)
- María Lourdes Renart
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Ana Marcela Giudici
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José M González-Ros
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José A Poveda
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
4
|
Ryan M, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the Selectivity Filter of a K + Ion Channel: Structural Heterogeneity, Picosecond Dynamics, and Hydrogen Bonding. J Am Chem Soc 2024; 146:1543-1553. [PMID: 38181505 PMCID: PMC10797622 DOI: 10.1021/jacs.3c11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew
J. Ryan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lujia Gao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Francis I. Valiyaveetil
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alexei A. Kananenka
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Ryan MJ, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the selectivity filter of a K + ion channel: structural heterogeneity, picosecond dynamics, and hydrogen-bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567415. [PMID: 38014355 PMCID: PMC10680850 DOI: 10.1101/2023.11.16.567415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Water inside biological ion channels regulates the key properties of these proteins such as selectivity, ion conductance, and gating. In this Article we measure the picosecond spectral diffusion of amide I vibrations of an isotope labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100 - 2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D lineshapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent, or non-adjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations were observed on a picosecond timescale. These dynamics are in stark contrast with liquid water that remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lujia Gao
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francis I. Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Chokvithaya S, Caengprasath N, Buasong A, Jantasuwan S, Santawong K, Leela-adisorn N, Tongkobpetch S, Ittiwut C, Saengow VE, Kamolvisit W, Boonsimma P, Bongsebandhu-phubhakdi S, Shotelersuk V. Nine patients with KCNQ2-related neonatal seizures and functional studies of two missense variants. Sci Rep 2023; 13:3328. [PMID: 36849527 PMCID: PMC9971330 DOI: 10.1038/s41598-023-29924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Mutations in KCNQ2 encoding for voltage-gated K channel subunits underlying the neuronal M-current have been associated with infantile-onset epileptic disorders. The clinical spectrum ranges from self-limited neonatal seizures to epileptic encephalopathy and delayed development. Mutations in KCNQ2 could be either gain- or loss-of-function which require different therapeutic approaches. To better understand genotype-phenotype correlation, more reports of patients and their mutations with elucidated molecular mechanism are needed. We studied 104 patients with infantile-onset pharmacoresistant epilepsy who underwent exome or genome sequencing. Nine patients with neonatal-onset seizures from unrelated families were found to harbor pathogenic or likely pathogenic variants in the KCNQ2 gene. The p.(N258K) was recently reported, and p. (G279D) has never been previously reported. Functional effect of p.(N258K) and p.(G279D) has never been previously studied. The cellular localization study demonstrated that the surface membrane expression of Kv7.2 carrying either variant was decreased. Whole-cell patch-clamp analyses revealed that both variants significantly impaired Kv7.2 M-current amplitude and density, conductance depolarizing shift in voltage dependence of activation, membrane resistance, and membrane time constant (Tau), indicating a loss-of-function in both the homotetrameric and heterotetrameric with Kv7.3 channels. In addition, both variants exerted dominant-negative effects in heterotetrameric with Kv7.3 channels. This study expands the mutational spectrum of KCNQ2- related epilepsy and their functional consequences provide insights into their pathomechanism.
Collapse
Affiliation(s)
- Suphalak Chokvithaya
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand ,grid.415584.90000 0004 0576 1386Department of Clinical Pathology and Medical Technology Laboratory, Queen Sirikit National Institute of Child Health, Ministry of Public Health, Bangkok, Thailand
| | - Natarin Caengprasath
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Aayalida Buasong
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Supavadee Jantasuwan
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Kanokwan Santawong
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Netchanok Leela-adisorn
- grid.7922.e0000 0001 0244 7875Department of Stem Cell and Cell, Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siraprapa Tongkobpetch
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Chupong Ittiwut
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Vitchayaporn Emarach Saengow
- grid.416297.f0000 0004 0388 8201Department of Pediatrics, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, Thailand
| | - Wuttichart Kamolvisit
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. .,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Saknan Bongsebandhu-phubhakdi
- grid.7922.e0000 0001 0244 7875Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| |
Collapse
|
7
|
Friesacher T, Reddy HP, Bernsteiner H, Carlo Combista J, Shalomov B, Bera AK, Zangerl-Plessl EM, Dascal N, Stary-Weinzinger A. A selectivity filter mutation provides insights into gating regulation of a K + channel. Commun Biol 2022; 5:345. [PMID: 35411015 PMCID: PMC9001731 DOI: 10.1038/s42003-022-03303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
G-protein coupled inwardly rectifying potassium (GIRK) channels are key players in inhibitory neurotransmission in heart and brain. We conducted molecular dynamics simulations to investigate the effect of a selectivity filter (SF) mutation, G154S, on GIRK2 structure and function. We observe mutation-induced loss of selectivity, changes in ion occupancy and altered filter geometry. Unexpectedly, we reveal aberrant SF dynamics in the mutant to be correlated with motions in the binding site of the channel activator Gβγ. This coupling is corroborated by electrophysiological experiments, revealing that GIRK2wt activation by Gβγ reduces the affinity of Ba2+ block. We further present a functional characterization of the human GIRK2G154S mutant validating our computational findings. This study identifies an allosteric connection between the SF and a crucial activator binding site. This allosteric gating mechanism may also apply to other potassium channels that are modulated by accessory proteins. Gly selectivity filter (TIGYGYR) mutant of the GIRK2 channel causes rare but severe neurological disorder called the Keppen-Lubinsky syndrome. Here, the authors explore the molecular mechanism of action of this glycine to serine mutant causing disease and identify an allosteric connection between the selectivity filter and a crucial activator binding site.
Collapse
Affiliation(s)
- Theres Friesacher
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Haritha P Reddy
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Harald Bernsteiner
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - J Carlo Combista
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amal K Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Eva-Maria Zangerl-Plessl
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Reddi R, Matulef K, Riederer E, Moenne-Loccoz P, Valiyaveetil FI. Structures of Gating Intermediates in a K + channel. J Mol Biol 2021; 433:167296. [PMID: 34627789 DOI: 10.1016/j.jmb.2021.167296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022]
Abstract
Regulation of ion conduction through the pore of a K+ channel takes place through the coordinated action of the activation gate at the bundle crossing of the inner helices and the inactivation gate located at the selectivity filter. The mechanism of allosteric coupling of these gates is of key interest. Here we report new insights into this allosteric coupling mechanism from studies on a W67F mutant of the KcsA channel. W67 is in the pore helix and is highly conserved in K+ channels. The KcsA W67F channel shows severely reduced inactivation and an enhanced rate of activation. We use continuous wave EPR spectroscopy to establish that the KcsA W67F channel shows an altered pH dependence of activation. Structural studies on the W67F channel provide the structures of two intermediate states: a pre- open state and a pre-inactivated state of the KcsA channel. These structures highlight key nodes in the allosteric pathway. The structure of the KcsA W67F channel with the activation gate open shows altered ion occupancy at the second ion binding site (S2) in the selectivity filter. This finding in combination with previous studies strongly support a requirement for ion occupancy at the S2 site for the channel to inactivate.
Collapse
Affiliation(s)
- Ravikumar Reddi
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States. https://twitter.com/Ravi_K_Reddi
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Erika Riederer
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Pierre Moenne-Loccoz
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States.
| |
Collapse
|
9
|
Structural basis of gating modulation of Kv4 channel complexes. Nature 2021; 599:158-164. [PMID: 34552243 PMCID: PMC8566240 DOI: 10.1038/s41586-021-03935-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Modulation of voltage-gated potassium (Kv) channels by auxiliary subunits is central to the physiological function of channels in the brain and heart1,2. Native Kv4 tetrameric channels form macromolecular ternary complexes with two auxiliary β-subunits—intracellular Kv channel-interacting proteins (KChIPs) and transmembrane dipeptidyl peptidase-related proteins (DPPs)—to evoke rapidly activating and inactivating A-type currents, which prevent the backpropagation of action potentials1–5. However, the modulatory mechanisms of Kv4 channel complexes remain largely unknown. Here we report cryo-electron microscopy structures of the Kv4.2–DPP6S–KChIP1 dodecamer complex, the Kv4.2–KChIP1 and Kv4.2–DPP6S octamer complexes, and Kv4.2 alone. The structure of the Kv4.2–KChIP1 complex reveals that the intracellular N terminus of Kv4.2 interacts with its C terminus that extends from the S6 gating helix of the neighbouring Kv4.2 subunit. KChIP1 captures both the N and the C terminus of Kv4.2. In consequence, KChIP1 would prevent N-type inactivation and stabilize the S6 conformation to modulate gating of the S6 helices within the tetramer. By contrast, unlike the reported auxiliary subunits of voltage-gated channel complexes, DPP6S interacts with the S1 and S2 helices of the Kv4.2 voltage-sensing domain, which suggests that DPP6S stabilizes the conformation of the S1–S2 helices. DPP6S may therefore accelerate the voltage-dependent movement of the S4 helices. KChIP1 and DPP6S do not directly interact with each other in the Kv4.2–KChIP1–DPP6S ternary complex. Thus, our data suggest that two distinct modes of modulation contribute in an additive manner to evoke A-type currents from the native Kv4 macromolecular complex. Cryo-electron microscopy structures of the voltage-gated potassium channel Kv4.2 alone and in complex with auxiliary subunits (DPP6S and/or KChIP1) reveal the distinct mechanisms of these two different subunits in modulating channel activity.
Collapse
|
10
|
Paul A, Singh S. Identification of a novel calcium activated potassium channel from Leishmania donovani and in silico predictions of its antigenic features. Acta Trop 2021; 220:105922. [PMID: 33878308 DOI: 10.1016/j.actatropica.2021.105922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022]
Abstract
Visceral Leishmaniasis is a major neglected tropical disease with increasing incidences of drug resistance. This has led to the search for a suitable drug target for chemotherapeutic intervention. Potassium channels are a family of membrane proteins which play a vital role in homeostasis and any perturbation in them alters cell survival which makes them an attractive target. To characterize a calcium-activated potassium channel from Leishmania donovani (LdKCa), a putative ion-channel like protein which showed sequence similarity with other Trypanosoma cruzi putative potassium channels was selected. It was cloned and expressed with a histidine tag. MALDI confirmed that it is a potassium channel. Homology model of LdKCa was generated by I-TASSER. It is a transmembrane protein localized in the plasma membrane as predicted by DeepLoc tool. In silico analyses of the protein showed that it is a small conductance calcium activated potassium channel. Point mutation in conserved signature domain 'TXGYGD' affects the protein function as predicted by heat map analysis. The LdKCa model predicted amino acids S207, T208 and M236 as ligand-binding sites. The sequence HSLRGRSARVIQLAWRLRKARKVGPHAPSLKQKVYTLVLSWLLT was the highest scoring B-cell epitope. The highest scoring T-cell epitope was RLYSVIVYL. This study may provide new insights into antigenicity features of leishmanial calcium-activated potassium channels.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
11
|
Goswami S. Interplay of potassium channel, gastric parietal cell and proton pump in gastrointestinal physiology, pathology and pharmacology. Minerva Gastroenterol (Torino) 2021; 68:289-305. [PMID: 34309336 DOI: 10.23736/s2724-5985.21.02964-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gastric acid secretion plays a pivotal role in the physiology of gastrointestinal tract. The functioning of the system encompasses a P2 ATPase pump (which shuttles electroneutral function at low pH) along with different voltage sensitive/neutral ion channels, cytosolic proteins, acid sensor receptors as well hormonal regulators. The increased acid secretion is a pathological marker of several diseases like peptic ulcer, gastroesophageal reflux disease (GERD), chronic gastritis, and the bug Helicobacter pylori (H. pylori) has also a critical role, which altogether affects the patient's quality of life. This review comprehensively describes about the nature of potassium ion channel and its mediators, the different clinical strategy to control acid rebound, and some basic experimental observations performed to study the interplay of ion channels, pumps, as well as mediators during acid secretion. Different aspects of regulation of gastric acid secretion have been focused either in terms of physiology of secretion or molecular interactions. The importance of H pylori infection and its treatment have also been discussed. Furthermore, the relevance of calcium signaling during acid secretion has been reviewed. The entire theme will make anyone to understand in details about the gastric secretion machinery in general.
Collapse
Affiliation(s)
- Suchandra Goswami
- Smt. Vidyawati College of Pharmacy, Gora Machhiya, Jhansi, Uttar Pradesh, India -
| |
Collapse
|
12
|
Szanto TG, Gaal S, Karbat I, Varga Z, Reuveny E, Panyi G. Shaker-IR K+ channel gating in heavy water: Role of structural water molecules in inactivation. J Gen Physiol 2021; 153:212166. [PMID: 34014250 PMCID: PMC8148028 DOI: 10.1085/jgp.202012742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
It has been reported earlier that the slow (C-type) inactivated conformation in Kv channels is stabilized by a multipoint hydrogen-bond network behind the selectivity filter. Furthermore, MD simulations revealed that structural water molecules are also involved in the formation of this network locking the selectivity filter in its inactive conformation. We found that the application of an extracellular, but not intracellular, solution based on heavy water (D2O) dramatically slowed entry into the slow inactivated state in Shaker-IR mutants (T449A, T449A/I470A, and T449K/I470C, displaying a wide range of inactivation kinetics), consistent with the proposed effect of the dynamics of structural water molecules on the conformational stability of the selectivity filter. Alternative hypotheses capable of explaining the observed effects of D2O were examined. Increased viscosity of the external solution mimicked by the addition of glycerol had a negligible effect on the rate of inactivation. In addition, the inactivation time constants of K+ currents in the outward and the inward directions in asymmetric solutions were not affected by a H2O/D2O exchange, negating an indirect effect of D2O on the rate of K+ rehydration. The elimination of the nonspecific effects of D2O on our macroscopic current measurements supports the hypothesis that the rate of structural water exchange at the region behind the selectivity filter determines the rate of slow inactivation, as proposed by molecular modeling.
Collapse
Affiliation(s)
- Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Gaal
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Selectivity filter ion binding affinity determines inactivation in a potassium channel. Proc Natl Acad Sci U S A 2020; 117:29968-29978. [PMID: 33154158 DOI: 10.1073/pnas.2009624117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Potassium channels can become nonconducting via inactivation at a gate inside the highly conserved selectivity filter (SF) region near the extracellular side of the membrane. In certain ligand-gated channels, such as BK channels and MthK, a Ca2+-activated K+ channel from Methanobacterium thermoautotrophicum, the SF has been proposed to play a role in opening and closing rather than inactivation, although the underlying conformational changes are unknown. Using X-ray crystallography, identical conductive MthK structures were obtained in wide-ranging K+ concentrations (6 to 150 mM), unlike KcsA, whose SF collapses at low permeant ion concentrations. Surprisingly, three of the SF's four binding sites remained almost fully occupied throughout this range, indicating high affinities (likely submillimolar), while only the central S2 site titrated, losing its ion at 6 mM, indicating low K+ affinity (∼50 mM). Molecular simulations showed that the MthK SF can also collapse in the absence of K+, similar to KcsA, but that even a single K+ binding at any of the SF sites, except S4, can rescue the conductive state. The uneven titration across binding sites differs from KcsA, where SF sites display a uniform decrease in occupancy with K+ concentration, in the low millimolar range, leading to SF collapse. We found that ions were disfavored in MthK's S2 site due to weaker coordination by carbonyl groups, arising from different interactions with the pore helix and water behind the SF. We conclude that these differences in interactions endow the seemingly identical SFs of KcsA and MthK with strikingly different inactivating phenotypes.
Collapse
|
14
|
Sameera, Shah FA, Rashid S. Conformational ensembles of non-peptide ω-conotoxin mimetics and Ca +2 ion binding to human voltage-gated N-type calcium channel Ca v2.2. Comput Struct Biotechnol J 2020; 18:2357-2372. [PMID: 32994894 PMCID: PMC7498737 DOI: 10.1016/j.csbj.2020.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic neuropathic pain is the most complex and challenging clinical problem of a population that sets a major physical and economic burden at the global level. Ca2+-permeable channels functionally orchestrate the processing of pain signals. Among them, N-type voltage-gated calcium channels (VGCC) hold prominent contribution in the pain signal transduction and serve as prime targets for synaptic transmission block and attenuation of neuropathic pain. Here, we present detailed in silico analysis to comprehend the underlying conformational changes upon Ca2+ ion passage through Cav2.2 to differentially correlate subtle transitions induced via binding of a conopeptide-mimetic alkylphenyl ether-based analogue MVIIA. Interestingly, pronounced conformational changes were witnessed at the proximal carboxyl-terminus of Cav2.2 that attained an upright orientation upon Ca+2 ion permeability. Moreover, remarkable changes were observed in the architecture of channel tunnel. These findings illustrate that inhibitor binding to Cav2.2 may induce more narrowing in the pore size as compared to Ca2+ binding through modulating the hydrophilicity pattern at the selectivity region. A significant reduction in the tunnel volume at the selectivity filter and its enhancement at the activation gate of Ca+2-bound Cav2.2 suggests that ion binding modulates the outward splaying of pore-lining S6 helices to open the voltage gate. Overall, current study delineates dynamic conformational ensembles in terms of Ca+2 ion and MVIIA-associated structural implications in the Cav2.2 that may help in better therapeutic intervention to chronic and neuropathic pain management.
Collapse
Affiliation(s)
- Sameera
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
15
|
Borcik CG, Versteeg DB, Amani R, Yekefallah M, Khan NH, Wylie BJ. The Lipid Activation Mechanism of a Transmembrane Potassium Channel. J Am Chem Soc 2020; 142:14102-14116. [PMID: 32702990 DOI: 10.1021/jacs.0c01991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Membrane proteins and lipids coevolved to yield unique coregulatory mechanisms. Inward-rectifier K+ (Kir) channels are often activated by anionic lipids endemic to their native membranes and require accessible water along their K+ conductance pathway. To better understand Kir channel activation, we target multiple mutants of the Kir channel KirBac1.1 via solid-state nuclear magnetic resonance (SSNMR) spectroscopy, potassium efflux assays, and Förster resonance energy transfer (FRET) measurements. In the I131C stability mutant (SM), we observe an open-active channel in the presence of anionic lipids with greater activity upon addition of cardiolipin (CL). The introduction of three R to Q mutations (R49/151/153Q (triple Q mutant, TQ)) renders the protein inactive within the same activating lipid environment. Our SSNMR experiments reveal a stark reduction of lipid-protein interactions in the TQ mutant explaining the dramatic loss of channel activity. Water-edited SSNMR experiments further determined the TQ mutant possesses greater overall solvent exposure in comparison to wild-type but with reduced water accessibility along the ion conduction pathway, consistent with the closed state of the channel. These experiments also suggest water is proximal to the selectivity filter of KirBac1.1 in the open-activated state but that it may not directly enter the selectivity filter. Our findings suggest lipid binding initiates a concerted rotation of the cytoplasmic domain subunits, which is stabilized by multiple intersubunit salt bridges. This action buries ionic side chains away from the bulk water, while allowing water greater access to the K+ conduction pathway. This work highlights universal membrane protein motifs, including lipid-protein interactions, domain rearrangement, and water-mediated diffusion mechanisms.
Collapse
Affiliation(s)
- Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Derek B Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Reza Amani
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Nazmul H Khan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
16
|
Walczewska-Szewc K, Nowak W. Structural Determinants of Insulin Release: Disordered N-Terminal Tail of Kir6.2 Affects Potassium Channel Dynamics through Interactions with Sulfonylurea Binding Region in a SUR1 Partner. J Phys Chem B 2020; 124:6198-6211. [PMID: 32598150 PMCID: PMC7467719 DOI: 10.1021/acs.jpcb.0c02720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Inward rectifying
potassium ion channels (KATP), sensitive to the
ATP/ADP concentration ratio, play an important, control role in pancreatic
β cells. The channels close upon the increase of this ratio,
which, in turn, triggers insulin release to blood. Numerous mutations
in KATP lead to severe and widespread medical conditions such as diabetes.
The KATP system consists of a pore made of four Kir6.2 subunits and
four accompanying large SUR1 proteins belonging to the ABCC transporters
group. How SUR1 affects KATP function is not yet known; therefore,
we created simplified models of the Kir6.2 tetramer based on recently
determined cryo-EM KATP structures. Using all-atom molecular dynamics
(MD) with the CHARMM36 force field, targeted MD, and molecular docking,
we revealed functionally important rearrangements in the Kir6.2 pore,
induced by the presence of the SUR1 protein. The cytoplasmic domain
of Kir6.2 (CTD) is brought closer to the membrane due to interactions
with SUR1. Each Kir6.2 subunit has a conserved, functionally important,
disordered N-terminal tail. Using molecular docking, we found that
the Kir6.2 tail easily docks to the sulfonylurea drug binding region
located in the adjacent SUR1 protein. We reveal, for the first time,
dynamical behavior of the Kir6.2/SUR1 system, confirming a physiological
role of the Kir6.2 disordered tail, and we indicate structural determinants
of KATP-dependent insulin release from pancreatic β cells.
Collapse
Affiliation(s)
- Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Wiesław Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
17
|
Sun Z, Xu Y, Zhang D, McDermott AE. Probing allosteric coupling in a constitutively open mutant of the ion channel KcsA using solid-state NMR. Proc Natl Acad Sci U S A 2020; 117:7171-7175. [PMID: 32188782 PMCID: PMC7132268 DOI: 10.1073/pnas.1908828117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery.
Collapse
Affiliation(s)
- Zhiyu Sun
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Dongyu Zhang
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
18
|
Zangerl-Plessl EM, Berger M, Drescher M, Chen Y, Wu W, Maulide N, Sanguinetti M, Stary-Weinzinger A. Toward a Structural View of hERG Activation by the Small-Molecule Activator ICA-105574. J Chem Inf Model 2020; 60:360-371. [PMID: 31877041 DOI: 10.1021/acs.jcim.9b00737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outward current conducted by human ether-à-go-go-related gene type 1 (hERG1) K+ channels is important for action potential repolarization in the human ventricle. Rapid, voltage-dependent inactivation greatly reduces outward currents conducted by hERG1 channels and involves conformational changes in the ion selectivity filter (SF). Recently, compounds have been found that activate hERG1 channel function by modulating gating mechanisms such as reducing inactivation. Such activating compounds could represent a novel approach to prevent arrhythmias associated with prolonged ventricular repolarization associated with inherited or acquired long QT syndrome. ICA-105574 (ICA), a 3-nitro-n-(4-phenoxyphenyl) benzamide derivative activates hERG1 by strongly attenuating pore-type inactivation. We previously mapped the putative binding site for ICA to a hydrophobic pocket located between two adjacent subunits. Here, we used the recently reported cryoelectron microscopy structures of hERG1 to elucidate the structural mechanisms by which ICA influences the stability of the SF. By combining molecular dynamics simulations, voltage-clamp electrophysiology, and the synthesis of novel ICA derivatives, we provide atomistic insights into SF dynamics and propose a structural link between the SF and S6 segments. Further, our study highlights the importance of the nitro moiety, at the meta position of the benzamide ring, for the activity of ICA and reveals that the (bio)isosteric substitution of this side chain can switch the activity to weak inhibitors. Our findings indicate that ICA increases the stability of the SF to attenuate channel inactivation, and this action requires a fine-tuned compound geometry.
Collapse
Affiliation(s)
- Eva-Maria Zangerl-Plessl
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , Wien , Vienna 1090 , Austria
| | - Martin Berger
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Martina Drescher
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Yong Chen
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Wei Wu
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Division of Cardiovascular Medicine, Department of Internal Medicine , University of Utah , Salt Lake City , Utah 84132-340 , United States
| | - Nuno Maulide
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Michael Sanguinetti
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Division of Cardiovascular Medicine, Department of Internal Medicine , University of Utah , Salt Lake City , Utah 84132-340 , United States
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , Wien , Vienna 1090 , Austria
| |
Collapse
|
19
|
Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays. Proc Natl Acad Sci U S A 2020; 117:2938-2947. [PMID: 31980523 PMCID: PMC7022178 DOI: 10.1073/pnas.1915010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inward rectifier K+ (Kir) channels play an important role in reestablishing the resting membrane state of the action potential of excitable cells in humans. KirBac1.1 is a prokaryotic Kir channel with a high degree of homology to human Kir channels and can be isotopically labeled in NMR quantities for structural studies. Functional assays and NMR assignments confirm that KirBac1.1 is in a constitutively conductive state. Solid-state NMR assignments further reveal alternate conformations at key sites in the protein that are well conserved through human Kir channels, hinting at a possible allosteric network between channels. These underlying sequential and structural motifs could explain abnormal conductive properties of these channels fundamental to their native gating processes. The conformational changes required for activation and K+ conduction in inward-rectifier K+ (Kir) channels are still debated. These structural changes are brought about by lipid binding. It is unclear how this process relates to fast gating or if the intracellular and extracellular regions of the protein are coupled. Here, we examine the structural details of KirBac1.1 reconstituted into both POPC and an activating lipid mixture of 3:2 POPC:POPG (wt/wt). KirBac1.1 is a prokaryotic Kir channel that shares homology with human Kir channels. We establish that KirBac1.1 is in a constitutively active state in POPC:POPG bilayers through the use of real-time fluorescence quenching assays and Förster resonance energy transfer (FRET) distance measurements. Multidimensional solid-state NMR (SSNMR) spectroscopy experiments reveal two different conformers within the transmembrane regions of the protein in this activating lipid environment, which are distinct from the conformation of the channel in POPC bilayers. The differences between these three distinct channel states highlight conformational changes associated with an open activation gate and suggest a unique allosteric pathway that ties the selectivity filter to the activation gate through interactions between both transmembrane helices, the turret, selectivity filter loop, and the pore helix. We also identify specific residues involved in this conformational exchange that are highly conserved among human Kir channels.
Collapse
|
20
|
Kopec W, Rothberg BS, de Groot BL. Molecular mechanism of a potassium channel gating through activation gate-selectivity filter coupling. Nat Commun 2019; 10:5366. [PMID: 31772184 PMCID: PMC6879586 DOI: 10.1038/s41467-019-13227-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023] Open
Abstract
Potassium channels are presumed to have two allosterically coupled gates, the activation gate and the selectivity filter gate, that control channel opening, closing, and inactivation. However, the molecular mechanism of how these gates regulate K+ ion flow through the channel remains poorly understood. An activation process, occurring at the selectivity filter, has been recently proposed for several potassium channels. Here, we use X-ray crystallography and extensive molecular dynamics simulations, to study ion permeation through a potassium channel MthK, for various opening levels of both gates. We find that the channel conductance is controlled at the selectivity filter, whose conformation depends on the activation gate. The crosstalk between the gates is mediated through a collective motion of channel helices, involving hydrophobic contacts between an isoleucine and a conserved threonine in the selectivity filter. We propose a gating model of selectivity filter-activated potassium channels, including pharmacologically relevant two-pore domain (K2P) and big potassium (BK) channels.
Collapse
Affiliation(s)
- Wojciech Kopec
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Bert L de Groot
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
21
|
Verdura E, Fons C, Schlüter A, Ruiz M, Fourcade S, Casasnovas C, Castellano A, Pujol A. Complete loss of KCNA1 activity causes neonatal epileptic encephalopathy and dyskinesia. J Med Genet 2019; 57:132-137. [PMID: 31586945 PMCID: PMC7029237 DOI: 10.1136/jmedgenet-2019-106373] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 11/29/2022]
Abstract
Background Since 1994, over 50 families affected by the episodic ataxia type 1 disease spectrum have been described with mutations in KCNA1, encoding the voltage-gated K+ channel subunit Kv1.1. All of these mutations are either transmitted in an autosomal-dominant mode or found as de novo events. Methods A patient presenting with a severe combination of dyskinesia and neonatal epileptic encephalopathy was sequenced by whole-exome sequencing (WES). A candidate variant was tested using cellular assays and patch-clamp recordings. Results WES revealed a homozygous variant (p.Val368Leu) in KCNA1, involving a conserved residue in the pore domain, close to the selectivity signature sequence for K+ ions (TVGYG). Functional analysis showed that mutant protein alone failed to produce functional channels in homozygous state, while coexpression with wild-type produced no effects on K+ currents, similar to wild-type protein alone. Treatment with oxcarbazepine, a sodium channel blocker, proved effective in controlling seizures. Conclusion This newly identified variant is the first to be reported to act in a recessive mode of inheritance in KCNA1. These findings serve as a cautionary tale for the diagnosis of channelopathies, in which an unreported phenotypic presentation or mode of inheritance for the variant of interest can hinder the identification of causative variants and adequate treatment choice.
Collapse
Affiliation(s)
- Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carme Fons
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Pediatric Neurology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalunya, Spain.,Sant Joan de Déu Research Institute (IRSJD), Esplugues de Llobregat, Barcelona, Catalunya, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain
| | - Antonio Castellano
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Medical Physiology and Biophysics Departament, Universidad de Sevilla, Sevilla, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain .,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalunya, Spain
| |
Collapse
|
22
|
Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. Conduction through a narrow inward-rectifier K + channel pore. J Gen Physiol 2019; 151:1231-1246. [PMID: 31511304 PMCID: PMC6785732 DOI: 10.1085/jgp.201912359] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
G-protein–gated inwardly rectifying potassium channels are important mediators of inhibitory neurotransmission. Based on microsecond-scale molecular dynamics simulations, Bernsteiner et al. propose novel gating details that may enable K+ flux via a direct knock-on mechanism. Inwardly rectifying potassium (Kir) channels play a key role in controlling membrane potentials in excitable and unexcitable cells, thereby regulating a plethora of physiological processes. G-protein–gated Kir channels control heart rate and neuronal excitability via small hyperpolarizing outward K+ currents near the resting membrane potential. Despite recent breakthroughs in x-ray crystallography and cryo-EM, the gating and conduction mechanisms of these channels are poorly understood. MD simulations have provided unprecedented details concerning the gating and conduction mechanisms of voltage-gated K+ and Na+ channels. Here, we use multi-microsecond–timescale MD simulations based on the crystal structures of GIRK2 (Kir3.2) bound to phosphatidylinositol-4,5-bisphosphate to provide detailed insights into the channel’s gating dynamics, including insights into the behavior of the G-loop gate. The simulations also elucidate the elementary steps that underlie the movement of K+ ions through an inward-rectifier K+ channel under an applied electric field. Our simulations suggest that K+ permeation might occur via direct knock-on, similar to the mechanism recently shown for Kv channels.
Collapse
Affiliation(s)
- Harald Bernsteiner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
23
|
Poveda JA, Giudici AM, Renart ML, Millet O, Morales A, González-Ros JM, Oakes V, Furini S, Domene C. Modulation of the potassium channel KcsA by anionic phospholipids: Role of arginines at the non-annular lipid binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183029. [PMID: 31351058 DOI: 10.1016/j.bbamem.2019.183029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
The role of arginines R64 and R89 at non-annular lipid binding sites of KcsA, on the modulation of channel activity by anionic lipids has been investigated. In wild-type (WT) KcsA reconstituted into asolectin lipid membranes, addition of phosphatidic acid (PA) drastically reduces inactivation in macroscopic current recordings. Consistent to this, PA increases current amplitude, mean open time and open probability at the single channel level. Moreover, kinetic analysis reveals that addition of PA causes longer open channel lifetimes and decreased closing rate constants. Effects akin to those of PA on WT-KcsA are observed when R64 and/or R89 are mutated to alanine, regardless of the added anionic lipids. We interpret these results as a consequence of interactions between the arginines and the anionic PA bound to the non-annular sites. NMR data shows indeed that at least R64 is involved in binding PA. Moreover, molecular dynamics (MD) simulations predict that R64, R89 and surrounding residues such as T61, mediate persistent binding of PA to the non-annular sites. Channel inactivation depends on interactions within the inactivation triad (E71-D80-W67) behind the selectivity filter. Therefore, it is expected that such interactions are affected when PA binds the arginines at the non-annular sites. In support of this, MD simulations reveal that PA binding prevents interaction between R89 and D80, which seems critical to the effectiveness of the inactivation triad. This mechanism depends on the stability of the bound lipid, favoring anionic headgroups such as that of PA, which thrive on the positive charge of the arginines.
Collapse
Affiliation(s)
- José A Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - A Marcela Giudici
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - M Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - Oscar Millet
- Structural Biology Unit, CICbioGUNE, Bizkaia Technology Park, Derio, 48160, Vizcaya, Spain
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03080 Alicante, Spain
| | - José M González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain.
| | - Victoria Oakes
- Department of Chemistry, University of Bath, 1 South Bldg., Claverton Down, Bath BA2 7AY, United Kingdom
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Carmen Domene
- Department of Chemistry, University of Bath, 1 South Bldg., Claverton Down, Bath BA2 7AY, United Kingdom; Department of Chemistry, University of Oxford, Oxford OX1 3TA, Oxford, United Kingdom.
| |
Collapse
|
24
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
25
|
Xu Y, McDermott AE. Inactivation in the potassium channel KcsA. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 3:100009. [PMID: 32647814 PMCID: PMC7337057 DOI: 10.1016/j.yjsbx.2019.100009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
C-type inactivation in potassium channels is a nearly universal regulatory mechanism. A major hypothesis states that C-type inactivation involves ion loss at the selectivity filter as an allosteric response to activation. NMR is used to probe protein conformational changes in response to pH and [K+], demonstrating that H+ and K+ binding are allosterically coupled in KcsA. The lipids are integrated parts of potassium channels in terms of structure, energetics and function.
Inactivation, the slow cessation of transmission after activation, is a general feature of potassium channels. It is essential for their function, and malfunctions in inactivation leads to numerous pathologies. The detailed mechanism for the C-type inactivation, distinct from the N-type inactivation, remains an active area of investigation. Crystallography, computational simulations, and NMR have greatly enriched our understanding of the process. Here we review the major hypotheses regarding C-type inactivation, particularly focusing on the key role played by NMR studies of the prokaryotic potassium channel KcsA, which serves as a good model for voltage gated mammalian channels.
Collapse
Affiliation(s)
- Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| |
Collapse
|
26
|
Kniggendorf AK, Schmidt D, Roth B, Plettenburg O, Zeilinger C. pH-Dependent Conformational Changes of KcsA Tetramer and Monomer Probed by Raman Spectroscopy. Int J Mol Sci 2019; 20:ijms20112736. [PMID: 31167355 PMCID: PMC6601014 DOI: 10.3390/ijms20112736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/24/2019] [Accepted: 06/02/2019] [Indexed: 11/30/2022] Open
Abstract
KcsA is a tetrameric potassium channel formed out of four identical monomeric subunits used as a standard model for selective potassium transport and pH-dependent gating. Large conformational changes are reported for tetramer and monomer upon gating, and the response of the monomer being controversial with the two major studies partially contradicting each other. KcsA was analyzed as functional tetramers embedded in liposomes and as monomer subunits with confocal Raman microscopy under physiological conditions for the active and the closed channel state, using 532 nm excitation to avoid introducing conformational changes during the measurement. Channel function was confirmed using liposome flux assay. While the classic fingerprint region below 1800 rel. cm−1 in the Raman spectrum of the tetramer was unaffected, the CH-stretching region between 2800 and 3200 rel. cm−1 was found to be strongly affected by the conformation. No pH-dependency was observed in the Raman spectra of the monomer subunits, which closely resembled the Raman spectrum of the tetramer in its active conformation, indicating that the open conformation of the monomer and not the closed conformation as postulated may equal the relaxed state of the molecule.
Collapse
Affiliation(s)
- Ann-Kathrin Kniggendorf
- Gottfried Wilhelm Leibniz Universität Hannover, Hannover Centre for Optical Technologies (HOT), Nienburger Straße 17, 30167 Hannover, Germany.
| | - David Schmidt
- Gottfried Wilhelm Leibniz Universität Hannover, Naturwissenschaftliche Fakultät, Center of Biomolecular Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany.
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Bernhard Roth
- Gottfried Wilhelm Leibniz Universität Hannover, Hannover Centre for Optical Technologies (HOT), Nienburger Straße 17, 30167 Hannover, Germany.
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany.
| | - Oliver Plettenburg
- Gottfried Wilhelm Leibniz Universität Hannover, Naturwissenschaftliche Fakultät, Center of Biomolecular Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany.
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Carsten Zeilinger
- Gottfried Wilhelm Leibniz Universität Hannover, Naturwissenschaftliche Fakultät, Center of Biomolecular Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany.
| |
Collapse
|
27
|
Potassium channel selectivity filter dynamics revealed by single-molecule FRET. Nat Chem Biol 2019; 15:377-383. [PMID: 30833778 PMCID: PMC6430689 DOI: 10.1038/s41589-019-0240-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/25/2019] [Indexed: 11/09/2022]
Abstract
Potassium (K) channels exhibit exquisite selectivity for conduction of K+ ions over other cations, particularly Na+. High-resolution structures reveal an archetypal selectivity filter (SF) conformation in which dehydrated K+ ions, but not Na+ ions, are perfectly coordinated. Using single-molecule FRET (smFRET), we show that the SF-forming loop (SF-loop) in KirBac1.1 transitions between constrained and dilated conformations as a function of ion concentration. The constrained conformation, essential for selective K+ permeability, is stabilized by K+ but not Na+ ions. Mutations that render channels nonselective result in dilated and dynamically unstable conformations, independent of the permeant ion. Further, while wild-type KirBac1.1 channels are K+ selective in physiological conditions, Na+ permeates in the absence of K+. Moreover, whereas K+ gradients preferentially support 86Rb+ fluxes, Na+ gradients preferentially support 22Na+ fluxes. This suggests differential ion selectivity in constrained versus dilated states, potentially providing a structural basis for this anomalous mole fraction effect.
Collapse
|
28
|
Schewe M, Sun H, Mert Ü, Mackenzie A, Pike ACW, Schulz F, Constantin C, Vowinkel KS, Conrad LJ, Kiper AK, Gonzalez W, Musinszki M, Tegtmeier M, Pryde DC, Belabed H, Nazare M, de Groot BL, Decher N, Fakler B, Carpenter EP, Tucker SJ, Baukrowitz T. A pharmacological master key mechanism that unlocks the selectivity filter gate in K + channels. Science 2019; 363:875-880. [PMID: 30792303 PMCID: PMC6982535 DOI: 10.1126/science.aav0569] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Potassium (K+) channels have been evolutionarily tuned for activation by diverse biological stimuli, and pharmacological activation is thought to target these specific gating mechanisms. Here we report a class of negatively charged activators (NCAs) that bypass the specific mechanisms but act as master keys to open K+ channels gated at their selectivity filter (SF), including many two-pore domain K+ (K2P) channels, voltage-gated hERG (human ether-à-go-go-related gene) channels and calcium (Ca2+)-activated big-conductance potassium (BK)-type channels. Functional analysis, x-ray crystallography, and molecular dynamics simulations revealed that the NCAs bind to similar sites below the SF, increase pore and SF K+ occupancy, and open the filter gate. These results uncover an unrecognized polypharmacology among K+ channel activators and highlight a filter gating machinery that is conserved across different families of K+ channels with implications for rational drug design.
Collapse
Affiliation(s)
- Marcus Schewe
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany.
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Structural Biology, 13125 Berlin, Germany
| | - Ümit Mert
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Alexandra Mackenzie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Friederike Schulz
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Cristina Constantin
- Institute of Physiology II, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
- Centers for Biological Signaling Studies CIBSS and BIOSS, 79104 Freiburg, Germany
| | - Kirsty S Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Linus J Conrad
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Wendy Gonzalez
- Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, 3465548 Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3465548 Talca, Chile
| | - Marianne Musinszki
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Marie Tegtmeier
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - David C Pryde
- Pfizer Worldwide Medicinal Chemistry, Neuroscience and Pain Research Unit, Portway Building, Granta Park, Great Abington, Cambridgeshire CB21 6GS, UK
| | - Hassane Belabed
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Medicinal Chemistry, 13125 Berlin, Germany
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Medicinal Chemistry, 13125 Berlin, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Bernd Fakler
- Institute of Physiology II, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
- Centers for Biological Signaling Studies CIBSS and BIOSS, 79104 Freiburg, Germany
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK
| | - Stephen J Tucker
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany.
| |
Collapse
|
29
|
Abstract
Ion channels are essential for cellular signaling. Voltage-gated ion channels (VGICs) are the largest and most extensively studied superfamily of ion channels. They possess modular structural features such as voltage-sensing domains that encircle and form mechanical connections with the pore-forming domains. Such features are intimately related to their function in sensing and responding to changes in the membrane potential. In the present work, we discuss the thermodynamic mechanisms of the VGIC superfamily, including the two-state gating mechanism, sliding-rocking mechanism of the voltage sensor, subunit cooperation, lipid-infiltration mechanism of inactivation, and the relationship with their structural features.
Collapse
|
30
|
Rashid MH, Kuyucak S. Computational Study of the Loss-of-Function Mutations in the Kv1.5 Channel Associated with Atrial Fibrillation. ACS OMEGA 2018; 3:8882-8890. [PMID: 31459020 PMCID: PMC6645308 DOI: 10.1021/acsomega.8b01094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 06/10/2023]
Abstract
Atrial fibrillation (AF) is a heart disease caused by defective ion channels in the atria, which affect the action potential (AP) duration and disturb normal heart rhythm. Rapid firing of APs in neighboring atrial cells is a common mechanism of AF, and therefore, therapeutic approaches have focused on extending the AP duration by inhibiting the K+ channels involved in repolarization. Of these, Kv1.5 that carries the I Kur current is a promising target because it is expressed mainly in atria and not in ventricles. In genetic studies of AF patients, both loss-of-function and gain-of-function mutations in Kv1.5 have been identified, indicating that either decreased or increased I Kur currents could trigger AF. Blocking of already downregulated Kv1.5 channels could cause AF to become chronic. Thus, a molecular-level understanding of how the loss-of-function mutations in Kv1.5 affect I Kur would be useful for developing new therapeutics. Here, we perform molecular dynamics simulations to study the effect of three loss-of-function mutations in the pore domain of Kv1.5 on ion permeation. Comparison of the pore structures and ion free energies in the wild-type and mutant Kv1.5 channels indicates that conformational changes in the selectivity filter could hinder ion permeation in the mutant channels.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Department of Chemistry,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
31
|
Rheinberger J, Gao X, Schmidpeter PA, Nimigean CM. Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures. eLife 2018; 7:39775. [PMID: 30028291 PMCID: PMC6093708 DOI: 10.7554/elife.39775] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclic nucleotide-modulated channels have important roles in visual signal transduction and pacemaking. Binding of cyclic nucleotides (cAMP/cGMP) elicits diverse functional responses in different channels within the family despite their high sequence and structure homology. The molecular mechanisms responsible for ligand discrimination and gating are unknown due to lack of correspondence between structural information and functional states. Using single particle cryo-electron microscopy and single-channel recording, we assigned functional states to high-resolution structures of SthK, a prokaryotic cyclic nucleotide-gated channel. The structures for apo, cAMP-bound, and cGMP-bound SthK in lipid nanodiscs, correspond to no, moderate, and low single-channel activity, respectively, consistent with the observation that all structures are in resting, closed states. The similarity between apo and ligand-bound structures indicates that ligand-binding domains are strongly coupled to pore and SthK gates in an allosteric, concerted fashion. The different orientations of cAMP and cGMP in the ‘resting’ and ‘activated’ structures suggest a mechanism for ligand discrimination. Ion channels are essential for transmitting signals in the nervous system and brain. One large group of ion channels includes members that are activated by cyclic nucleotides, small molecules used to transmit signals within cells. These cyclic nucleotide-gated channels play an important role in regulating our ability to see and smell. The activity of these ion channels has been studied for years, but scientists have only recently been able to look into their structure. Since structural biology methods require purified, well-behaved proteins, the members of this ion channel family selected for structural studies do not necessarily match those whose activity has been well established. There is a need for a good model that would allow both the structure and activity of a cyclic nucleotide-gated ion channel to be characterized. The cyclic nucleotide-gated ion channel, SthK, from bacteria called Spirochaeta thermophila, was identified as such model because both its activity and its structure are accessible. Rheinberger et al. have used cryo electron microscopy to solve several high-resolution structures of SthK channels. In two of the structures, SthK was bound to either one of two types of activating cyclic nucleotides – cAMP or cGMP – and in another structure, no cyclic nucleotides were bound. Separately recording the activity of individual channels allowed the activity states likely to be represented by these structures to be identified. Combining the results of the experiments revealed no activity from channels in an unbound state, low levels of activity for channels bound to cGMP, and moderate activity for channels bound to cAMP. Rheinberger et al. show that the channel, under the conditions experienced in cryo electron microscopy, is closed in all of the states studied. Unexpectedly, the binding of cyclic nucleotides produced no structural change even in the cyclic nucleotide-binding pocket of the channel, a region that was previously observed to undergo such changes when this region alone was crystallized. Rheinberger et al. deduce from this that the four subunits that make up the channel likely undergo the conformational change towards an open state all at once, rather than one by one. The structures and the basic functional characterization of SthK channels provide a strong starting point for future research into determining the entire opening and closing cycle for a cyclic nucleotide-gated channel. Human equivalents of the channel are likely to work in similar ways. The results presented by Rheinberger et al. could therefore be built upon to help address diseases that result from deficiencies in cyclic nucleotide-gated channels, such as loss of vision due to retinal degradation (retinitis pigmentosa or progressive cone dystrophy) and achromatopsia.
Collapse
Affiliation(s)
- Jan Rheinberger
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States
| | - Xiaolong Gao
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States
| | | | - Crina M Nimigean
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States.,Department of Biochemistry, Weill Cornell Medical College, New York, United States
| |
Collapse
|
32
|
Tsukamoto H, Higashi M, Motoki H, Watanabe H, Ganser C, Nakajo K, Kubo Y, Uchihashi T, Furutani Y. Structural properties determining low K + affinity of the selectivity filter in the TWIK1 K + channel. J Biol Chem 2018; 293:6969-6984. [PMID: 29545310 DOI: 10.1074/jbc.ra118.001817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/14/2018] [Indexed: 11/06/2022] Open
Abstract
Canonical K+ channels are tetrameric and highly K+-selective, whereas two-pore-domain K+ (K2P) channels form dimers, but with a similar pore architecture. A two-pore-domain potassium channel TWIK1 (KCNK1 or K2P1) allows permeation of Na+ and other monovalent ions, resulting mainly from the presence of Thr-118 in the P1 domain. However, the mechanistic basis for this reduced selectivity is unclear. Using ion-exchange-induced difference IR spectroscopy, we analyzed WT TWIK1 and T118I (highly K+-selective) and L228F (substitution in the P2 domain) TWIK1 variants and found that in the presence of K+ ions, WT and both variants exhibit an amide-I band at 1680 cm-1 This band corresponds to interactions of the backbone carbonyls in the selectivity filter with K+, a feature very similar to that of the canonical K+ channel KcsA. Computational analysis indicated that the relatively high frequency for the amide-I band is well explained by impairment of hydrogen bond formation with water molecules. Moreover, concentration-dependent spectral changes indicated that the K+ affinity of the WT selectivity filter was much lower than those of the variants. Furthermore, only the variants displayed a higher frequency shift of the 1680-cm-1 band upon changes from K+ to Rb+ or Cs+ conditions. High-speed atomic force microscopy disclosed that TWIK1's surface morphology largely does not change in K+ and Na+ solutions. Our results reveal the local conformational changes of the TWIK1 selectivity filter and suggest that the amide-I bands may be useful "molecular fingerprints" for assessing the properties of other K+ channels.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- From the Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, and.,Departments of Structural Molecular Science and
| | - Masahiro Higashi
- the Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Nakagami, Okinawa 903-0213
| | - Hideyoshi Motoki
- the Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Nakagami, Okinawa 903-0213
| | - Hiroki Watanabe
- the Department of Physics and Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, and
| | - Christian Ganser
- the Department of Physics and Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, and
| | - Koichi Nakajo
- the Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan.,Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585
| | - Yoshihiro Kubo
- the Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan.,Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585
| | - Takayuki Uchihashi
- the Department of Physics and Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, and
| | - Yuji Furutani
- From the Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, and .,Departments of Structural Molecular Science and
| |
Collapse
|
33
|
Kratochvil HT, Maj M, Matulef K, Annen AW, Ostmeyer J, Perozo E, Roux B, Valiyaveetil FI, Zanni MT. Probing the Effects of Gating on the Ion Occupancy of the K + Channel Selectivity Filter Using Two-Dimensional Infrared Spectroscopy. J Am Chem Soc 2017; 139:8837-8845. [PMID: 28472884 DOI: 10.1021/jacs.7b01594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interplay between the intracellular gate and the selectivity filter underlies the structural basis for gating in potassium ion channels. Using a combination of protein semisynthesis, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we probe the ion occupancy at the S1 binding site in the constricted state of the selectivity filter of the KcsA channel when the intracellular gate is open and closed. The 2D IR spectra resolve two features, whose relative intensities depend on the state of the intracellular gate. By matching the experiment to calculated 2D IR spectra of structures predicted by MD simulations, we identify the two features as corresponding to states with S1 occupied or unoccupied by K+. We learn that S1 is >70% occupied when the intracellular gate is closed and <15% occupied when the gate is open. Comparison of MD trajectories show that opening of the intracellular gate causes a structural change in the selectivity filter, which leads to a change in the ion occupancy. This work reveals the complexity of the conformational landscape of the K+ channel selectivity filter and its dependence on the state of the intracellular gate.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Alvin W Annen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Jared Ostmeyer
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Ion channels and ion selectivity. Essays Biochem 2017; 61:201-209. [PMID: 28487397 DOI: 10.1042/ebc20160074] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
Specific macromolecular transport systems, ion channels and pumps, provide the pathways to facilitate and control the passage of ions across the lipid membrane. Ion channels provide energetically favourable passage for ions to diffuse rapidly and passively according to their electrochemical potential. Selective ion channels are essential for the excitability of biological membranes: the action potential is a transient phenomenon that reflects the rapid opening and closing of voltage-dependent Na+-selective and K+-selective channels. One of the most critical functional aspects of K+ channels is their ability to remain highly selective for K+ over Na+ while allowing high-throughput ion conduction at a rate close to the diffusion limit. Permeation through the K+ channel selectivity filter is believed to proceed as a 'knockon' mechanism, in which 2-3 K+ ions interspersed by water molecules move in a single file. Permeation through the comparatively wider and less selective Na+ channels also proceeds via a loosely coupled knockon mechanism, although the ions do not need to be fully dehydrated. While simple structural concepts are often invoked to rationalize the mechanism of ion selectivity, a deeper analysis shows that subtle effects play an important role in these flexible dynamical structures.
Collapse
|
35
|
Wawrzkiewicz-Jałowiecka A, Borys P, Grzywna ZJ. Impact of geometry changes in the channel pore by the gating movements on the channel's conductance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:446-458. [PMID: 28064020 DOI: 10.1016/j.bbamem.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 01/02/2017] [Indexed: 11/28/2022]
Abstract
Kv 1.2 are voltage-dependent potassium channels of great biological importance. Despite the existence of many reports considering structure - function relations of the Kv 1.2 channel's quantitative domains, some details of the voltage gating remain ambiguous, or even unknown. One of the examples is the range of the S4-S6 domains motions involved in channel activation and gating. Another important question is to what extent the channel geometry influences the observable channel conductance at different voltages, and what mechanism stands behind. Does the narrowing of the pore reduce the conductance by ohmic resistance growth? The answer is surprisingly negative. But it can be explained in an alternative way by considering the fluctuations. To address these problems, we formulate geometric models that mimic the generic features of voltage sensor movement and trigger the movement of the other domains involved in gating. We carry out a complete simulation of S4-S6 domains translations and tilts. The obtained pore profiles allow to estimate the (ohmic) conductance dependency on the voltage. From a family of analysed models, we choose the one most concurring with the experimental data. The results allow to suggest the most probable scenario of S4-S6 domains movement during channel activation by membrane depolarization.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Section of Physics and Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 9, Poland.
| | - Przemysław Borys
- Department of Physical Chemistry and Technology of Polymers, Section of Physics and Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 9, Poland
| | - Zbigniew J Grzywna
- Department of Physical Chemistry and Technology of Polymers, Section of Physics and Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 9, Poland
| |
Collapse
|
36
|
Affiliation(s)
- Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Hoa Q. Do
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Collin G. Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Emily P. Hardy
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
37
|
Medovoy D, Perozo E, Roux B. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1722-32. [PMID: 26896693 PMCID: PMC4939264 DOI: 10.1016/j.bbamem.2016.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/20/2016] [Accepted: 02/13/2016] [Indexed: 11/28/2022]
Abstract
Potassium (K(+)) channels are transmembrane proteins that passively and selectively allow K(+) ions to flow through them, after opening in response to an external stimulus. One of the most critical functional aspects of their function is their ability to remain very selective for K(+) over Na(+) while allowing high-throughput ion conduction at a rate close to the diffusion limit. Classically, it is assumed that the free energy difference between K(+) and Na(+) in the pore relative to the bulk solution is the critical quantity at the origin of selectivity. This is the thermodynamic view of ion selectivity. An alternative view assumes that kinetic factors play the dominant role. Recent results from a number of studies have also highlighted the great importance of the multi-ion single file on the selectivity of K(+) channels. The data indicate that having multiple K(+) ions bound simultaneously is required for selective K(+) conduction, and that a reduction in the number of bound K(+) ions destroys the multi-ion selectivity mechanism utilized by K(+) channels. In the present study, multi-ion potential of mean force molecular dynamics computations are carried out to clarify the mechanism of ion selectivity in the KcsA channel. The computations show that the multi-ion character of the permeation process is a critical element for establishing the selective ion conductivity through K(+)-channels. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- David Medovoy
- Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Gordon Center for Integrative Science, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Eduardo Perozo
- Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Gordon Center for Integrative Science, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Benoît Roux
- Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Gordon Center for Integrative Science, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
38
|
Padhi S, Priyakumar UD. Cooperation of Hydrophobic Gating, Knock-on Effect, and Ion Binding Determines Ion Selectivity in the p7 Channel. J Phys Chem B 2016; 120:4351-6. [DOI: 10.1021/acs.jpcb.6b00684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Siladitya Padhi
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - U. Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| |
Collapse
|
39
|
Kim DM, Nimigean CM. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating. Cold Spring Harb Perspect Biol 2016; 8:a029231. [PMID: 27141052 PMCID: PMC4852806 DOI: 10.1101/cshperspect.a029231] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K(+) channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K(+) channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data.
Collapse
Affiliation(s)
- Dorothy M Kim
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York 10065
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
40
|
Individual Ion Binding Sites in the K(+) Channel Play Distinct Roles in C-type Inactivation and in Recovery from Inactivation. Structure 2016; 24:750-761. [PMID: 27150040 DOI: 10.1016/j.str.2016.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 01/14/2023]
Abstract
The selectivity filter of K(+) channels contains four ion binding sites (S1-S4) and serves dual functions of discriminating K(+) from Na(+) and acting as a gate during C-type inactivation. C-type inactivation is modulated by ion binding to the selectivity filter sites, but the underlying mechanism is not known. Here we evaluate how the ion binding sites in the selectivity filter of the KcsA channel participate in C-type inactivation and in recovery from inactivation. We use unnatural amide-to-ester substitutions in the protein backbone to manipulate the S1-S3 sites and a side-chain substitution to perturb the S4 site. We develop an improved semisynthetic approach for generating these amide-to-ester substitutions in the selectivity filter. Our combined electrophysiological and X-ray crystallographic analysis of the selectivity filter mutants show that the ion binding sites play specific roles during inactivation and provide insights into the structural changes at the selectivity filter during C-type inactivation.
Collapse
|
41
|
Robertson DN, Sleno R, Nagi K, Pétrin D, Hébert TE, Pineyro G. Design and construction of conformational biosensors to monitor ion channel activation: A prototype FlAsH/BRET-approach to Kir3 channels. Methods 2016. [DOI: 10.1016/j.ymeth.2015.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
42
|
Morris RG, Turner MS. Mobility Measurements Probe Conformational Changes in Membrane Proteins due to Tension. PHYSICAL REVIEW LETTERS 2015; 115:198101. [PMID: 26588417 DOI: 10.1103/physrevlett.115.198101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 05/27/2023]
Abstract
The function of membrane-embedded proteins such as ion channels depends crucially on their conformation. We demonstrate how conformational changes in asymmetric membrane proteins may be inferred from measurements of their diffusion. Such proteins cause local deformations in the membrane, which induce an extra hydrodynamic drag on the protein. Using membrane tension to control the magnitude of the deformations, and hence the drag, measurements of diffusivity can be used to infer-via an elastic model of the protein-how conformation is changed by tension. Motivated by recent experimental results [Quemeneur et al., Proc. Natl. Acad. Sci. U.S.A. 111, 5083 (2014)], we focus on KvAP, a voltage-gated potassium channel from Aeropyrum pernix. The conformation of KvAP is found to change considerably due to tension, with its "walls," where the protein meets the membrane, undergoing significant angular strains. The torsional stiffness is determined to be 26.8k(B)T per radian at room temperature. This has implications for both the structure and the function of such proteins in the environment of a tension-bearing membrane.
Collapse
Affiliation(s)
- Richard G Morris
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Matthew S Turner
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
43
|
Carraher C, Dalziel J, Jordan MD, Christie DL, Newcomb RD, Kralicek AV. Towards an understanding of the structural basis for insect olfaction by odorant receptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:31-41. [PMID: 26416146 DOI: 10.1016/j.ibmb.2015.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Insects have co-opted a unique family of seven transmembrane proteins for odour sensing. Odorant receptors are believed to have evolved from gustatory receptors somewhere at the base of the Hexapoda and have expanded substantially to become the dominant class of odour recognition elements within the Insecta. These odorant receptors comprise an obligate co-receptor, Orco, and one of a family of highly divergent odorant "tuning" receptors. The two subunits are thought to come together at some as-yet unknown stoichiometry to form a functional complex that is capable of both ionotropic and metabotropic signalling. While there are still no 3D structures for these proteins, site-directed mutagenesis, resonance energy transfer, and structural modelling efforts, all mainly on Drosophila odorant receptors, are beginning to inform hypotheses of their structures and how such complexes function in odour detection. Some of the loops, especially the second extracellular loop that has been suggested to form a lid over the binding pocket, and the extracellular regions of some transmembrane helices, especially the third and to a less extent the sixth and seventh, have been implicated in ligand recognition in tuning receptors. The possible interaction between Orco and tuning receptor subunits through the final intracellular loop and the adjacent transmembrane helices is thought to be important for transducing ligand binding into receptor activation. Potential phosphorylation sites and a calmodulin binding site in the second intracellular loop of Orco are also thought to be involved in regulating channel gating. A number of new methods have recently been developed to express and purify insect odorant receptor subunits in recombinant expression systems. These approaches are enabling high throughput screening of receptors for agonists and antagonists in cell-based formats, as well as producing protein for the application of biophysical methods to resolve the 3D structure of the subunits and their complexes.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Julie Dalziel
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Private Bag 11008, Palmerston North 4442, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - David L Christie
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
44
|
Lockless SW. Determinants of cation transport selectivity: Equilibrium binding and transport kinetics. J Gen Physiol 2015; 146:3-13. [PMID: 26078056 PMCID: PMC4485025 DOI: 10.1085/jgp.201511371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/11/2015] [Indexed: 01/13/2023] Open
Abstract
The crystal structures of channels and transporters reveal the chemical nature of ion-binding sites and, thereby, constrain mechanistic models for their transport processes. However, these structures, in and of themselves, do not reveal equilibrium selectivity or transport preferences, which can be discerned only from various functional assays. In this Review, I explore the relationship between cation transport protein structures, equilibrium binding measurements, and ion transport selectivity. The primary focus is on K(+)-selective channels and nonselective cation channels because they have been extensively studied both functionally and structurally, but the principles discussed are relevant to other transport proteins and molecules.
Collapse
Affiliation(s)
- Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
45
|
Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci 2015; 72:3677-93. [PMID: 26070303 PMCID: PMC4565861 DOI: 10.1007/s00018-015-1948-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/09/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022]
Abstract
Potassium channels ubiquitously exist in nearly all kingdoms of life and perform diverse but important functions. Since the first atomic structure of a prokaryotic potassium channel (KcsA, a channel from Streptomyces lividans) was determined, tremendous progress has been made in understanding the mechanism of potassium channels and channels conducting other ions. In this review, we discuss the structure of various kinds of potassium channels, including the potassium channel with the pore-forming domain only (KcsA), voltage-gated, inwardly rectifying, tandem pore domain, and ligand-gated ones. The general properties shared by all potassium channels are introduced first, followed by specific features in each class. Our purpose is to help readers to grasp the basic concepts, to be familiar with the property of the different domains, and to understand the structure and function of the potassium channels better.
Collapse
Affiliation(s)
- Qie Kuang
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14183, Huddinge, Sweden.
- School of Technology and Health, KTH Royal Institute of Technology, Novum, 14183, Huddinge, Sweden.
| | - Pasi Purhonen
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14183, Huddinge, Sweden
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14183, Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, Novum, 14183, Huddinge, Sweden
| |
Collapse
|
46
|
Aryal P, Sansom MSP, Tucker SJ. Hydrophobic gating in ion channels. J Mol Biol 2015; 427:121-30. [PMID: 25106689 PMCID: PMC4817205 DOI: 10.1016/j.jmb.2014.07.030] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 02/01/2023]
Abstract
Biological ion channels are nanoscale transmembrane pores. When water and ions are enclosed within the narrow confines of a sub-nanometer hydrophobic pore, they exhibit behavior not evident from macroscopic descriptions. At this nanoscopic level, the unfavorable interaction between the lining of a hydrophobic pore and water may lead to stochastic liquid-vapor transitions. These transient vapor states are "dewetted", i.e. effectively devoid of water molecules within all or part of the pore, thus leading to an energetic barrier to ion conduction. This process, termed "hydrophobic gating", was first observed in molecular dynamics simulations of model nanopores, where the principles underlying hydrophobic gating (i.e., changes in diameter, polarity, or transmembrane voltage) have now been extensively validated. Computational, structural, and functional studies now indicate that biological ion channels may also exploit hydrophobic gating to regulate ion flow within their pores. Here we review the evidence for this process and propose that this unusual behavior of water represents an increasingly important element in understanding the relationship between ion channel structure and function.
Collapse
Affiliation(s)
- Prafulla Aryal
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 2JD, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 2JD, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 2JD, UK.
| |
Collapse
|
47
|
Velarde-Miranda C, Gomez-Sanchez EP, Gomez-Sanchez CE. Regulation of aldosterone biosynthesis by the Kir3.4 (KCNJ5) potassium channel. Clin Exp Pharmacol Physiol 2014; 40:895-901. [PMID: 23829355 DOI: 10.1111/1440-1681.12151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
The G-protein-activated inwardly rectifying potassium channel Kir3.4 is expressed in the zona glomerulosa cell membrane and transports potassium out of the cell. Angiotensin II stimulation of aldosterone secretion is mediated, in part, by suppression of the transcription of KCNJ5, the gene coding for Kir3.4, and blocking channel activity. This results in membrane depolarization, mobilization of intracellular calcium, activation of the calcium-calmodulin pathway and increasing gene transcription of steroidogenic enzymes required for aldosterone secretion. In 40-60% of aldosterone-producing adenomas there is a somatic mutation in the region of the KCNJ5 gene that codes for the selectivity filter that decreases potassium selectivity, allowing sodium to leak into the cells, thus depolarizing the membrane and initiating events that result in increased aldosterone synthesis. The mechanism by which mutated KCNJ5 induces cell proliferation and adenoma formation remains unclear.
Collapse
Affiliation(s)
- Carolina Velarde-Miranda
- Research and Endocrine Service, GV (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, MS, USA; Division of Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | |
Collapse
|
48
|
Altered and dynamic ion selectivity of K+ channels in cell development and excitability. Trends Pharmacol Sci 2014; 35:461-9. [PMID: 25023607 DOI: 10.1016/j.tips.2014.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022]
Abstract
K(+) channels play a key role in regulating cellular excitability. It was thought that the strong K(+) selectivity of these channels was static, only altered by mutations in their selectivity filter, which can cause severe genetic disorders. Recent studies demonstrate that selectivity of K(+) channels can also exhibit dynamic changes. Under acidic conditions or in low extracellular K(+) concentrations, the two-pore domain K(+) channel (K2P) TWIK1 becomes permeable to Na(+), shifting from an inhibitory role to an excitatory role. This phenomenon is responsible for the paradoxical depolarization of human cardiomyocytes in pathological hypokalemia, and therefore may contribute to cardiac arrhythmias. In other cell types, TWIK1 produces depolarizing leak currents under physiological conditions. Dynamic ion selectivity also occurs in other K2P channels. Here we review evidence that dynamic selectivity of K2P channels constitutes a new regulatory mechanism of cellular excitability, whose significance is only now becoming appreciated.
Collapse
|
49
|
Kalsi S, Powl AM, Wallace BA, Morgan H, de Planque MRR. Shaped apertures in photoresist films enhance the lifetime and mechanical stability of suspended lipid bilayers. Biophys J 2014; 106:1650-9. [PMID: 24739164 PMCID: PMC4008792 DOI: 10.1016/j.bpj.2014.02.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/12/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022] Open
Abstract
Planar lipid bilayers suspended in apertures provide a controlled environment for ion channel studies. However, short lifetimes and poor mechanical stability of suspended bilayers limit the experimental throughput of bilayer electrophysiology experiments. Although bilayers are more stable in smaller apertures, ion channel incorporation through vesicle fusion with the suspended bilayer becomes increasingly difficult. In an alternative bilayer stabilization approach, we have developed shaped apertures in SU8 photoresist that have tapered sidewalls and a minimum diameter between 60 and 100 μm. Bilayers formed at the thin tip of these shaped apertures, either with the painting or the folding method, display drastically increased lifetimes, typically >20 h, and mechanical stability, being able to withstand extensive perturbation of the buffer solution. Single-channel electrical recordings of the peptide alamethicin and of the proteoliposome-delivered potassium channel KcsA demonstrate channel conductance with low noise, made possible by the small capacitance of the 50 μm thick SU8 septum, which is only thinned around the aperture, and unimpeded proteoliposome fusion, enabled by the large aperture diameter. We anticipate that these shaped apertures with micrometer edge thickness can substantially enhance the throughput of channel characterization by bilayer lipid membrane electrophysiology, especially in combination with automated parallel bilayer platforms.
Collapse
Affiliation(s)
- Sumit Kalsi
- Electronics and Computer Science, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Andrew M Powl
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Hywel Morgan
- Electronics and Computer Science, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Maurits R R de Planque
- Electronics and Computer Science, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
50
|
Murthy M, Xu S, Massimo G, Wolley M, Gordon RD, Stowasser M, O’Shaughnessy KM. Role for Germline Mutations and a Rare Coding Single Nucleotide Polymorphism Within the KCNJ5 Potassium Channel in a Large Cohort of Sporadic Cases of Primary Aldosteronism. Hypertension 2014; 63:783-9. [DOI: 10.1161/hypertensionaha.113.02234] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Meena Murthy
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Shengxin Xu
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Gianmichele Massimo
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Martin Wolley
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Richard D. Gordon
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Michael Stowasser
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| | - Kevin M. O’Shaughnessy
- From the Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom (M.M., G.M., K.M.O.); and Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Brisbane, Australia (S.X., M.W., R.D.G., M.S.)
| |
Collapse
|