1
|
Li H, Song C, Zhang Y, Liu G, Mi H, Li Y, Chen Z, Ma X, Zhang P, Cheng L, Peng P, Zhu H, Chen Z, Dong M, Chen S, Meng H, Xiao Q, Li H, Wu Q, Wang B, Zhang S, Shu K, Wan F, Guo D, Zhou W, Zhou L, Mao F, Rich JN, Yu X. Transgelin Promotes Glioblastoma Stem Cell Hypoxic Responses and Maintenance Through p53 Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305620. [PMID: 38087889 PMCID: PMC10870072 DOI: 10.1002/advs.202305620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 02/17/2024]
Abstract
Glioblastoma (GBM) is a lethal cancer characterized by hypervascularity and necrosis associated with hypoxia. Here, it is found that hypoxia preferentially induces the actin-binding protein, Transgelin (TAGLN), in GBM stem cells (GSCs). Mechanistically, TAGLN regulates HIF1α transcription and stabilizes HDAC2 to deacetylate p53 and maintain GSC self-renewal. To translate these findings into preclinical therapeutic paradigm, it is found that sodium valproate (VPA) is a specific inhibitor of TAGLN/HDAC2 function, with augmented efficacy when combined with natural borneol (NB) in vivo. Thus, TAGLN promotes cancer stem cell survival in hypoxia and informs a novel therapeutic paradigm.
Collapse
Affiliation(s)
- Huan Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chao Song
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yang Zhang
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guohao Liu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hailong Mi
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yachao Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhiye Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Ma
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Po Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lidong Cheng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Peng Peng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hongtao Zhu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zirong Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Minhai Dong
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Sui Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Meng
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - QunGen Xiao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Honglian Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Qiulian Wu
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
| | - Baofeng Wang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Suojun Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kai Shu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Wan
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Dongsheng Guo
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenchao Zhou
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - Lin Zhou
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Mao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jeremy N. Rich
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Xingjiang Yu
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
2
|
Smalley J, Cowley SM, Hodgkinson JT. MDM2 Antagonist Idasanutlin Reduces HDAC1/2 Abundance and Corepressor Partners but Not HDAC3. ACS Med Chem Lett 2024; 15:93-98. [PMID: 38229760 PMCID: PMC10788946 DOI: 10.1021/acsmedchemlett.3c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024] Open
Abstract
Histone deacetylases 1-3 (HDAC1, HDAC2, and HDAC3) and their associated corepressor complexes play important roles in regulating chromatin structure and gene transcription. HDAC enzymes are also validated drug targets for oncology and offer promise toward new drugs for neurodegenerative diseases and cardiovascular diseases. We synthesized four novel heterobifunctional molecules designed to recruit the mouse double minute 2 homologue (MDM2) E3 ligase to degrade HDAC1-3 utilizing the MDM2 inhibitor idasanutlin, known as proteolysis targeting chimeras (PROTACs). Idasanutlin inhibits the MDM2-P53 protein-protein interaction and is in clinical trials. Although two MDM2-recruiting heterobifunctional molecules reduced HDAC1 and HDAC2 abundance with complete selectivity over HDAC3 and reduced HDAC1/2 corepressor components LSD1 and SIN3A, we were surprised to observe that idasanutlin alone was also capable of this effect. This finding suggests an association between the MDM2 E3 ligase and HDAC1/2 corepressor complexes, which could be important for designing future dual/bifunctional HDAC- and MDM2-targeting therapeutics, such as PROTACs.
Collapse
Affiliation(s)
- Joshua
P. Smalley
- Leicester
Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shaun M. Cowley
- Department
of Molecular and Cell Biology, University
of Leicester, Leicester LE1 7RH, United Kingdom
| | - James T. Hodgkinson
- Leicester
Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
3
|
Itoh Y, Zhan P, Tojo T, Jaikhan P, Ota Y, Suzuki M, Li Y, Hui Z, Moriyama Y, Takada Y, Yamashita Y, Oba M, Uchida S, Masuda M, Ito S, Sowa Y, Sakai T, Suzuki T. Discovery of Selective Histone Deacetylase 1 and 2 Inhibitors: Screening of a Focused Library Constructed by Click Chemistry, Kinetic Binding Analysis, and Biological Evaluation. J Med Chem 2023; 66:15171-15188. [PMID: 37847303 DOI: 10.1021/acs.jmedchem.3c01095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone deacetylase 1 and 2 (HDAC1/2) inhibitors are potentially useful as tools for probing the biological functions of the isoforms and as therapeutic agents for cancer and neurodegenerative disorders. To discover potent and selective inhibitors, we screened a focused library synthesized by using click chemistry and obtained KPZ560 as an HDAC1/2-selective inhibitor. Kinetic binding analysis revealed that KPZ560 inhibits HDAC2 through a two-step slow-binding mechanism. In cellular assays, KPZ560 induced a dose- and time-dependent increase of histone acetylation and showed potent breast cancer cell growth-inhibitory activity. In addition, gene expression analyses suggested that the two-step slow-binding inhibition by KPZ560 regulated the expression of genes associated with cell proliferation and DNA damage. KPZ560 also induced neurite outgrowth of Neuro-2a cells and an increase in the spine density of granule neuron dendrites of mice. The unique two-step slow-binding character of o-aminoanilides such as KPZ560 makes them interesting candidates as therapeutic agents.
Collapse
Affiliation(s)
- Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Peng Zhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Toshifumi Tojo
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Pattaporn Jaikhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yosuke Ota
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Miki Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Ying Li
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Zi Hui
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yukiko Moriyama
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuri Takada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | - Makoto Oba
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitsuharu Masuda
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
4
|
Kiweler N, Schwarz H, Nguyen A, Matschos S, Mullins C, Piée-Staffa A, Brachetti C, Roos WP, Schneider G, Linnebacher M, Brenner W, Krämer OH. The epigenetic modifier HDAC2 and the checkpoint kinase ATM determine the responses of microsatellite instable colorectal cancer cells to 5-fluorouracil. Cell Biol Toxicol 2023; 39:2401-2419. [PMID: 35608750 PMCID: PMC10547618 DOI: 10.1007/s10565-022-09731-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
The epigenetic modifier histone deacetylase-2 (HDAC2) is frequently dysregulated in colon cancer cells. Microsatellite instability (MSI), an unfaithful replication of DNA at nucleotide repeats, occurs in about 15% of human colon tumors. MSI promotes a genetic frameshift and consequently a loss of HDAC2 in up to 43% of these tumors. We show that long-term and short-term cultures of colorectal cancers with MSI contain subpopulations of cells lacking HDAC2. These can be isolated as single cell-derived, proliferating populations. Xenografted patient-derived colon cancer tissues with MSI also show variable patterns of HDAC2 expression in mice. HDAC2-positive and HDAC2-negative RKO cells respond similarly to pharmacological inhibitors of the class I HDACs HDAC1/HDAC2/HDAC3. In contrast to this similarity, HDAC2-negative and HDAC2-positive RKO cells undergo differential cell cycle arrest and apoptosis induction in response to the frequently used chemotherapeutic 5-fluorouracil, which becomes incorporated into and damages RNA and DNA. 5-fluorouracil causes an enrichment of HDAC2-negative RKO cells in vitro and in a subset of primary colorectal tumors in mice. 5-fluorouracil induces the phosphorylation of KAP1, a target of the checkpoint kinase ataxia-telangiectasia mutated (ATM), stronger in HDAC2-negative cells than in their HDAC2-positive counterparts. Pharmacological inhibition of ATM sensitizes RKO cells to cytotoxic effects of 5-fluorouracil. These findings demonstrate that HDAC2 and ATM modulate the responses of colorectal cancer cells towards 5-FU.
Collapse
Affiliation(s)
- Nicole Kiweler
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
- Present Address: Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Helena Schwarz
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alexandra Nguyen
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephanie Matschos
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Christina Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Christina Brachetti
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Wynand P. Roos
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Günter Schneider
- Klinikum Rechts Der Isar, Medical Clinic and Polyclinic II, Technical University Munich, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
5
|
Drzewiecka M, Gajos-Michniewicz A, Hoser G, Jaśniak D, Barszczewska-Pietraszek G, Sitarek P, Czarny P, Piekarski J, Radek M, Czyż M, Skorski T, Śliwiński T. Histone Deacetylases (HDAC) Inhibitor-Valproic Acid Sensitizes Human Melanoma Cells to Dacarbazine and PARP Inhibitor. Genes (Basel) 2023; 14:1295. [PMID: 37372475 DOI: 10.3390/genes14061295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
The inhibition of histone deacetylases (HDACs) holds promise as a potential anti-cancer therapy as histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, the use of a histone deacetylase inhibitor (HDACi) such as the class I HDAC inhibitor-valproic acid (VPA) has been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that the use of VPA in combination with talazoparib (BMN-673-PARP1 inhibitor-PARPi) and/or Dacarbazine (DTIC-alkylating agent) resulted in an increased rate of DNA double strand breaks (DSBs) and reduced survival (while not affecting primary melanocytes) and the proliferation of melanoma cells. Furthermore, the pharmacological inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-673. In addition, the inhibition of HDACs causes the sensitization of melanoma cells to DTIV and BMN-673 in melanoma xenografts in vivo. At the mRNA and protein level, the histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study aims to demonstrate that combining an HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is commonly recognized as being among the most aggressive malignant tumors. The findings presented here point to a scenario in which HDACs, via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.
Collapse
Affiliation(s)
- Małgorzata Drzewiecka
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland
| | - Grażyna Hoser
- Department of Flow Cytometry, Medical Center for Postgraduate Education, 01-813 Warsaw, Poland
| | - Dominika Jaśniak
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | | | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, 90-549 Lodz, Poland
| | - Małgorzata Czyż
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
6
|
Pourjafari F, Ezzatabadipour M, Nematollahi-Mahani SN, Afgar A, Haghpanah T. In utero and postnatal exposure to Foeniculum vulgare and Linum usitatissimum seed extracts: modifications of key enzymes involved in epigenetic regulation and estrogen receptors expression in the offspring's ovaries of NMRI mice. BMC Complement Med Ther 2023; 23:45. [PMID: 36788561 PMCID: PMC9926564 DOI: 10.1186/s12906-023-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Early-life exposure to exogenous estrogens such as phytoestrogens (plant-derived estrogens) could affect later health through epigenetic modifications. Foeniculum vulgare (fennel) and Linum usitatissimum (flax) are two common medicinal plants with high phytoestrogen content. Considering the developmental epigenetic programming effect of phytoestrogens, the main goal of the present study was to evaluate the perinatal exposure with life-long exposure to hydroalcoholic extracts of both plants on offspring's ovarian epigenetic changes and estrogen receptors (ESRs) expression level as signaling cascades triggers of phytoestrogens. METHODS Pregnant mice were randomly divided into control (CTL) that received no treatment and extract-treated groups that received 500 mg/kg/day of fennel (FV) and flaxseed (FX) alone or in combination (FV + FX) during gestation and lactation. At weaning, female offspring exposed to extracts prenatally remained on the maternal-doses diets until puberty. Then, the ovaries were collected for morphometric studies and quantitative real-time PCR analysis. RESULTS A reduction in mRNA transcripts of the epigenetic modifying enzymes DNMTs and HDACs as well as estrogen receptors was observed in the FV and FX groups compared to the CTL group. Interestingly, an increase in ESRα/ESRβ ratio along with HDAC2 overexpression was observed in the FV + FX group. CONCLUSION Our findings clearly show a positive relationship between pre and postnatal exposure to fennel and flaxseed extracts, ovarian epigenetic changes, and estrogen receptors expression, which may affect the estrogen signaling pathway. However, due to the high phytoestrogen contents of these extracts, the use of these plants in humans requires more detailed investigations.
Collapse
Affiliation(s)
- Fahimeh Pourjafari
- grid.412105.30000 0001 2092 9755Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- grid.412105.30000 0001 2092 9755Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- grid.412105.30000 0001 2092 9755Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- grid.412105.30000 0001 2092 9755Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
8
|
Ma ZQ, Feng YT, Guo K, Liu D, Shao CJ, Pan MH, Zhang YM, Zhang YX, Lu D, Huang D, Zhang F, Wang JL, Yang B, Han J, Yan XL, Hu Y. Melatonin inhibits ESCC tumor growth by mitigating the HDAC7/β-catenin/c-Myc positive feedback loop and suppressing the USP10-maintained HDAC7 protein stability. Mil Med Res 2022; 9:54. [PMID: 36163081 PMCID: PMC9513894 DOI: 10.1186/s40779-022-00412-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Melatonin, a natural hormone secreted by the pineal gland, has been reported to exhibit antitumor properties through diverse mechanisms of action. However, the oncostatic function of melatonin on esophageal squamous cell carcinoma (ESCC) remains elusive. This study was conducted to investigate the potential effect and underlying molecular mechanism of melatonin as single anticancer agent against ESCC cells. METHODS ESCC cell lines treated with or without melatonin were used in this study. In vitro colony formation and EdU incorporation assays, and nude mice tumor xenograft model were used to confirm the proliferative capacities of ESCC cells. RNA-seq, qPCR, Western blotting, recombinant lentivirus-mediated target gene overexpression or knockdown, plasmids transfection and co-IP were applied to investigate the underlying molecular mechanism by which melatonin inhibited ESCC cell growth. IHC staining on ESCC tissue microarray and further survival analyses were performed to explore the relationship between target genes' expression and prognosis of ESCC. RESULTS Melatonin treatment dose-dependently inhibited the proliferative ability and the expression of histone deacetylase 7 (HDAC7), c-Myc and ubiquitin-specific peptidase 10 (USP10) in ESCC cells (P < 0.05). The expressions of HDAC7, c-Myc and USP10 in tumors were detected significantly higher than the paired normal tissues from 148 ESCC patients (P < 0.001). Then, the Kaplan-Meier survival analyses suggested that ESCC patients with high HDAC7, c-Myc or USP10 levels predicted worse overall survival (Log-rank P < 0.001). Co-IP and Western blotting analyses further revealed that HDAC7 physically deacetylated and activated β-catenin thus promoting downstream target c-Myc gene transcription. Notably, our mechanistic study validated that HDAC7/β-catenin/c-Myc could form the positive feedback loop to enhance ESCC cell growth, and USP10 could deubiquitinate and stabilize HDAC7 protein in the ESCC cells. Additionally, we verified that inhibition of the HDAC7/β-catenin/c-Myc axis and USP10/HDAC7 pathway mediated the anti-proliferative action of melatonin on ESCC cells. CONCLUSIONS Our findings elucidate that melatonin mitigates the HDAC7/β-catenin/c-Myc positive feedback loop and inhibits the USP10-maintained HDAC7 protein stability thus suppressing ESCC cell growth, and provides the reference for identifying biomarkers and therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Zhi-Qiang Ma
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Ying-Tong Feng
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.,Department of Cardiothoracic Surgery, the 71th Group Army Hospital of PLA, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kai Guo
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.,Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Chang-Jian Shao
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Ming-Hong Pan
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Yi-Meng Zhang
- Department of Ophthalmology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Yu-Xi Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Di Huang
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Zhang
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jin-Liang Wang
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Yang
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.
| | - Xiao-Long Yan
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.
| | - Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Pai P, Kumar A, Shetty MG, Kini SG, Krishna MB, Satyamoorthy K, Babitha KS. Identification of potent HDAC 2 inhibitors using E-pharmacophore modelling, structure-based virtual screening and molecular dynamic simulation. J Mol Model 2022; 28:119. [PMID: 35419753 PMCID: PMC9007783 DOI: 10.1007/s00894-022-05103-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
Histone deacetylase 2 (HDAC 2) of class I HDACs plays a major role in embryonic and neural developments. However, HDAC 2 overexpression triggers cell proliferation by diverse mechanisms in cancer. Over the decades, many pan and class-specific inhibitors of HDAC were discovered. Limitations such as toxicity and differential cell localization of each isoform led researchers to hypothesize that isoform selective inhibitors may be relevant to bring about desired effects. In this study, we have employed the PHASE module to develop an e-pharmacophore model and virtually screened four focused libraries of around 300,000 compounds to identify isoform selective HDAC 2 inhibitors. The compounds with phase fitness score greater than or equal to 2.4 were subjected to structure-based virtual screening with HDAC 2. Ten molecules with docking score greater than -12 kcal/mol were chosen for selectivity study, QikProp module (ADME prediction) and dG/bind energy identification. Compound 1A with the best dock score of -13.3 kcal/mol and compound 1I with highest free binding energy, -70.93 kcal/mol, were selected for molecular dynamic simulation studies (40 ns simulation). The results indicated that compound 1I may be a potent and selective HDAC 2 inhibitor. Further, in vitro and in vivo studies are necessary to validate the potency of selected lead molecule and its derivatives.
Collapse
Affiliation(s)
- Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Suvarna Ganesh Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manoj Bhat Krishna
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kampa Sundara Babitha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
10
|
Yadav V, Banerjee S, Baidya SK, Adhikari N, Jha T. Applying comparative molecular modelling techniques on diverse hydroxamate-based HDAC2 inhibitors: an attempt to identify promising structural features for potent HDAC2 inhibition. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:1-22. [PMID: 34979835 DOI: 10.1080/1062936x.2021.2013317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Histone deacetylase 2 (HDAC2) has been implicated in a variety of cardiovascular and neurodegenerative disorders as well as in cancers. Thus, HDAC2 has become an exclusive target for anticancer drug development. Therefore, the development of newer HDAC2 inhibitors in disease conditions is a prime goal to restrain such a scenario. Although a handful of HDAC inhibitors was accepted for the treatment of HDAC-related disease conditions, the non-selective nature of these entities is one of the major setbacks in the treatment of specific HDAC isoform-related pathophysiology. In this framework, the analyses of pre-existing molecules are essential to identify the important structural features that can fulfil the requirements for the cap and linker moieties to obtain potent and effective HDAC2 inhibition. Thus, in this study, the implementation of a combined comparative 2D and 3D molecular modelling techniques was done on a group of 92 diverse hydroxamate derivatives having a wide range of HDAC2 inhibitory potency. Besides other crucial features, this study upheld the importance of groups like triazole and benzyl moieties along with the molecular fields that are crucial for regulating HDAC2 inhibition. The outcomes of this study may be employed for the designing of HDAC2 inhibitors in future.
Collapse
Affiliation(s)
- V Yadav
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
11
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
12
|
Márquez-Cantudo L, Ramos A, Coderch C, de Pascual-Teresa B. Proteasomal Degradation of Zn-Dependent Hdacs: The E3-Ligases Implicated and the Designed Protacs That Enable Degradation. Molecules 2021; 26:molecules26185606. [PMID: 34577077 PMCID: PMC8467390 DOI: 10.3390/molecules26185606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Protein degradation by the Ubiquitin-Proteasome System is one of the main mechanisms of the regulation of cellular proteostasis, and the E3 ligases are the key effectors for the protein recognition and degradation. Many E3 ligases have key roles in cell cycle regulation, acting as checkpoints and checkpoint regulators. One of the many important proteins involved in the regulation of the cell cycle are the members of the Histone Deacetylase (HDAC) family. The importance of zinc dependent HDACs in the regulation of chromatin packing and, therefore, gene expression, has made them targets for the design and synthesis of HDAC inhibitors. However, achieving potency and selectivity has proven to be a challenge due to the homology between the zinc dependent HDACs. PROteolysis TArgeting Chimaera (PROTAC) design has been demonstrated to be a useful strategy to inhibit and selectively degrade protein targets. In this review, we attempt to summarize the E3 ligases that naturally ubiquitinate HDACs, analyze their structure, and list the known ligands that can bind to these E3 ligases and be used for PROTAC design, as well as the already described HDAC-targeted PROTACs.
Collapse
|
13
|
Sanaei M, Kavoosi F, Ghasemzadeh V. Investigation of the Effect of 5-Aza-2'-Deoxycytidine in Comparison to and in Combination with Trichostatin A on p16INK4a, p14ARF, p15INK4b Gene Expression, Cell Growth Inhibition and Apoptosis Induction in Colon Cancer Caco-2 Cell Line. Int J Prev Med 2021; 12:64. [PMID: 34447506 PMCID: PMC8357004 DOI: 10.4103/ijpvm.ijpvm_11_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/22/2020] [Indexed: 11/04/2022] Open
Abstract
Background The cell cycle is divided into four phases, G1, G2, S, and M phase. The mammalian cell cycle is controlled and governed by the kinase complexes including cyclin and the cyclin-dependent kinase (CDK), cyclin-CDK complexes. The activity of the complexes is regulated by cyclin-dependent kinase inhibitors (CDKIs), the INK4, and the CDK interacting protein/kinase inhibitory protein (CIP/KIP) families. Promoter hypermethylation and histone deacetylation of CDKIs have been reported in several cancers. These changes can be reversed by DNA demethylating agents, such as decitabine, 5-Aza-2'-deoxycytidine (5-Aza-CdR), and histone deacetylase inhibitors (HDACIs), such as trichostatin A. Previously, we reported the effect of 5-Aza-CdR and trichostatin A (TSA) on hepatocellular carcinoma (HCC). The present study aimed to investigate the effect of 5-Aza-CdR in comparison to and in combination with trichostatin A on p16INK4a, p14ARF, p15INK4b genes expression, cell growth inhibition and apoptosis induction in colon cancer Caco-2 cell line. Methods The Caco-2 cells were cultured and treated with 5-Aza-CdR and TSA (alone and combined). The cell viability, apoptosis, and relative gene expression were determined by MTT assay, flow cytometry, and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), respectively. Results Both compounds inhibited cell growth, induced apoptosis, and up-regulated the p16INK4a, p14ARF, p15INK4b gene significantly. The TSA had a more significant effect in comparison to 5-Aza-CdR. Furthermore, maximal apoptosis and up-regulation were observed with combined treatment. Conclusions our finding indicated that 5-Aza-CdR and TSA can epigenetically re-activate the p16INK4a, p14ARF, p15INK4b gene resulting in cell growth inhibition and apoptosis induction in colon cancer.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Vahid Ghasemzadeh
- Department of Student of Research Committee, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| |
Collapse
|
14
|
Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis 2021; 12:779. [PMID: 34365463 PMCID: PMC8349356 DOI: 10.1038/s41419-021-04047-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Abstract
The PD-L1 overexpression is an important event of immune escape and metastasis in triple-negative breast cancer (TNBC), but the molecular mechanism remains to be determined. Interferon gamma (IFNγ) represents a major driving force behind PD-L1 expression in tumor microenvironment, and histone deacetylase 2 (HDAC2) is required for IFN signaling. Here, we investigated the regulation of HDAC2 on the IFNγ-induced PD-L1 expression in TNBC cells. We found the HDAC2 and PD-L1 expression in TNBC was significantly higher than that in non-TNBC, and HDAC2 was positively correlated with PD-L1 expression. HDAC2 promoted PD-L1 induction by upregulating the phosphorylation of JAK1, JAK2, and STAT1, as well as the translocation of STAT1 to the nucleus and the recruitment of STAT1 to the PD-L1 promoter. Meanwhile, HDAC2 was recruited to the PD-L1 promoter by STAT1, and HDAC2 knockout compromised IFNγ-induced upregulation of H3K27, H3K9 acetylation, and the BRD4 recruitment in PD-L1 promoter. In addition, significant inhibition of proliferation, colony formation, migration, and cell cycle of TNBC cells were observed following knockout of HDAC2 in vitro. Furthermore, HDAC2 knockout reduced IFNγ-induced PD-L1 expression, lymphocyte infiltration, and retarded tumor growth and metastasis in the breast cancer mouse models. This study may provide evidence that HDAC2 promotes IFNγ-induced PD-L1 expression, suggesting a way for enhanced antitumor immunity when targeting the HDAC2 in TNBC.
Collapse
Affiliation(s)
- Pengfei Xu
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, 7 Raoping Road, Shantou, 515041, China
| | - Wei Xiong
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Yun Lin
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Liping Fan
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Hongchao Pan
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, 7 Raoping Road, Shantou, 515041, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, 7 Raoping Road, Shantou, 515041, China.
| |
Collapse
|
15
|
Schmitt HM, Fehrman RL, Maes ME, Yang H, Guo LW, Schlamp CL, Pelzel HR, Nickells RW. Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 34398198 PMCID: PMC8375002 DOI: 10.1167/iovs.62.10.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Inhibition or targeted deletion of histone deacetylase 3 (HDAC3) is neuroprotective in a variety neurodegenerative conditions, including retinal ganglion cells (RGCs) after acute optic nerve damage. Consistent with this, induced HDAC3 expression in cultured cells shows selective toxicity to neurons. Despite an established role for HDAC3 in neuronal pathology, little is known regarding the mechanism of this pathology. Methods Induced expression of an HDAC3-mCherry fusion protein in mouse RGCs was accomplished by transduction with AAV2/2-Pgk-HDAC3-mCherry. Increased susceptibility to optic nerve damage in HDAC3-mCherry expressing RGCs was evaluated in transduced mice that received acute optic nerve crush surgery. Expression of HDAC3-FLAG or HDAC3-mCherry was induced by nucleofection or transfection of plasmids into differentiated or undifferentiated 661W tissue culture cells. Immunostaining for cleaved caspase 3, localization of a GFP-BAX fusion protein, and quantitative RT-PCR was used to evaluate HDAC3-induced damage. Results Induced expression of exogenous HDAC3 in RGCs by viral-mediated gene transfer resulted in modest levels of cell death but significantly increased the sensitivity of these neurons to axonal damage. Undifferentiated 661W retinal precursor cells were resilient to induced HDAC3 expression, but after differentiation, HDAC3 induced GFP-BAX recruitment to the mitochondria and BAX/BAK dependent activation of caspase 3. This was accompanied by an increase in accumulation of transcripts for the JNK2/3 kinases and the p53-regulated BH3-only gene Bbc3/Puma. Cell cycle arrest of undifferentiated 661W cells did not increase their sensitivity to HDAC3 expression. Conclusions Collectively, these results indicate that HDAC3-induced toxicity to neurons is mediated by the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Heather M. Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Rachel L. Fehrman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
| | - Margaret E. Maes
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Huan Yang
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Lian-Wang Guo
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Cassandra L. Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Heather R. Pelzel
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI, United States
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
16
|
Shetty MG, Pai P, Deaver RE, Satyamoorthy K, Babitha KS. Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacol Res 2021; 170:105695. [PMID: 34082029 DOI: 10.1016/j.phrs.2021.105695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.
Collapse
Affiliation(s)
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Renita Esther Deaver
- Department of Biotechnology, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, MAHE, Manipal, India
| | | |
Collapse
|
17
|
Chen J, Zhou J, Fu H, Ni X, Shan Y. Upregulation of oxidative stress-responsive 1(OXSR1) predicts poor prognosis and promotes hepatocellular carcinoma progression. Bioengineered 2020; 11:958-971. [PMID: 32842855 PMCID: PMC8291867 DOI: 10.1080/21655979.2020.1814659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We, the authors, Editors and Publisher of the journal Bioengineered have retracted the following article: “Upregulation of oxidative stress-responsive 1(OXSR1) predicts poor prognosis and promotes hepatocellular carcinoma progression,” Jianhui Chen, Jiangfan Zhou, Haotian Fu, Xiaofeng Ni & Yufeng Shan. Bioengineered, Volume 11, 2020, Pages 958-971. Since publication, the authors raised the following concerns:
Recently, in order to further explore the molecular mechanism of oxidative stress-responsive1(OXSR1) promoting the malignant progression of hepatocellular carcinoma (HCC), we repeated the previous research results. However, when we repeated the proliferation experiments, we found that compared with the result of the control group, there was no statistically significant difference in proliferation after knocking down OXSR1. Therefore, we continued to repeat the proliferation experiments several times. Unfortunately, the results of our repeated experiments did not show statistical differences. This indicates that the OXSR1 that the previous study proved to promote the proliferation of HCC is an unreliable result. Actually, OXSR1 does not promote the proliferation of HCC. Considering that in our previous study, OXSR1 promotes the proliferation of HCC is a very important conclusion, we decided to retract this article.
The authors alerted the issue to the Editor and Publisher and all have agreed to retract the article to ensure the integrity of the scholarly record. We have been informed in our decision-making by our policy on publishing ethics and integrity and the COPE guidelines on retractions. The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as ‘Retracted’.
Collapse
Affiliation(s)
- Jianhui Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, People's Republic of China
| | - Jiangfan Zhou
- Department of Intervention, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, People's Republic of China
| | - Haotian Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiaofeng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, People's Republic of China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
18
|
Chen CY, Fang JY, Chen CC, Chuang WY, Leu YL, Ueng SH, Wei LS, Cheng SF, Hsueh C, Wang TH. 2-O-Methylmagnolol, a Magnolol Derivative, Suppresses Hepatocellular Carcinoma Progression via Inhibiting Class I Histone Deacetylase Expression. Front Oncol 2020; 10:1319. [PMID: 32850418 PMCID: PMC7431949 DOI: 10.3389/fonc.2020.01319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
Magnolia officinalis is widely used in Southeast Asian countries for the treatment of fever, headache, diarrhea, and stroke. Magnolol is a phenolic compound extracted from M. officinalis, with proven antibacterial, antioxidant, anti-inflammatory, and anticancer activities. In this study, we modified magnolol to synthesize a methoxylated derivative, 2-O-methylmagnolol (MM1), and investigated the use of MM1, and magnolol in the treatment of liver cancer. We found that both magnolol and MM1 exhibited inhibitory effects on the growth, migration, and invasion of hepatocellular carcinoma (HCC) cell lines and halted the cell cycle at the G1 phase. MM1 also demonstrated a substantially better tumor-suppressive effect than magnolol. Further analysis suggested that by inhibiting class I histone deacetylase expression in HCC cell lines, magnolol and MM1 induced p21 expression and p53 activation, thereby causing cell cycle arrest and inhibiting HCC cell growth, migration, and invasion. Subsequently, we verified the significant tumor-suppressive effects of magnolol and MM1 in an animal model. Collectively, these findings demonstrate the anti-HCC activities of magnolol and MM1 and their potential for clinical use.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan City, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan City, Taiwan
| | - Li-Shan Wei
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shu-Fang Cheng
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
| | - Chuen Hsueh
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan City, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
19
|
Chen CY, Chen CC, Chuang WY, Leu YL, Ueng SH, Hsueh C, Yeh CT, Wang TH. Hydroxygenkwanin Inhibits Class I HDAC Expression and Synergistically Enhances the Antitumor Activity of Sorafenib in Liver Cancer Cells. Front Oncol 2020; 10:216. [PMID: 32158695 PMCID: PMC7052045 DOI: 10.3389/fonc.2020.00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal histone deacetylase (HDAC) expression is closely related to cancer development and progression. Many HDAC inhibitors have been widely used in cancer treatment; however, severe side effects often limit their clinical application. In this study, we attempted to identify natural compounds with HDAC inhibitory activity and low physiological toxicity and explored their feasibility and mechanisms of action in liver cancer treatment. A yeast screening system was used to identify natural compounds with HDAC inhibitory activity. Further, western blotting was used to verify inhibitory effects on HDAC in human liver cancer cell lines. Cell functional analysis was used to explore the effects and mechanisms and the in vitro results were verified in BALB/c nude mice. We found that hydroxygenkwanin (HGK), an extract from Daphne genkwa, inhibited class I HDAC expression, and thereby induced expression of tumor suppressor p21 and promoted acetylation and activation of p53 and p65. This resulted in the inhibition of growth, migration, and invasion of liver cancer cells and promoted cell apoptosis. Animal models revealed that HGK inhibited tumor growth in a synergistic manner with sorafenib. HGK inhibited class I HDAC expression and had low physiological toxicity. It has great potential as an adjuvant for liver cancer treatment and may be used in combination with anticancer drugs like sorafenib to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chuen Hsueh
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
20
|
Abstract
Introduction: T-cell lymphomas represent a broad group of malignant T-cell neoplasms with marked molecular, clinical, and biologic heterogeneity. Survival rates after conventional chemotherapy regimens are poor for most subtypes and new therapies are needed. Rapidly expanding knowledge in the field of epigenomics and the development of an increasing number of epigenetic-modifying agents have created new opportunities for epigenetic therapies for patients with this complex group of diseases.Areas covered: The present review summarizes current knowledge on epigenetic alterations in T-cell lymphomas, availability, and mechanisms of action of epigenetic-modifying agents, results of clinical trials of epigenetic therapies in T-cell lymphomas, status of FDA approval, and biomarker approaches to guide therapy. Promising future directions are discussed.Expert opinion: Mutations in epigenetic-modifying genes are among the most common genetic alterations in T-cell lymphomas, highlighting the potential for epigenetic therapies to improve management of this group of diseases. Single-agent efficacy is well documented, leading to FDA approval for several indications, but overall response rates and durability of responses remain modest. Critical next steps for the field include optimizing combination therapies that incorporate epigenetic-modifying agents and developing predictive biomarkers that help guide patient and drug selection.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Xu P, Ye S, Li K, Huang M, Wang Q, Zeng S, Chen X, Gao W, Chen J, Zhang Q, Zhong Z, Lin Y, Rong Z, Xu Y, Hao B, Peng A, Ouyang M, Liu Q. NOS1 inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:483. [PMID: 31805977 PMCID: PMC6896289 DOI: 10.1186/s13046-019-1448-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
Background The dysfunction of type I interferon (IFN) signaling is an important mechanism of immune escape and metastasis in tumors. Increased NOS1 expression has been detected in melanoma, which correlated with dysfunctional IFN signaling and poor response to immunotherapy, but the specific mechanism has not been determined. In this study, we investigated the regulation of NOS1 on the interferon response and clarified the relevant molecular mechanisms. Methods After stable transfection of A375 cells with NOS1 expression plasmids, the transcription and expression of IFNα-stimulated genes (ISGs) were assessed using pISRE luciferase reporter gene analysis, RT-PCR, and western blotting, respectively. The effect of NOS1 on lung metastasis was assessed in melanoma mouse models. A biotin-switch assay was performed to detect the S-nitrosylation of HDAC2 by NOS1. ChIP-qPCR was conducted to measure the binding of HDAC2, H4K16ac, H4K5ac, H3ac, and RNA polymerase II in the promoters of ISGs after IFNα stimulation. This effect was further evaluated by altering the expression level of HDAC2 or by transfecting the HDAC2-C262A/C274A site mutant plasmids into cells. The coimmunoprecipitation assay was performed to detect the interaction of HDAC2 with STAT1 and STAT2. Loss-of-function and gain-of-function approaches were used to examine the effect of HDAC2-C262A/C274A on lung metastasis. Tumor infiltrating lymphocytes were analyzed by flow cytometry. Results HDAC2 is recruited to the promoter of ISGs and deacetylates H4K16 for the optimal expression of ISGs in response to IFNα treatment. Overexpression of NOS1 in melanoma cells decreases IFNα-responsiveness and induces the S-nitrosylation of HDAC2-C262/C274. This modification decreases the binding of HDAC2 with STAT1, thereby reducing the recruitment of HDAC2 to the ISG promoter and the deacetylation of H4K16. Moreover, expression of a mutant form of HDAC2, which cannot be nitrosylated, reverses the inhibition of ISG expression by NOS1 in vitro and decreases NOS1-induced lung metastasis and inhibition of tumor infiltrating lymphocytes in a melanoma mouse model. Conclusions This study provides evidence that NOS1 induces dysfunctional IFN signaling to promote lung metastasis in melanoma, highlighting NOS1-induced S-nitrosylation of HDAC2 in the regulation of IFN signaling via histone modification.
Collapse
Affiliation(s)
- Pengfei Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Keyi Li
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianli Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenwen Gao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, China
| | - Ying Lin
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yang Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingtao Hao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Anghui Peng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Manzhao Ouyang
- Center for medical transformation, Shunde Hospital, Southern Medical University, Foshan, 528308, China
| | - Qiuzhen Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Center for medical transformation, Shunde Hospital, Southern Medical University, Foshan, 528308, China.
| |
Collapse
|
22
|
Zsákai L, Sipos A, Dobos J, Erős D, Szántai-Kis C, Bánhegyi P, Pató J, Őrfi L, Matula Z, Mikala G, Kéri G, Peták I, Vályi-Nagy I. Targeted drug combination therapy design based on driver genes. Oncotarget 2019; 10:5255-5266. [PMID: 31523388 PMCID: PMC6731102 DOI: 10.18632/oncotarget.26985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/25/2018] [Indexed: 11/25/2022] Open
Abstract
Targeted therapies against cancer types with more than one driver gene hold bright but elusive promise, since approved drugs are not available for all driver mutations and monotherapies often result in resistance. Targeting multiple driver genes in different pathways at the same time may provide an impact extensive enough to fight resistance. Our goal was to find synergistic drug combinations based on the availability of targeted drugs and their biological activity profiles and created an associated compound library based on driver gene-related protein targets. In this study, we would like to show that driver gene pattern based customized combination therapies are more effective than monotherapies on six cell lines and patient-derived primary cell cultures. We tested 55–102 drug combinations targeting driver genes and driver pathways for each cell line and found 25–85% of these combinations highly synergistic. Blocking 2–5 cancer pathways using only 2–3 targeted drugs was sufficient to reach high rates of tumor cell eradication at remarkably low concentrations. Our results demonstrate that the efficiency of cancer treatment may be significantly improved by combining drugs against multiple tumor specific drivers.
Collapse
Affiliation(s)
- Lilian Zsákai
- Vichem Chemie Research Ltd., Budapest, Hungary.,Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Anna Sipos
- Vichem Chemie Research Ltd., Budapest, Hungary.,Oncompass Medicine Hungary Ltd., Budapest, Hungary
| | - Judit Dobos
- Vichem Chemie Research Ltd., Budapest, Hungary
| | - Dániel Erős
- Vichem Chemie Research Ltd., Budapest, Hungary
| | | | | | - János Pató
- Vichem Chemie Research Ltd., Budapest, Hungary
| | - László Őrfi
- Vichem Chemie Research Ltd., Budapest, Hungary.,Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Matula
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gábor Mikala
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - György Kéri
- Vichem Chemie Research Ltd., Budapest, Hungary.,MTA-SE Patho-Biochemistry Research Group, Department of Medical Chemistry, Semmelweis University, Budapest, Hungary.,Author deceased
| | - István Peták
- Oncompass Medicine Hungary Ltd., Budapest, Hungary.,Department of Pharmacology, Semmelweis University, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
23
|
Fu R, Han CF, Ni T, Di L, Liu LJ, Lv WC, Bi YR, Jiang N, He Y, Li HM, Wang S, Xie H, Chen BA, Wang XS, Weiss SJ, Lu T, Guo QL, Wu ZQ. A ZEB1/p53 signaling axis in stromal fibroblasts promotes mammary epithelial tumours. Nat Commun 2019; 10:3210. [PMID: 31324807 PMCID: PMC6642263 DOI: 10.1038/s41467-019-11278-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/04/2019] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence indicates that the zinc-finger transcription factor ZEB1 is predominantly expressed in the stroma of several tumours. However, the role of stromal ZEB1 in tumour progression remains unexplored. In this study, while interrogating human databases, we uncover a remarkable decrease in relapse-free survival of breast cancer patients expressing high ZEB1 levels in the stroma. Using a mouse model of breast cancer, we show that ZEB1 inactivation in stromal fibroblasts suppresses tumour initiation, progression and metastasis. We associate this with reduced extracellular matrix remodeling, immune cell infiltration and decreased angiogenesis. ZEB1 deletion in stromal fibroblasts increases acetylation, expression and recruitment of p53 to FGF2/7, VEGF and IL6 promoters, thereby reducing their production and secretion into the surrounding stroma. Importantly, p53 ablation in ZEB1 stroma-deleted mammary tumours sufficiently recovers the impaired cancer growth and progression. Our findings identify the ZEB1/p53 axis as a stroma-specific signaling pathway that promotes mammary epithelial tumours.
Collapse
MESH Headings
- Animals
- Breast/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- Extracellular Matrix/metabolism
- Female
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 7/metabolism
- Fibroblasts/metabolism
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease/genetics
- Humans
- Interleukin-6
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Knockout
- Neoplasm Recurrence, Local/metabolism
- Neoplasms, Experimental
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Signal Transduction
- Tumor Microenvironment
- Tumor Suppressor Protein p53/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Zinc Finger E-box-Binding Homeobox 1/metabolism
Collapse
Affiliation(s)
- Rong Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen-Feng Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ting Ni
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lei Di
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Juan Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wen-Cong Lv
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan-Ran Bi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Nan Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yin He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hong-Mei Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Shui Wang
- Division of Breast Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210036, China
| | - Hui Xie
- Division of Breast Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210036, China
| | - Bao-An Chen
- Division of Hematology and Oncology, The Affiliated Zhong-Da Hospital, Southeast University, Nanjing, 210009, China
| | - Xiao-Sheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Stephen J Weiss
- The Life Sciences Institute, Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
24
|
Bouchet S, Linot C, Ruzic D, Agbaba D, Fouchaq B, Roche J, Nikolic K, Blanquart C, Bertrand P. Extending Cross Metathesis To Identify Selective HDAC Inhibitors: Synthesis, Biological Activities, and Modeling. ACS Med Chem Lett 2019; 10:863-868. [PMID: 31223439 DOI: 10.1021/acsmedchemlett.8b00440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
Dissymmetric cross metathesis of alkenes as a convergent and general synthetic strategy allowed for the preparation of a new small series of human histone deacetylases (HDAC) inhibitors. Alkenes bearing Boc-protected hydroxamic acid and benzamide and trityl-protected thiols were used to provide the zinc binding groups and were reacted with alkenes bearing aromatic cap groups. One compound was identified as a selective HDAC6 inhibitor lead. Additional biological evaluation in cancer cell lines demonstrated its ability to stimulate the expression of the epithelial marker E-cadherin and tumor suppressor genes like SEMA3F and p21, suggesting a potential use of this compound for lung cancer treatment. Molecular docking on all 11 HDAC isoforms was used to rationalize the observed biological results.
Collapse
Affiliation(s)
- Samuel Bouchet
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, 86073 Poitiers cedex 09, France
| | - Camille Linot
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Danica Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Benoit Fouchaq
- Eurofins-Cerep, Le Bois l’Evêque, 86600 Celle-L’Evescault, France
- Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Joëlle Roche
- Réseau Epigénétique du Cancéropôle Grand Ouest, France
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86073 Poitiers, France
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Christophe Blanquart
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, 86073 Poitiers cedex 09, France
- Réseau Epigénétique du Cancéropôle Grand Ouest, France
| |
Collapse
|
25
|
p53 at the Crossroads between Different Types of HDAC Inhibitor-Mediated Cancer Cell Death. Int J Mol Sci 2019; 20:ijms20102415. [PMID: 31096697 PMCID: PMC6567317 DOI: 10.3390/ijms20102415] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a complex genetic and epigenetic-based disease that has developed an armada of mechanisms to escape cell death. The deregulation of apoptosis and autophagy, which are basic processes essential for normal cellular activity, are commonly encountered during the development of human tumors. In order to assist the cancer cell in defeating the imbalance between cell growth and cell death, histone deacetylase inhibitors (HDACi) have been employed to reverse epigenetically deregulated gene expression caused by aberrant post-translational protein modifications. These interfere with histone acetyltransferase- and deacetylase-mediated acetylation of both histone and non-histone proteins, and thereby exert a wide array of HDACi-stimulated cytotoxic effects. Key determinants of HDACi lethality that interfere with cellular growth in a multitude of tumor cells are apoptosis and autophagy, which are either mutually exclusive or activated in combination. Here, we compile known molecular signals and pathways involved in the HDACi-triggered induction of apoptosis and autophagy. Currently, the factors that determine the mode of HDACi-elicited cell death are mostly unclear. Correspondingly, we also summarized as yet established intertwined mechanisms, in particular with respect to the oncogenic tumor suppressor protein p53, that drive the interplay between apoptosis and autophagy in response to HDACi. In this context, we also note the significance to determine the presence of functional p53 protein levels in the cancer cell. The confirmation of the context-dependent function of autophagy will pave the way to improve the benefit from HDACi-mediated cancer treatment.
Collapse
|
26
|
Liu T, Wang X, Hu W, Fang Z, Jin Y, Fang X, Miao QR. Epigenetically Down-Regulated Acetyltransferase PCAF Increases the Resistance of Colorectal Cancer to 5-Fluorouracil. Neoplasia 2019; 21:557-570. [PMID: 31042625 PMCID: PMC6488821 DOI: 10.1016/j.neo.2019.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
Only 10%–20% of colorectal cancer (CRC) patients observe effective responses to 5-fluorouracil (5-FU) based chemo-treatment. We used real-time PCR array and Western blot analysis to examine the expression alteration of acetyltransferases and deacetylases in 5-FU resistant CRC cell lines as compared to their respective parental CRC cell lines. Unlike other acetyltransferases and deacetylases, we found that the expression of acetyltransferase P300/CBP-associated factor (PCAF) is consistently decreased in three 5-FU resistant CRC cell lines. Similarly, knockdown of PCAF in HCT116 CRC parental cell line also increases the resistance to 5-FU and attenuates 5-FU-induced apoptosis. Mechanistically, we demonstrated that increased binding of trimethylated histone H3K27 in the promoter region of PCAF attenuated its transcription in 5-FU resistant HCT116/5-FU cells. Decreased PCAF impairs the acetylation of p53 and attenuates the p53-dependent transcription of p21, which results in the increased cyclin D1 and phosphorylation of Retinoblastoma 1. Conversely, overexpression of PCAF in CRC cell lines increases p21 and their susceptibility to 5-FU in vitro and in vivo. However, knockdown of p21 abolishes the beneficial effects of PCAF overexpression on increasing the sensitivity of HCT116/5-FU cells to 5-FU. Also, the reduced intensity of PCAF immunostaining was observed in the precancerous lesion, and microarray data from the public database further demonstrated the association between PCAF down-regulation and poor survival outcome. Our data suggest that PCAF-mediated p53 acetylation is an essential regulatory mechanism for increasing the susceptibility of CRC to 5-FU.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, China; Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Xiang Wang
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; New York University Winthrop Hospital, Mineola, NY 11501
| | - Wenquan Hu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; New York University Winthrop Hospital, Mineola, NY 11501
| | - Zhi Fang
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; New York University Winthrop Hospital, Mineola, NY 11501
| | - Ying Jin
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, China.
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; New York University Winthrop Hospital, Mineola, NY 11501.
| |
Collapse
|
27
|
Zhuo C, Wang D, Zhou C, Chen C, Li J, Tian H, Li S, Ji F, Liu C, Chen M, Zhang L. Double-Edged Sword of Tumour Suppressor Genes in Schizophrenia. Front Mol Neurosci 2019; 12:1. [PMID: 30809121 PMCID: PMC6379290 DOI: 10.3389/fnmol.2019.00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia (SCZ) is a common psychiatric disorder with polygenetic pathogenesis. Among the many identified candidate genes and loci, the group of tumour suppressor genes has drawn our interest. In this mini-review article, we describe evidence of a correlation between major tumour suppressor genes and SCZ development. Genetic mutations ranging from single nucleotide polymorphisms to large structural alterations have been found in tumour-related genes in patients with SCZ. Epigenetic mechanisms, including DNA methylation/acetylation and microRNA regulation of tumour suppressor genes, have also been implicated in SCZ. Beyond genetic correlations, we hope to establish causal relationships between tumour suppressor gene function and SCZ risk. Accumulating evidence shows that tumour suppressor genes may mediate cell survival and neural development, both of which contribute to SCZ aetiology. Moreover, converging intracellular signalling pathways indicate a role of tumour suppressor genes in SCZ pathogenesis. Tumour suppressor gene function may mediate a direct link between neural development and function and psychiatric disorders, including SCZ. A deeper understanding of how neural cell development is affected by tumour suppressors may lead to improved anti-psychotic drugs.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Dawei Wang
- Department of Neuroimaging Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Chunhua Zhou
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Jie Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Hongjun Tian
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Shen Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China
| | - Feng Ji
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Chuanxin Liu
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Min Chen
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Sun D, Yu M, Li Y, Xing H, Gao Y, Huang Z, Hao W, Lu K, Kong C, Shimozato O, Ozaki T, Zhu Y. Histone deacetylase 2 is involved in DNA damage-mediated cell death of human osteosarcoma cells through stimulation of the ATM/p53 pathway. FEBS Open Bio 2019; 9:478-489. [PMID: 30868056 PMCID: PMC6396148 DOI: 10.1002/2211-5463.12585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 11/24/2022] Open
Abstract
Tumor suppressor p53 is a short‐lived nuclear transcription factor, which becomes stabilized and activated in response to a wide variety of cellular stresses. Around 50% of human cancer tissues carry p53 mutations, and certain p53 mutations contribute to chemoresistance. In the present study, we found that histone deacetylase 2 (HDAC2) acts as a co‐activator of tumor suppressor p53 and participates in the early molecular events following DNA damage. Anti‐cancer drug adriamycin (ADR) treatment induced cell death in p53‐wild‐type human osteosarcoma U2OS cells, and this was accompanied by a remarkable accumulation of p53 and γH2AX. HDAC2 gene silencing significantly decreased the sensitivity of U2OS cells to ADR and attenuated p53‐dependent DNA damage responses, such as ADR‐mediated phosphorylation of ataxia telangiectasia mutated (ATM) and p53, as well as accumulation of γH2AX and cleaved poly (ADP‐ribose) polymerase. However, HDAC2 knockdown had a marginal effect on p53‐null human lung cancer H1299 cells following ADR exposure. In contrast, forced expression of HA‐HDAC2 promoted cell death and stimulated the transcriptional activity of p53. Moreover, p53 and HDAC2 were found to co‐precipitate with ATM. Together, our present results strongly suggest that the p53–HDAC2 axis plays a vital role in the regulation of the DNA damage response and also contributes to chemosensitivity of cancer cells.
Collapse
Affiliation(s)
- Dan Sun
- Department of Urology The First Hospital of China Medical University Shenyang China
| | - Meng Yu
- Department of Reproductive Biology and Transgenic Animal China Medical University Shenyang China
| | - Yuanyuan Li
- Department of Molecular Medicine Life Science Institute Saga Medical Center KOSEIKAN Saga Japan
| | - Haotian Xing
- Department of Urology The First Hospital of China Medical University Shenyang China
| | - Ying Gao
- Department of Urology The First Hospital of China Medical University Shenyang China
| | - Zhihong Huang
- Department of Urology The First Hospital of China Medical University Shenyang China
| | - Wenjun Hao
- Department of Urology The First Hospital of China Medical University Shenyang China
| | - Kaining Lu
- Department of Urology The First Hospital of China Medical University Shenyang China
| | - Chuize Kong
- Department of Urology The First Hospital of China Medical University Shenyang China
| | - Osamu Shimozato
- Laboratory of DNA Damage Signaling Chiba Cancer Center Research Institute Chiba Japan
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling Chiba Cancer Center Research Institute Chiba Japan
| | - Yuyan Zhu
- Department of Urology The First Hospital of China Medical University Shenyang China
| |
Collapse
|
29
|
Gock M, Mullins CS, Bergner C, Prall F, Ramer R, Göder A, Krämer OH, Lange F, Krause BJ, Klar E, Linnebacher M. Establishment, functional and genetic characterization of three novel patient-derived rectal cancer cell lines. World J Gastroenterol 2018; 24:4880-4892. [PMID: 30487698 PMCID: PMC6250916 DOI: 10.3748/wjg.v24.i43.4880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish patient-individual tumor models of rectal cancer for analyses of novel biomarkers, individual response prediction and individual therapy regimens.
METHODS Establishment of cell lines was conducted by direct in vitro culturing and in vivo xenografting with subsequent in vitro culturing. Cell lines were in-depth characterized concerning morphological features, invasive and migratory behavior, phenotype, molecular profile including mutational analysis, protein expression, and confirmation of origin by DNA fingerprint. Assessment of chemosensitivity towards an extensive range of current chemotherapeutic drugs and of radiosensitivity was performed including analysis of a combined radio- and chemotherapeutic treatment. In addition, glucose metabolism was assessed with 18F-fluorodeoxyglucose (FDG) and proliferation with 18F-fluorothymidine.
RESULTS We describe the establishment of ultra-low passage rectal cancer cell lines of three patients suffering from rectal cancer. Two cell lines (HROC126, HROC284Met) were established directly from tumor specimens while HROC239 T0 M1 was established subsequent to xenografting of the tumor. Molecular analysis classified all three cell lines as CIMP-0/ non-MSI-H (sporadic standard) type. Mutational analysis revealed following mutational profiles: HROC126: APCwt, TP53wt, KRASwt, BRAFwt, PTENwt; HROC239 T0 M1: APCmut, P53wt, KRASmut, BRAFwt, PTENmut and HROC284Met: APCwt, P53mut, KRASmut, BRAFwt, PTENmut. All cell lines could be characterized as epithelial (EpCAM+) tumor cells with equivalent morphologic features and comparable growth kinetics. The cell lines displayed a heterogeneous response toward chemotherapy, radiotherapy and their combined application. HROC126 showed a highly radio-resistant phenotype and HROC284Met was more susceptible to a combined radiochemotherapy than HROC126 and HROC239 T0 M1. Analysis of 18F-FDG uptake displayed a markedly reduced FDG uptake of all three cell lines after combined radiochemotherapy.
CONCLUSION These newly established and in-depth characterized ultra-low passage rectal cancer cell lines provide a useful instrument for analysis of biological characteristics of rectal cancer.
Collapse
Affiliation(s)
- Michael Gock
- Department of General Surgery, University Medical Center, Rostock 18055, Germany
| | - Christina S Mullins
- Section of Molecular Oncology and Immunotherapy, University Medical Center, Rostock 18055, Germany
| | - Carina Bergner
- Department of Nuclear Medicine, University Medical Center, Rostock 18055, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center, Rostock 18055, Germany
| | - Robert Ramer
- Institute of Pharmacology, University Medical Center, Rostock 18055, Germany
| | - Anja Göder
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Falko Lange
- Oscar-Langendorff-Institute of Physiology, University Medical Center, Rostock 18055, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, University Medical Center, Rostock 18055, Germany
| | - Ernst Klar
- Department of General Surgery, University Medical Center, Rostock 18055, Germany
| | - Michael Linnebacher
- Section of Molecular Oncology and Immunotherapy, University Medical Center, Rostock 18055, Germany
| |
Collapse
|
30
|
Zhou R, Wu J, Tang X, Wei X, Ju C, Zhang F, Sun J, Shuai D, Zhang Z, Liu Q, Lv XB. Histone deacetylase inhibitor AR-42 inhibits breast cancer cell growth and demonstrates a synergistic effect in combination with 5-FU. Oncol Lett 2018; 16:1967-1974. [PMID: 30008890 DOI: 10.3892/ol.2018.8854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/06/2018] [Indexed: 12/30/2022] Open
Abstract
AR-42 is a member of a novelly discovered class of phenylbutyrate-derived histone deacetylase inhibitors, and has a number of antitumor effects in a variety of tumor types; however, the role of AR-42 and its possible mechanisms have not been reported in the treatment of breast cancer. The aim of the present study was to investigate the antitumor effects of AR-42 and its associated mechanisms in breast cancer. MTT assays and colony formation assays were conducted to measure the proliferation of MCF-7 cells, and flow cytometry was used to analyze cell apoptosis. The results revealed that AR-42 induced cell apoptosis and suppressed cell growth in a dose- and time-dependent manner. Mechanistically, AR-42 treatment increased the acetylation of the p53 protein and prolonged the half-life of the p53 protein; furthermore, AR-42 treatment upregulated p21 and PUMA expression. Notably, AR-42 had a synergistic effect on MCF-7 cells in combination with fluorouracil, which is one of the most commonly used chemotherapeutic agents. In conclusion, the results indicated that AR-42 inhibits breast cancer cell proliferation and induces apoptosis, indicating that AR-42 is a potential therapeutic agent.
Collapse
Affiliation(s)
- Ruihao Zhou
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China.,First Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Juan Wu
- Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xiaofeng Tang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Xin Wei
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Cheng Ju
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Feifei Zhang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Jun Sun
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Deyong Shuai
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Zhiping Zhang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Qiong Liu
- Department of Cardiovascular Medicine, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiao-Bin Lv
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
31
|
Baldwin RL, Li RW, Jia Y, Li CJ. Transcriptomic Impacts of Rumen Epithelium Induced by Butyrate Infusion in Dairy Cattle in Dry Period. GENE REGULATION AND SYSTEMS BIOLOGY 2018; 12:1177625018774798. [PMID: 29785087 PMCID: PMC5954180 DOI: 10.1177/1177625018774798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
The purpose of this study was to evaluate the effects of butyrate infusion on rumen epithelial transcriptome. Next-generation sequencing (NGS) and bioinformatics are used to accelerate our understanding of regulation in rumen epithelial transcriptome of cattle in the dry period induced by butyrate infusion at the level of the whole transcriptome. Butyrate, as an essential element of nutrients, is a histone deacetylase (HDAC) inhibitor that can alter histone acetylation and methylation, and plays a prominent role in regulating genomic activities influencing rumen nutrition utilization and function. Ruminal infusion of butyrate was following 0-hour sampling (baseline controls) and continued for 168 hours at a rate of 5.0 L/day of a 2.5 M solution as a continuous infusion. Following the 168-hour infusion, the infusion was stopped, and cows were maintained on the basal lactation ration for an additional 168 hours for sampling. Rumen epithelial samples were serially collected via biopsy through rumen fistulae at 0-, 24-, 72-, and 168-hour (D1, D3, D7) and 168-hour post-infusion (D14). In comparison with pre-infusion at 0 hours, a total of 3513 genes were identified to be impacted in the rumen epithelium by butyrate infusion at least once at different sampling time points at a stringent cutoff of false discovery rate (FDR) < 0.01. The maximal effect of butyrate was observed at day 7. Among these impacted genes, 117 genes were responsive consistently from day 1 to day 14, and another 42 genes were lasting through day 7. Temporal effects induced by butyrate infusion indicate that the transcriptomic alterations are very dynamic. Gene ontology (GO) enrichment analysis revealed that in the early stage of rumen butyrate infusion (on day 1 and day 3 of butyrate infusion), the transcriptomic effects in the rumen epithelium were involved with mitotic cell cycle process, cell cycle process, and regulation of cell cycle. Bioinformatic analysis of cellular functions, canonical pathways, and upstream regulator of impacted genes underlie the potential mechanisms of butyrate-induced gene expression regulation in rumen epithelium. The introduction of transcriptomic and bioinformatic technologies to study nutrigenomics in the farm animal presented a new prospect to study multiple levels of biological information to better apprehend the whole animal response to nutrition, physiological state, and their interactions. The nutrigenomics approach may eventually lead to more precise management of utilization of feed resources in a more effective approach.
Collapse
Affiliation(s)
- Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Robert W Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Yankai Jia
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| |
Collapse
|
32
|
Vancurova I, Uddin MM, Zou Y, Vancura A. Combination Therapies Targeting HDAC and IKK in Solid Tumors. Trends Pharmacol Sci 2017; 39:295-306. [PMID: 29233541 DOI: 10.1016/j.tips.2017.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
Abstract
The rationale for developing histone deacetylase (HDAC) inhibitors (HDACi) as anticancer agents was based on their ability to induce apoptosis and cell cycle arrest in cancer cells. However, while HDACi have been remarkably effective in the treatment of hematological malignancies, clinical studies with HDACi as single agents in solid cancers have been disappointing. Recent studies have shown that, in addition to inducing apoptosis in cancer cells, class I HDACi induce IκB kinase (IKK)-dependent expression of proinflammatory chemokines, such as interleukin-8 (IL8; CXCL8), resulting in the increased proliferation of tumor cells, and limiting the effectiveness of HDACi in solid tumors. Here, we discuss the mechanisms responsible for HDACi-induced CXCL8 expression, and opportunities for combination therapies targeting HDACs and IKK in solid tumors.
Collapse
Affiliation(s)
- Ivana Vancurova
- Department of Biological Sciences, St John's University, New York, NY 11439, USA.
| | - Mohammad M Uddin
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| | - Yue Zou
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| |
Collapse
|
33
|
Gao H, Wang H, Yang W. Identification of key genes and construction of microRNA–mRNA regulatory networks in multiple myeloma by integrated multiple GEO datasets using bioinformatics analysis. Int J Hematol 2017; 106:99-107. [DOI: 10.1007/s12185-017-2216-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/18/2022]
|
34
|
Weng JR, Bai LY, Lin WY, Chiu CF, Chen YC, Chao SW, Feng CH. A Flavone Constituent from Myoporum bontioides Induces M-Phase Cell Cycle Arrest of MCF-7 Breast Cancer Cells. Molecules 2017; 22:molecules22030472. [PMID: 28294989 PMCID: PMC6155216 DOI: 10.3390/molecules22030472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/04/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022] Open
Abstract
Myoporum bontioides is a traditional medicinal plant in Asia with various biological activities, including anti-inflammatory and anti-bacterial characteristics. To identify the bioactive constituents from M. bontioides, a newly-identified flavone, 3,4'-dimethoxy-3',5,7-trihydroxyflavone (compound 1), along with eight known compounds, were investigated in human MCF-7 breast cancer, SCC4 oral cancer, and THP-1 monocytic leukemia cells. Among these compounds, compound 1 exhibited the strongest antiproliferative activity with half-maximal inhibitory concentration (IC50) values ranging from 3.3 μM (MCF-7) to 8.6 μM (SCC4). Flow cytometric analysis indicated that compound 1 induced G2/M cell cycle arrest in MCF-7 cells. Mechanistic evidence suggests that the G2/M arrest could be attributable to compound 1's modulatory effects on the phosphorylation and expression of numerous key signaling effectors, including cell division cycle 2 (CDC2), CDC25C, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 2 (HDAC2) and HDAC4, leading to increased histone H3 acetylation and p21 upregulation. Together, these findings suggest the translational potential of compound 1 as a breast cancer treatment.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Technology and Resources, National Sun-Yat-sen University, Kaohisung 804, Taiwan.
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Kinmen 891, Taiwan.
| | - Chang-Fang Chiu
- College of Medicine, China Medical University, Taichung 404, Taiwan.
- Cancer Center, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yu-Chang Chen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shi-Wei Chao
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
35
|
Sekar TV, Foygel K, Devulapally R, Kumar V, Malhotra S, Massoud TF, Paulmurugan R. Molecular Imaging Biosensor Monitors p53 Sumoylation in Cells and Living Mice. Anal Chem 2016; 88:11420-11428. [PMID: 27934110 DOI: 10.1021/acs.analchem.6b02048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Small molecule mediated stabilization of p53 tumor suppressor protein through sumoylation is a promising new strategy for improving cancer chemotherapy. A molecular tool that monitors p53 sumoylation status and expedites screening for drugs that enhance p53 sumoylation would be beneficial. We report a molecularly engineered reporter fragment complementation biosensor based on optical imaging of Firefly luciferase (FLuc), to quantitatively image p53 sumoylation and desumoylation in cells and living mice. We initially characterized this biosensor by successfully imaging sumoylation of several target proteins, achieving significant FLuc complementation for ERα (p < 0.01), p53 (p < 0.005), FKBP12 (p < 0.03), ID (p < 0.03), and HDAC1 (p < 0.002). We then rigorously tested the sensitivity and specificity of the biosensor using several variants of p53 and SUMO1, including deletion mutants, and those with modified sequences containing the SUMO-acceptor site of target proteins. Next we evaluated the performance of the biosensor in HepG2 cells by treatment with ginkgolic acid, a drug that reduces p53 sumoylation, as well as trichostatin A, a potential inducer of p53 sumoylation by enhancement of its nuclear export. Lastly, we demonstrated the in vivo utility of this biosensor in monitoring and quantifying the effects of these drugs on p53 sumoylation in living mice using bioluminescence imaging. Adoption of this biosensor in future high throughput drug screening has the important potential to help identify new and repurposed small molecules that alter p53 sumoylation, and to preclinically evaluate candidate anticancer drugs in living animals.
Collapse
Affiliation(s)
- Thillai V Sekar
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine , Palo Alto, California 94304, United States
| | - Kira Foygel
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine , Palo Alto, California 94304, United States
| | - Rammohan Devulapally
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine , Palo Alto, California 94304, United States
| | - Vineet Kumar
- Radiation Oncology, Stanford University School of Medicine , Stanford, California 94305, United States
| | - Sanjay Malhotra
- Radiation Oncology, Stanford University School of Medicine , Stanford, California 94305, United States
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine , Palo Alto, California 94304, United States
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine , Palo Alto, California 94304, United States
| |
Collapse
|
36
|
Li S, Wang F, Qu Y, Chen X, Gao M, Yang J, Zhang D, Zhang N, Li W, Liu H. HDAC2 regulates cell proliferation, cell cycle progression and cell apoptosis in esophageal squamous cell carcinoma EC9706 cells. Oncol Lett 2016; 13:403-409. [PMID: 28123574 DOI: 10.3892/ol.2016.5436] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/26/2016] [Indexed: 01/10/2023] Open
Abstract
Increasing evidence has demonstrated that histone deacetylase 2 (HDAC2) participates in the regulation of a variety of biological processes in numerous tumors. However, the potential role of HDAC2 in the development and progression of esophageal squamous cell carcinoma (ESCC) remains elusive. Immunohistochemistry was utilized to detect the expression of HDAC2, Cell Counting Kit-8 was used to determine the cell proliferation, and flow cytometry was employed to investigate cell cycle and cell apoptosis. Finally, western blotting was employed to detect the protein expression of cyclin D1, p21, B cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). The present study found that expression of HDAC2 protein in ESCC tissues was significantly increased compared with atypical hyperplasia tissues and normal esophageal mucosa (P<0.001). The expression of HDAC2 was not associated with the age or gender of patients (P>0.05), but was closely associated with the histological grade, invasion depth, tumor-node-metastasis stage and lymph node metastasis, respectively (all P<0.001). HDAC2 small interfering RNA effectively downregulated the expression of HDAC2 protein in ESCC EC9706 cells. Downregulation of HDAC2 expression evidently inhibited cell proliferation, arrested cell cycle at the G0/G1 phase and induced cell apoptosis in ESCC EC9706 cells, coupled with increased expression of p21 and Bax proteins and decreased expression of cyclin D1 and Bcl-2 proteins. Overall, the present findings suggest that HDAC2 may play an important role in the development and progression of ESCC and be considered as a novel molecular target for the treatment of ESCC.
Collapse
Affiliation(s)
- Shenglei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yunhui Qu
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaoqi Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ming Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianping Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Na Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongtao Liu
- Laboratory for Cell Biology of School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
37
|
HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene 2016; 36:1804-1815. [PMID: 27721407 DOI: 10.1038/onc.2016.344] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
Abstract
Mutation of p53 is a frequent genetic lesion in pancreatic cancer being an unmet clinical challenge. Mutants of p53 have lost the tumour-suppressive functions of wild type p53. In addition, p53 mutants exert tumour-promoting functions, qualifying them as important therapeutic targets. Here, we show that the class I histone deacetylases HDAC1 and HDAC2 contribute to maintain the expression of p53 mutants in human and genetically defined murine pancreatic cancer cells. Our data reveal that the inhibition of these HDACs with small molecule HDAC inhibitors (HDACi), as well as the specific genetic elimination of HDAC1 and HDAC2, reduce the expression of mutant p53 mRNA and protein levels. We further show that HDAC1, HDAC2 and MYC directly bind to the TP53 gene and that MYC recruitment drops upon HDAC inhibitor treatment. Therefore, our results illustrate a previously unrecognized class I HDAC-dependent control of the TP53 gene and provide evidence for a contribution of MYC. A combined approach targeting HDAC1/HDAC2 and MYC may present a novel and molecularly defined strategy to target mutant p53 in pancreatic cancer.
Collapse
|
38
|
Song M, He G, Wang Y, Pang X, Zhang B. Lentivirus-mediated Knockdown of HDAC1 Uncovers Its Role in Esophageal Cancer Metastasis and Chemosensitivity. J Cancer 2016; 7:1694-1700. [PMID: 27698906 PMCID: PMC5039390 DOI: 10.7150/jca.15086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/07/2016] [Indexed: 01/28/2023] Open
Abstract
Histone deacetylationase 1 (HDAC1) is ubiquitously expressed in various cell lines and tissues and play an important role of regulation gene expression. Overexpression of HDAC1 has been observed in various types of cancers, which indicated that it might be a target for cancer therapy. To test HDAC1 inhibition for cancer treatment, the gene expression of HDAC1 was knockdown mediated by a lentivirus system. Our data showed the gene expression of HDAC1 could be efficiently knockdown by RNAi mediated by lentivirus in esophageal carcinoma EC109 cells. Knockdown of HDAC1 led to significant decrease of cell growth and altered cell cycle distribution. The result of transwell assay showed that the numbers of cells travelled through the micropore membrane was significantly decreased as HDAC1 expression was knockdown. Moreover, HDAC1 knockdown inhibited the migration of EC109 cells as determining by scratch test. Additionally, enhancement of cisplatin-stimulated apoptosis was detected by HDAC1 knockdown. Our data suggested inhibition of HDAC1 expression by lentivirus mediated shRNA might be further applied for esophageal cancer chemotherapy.
Collapse
Affiliation(s)
- Min Song
- Department of Medical Genetics, Third Military Medical University; Department of neurology, the second Affiliated Hospital of Chongqing Medical University
| | - Gang He
- Department of Medical Genetics, Third Military Medical University
| | - Yan Wang
- Department of Medical Genetics, Third Military Medical University
| | - Xueli Pang
- Department of oncology, Southwest Hospital, Third Military Medical University
| | - Bo Zhang
- Department of Medical Genetics, Third Military Medical University
| |
Collapse
|
39
|
Skoge RH, Ziegler M. SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6. J Cell Sci 2016; 129:2972-82. [PMID: 27311481 DOI: 10.1242/jcs.187518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/10/2016] [Indexed: 01/07/2023] Open
Abstract
Deacetylation of α-tubulin at lysine 40 is catalyzed by two enzymes, the NAD-dependent deacetylase SIRT2 and the NAD-independent deacetylase HDAC6, in apparently redundant reactions. In the present study, we tested whether these two enzymes might have distinguishable preferences for the deacetylation of different microtubule structures. Using various agents, we induced tubulin hyperacetylation and analyzed the ensuing formation of distinct microtubule structures. HDAC6 inhibition led to general hyperacetylation of the microtubule network throughout the cell, whereas hyperacetylation induced by SIRT2 inactivation was limited to perinuclear microtubules. Hyperacetylation of these perinuclear microtubules was undiminished following HDAC6 overexpression, whereas reactivation of SIRT2 restored the basal acetylation level and a normal microtubule network. By contrast, SIRT2 and HDAC6 acted similarly on the morphologically different, hyperacetylated microtubule structures induced by taxol, MAP2c overexpression or hyperosmotic stress. These results indicate overlapping and distinct functions of HDAC6 and SIRT2. We propose that the differential activity of the two deacetylases, which target the same acetylated lysine residue, might be related to the recognition of specific structural contexts.
Collapse
Affiliation(s)
- Renate Hvidsten Skoge
- Department of Molecular Biology, University of Bergen, Postbox 7803, Bergen 5020, Norway
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Postbox 7803, Bergen 5020, Norway
| |
Collapse
|
40
|
Bahhaj FE, Denis I, Pichavant L, Delatouche R, Collette F, Linot C, Pouliquen D, Grégoire M, Héroguez V, Blanquart C, Bertrand P. Histone Deacetylase Inhibitors Delivery using Nanoparticles with Intrinsic Passive Tumor Targeting Properties for Tumor Therapy. Am J Cancer Res 2016; 6:795-807. [PMID: 27162550 PMCID: PMC4860888 DOI: 10.7150/thno.13725] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/31/2015] [Indexed: 01/14/2023] Open
Abstract
Fast clearance, metabolism and systemic toxicity are major limits for the clinical use of anti-cancer drugs. Histone deacetylase inhibitors (HDACi) present these defects despite displaying promising anti-tumor properties on tumor cells in vitro and in in vivo model of cancers. Specific delivery of anti-cancer drugs into the tumor should improve their clinical benefit by limiting systemic toxicity and by increasing the anti-tumor effect. In this work, we describe a simple and flexible polymeric nanoparticle platform highly targeting the tumor in vivo and triggering impressive tumor weight reduction when functionalized with HDACi. Our nanoparticles were produced by Ring-Opening Metathesis Polymerization of azido-polyethylene oxide-norbornene macromonomers and functionalized using click chemistry. Using an orthotopic model of peritoneal invasive cancer, a highly selective accumulation of the particles in the tumor was obtained. A combination of epigenetic drugs involving a pH-responsive histone deacetylase inhibitor (HDACi) polymer conjugated to these particles gave 80% reduction of tumor weight without toxicity whereas the free HDACi has no effect. Our work demonstrates that the use of a nanovector with theranostic properties leads to an optimized delivery of potent HDACi in tumor and then, to an improvement of their anti-tumor properties in vivo.
Collapse
|
41
|
Wagner T, Kiweler N, Wolff K, Knauer SK, Brandl A, Hemmerich P, Dannenberg JH, Heinzel T, Schneider G, Krämer OH. Sumoylation of HDAC2 promotes NF-κB-dependent gene expression. Oncotarget 2016; 6:7123-35. [PMID: 25704882 PMCID: PMC4466673 DOI: 10.18632/oncotarget.3344] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 01/15/2023] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) is crucial for the maintenance of homeostasis. It is incompletely understood how nuclear NF-κB and the crosstalk of NF-κB with other transcription factors are controlled. Here, we demonstrate that the epigenetic regulator histone deacetylase 2 (HDAC2) activates NF-κB in transformed and primary cells. This function depends on both, the catalytic activity and an intact HDAC2 sumoylation motif. Several mechanisms account for the induction of NF-κB through HDAC2. The expression of wild-type HDAC2 can increase the nuclear presence of NF-κB. In addition, the ribosomal S6 kinase 1 (RSK1) and the tumor suppressor p53 contribute to the regulation of NF-κB by HDAC2. Moreover, TP53 mRNA expression is positively regulated by wild-type HDAC2 but not by sumoylation-deficient HDAC2. Thus, sumoylation of HDAC2 integrates NF-κB signaling involving p53 and RSK1. Since HDAC2-dependent NF-κB activity protects colon cancer cells from genotoxic stress, our data also suggest that high HDAC2 levels, which are frequently found in tumors, are linked to chemoresistance. Accordingly, inhibitors of NF-κB and of the NF-κB/p53-regulated anti-apoptotic protein survivin significantly sensitize colon carcinoma cells expressing wild-type HDAC2 to apoptosis induced by the genotoxin doxorubicin. Hence, the HDAC2-dependent signaling node we describe here may offer an interesting therapeutic option.
Collapse
Affiliation(s)
- Tobias Wagner
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Nicole Kiweler
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Katharina Wolff
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Shirley K Knauer
- Centre for Medical Biotechnology, Molecular Biology II, University of Duisburg-Essen, Essen, Germany
| | - André Brandl
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Peter Hemmerich
- Leibniz-Institute for Age Research, Fritz-Lipmann-Institute, Jena, Germany
| | - Jan-Hermen Dannenberg
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thorsten Heinzel
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Günter Schneider
- Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, München, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany
| |
Collapse
|
42
|
Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, Bai L, Wang W, Chen M, Wang W, Gu L, Lv K, Chen J. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene 2015; 35:2902-12. [PMID: 26411366 PMCID: PMC4895393 DOI: 10.1038/onc.2015.349] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 12/30/2022]
Abstract
Histone deacetylases (HDACs) are major epigenetic modulators involved in a broad spectrum of human diseases including cancers. As HDACs are promising targets of cancer therapy, it is important to understand the mechanisms of HDAC regulation. In this study, we show that ubiquitin-specific peptidase 4 (USP4) interacts directly with and deubiquitinates HDAC2, leading to the stabilization of HDAC2. Accumulation of HDAC2 in USP4-overexpression cells leads to compromised p53 acetylation as well as crippled p53 transcriptional activation, accumulation and apoptotic response upon DNA damage. Moreover, USP4 targets HDAC2 to downregulate tumor necrosis factor TNFα-induced nuclear factor (NF)-κB activation. Taken together, our study provides a novel insight into the ubiquitination and stability of HDAC2 and uncovers a previously unknown function of USP4 in cancers.
Collapse
Affiliation(s)
- Z Li
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China.,Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Q Hao
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China.,Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - J Luo
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, China
| | - J Xiong
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China.,Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - S Zhang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - T Wang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China
| | - L Bai
- Zhongshan Hospital Xiamen University, Xiamen, China
| | - W Wang
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - M Chen
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - W Wang
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - L Gu
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - K Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - J Chen
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| |
Collapse
|
43
|
Borutinskaitė V, Navakauskienė R. The Histone Deacetylase Inhibitor BML-210 Influences Gene and Protein Expression in Human Promyelocytic Leukemia NB4 Cells via Epigenetic Reprogramming. Int J Mol Sci 2015; 16:18252-69. [PMID: 26287160 PMCID: PMC4581243 DOI: 10.3390/ijms160818252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022] Open
Abstract
Today, cancer is understood as an epigenetic as well as genetic disease. The main epigenetic hallmarks of the cancer cell are DNA methylation and histone modifications. Proteins such as histone deacetylases (HDACs) that cause modifications of histones and other proteins can be targets for novel anticancer agents. Recently, interest in compounds that can inhibit HDACs increased, and now there are many HDACs inhibitors (HDACIs) available with different chemical structures, biological and biochemical properties; hopefully some of them will succeed, probably in combination with other agents, in cancer therapies. In our study we focused on the novel HDACI-BML-210. We found that BML-210 (N-phenyl-N'-(2-Aminophenyl)hexamethylenediamide) inhibits the growth of NB4 cells in dose- and time-dependent manner. In this study we also examined how expression and activity of HDACs are affected after leukemia cell treatment with BML-210. Using a mass spectrometry method we identified proteins that changed expression after treatment with BML-210. We prepared RT-PCR analysis of these genes and the results correlated with proteomic data. Based on these and other findings from our group, we suggest that HDACIs, like BML-210, can be promising anticancer agents in promyelocytic leukemia treatment.
Collapse
Affiliation(s)
- Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius LT 08662, Lithuania.
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius LT 08662, Lithuania.
| |
Collapse
|
44
|
Ding N, Ping L, Feng L, Zheng X, Song Y, Zhu J. Histone deacetylase 6 activity is critical for the metastasis of Burkitt's lymphoma cells. Cancer Cell Int 2014; 14:139. [PMID: 25546298 PMCID: PMC4276069 DOI: 10.1186/s12935-014-0139-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/22/2014] [Indexed: 11/11/2022] Open
Abstract
Background Burkitt’s lymphoma is an aggressive malignancy with high risk of metastasis to extranodal sites, such as bone marrow and central nervous system. The prognosis of metastatic Burkitt’s lymphoma is poor. Here we sought to identify a role of histone deacetylase 6 (HDAC6) in the metastasis of Burkitt’s lymphoma cells. Methods Burkitt’s lymphoma cells were pharmacologically treated with niltubacin, tubacin or sodium butyrate (NaB) or transfected with siRNAs to knock down the expression of HDAC6. Cell migration and invasion ability were measured by transwell assay, and cell cycle progression was analyzed by flow cytometry. Cell adhesion and proliferation was determined by CellTiter-Glo luminescent cell viability assay kit. Cell morphological alteration and microtubule stability were analyzed by immunofluorescence staining. Effect of niltubacin, tubacin and NaB on acetylated tubulin and siRNA efficacy were measured by western blotting. Results Suppression of histone deacetylase 6 activity significantly compromised the migration and invasion of Burkitt’s lymphoma cells, without affecting cell proliferation and cell cycle progression. Mechanistic study revealed that HDAC6 modulated chemokine induced cell shape elongation and cell adhesion probably through its action on microtubule dynamics. Conclusions We identified a critical role of HDAC6 in the metastasis of Burkitt’s lymphoma cells, suggesting that pharmacological inhibition of HDAC6 could be a promising strategy for the management of metastatic Burkitt’s lymphoma.
Collapse
Affiliation(s)
- Ning Ding
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Lingyan Ping
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Lixia Feng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Xiaohui Zheng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Yuqin Song
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Jun Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No.52 Fucheng Road, Haidian District, Beijing, 100142 China
| |
Collapse
|