1
|
Raizen DM, Mullington J, Anaclet C, Clarke G, Critchley H, Dantzer R, Davis R, Drew KL, Fessel J, Fuller PM, Gibson EM, Harrington M, Ian Lipkin W, Klerman EB, Klimas N, Komaroff AL, Koroshetz W, Krupp L, Kuppuswamy A, Lasselin J, Lewis LD, Magistretti PJ, Matos HY, Miaskowski C, Miller AH, Nath A, Nedergaard M, Opp MR, Ritchie MD, Rogulja D, Rolls A, Salamone JD, Saper C, Whittemore V, Wylie G, Younger J, Zee PC, Craig Heller H. Beyond the symptom: the biology of fatigue. Sleep 2023; 46:zsad069. [PMID: 37224457 PMCID: PMC10485572 DOI: 10.1093/sleep/zsad069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Indexed: 05/26/2023] Open
Abstract
A workshop titled "Beyond the Symptom: The Biology of Fatigue" was held virtually September 27-28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue. The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.
Collapse
Affiliation(s)
- David M Raizen
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Janet Mullington
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hugo Critchley
- Brighton and Sussex Medical School Department of Neuroscience, University of Sussex, Brighton, UK
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald Davis
- Department of Biochemistry and Genetics, Stanford University, Palo Alto, CA, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, Center for Transformative Research in Metabolism, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Josh Fessel
- Division of Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Patrick M Fuller
- Department of Neurological Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Mary Harrington
- Department of Psychology, Neuroscience Program, Smith College, Northampton, MA, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, and Departments of Neurology and Pathology, Columbia University, New York City, NY, USA
| | - Elizabeth B Klerman
- Division of Sleep Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nancy Klimas
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Anthony L Komaroff
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Walter Koroshetz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Krupp
- Department of Neurology, NYU Grossman School of Medicine, NYC, NY, USA
| | - Anna Kuppuswamy
- University College London, Queen Square Institute of Neurology, London, England
| | - Julie Lasselin
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Laura D Lewis
- Center for Systems Neuroscience, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Heidi Y Matos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maiken Nedergaard
- Departments of Neurology and Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark R Opp
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Marylyn D Ritchie
- Department of Genetics, Institute for Biomedical Informatics, Penn Center for Precision Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dragana Rogulja
- Department of Neurobiology, Harvard University, Boston, MA, USA
| | - Asya Rolls
- Rappaport Institute for Medical Research, Technion, Israel Institute of Technology, Haifa, Israel
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Clifford Saper
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Vicky Whittemore
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Wylie
- Rocco Ortenzio Neuroimaging Center at Kessler Foundation, East Hanover, NJ, USA
| | - Jarred Younger
- Department of Psychology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Phyllis C Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - H Craig Heller
- Department of Biology, Stanford University and Sleep Research Society, Stanford, CA, USA
| |
Collapse
|
2
|
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z. Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders? Front Cell Neurosci 2023; 17:1188306. [PMID: 37435045 PMCID: PMC10330732 DOI: 10.3389/fncel.2023.1188306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.
Collapse
Affiliation(s)
- Mengxin Que
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Ouyang J, Peng Y, Gong Y. New Perspectives on Sleep Regulation by Tea: Harmonizing Pathological Sleep and Energy Balance under Stress. Foods 2022; 11:3930. [PMID: 36496738 PMCID: PMC9738644 DOI: 10.3390/foods11233930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/09/2022] Open
Abstract
Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in stressful environments or during illness. Sickness sleep plays an important role in maintaining energy homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich beverage, has multiple health benefits, including lowering stress and regulating energy metabolism and natural sleep. However, the role of tea in regulating sickness sleep has received little attention. The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of energy homeostasis in injured organisms remains to be elucidated. This review examines the current research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.
Collapse
Affiliation(s)
- Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuxuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Dupont D, Lin JS, Peyron F, Akaoka H, Wallon M. Chronic Toxoplasma gondii infection and sleep-wake alterations in mice. CNS Neurosci Ther 2021; 27:895-907. [PMID: 34085752 PMCID: PMC8265947 DOI: 10.1111/cns.13650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Toxoplasma gondii (Tg) is an intracellular parasite infecting more than a third of the human population. Yet, the impact of Tg infection on sleep, a highly sensitive index of brain functions, remains unknown. We designed an experimental mouse model of chronic Tg infection to assess the effects on sleep-wake states. METHODS Mice were infected using cysts of the type II Prugniaud strain. We performed chronic sleep-wake recordings and monitoring as well as EEG power spectral density analysis in order to assess the quantitative and qualitative changes of sleep-wake states. Pharmacological approach was combined to evaluate the direct impact of the infection and inflammation caused by Tg. RESULTS Infected mouse exhibited chronic sleep-wake alterations over months, characterized by a marked increase (>20%) in time spent awake and in cortical EEG θ power density of all sleep-wake states. Meanwhile, slow-wave sleep decreased significantly. These effects were alleviated by an anti-inflammatory treatment using corticosteroid dexamethasone. CONCLUSION We demonstrated for the first time the direct consequences of Tg infection on sleep-wake states. The persistently increased wakefulness and reduced sleep fit with the parasite's strategy to enhance dissemination through host predation and are of significance in understanding the neurodegenerative and neuropsychiatric disorders reported in infected patients.
Collapse
Affiliation(s)
- Damien Dupont
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Physiologie intégrée du système d'éveil, Faculté de Médecine, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Jian-Sheng Lin
- Physiologie intégrée du système d'éveil, Faculté de Médecine, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - François Peyron
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Hideo Akaoka
- Physiologie intégrée du système d'éveil, Faculté de Médecine, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Martine Wallon
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Physiologie intégrée du système d'éveil, Faculté de Médecine, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
5
|
Alfardan R, Guo C, Toth LA, Nie D. Impaired Recovery from Influenza A/X-31(H3N2) Infection in Mice with 8-Lipoxygenase Deficiency. Med Sci (Basel) 2019; 7:medsci7040060. [PMID: 31013822 PMCID: PMC6524062 DOI: 10.3390/medsci7040060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/03/2023] Open
Abstract
Lipoxygenase-derived lipid mediators can modulate inflammation and are stimulated in response to influenza infections. We report an effect of 8-lipoxygenase (ALOX8) on the recovery of mice after infection with Influenza virus X31. We compared the responses of 3- and 6-month-old mice with a deletion of ALOX8 (ALOX8−/−) to influenza infections with those of age-matched littermate wild-type mice (ALOX8+/+). The duration of illness was similar in 3-month-old ALOX8−/− and ALOX8+/+ mice. However, the 6-month-old ALOX8−/− mice showed a prolonged state of illness compared with ALOX8+/+ mice, as evidenced by reduced body temperatures, reduced locomotor activities, and delayed weight recovery. Although residual viral RNA in the lungs at day 10 post-inoculation was significantly influenced by the age of the ALOX8−/− mice, there were no significant differences between ALOX8−/− and ALOX8+/+ mice within the same age groups. The levels of cytokines interleukin 6 (IL-6) and keratinocyte chemoattractant (KC) differed significantly between 6-month-old ALOX8−/− and ALOX8+/+ mice 10 days after viral inoculation. Our data suggest that ALOX8 deficiency in mice leads to impaired recovery from influenza infection in an age-dependent manner.
Collapse
Affiliation(s)
- Rana Alfardan
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | - Changxiong Guo
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | - Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | - Daotai Nie
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| |
Collapse
|
6
|
Dong S, Forrest JC, Liang X. Murine Gammaherpesvirus 68: A Small Animal Model for Gammaherpesvirus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:225-236. [DOI: 10.1007/978-981-10-5765-6_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Trammell RA, Toth LA. Effects of Chronic Diurnal Disruption and Acute Inflammatory Challenge on Mice with Latent Murine Gammaherpesvirus Infection. Comp Med 2016; 66:445-454. [PMID: 28304247 PMCID: PMC5157959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/28/2016] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
People who engage in shift work (SW) have increased risk of developing illnesses, including infectious diseases and various inflammatory conditions. We hypothesized that exposure to repeated cycles of diurnal disruption, mimicking SW, influences viral clearance, latent viral load, or viral reactivation from latency in mice infected with murine gammaherpesvirus (MuGHV). To test this idea, we inoculated BALB/cByJ and C.129S7(B6)-Ifng tm1Ts/J (IFNgKO) mice with MuGHV and housed them under either a stable light:dark (LD) cycle or one mimicking SW. Compared with BALB/cByJ mice, IFNgKO mice generally had higher levels of lytic virus during the 6-wk period after inoculation. In addition, more IFNgKO mice were positive for replicating virus than were BALB/cByJ mice. Exposure to SW did not alter these measures consistently. After the virus had entered the latent phase of infection, mice received either LPS or pyrogen-free saline intraperitoneally. Mice exposed to SW and then injected with LPS during latent infection had greater viral loads and more replicating virus in the lung at 7 d after injection than did either mice that received pyrogen-free saline or those exposed to LD and then treated with LPS. Some cytokine and chemokine concentrations were changed in lung collected 1 d after but not at 7 d after LPS administration. These findings suggest that exposure to repeated chronic diurnal disruption and an acute inflammatory challenge during latent MuGHV infection, in the context of impaired host immune competence, contribute to enhanced viral reactivity and an increased viral load that might trigger 'sickness behavior' symptoms of infectious disease and perhaps contribute to chronic fatigue syndrome.
Collapse
Affiliation(s)
- Rita A Trammell
- Departments of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Linda A Toth
- Departments of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois;,
| |
Collapse
|
8
|
Effects of sleep disruption and high fat intake on glucose metabolism in mice. Psychoneuroendocrinology 2016; 68:47-56. [PMID: 26943344 PMCID: PMC4851877 DOI: 10.1016/j.psyneuen.2016.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 11/23/2022]
Abstract
Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this sleep phase contributes to restorative effects of recovery sleep on glycemic control.
Collapse
|
9
|
Ingiosi AM, Opp MR. Sleep and immunomodulatory responses to systemic lipopolysaccharide in mice selectively expressing interleukin-1 receptor 1 on neurons or astrocytes. Glia 2016; 64:780-91. [PMID: 26775112 DOI: 10.1002/glia.22961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
Sleep-wake behavior is altered in response to immune challenge. Although the precise mechanisms that govern sickness-induced changes in sleep are not fully understood, interleukin-1β (IL-1) is one mediator of these responses. To better understand mechanisms underlying sleep and inflammatory responses to immune challenge, we used two transgenic mouse strains that express IL-1 receptor 1 (IL1R1) only in the central nervous system and selectively on neurons or astrocytes. Electroencephalographic recordings from transgenic and wild-type mice reveal that systemic challenge with lipopolysaccharide (LPS) fragments sleep, suppresses rapid eye movement sleep (REMS), increases non-REMS (NREMS), diminishes NREM delta power, and induces fever in all genotypes. However, the magnitude of REMS suppression is greater in mice expressing IL1R1 on astrocytes compared with mice in which IL1R1 is selectively expressed on neurons. Furthermore, there is a delayed increase in NREM delta power when IL1R1 is expressed on astrocytes. LPS-induced sleep fragmentation is reduced in mice expressing IL1R1 on neurons. Although LPS increases IL-1 and IL-6 in brain of all genotypes, this response is attenuated when IL1R1 is expressed selectively on neurons or on astrocytes. Collectively, these data suggest that in these transgenic mice under the conditions of this study it is neuronal IL1R1 that plays a greater role in LPS-induced suppression of REMS and NREM delta power, whereas astroglial IL1R1 is more important for sleep fragmentation after this immune challenge. Thus, aspects of central responses to LPS are modulated by IL1R1 in a cell type-specific manner.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan.,Program in Biomedical Sciences, University of Michigan, Ann Arbor, Michigan.,Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Mark R Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington.,Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J Neurosci 2015; 43:1298-306. [PMID: 26369866 PMCID: PMC4792792 DOI: 10.1111/ejn.13074] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 01/05/2023]
Abstract
A distributed network of neurons regulates wake, non‐rapid eye movement (NREM) sleep, and REM sleep. However, there are also glia in the brain, and there is growing evidence that neurons and astroglia communicate intimately to regulate behaviour. To identify the effect of optogenetic stimulation of astrocytes on sleep, the promoter for the astrocyte‐specific cytoskeletal protein, glial fibrillary acidic protein (GFAP) was used to direct the expression of channelrhodopsin‐2 (ChR2) and the linked reporter gene, enhanced yellow fluorescent protein (EYFP), in astrocytes. rAAV‐GFAP‐ChR2 (H134R)‐EYFP or rAAV‐GFAP‐EYFP was microinjected (750 nL) into the posterior hypothalamus (bilateral) of mice. Three weeks later baseline sleep was recorded (0 Hz) and 24 h later optogenetic stimulation applied during the first 6 h of the lights‐off period. Mice with ChR2 were given 5, 10 or 30 Hz stimulation for 6 h (10‐ms pulses; 1 mW; 1 min on 4 min off). At least 36 h elapsed between the stimulation periods (5, 10, 30 Hz) and although 0 Hz was always first, the order of the other three stimulation rates was randomised. In mice with ChR2 (n = 7), 10 Hz, but not 5 or 30 Hz stimulation increased both NREM and REM sleep during the 6‐h period of stimulation. Delta power did not increase. In control mice (no ChR2; n = 5), 10 Hz stimulation had no effect. This study demonstrates that direct stimulation of astrocytes powerfully induces sleep during the active phase of the sleep–wake cycle and underlines the inclusion of astrocytes in network models of sleep–wake regulation.
Collapse
Affiliation(s)
- Dheeraj Pelluru
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Roda Rani Konadhode
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Narayan R Bhat
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Priyattam J Shiromani
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| |
Collapse
|
11
|
Trammell RA, Toth LA. Effects of Sleep Fragmentation and Chronic Latent Viral Infection on Behavior and Inflammation in Mice. Comp Med 2015; 65:173-185. [PMID: 26141442 PMCID: PMC4485626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/24/2013] [Accepted: 11/02/2013] [Indexed: 06/04/2023]
Abstract
Many chronic diseases are associated with both fatigue and disrupted or nonrestorative sleep. In addition, so-called 'sickness behaviors' (for example, anorexia, anhedonia, reduced social interaction, fatigue) are common during infectious and inflammatory disease and have been linked to facets of the immune response. To study these relationships, we used murine gammaherpesvirus (MuGHV), a natural pathogen of wild rodents that provides an experimental model for studying the pathophysiology of an Epstein-Barr (EBV)-like γ-herpesvirus infection in mice. We exposed male and female C57BL/6J mice that were either uninfected or latently infected with MuGHV to either sleep fragmentation (SF) or control conditions and measured the effects on behavior and markers of inflammation. Exposure of infected male mice to SF during the normal somnolent (light) phase significantly reduced locomotor activity during the subsequent active phase, despite an intervening 6-h rest period. Infection was associated with significant increases in lung IFNγ and CXC motif ligand (CXCL) 10 in both male and female mice. In both infected and uninfected male mice, exposure to SF was associated with lower levels of IL1β and C-C motif ligand (CCL) 3 in lung. Exposure of infected female mice to SF led to reductions in lung IL2, CXCL1, and CCL 3. Thus, compared with control conditions, SF was generally associated with lower concentrations of various cytokines in lung. These findings, together with our previous work, indicate that complex interactions among several host factors likely contribute to the behavioral and inflammatory changes associated with viral infection and sleep disruption even in a well-controlled mouse model.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, USA
| | - Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, USA.
| |
Collapse
|
12
|
Trammell RA, Toth LA. Behavioral perturbation and sleep in healthy and virus-infected inbred mice. Comp Med 2014; 64:283-292. [PMID: 25296015 PMCID: PMC4170093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/07/2013] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Murine gammaherpesvirus (MuGHV) is a natural pathogen of wild rodents that has been studied extensively in terms of host immune responses to herpesviruses during acute infection, latency, and reactivation from latency. Although herpesvirus infections in people can be associated with fatigue and excessive sleepiness during both acute and latent infection, MuGHV has not been assessed extensively as a model for studying the behavioral consequences of chronic latent herpesvirus infections. To assess MuGHV infection as a model for evaluating fatigue and assessing potential mechanisms that underlie the exacerbation of fatigue during chronic viral disease, we evaluated sleep, temperature, and activity after exposure of healthy and latently MuGHV-infected mice to sleep fragmentation and social interaction. Neither treatment nor infection significantly affected temperature. However, at some time points, latently infected mice that underwent sleep fragmentation had less locomotor activity and more slow-wave sleep than did mice exposed to social interaction. In addition, delta-wave amplitude during slow-wave sleep was lower in infected mice exposed to sleep fragmentation compared with uninfected mice exposed to the same treatment. Both reduced locomotor activity and increased time asleep could indicate fatigue in infected mice after sleep fragmentation; reduced delta-wave amplitude during slow-wave sleep indicates a light plane of sleep from which subjects would be aroused easily. Identifying the mechanisms that underlie sleep responses of mice with chronic latent MuGHV infection may increase our understanding of fatigue during infec- tions and eventually contribute to improving the quality of life for people with chronic viral infections.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| |
Collapse
|
13
|
Sutton BC, Opp MR. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization. Sleep 2014; 37:515-24. [PMID: 24587574 DOI: 10.5665/sleep.3488] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. DESIGN This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. METHODS Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. RESULTS Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased numbers of sleep-wake state transitions during the light and dark periods; changes in nonrapid eye movement (NREM) sleep, rapid eye movement sleep, and wakefulness; and altered delta power during NREM sleep. These effects persisted for at least 3 weeks postsensitization. CONCLUSIONS Our data demonstrate that sleep fragmentation combined with musculoskeletal sensitization exacerbates the physiological and behavioral responses of mice to musculoskeletal sensitization, including mechanical hypersensitivity and sleep-wake behavior. These data contribute to increasing literature demonstrating bidirectional relationships between sleep and pain. The prevalence and incidence of insufficient sleep and pathologies characterized by chronic musculoskeletal pain are increasing in the United States. These demographic data underscore the need for research focused on insufficient sleep and chronic pain so that the quality of life for the millions of individuals with these conditions may be improved.
Collapse
Affiliation(s)
- Blair C Sutton
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA ; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Mark R Opp
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA ; Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA
| |
Collapse
|
14
|
Febinger HY, George A, Priestley J, Toth LA, Opp MR. Effects of housing condition and cage change on characteristics of sleep in mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2014; 53:29-37. [PMID: 24411777 PMCID: PMC3894645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/17/2013] [Accepted: 08/02/2013] [Indexed: 06/03/2023]
Abstract
Although human subjects are widely used to study sleep and sleep disorders, animals have been invaluable in developing our understanding of the physiology of sleep and underlying mechanisms of sleep disorders. Environmental stimuli are likely to modify sleep in both animals and people, suggesting that environmental stability must be controlled carefully by both husbandry and research staff to allow collection of valid results with minimal numbers of animals. However, few studies have measured the effects of cage condition on sleep parameters in mice. Current guidelines recommend social housing and environmental enrichment for standard rodent housing. Environmental factors such as these create potential confounds in studies for which facets of sleep are outcome measures. We therefore sought to determine whether cage changes, group housing, or single housing with a shelter altered measures of sleep in C57BL/6J mice. The resulting data indicate that 1) cage changing disrupts sleep for approximately 3 h; 2) group housing is associated with shorter bouts of rapid-eye-movement sleep (REMS) and less slow-wave sleep (SWS) during the light phase and with more REMS during the dark phase; and 3) mice housed with a shelter spend less time awake and more time in SWS, with longer bouts of SWS during the dark phase. In additional, both group housing and housing with a shelter were associated with less locomotor activity than occurred in individually housed mice without a shelter. These findings provide evidence for long-held beliefs that housing conditions must be controlled carefully in studies that require assessment of sleep.
Collapse
Affiliation(s)
- Heidi Y Febinger
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Amrita George
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Jill Priestley
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Mark R Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
15
|
Trammell RA, Verhulst S, Toth LA. Environmental perturbation, inflammation and behavior in healthy and virus-infected mice. Brain Behav Immun 2013; 33:139-52. [PMID: 23867134 DOI: 10.1016/j.bbi.2013.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/06/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022] Open
Abstract
The development of so-called "sickness behaviors" (e.g., anorexia, anhedonia, reduced social interaction, fatigue) during infectious and inflammatory disease has been linked to facets of the immune response. Such problems can be particularly troublesome during chronic latent infection, as the host immune system must employ continual vigilance to maintain viral latency. Epstein-Barr virus (EBV) is a ubiquitous human gamma-herpesvirus that causes acute disease and establishes life-long latency in people. Murine gammaherpesvirus (MuGHV) is a natural pathogen of wild rodents that provides an experimental model for studying the pathophysiology of an EBV-like gamma-herpesvirus in mice. To evaluate this model with regard to sickness behavior and its exacerbation during a chronic latent viral disease, we exposed uninfected and MuGHV-infected C57BL/6J and BALB/cByJ mice to novel and potentially stressful environmental perturbations and measured the impact of these challenges on behavior and markers of inflammation. The data indicate that exposure of mice to environmental perturbations during the normal somnolent phase is associated with reduced activity during the subsequent active phase, despite an intervening rest period. Effects on inflammatory mediators were complex due to independent and interactive effects of infection status, mouse strain, and exposure to stressful environment. However, GCSF and MCP1 were consistently elevated in lung both immediately after and 12h after exposure to a "dirty" cage containing the resident mouse (DCR); this increase occurred in both C57BL/6J and BALB/cByJ mice and was independent of infection status. At 12h after DCR, IL1β and IP10 were also consistently elevated in lung. In response to DCR, BALB/cByJ mice showed a greater number of significant cytokine effects than did C57BL/6J mice. With regard to infection status, IP10 was consistently elevated in lung at both time points regardless of mouse strain or DCR exposure. Several analytes were affected by mouse strain in serum or lung at one or both time points, with most strain differences present in serum at E18. Taken together, the data show that exposure of mice to environmental perturbations is associated with systemic inflammation that is in part independent of genetic background or latent MuGHV infection and with reduced activity that could represent fatigue, depression, or other facets of sickness behavior.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, United States
| | | | | |
Collapse
|
16
|
Prolonged sleep fragmentation of mice exacerbates febrile responses to lipopolysaccharide. J Neurosci Methods 2013; 219:104-12. [PMID: 23872243 DOI: 10.1016/j.jneumeth.2013.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Sleep disruption is a frequent occurrence in modern society. Whereas many studies have focused on the consequences of total sleep deprivation, few have investigated the condition of sleep disruption. NEW METHOD We disrupted sleep of mice during the light period for 9 consecutive days using an intermittently rotating disc. RESULTS Electroencephalogram (EEG) data demonstrated that non-rapid eye movement (NREM) sleep was severely fragmented and REM sleep was essentially abolished during the 12h light period. During the dark period, when sleep was not disrupted, neither NREM sleep nor REM sleep times differed from control values. Analysis of the EEG revealed a trend for increased power in the peak frequency of the NREM EEG spectra during the dark period. The fragmentation protocol was not overly stressful as body weights and water consumption remained unchanged, and plasma corticosterone did not differ between mice subjected to 3 or 9 days of sleep disruption and home cage controls. However, mice subjected to 9 days of sleep disruption by this method responded to lipopolysaccharide with an exacerbated febrile response. COMPARISON WITH EXISTING METHODS Existing methods to disrupt sleep of laboratory rodents often subject the animal to excessive locomotion, vibration, or sudden movements. This method does not suffer from any of these confounds. CONCLUSIONS This study demonstrates that prolonged sleep disruption of mice exacerbates febrile responses to lipopolysaccharide. This device provides a method to determine mechanisms by which chronic insufficient sleep contributes to the etiology of many pathologies, particularly those with an inflammatory component.
Collapse
|
17
|
Toth LA, Bhargava P. Animal models of sleep disorders. Comp Med 2013; 63:91-104. [PMID: 23582416 PMCID: PMC3625050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/21/2012] [Accepted: 11/25/2012] [Indexed: 06/02/2023]
Abstract
Problems with sleep affect a large part of the general population, with more than half of all people in the United States reporting difficulties with sleep or insufficient sleep at various times and about 40 million affected chronically. Sleep is a complex physiologic process that is influenced by many internal and environmental factors, and problems with sleep are often related to specific personal circumstances or are based on subjective reports from the affected person. Although human subjects are used widely in the study of sleep and sleep disorders, the study of animals has been invaluable in developing our understanding about the physiology of sleep and the underlying mechanisms of sleep disorders. Historically, the use of animals for the study of sleep disorders has arguably been most fruitful for the condition of narcolepsy, in which studies of dogs and mice revealed previously unsuspected mechanisms for this condition. The current overview considers animal models that have been used to study 4 of the most common human sleep disorders-insomnia, narcolepsy, restless legs syndrome, and sleep apnea-and summarizes considerations relevant to the use of animals for the study of sleep and sleep disorders. Animal-based research has been vital to the elucidation of mechanisms that underlie sleep, its regulation, and its disorders and undoubtedly will remain crucial for discovering and validating sleep mechanisms and testing interventions for sleep disorders.
Collapse
Affiliation(s)
- Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| | | |
Collapse
|
18
|
Neurobiological studies of fatigue. Prog Neurobiol 2012; 99:93-105. [PMID: 22841649 DOI: 10.1016/j.pneurobio.2012.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/24/2012] [Accepted: 07/09/2012] [Indexed: 01/18/2023]
Abstract
Fatigue is a symptom associated with many disorders, is especially common in women and in older adults, and can have a huge negative influence on quality of life. Although most past research on fatigue uses human subjects instead of animal models, the use of appropriate animal models has recently begun to advance our understanding of the neurobiology of fatigue. In this review, results from animal models using immunological, developmental, or physical approaches to study fatigue are described and compared. Common across these animal models is that fatigue arises when a stimulus induces activation of microglia and/or increased cytokines and chemokines in the brain. Neurobiological studies implicate structures in the ascending arousal system, sleep executive control areas, and areas important in reward. In addition, the suprachiasmatic nucleus clearly plays an important role in homeostatic regulation of the neural network mediating fatigue. This nucleus responds to cytokines, shows decreased amplitude firing rate output in models of fatigue, and responds to exercise, one of our few treatments for fatigue. This is a young field but very important as the symptom of fatigue is common across many disorders and we do not have effective treatments.
Collapse
|
19
|
Jakubcakova V, Flachskamm C, Deussing JM, Kimura M. Deficiency of corticotropin-releasing hormone type-2 receptor alters sleep responses to bacterial lipopolysaccharide in mice. Brain Behav Immun 2011; 25:1626-36. [PMID: 21704697 DOI: 10.1016/j.bbi.2011.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/10/2011] [Accepted: 06/10/2011] [Indexed: 11/16/2022] Open
Abstract
In response to infectious stimuli, enhanced non-rapid eye movement sleep (NREMS) occurs, which is driven by pro-inflammatory cytokines. Those cytokines further elicit the release of corticotropin-releasing hormone (CRH), resulting in the activation of the hypothalamic-pituitary-adrenocortical axis. Signals of CRH are mediated by two receptor types, namely CRH-R1 and -R2. The role of CRH-R1 in wake-promoting effects of CRH has been rather clarified, whereas the involvement of CRH-R2 in sleep-wake regulation is poorly understood. To investigate whether CRH-R2 interferes with sleep responses to immune challenge, this study examined effects of bacterial lipopolysaccharide (LPS) on sleep in CRH-R2 deficient (KO) mice. CRH-R2 KO mice and control littermates (CL) were implanted with electrodes for recording electroencephalogram (EEG) and electromyogram. After recovery, LPS was applied by intraperitoneal injection at doses of 0.1, 1.0, or 10 μg at dark onset. In response to LPS injection NREMS of both genotypes was enhanced in a dose-dependent manner. However, CRH-R2 KO mice showed a larger increase, in particular after 10 μg of LPS compared to CL mice. During postinjection, reduced delta power for NREMS was detected in both genotypes after each dose, but the highest dose evoked a marked elevation of EEG activity in a limited frequency band (4 Hz). However, the EEG power of lower frequencies (1-2 Hz) increased more in CRH-R2 KO than in CL mice. The results indicated that CRH-R2 KO mice show greater NREMS responses to LPS, providing evidence that CRH-R2 participates in sleep-wake regulation via an interaction with the activated immune system.
Collapse
|