1
|
Merolla A, De Lorenzo R, Paolazzi G, Critelli S, Palladini M, Damanti S, Vitali G, Canti V, Cilla M, Martinenghi S, Falbo E, Ferrante M, Castellani J, Pacioni G, Magnaghi C, Fumagalli A, Mazza MG, Benedetti F, Rovere-Querini P. Micronized/ultramicronized palmitoylethanolamide improves depression and fatigue in coronavirus disease 2019 (COVID-19) survivors. Int Clin Psychopharmacol 2024; 39:361-368. [PMID: 38381905 PMCID: PMC11424064 DOI: 10.1097/yic.0000000000000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/25/2023] [Indexed: 02/23/2024]
Abstract
Coronavirus disease 2019 (COVID-19) may lead to neuropsychiatric sequelae. Palmitoylethanolamide (PEA) is an anti-inflammatory and neuroprotective amide used in depressive syndromes. Here we investigate whether micronized/ultramicronized (m/um) PEA improves neuropsychiatric sequelae in COVID-19 survivors. Patients evaluated at our post-COVID-19 outpatient clinic between February and August 2021 and presenting neuropsychiatric manifestations ( n = 98) were offered treatment with m/umPEA 600 mg twice daily for 3 months. Those accepting m/umPEA therapy ( n = 57) were compared with those who did not ( n = 41), in terms of depression, fatigue, chronic pain and subjective well-being, through validated scales administered pre- and posttreatment. The two groups did not differ in terms of demographics, comorbidities, psychiatric history, antidepressant therapy, acute COVID-19 severity and baseline neuropsychiatric status. Patients receiving m/umPEA showed a greater improvement in depression and fatigue (both P < 0.05). Conversely, no association was found with changes in chronic pain or subjective well-being. At multivariable logistic regression, m/umPEA predicted neuropsychiatric improvement independently of age, sex and baseline neuropsychiatric status. Worse pretreatment fatigue and subjective well-being identified those who most likely benefited from treatment. In conclusion, despite its retrospective nature, our study suggests that m/umPEA may improve depression and fatigue in COVID-19 survivors, justifying future research in this setting.
Collapse
Affiliation(s)
- Aurora Merolla
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
| | - Rebecca De Lorenzo
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
| | - Giacomo Paolazzi
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
| | - Sara Critelli
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
| | - Mariagrazia Palladini
- Unit of Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital
| | - Sarah Damanti
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Hospital
| | - Giordano Vitali
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
| | - Valentina Canti
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
| | - Marta Cilla
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
| | | | - Elisabetta Falbo
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
| | - Marica Ferrante
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
| | - Jacopo Castellani
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
| | - Giacomo Pacioni
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
| | | | - Anna Fumagalli
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
| | - Mario G. Mazza
- School of Medicine and Surgery, Vita-Salute San Raffaele University
- Unit of Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital
| | - Francesco Benedetti
- School of Medicine and Surgery, Vita-Salute San Raffaele University
- Unit of Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital
| | - Patrizia Rovere-Querini
- Post-COVID-19 Outpatient Clinic, IRCCS San Raffaele Hospital
- School of Medicine and Surgery, Vita-Salute San Raffaele University
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Toti A, Micheli L, Lucarini E, Ferrara V, Ciampi C, Margiotta F, Failli P, Gomiero C, Pallecchi M, Bartolucci G, Ghelardini C, Di Cesare Mannelli L. Ultramicronized N-Palmitoylethanolamine Regulates Mast Cell-Astrocyte Crosstalk: A New Potential Mechanism Underlying the Inhibition of Morphine Tolerance. Biomolecules 2023; 13:233. [PMID: 36830602 PMCID: PMC9953591 DOI: 10.3390/biom13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Persistent pain can be managed with opioids, but their use is limited by the onset of tolerance. Ultramicronized N-palmitoylethanolamine (PEA) in vivo delays morphine tolerance with mechanisms that are still unclear. Since glial cells are involved in opioid tolerance and mast cells (MCs) are pivotal targets of PEA, we hypothesized that a potential mechanism by which PEA delays opioid tolerance might depend on the control of the crosstalk between these cells. Morphine treatment (30 μM, 30 min) significantly increased MC degranulation of RBL-2H3 cells, which was prevented by pre-treatment with PEA (100 μM, 18 h), as evaluated by β-hexosaminidase assay and histamine quantification. The impact of RBL-2H3 secretome on glial cells was studied. Six-hour incubation of astrocytes with control RBL-2H3-conditioned medium, and even more so co-incubation with morphine, enhanced CCL2, IL-1β, IL-6, Serpina3n, EAAT2 and GFAP mRNA levels. The response was significantly prevented by the secretome from PEA pre-treated RBL-2H3, except for GFAP, which was further upregulated, suggesting a selective modulation of glial signaling. In conclusion, ultramicronized PEA down-modulated both morphine-induced MC degranulation and the expression of inflammatory and pain-related genes from astrocytes challenged with RBL-2H3 medium, suggesting that PEA may delay morphine tolerance, regulating MC-astrocyte crosstalk.
Collapse
Affiliation(s)
- Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Francesco Margiotta
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Paola Failli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Chiara Gomiero
- Epitech Group SpA, Via Luigi Einaudi 13, 35030 Padua, Italy
| | - Marco Pallecchi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Gianluca Bartolucci
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
3
|
PPARα agonist relieves spinal cord injury in rats by activating Nrf2/HO-1 via the Raf-1/MEK/ERK pathway. Aging (Albany NY) 2021; 13:24640-24654. [PMID: 34799468 PMCID: PMC8660597 DOI: 10.18632/aging.203699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
Objective: To observe the inhibitory effects of the peroxisome proliferator-activated receptor alpha (PPARα) agonist palmitoylethanolamide (PEA) on inflammatory responses and oxidative stress injury in rats with spinal cord injury (SCI). Methods: The SCI rat model was established using modified Allen's method and the changes in rats’ joint motion were observed by Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) at 1, 3 and 7 days after modeling, HE Staining and Nissl Staining has been carried out to evaluate the pathological lesion of spinal cords in rats. Besides, Immunohistochemical (IHC) was performed to detect the reactive oxygen species (ROS), expression levels of acrylamide (ACR) and manganese superoxide dismutase (MnSOD) in rat spinal cords, and Western Blotting was applied to measure protein expression levels of nuclear factor-kappa B (NF-κB), B cell lymphoma-2 (Bcl-2), BCL-2 associated X (BAX), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), phosphorylated (p)-Akt, HO-1, Nrf2, trithorax-1 (TRX-1), Raf-1, MEK, ERK, p-MEK and p-ERK. Results: The PPARα agonist PEA could alleviate SCI in rats, inhibit inflammatory responses, mitigate oxidative stress injury, reduce the apoptotic rate and promote SCI rats motor function recovery. In addition, the PPARα agonist PEA was able to activate the phosphorylation of MEK and ERK, stimulate Nrf-2 translocation into the nucleus and up-regulate the expressions of HO-1 and TRX-1. Conclusion: PPARα agonist PEA can relieve SCI in rats by inhibiting inflammatory responses and oxidative stress, which may involve a mechanism associated with the activation of Nrf2/HO-1 via the Raf-1/MEK/ERK pathway.
Collapse
|
4
|
Successful and Unsuccessful Brain Aging in Pets: Pathophysiological Mechanisms behind Clinical Signs and Potential Benefits from Palmitoylethanolamide Nutritional Intervention. Animals (Basel) 2021; 11:ani11092584. [PMID: 34573549 PMCID: PMC8470385 DOI: 10.3390/ani11092584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Cognitive dysfunction syndrome is a common yet underreported neurodegenerative disorder of elderly dogs and cats and a natural model of human Alzheimer’s disease. The increasingly expanding life expectancy means a larger proportion of affected animals in the coming decades. Although far from being curative, available treatments are more effective the sooner they are started. Educating veterinary practitioners and owners in the early recognition of age-related cognitive dysfunction is thus mandatory. By shedding light on the mechanism underlying the disease, novel and more effective approaches might be developed. Emerging evidence shows that successful and unsuccessful brain aging share a common underlying mechanism that is neuroinflammation. This process involves astrocytes, microglia, and mast cells and has a restorative homeostatic intent. However, for reasons not fully elucidated yet, neuroinflammation can also exert detrimental consequences substantially contributing to neurodegeneration. Here we summarize the evidence accumulated so far on the pathogenic role of neuroinflammation in the onset and progression of age-related neurodegenerative disorders, such as Alzheimer’s disease. The potential benefit of palmitoylethanolamide dietary intervention in rebalancing neuroinflammation and exerting neuroprotection is also discussed. Abstract Canine and feline cognitive dysfunction syndrome is a common neurodegenerative disorder of old age and a natural model of human Alzheimer’s disease. With the unavoidable expanding life expectancy, an increasing number of small animals will be affected. Although there is no cure, early detection and intervention are vitally important to delay cognitive decline. Knowledge of cellular and molecular mechanisms underlying disease onset and progression is an equally decisive factor for developing effective approaches. Uncontrolled neuroinflammation, orchestrated in the central nervous system mainly by astrocytes, microglia, and resident mast cells, is currently acknowledged as a hallmark of neurodegeneration. This has prompted scientists to find a way to rebalance the altered crosstalk between these cells. In this context, great emphasis has been given to the role played by the expanded endocannabinoid system, i.e., endocannabinoidome, because of its prominent role in physiological and pathological neuroinflammation. Within the endocannabinoidome, great attention has been paid to palmitoylethanolamide due to its safe and pro-homeostatic effects. The availability of new ultramicronized formulations highly improved the oral bioavailability of palmitoylethanolamide, paving the way to its dietary use. Ultramicronized palmitoylethanolamide has been repeatedly tested in animal models of age-related neurodegeneration with promising results. Data accumulated so far suggest that supplementation with ultramicronized palmitoylethanolamide helps to accomplish successful brain aging.
Collapse
|
5
|
Pergolizzi JV, Varrassi G, Magnusson P, Breve F, Raffa RB, Christo PJ, Chopra M, Paladini A, LeQuang JA, Mitchell K, Coluzzi F. Pharmacologic agents directed at the treatment of pain associated with maladaptive neuronal plasticity. Expert Opin Pharmacother 2021; 23:105-116. [PMID: 34461795 DOI: 10.1080/14656566.2021.1970135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The definition of nociplastic pain in 2016 has changed the way maladaptive chronic pain is viewed in that it may emerge without neural lesions or neural disease. Many endogenous and pharmacologic substances are being investigated for their role in treating the pain associated with neuronal plasticity. AREAS COVERED The authors review promising pharmacologic agents for the treatment of pain associated with maladaptive neuronal plasticity. The authors then provide the reader with their expert opinion and provide their perspectives for the future. EXPERT OPINION An imbalance between the amplification of ascending pain signals and the poor activation of descending inhibitory signals may be at the root of many chronic pain syndromes. The inhibitory activity of noradrenaline reuptake may play a role in neuropathic and nociplastic analgesia. A better understanding of the brain's pain matrix, its signaling cascades, and the complex bidirectional communication between the immune system and the nervous system may help meet the urgent and unmet medical need for safe, effective chronic pain treatment, particularly for pain with a neuropathic and/or nociplastic component.
Collapse
Affiliation(s)
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.,Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Frank Breve
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, USA
| | - Robert B Raffa
- College of Pharmacy (Adjunct), University of Arizona, Tucson, USA.,Temple University School of Pharmacy (Professor Emeritus), Philadelphia, USA
| | - Paul J Christo
- Associate Professor, the Johns Hopkins School of Medicine, Baltimore, USA
| | | | | | | | | | - Flaminia Coluzzi
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
6
|
Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: A Natural Compound for Health Management. Int J Mol Sci 2021; 22:5305. [PMID: 34069940 PMCID: PMC8157570 DOI: 10.3390/ijms22105305] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
All nations which have undergone a nutrition transition have experienced increased frequency and falling latency of chronic degenerative diseases, which are largely driven by chronic inflammatory stress. Dietary supplementation is a valid strategy to reduce the risk and severity of such disorders. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator with extensively documented anti-inflammatory, analgesic, antimicrobial, immunomodulatory and neuroprotective effects. It is well tolerated and devoid of side effects in animals and humans. PEA's actions on multiple molecular targets while modulating multiple inflammatory mediators provide therapeutic benefits in many applications, including immunity, brain health, allergy, pain modulation, joint health, sleep and recovery. PEA's poor oral bioavailability, a major obstacle in early research, has been overcome by advanced delivery systems now licensed as food supplements. This review summarizes the functionality of PEA, supporting its use as an important dietary supplement for lifestyle management.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Beaver House, 23-28 Hythe Bridge Street, Oxford OX1 2EP, UK
| | - Mariko Hill
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Nathasha Bogoda
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Silma Subah
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | | |
Collapse
|
7
|
Pesce M, Seguella L, Cassarano S, Aurino L, Sanseverino W, Lu J, Corpetti C, Del Re A, Vincenzi M, Sarnelli G, Esposito G. Phytotherapics in COVID19: Why palmitoylethanolamide? Phytother Res 2021; 35:2514-2522. [PMID: 33296131 DOI: 10.1002/ptr.6978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
At present, googling the search terms "COVID-19" and "Functional foods" yields nearly 500,000,000 hits, witnessing the growing interest of the scientific community and the general public in the role of nutrition and nutraceuticals during the COVID-19 pandemic. Many compounds have been proposed as phytotherapics in the prevention and/or treatment of COVID-19. The extensive interest of the general public and the enormous social media coverage on this topic urges the scientific community to address the question of whether which nutraceuticals can actually be employed in preventing and treating this newly described coronavirus-related disease. Recently, the Canadian biotech pharma company "FSD Pharma" received the green light from the Food and Drug Administration to design a proof-of-concept study evaluating the effects of ultramicronized palmitoylethanolamide (PEA) in COVID-19 patients. The story of PEA as a nutraceutical to prevent and treat infectious diseases dates back to the 1970s where the molecule was branded under the name Impulsin and was used for its immunomodulatory properties in influenza virus infection. The present paper aims at analyzing the potential of PEA as a nutraceutical and the previous evidence suggesting its anti-inflammatory and immunomodulatory properties in infectious and respiratory diseases and how these could translate to COVID-19 care.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sara Cassarano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Laura Aurino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang City, China
| | - Chiara Corpetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Ultramicronized Palmitoylethanolamide (um-PEA): A New Possible Adjuvant Treatment in COVID-19 patients. Pharmaceuticals (Basel) 2021; 14:ph14040336. [PMID: 33917573 PMCID: PMC8067485 DOI: 10.3390/ph14040336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.
Collapse
|
9
|
Toma W, Caillaud M, Patel NH, Tran TH, Donvito G, Roberts J, Bagdas D, Jackson A, Lichtman A, Gewirtz DA, Makriyannis A, Malamas MS, Imad Damaj M. N-acylethanolamine-hydrolysing acid amidase: A new potential target to treat paclitaxel-induced neuropathy. Eur J Pain 2021; 25:1367-1380. [PMID: 33675555 DOI: 10.1002/ejp.1758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/01/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although paclitaxel is an effective chemotherapeutic agent used to treat multiple types of cancer (e.g. breast, ovarian, neck and lung), it also elicits paclitaxel-induced peripheral neuropathy (PIPN), which represents a major dose-limiting side effect of this drug. METHODS As the endogenously produced N-acylethanolamine, palmitoylethanolamide (PEA), reverses paclitaxel-induced mechanical hypersensitivity in mice, the main goals of this study were to examine if paclitaxel affects levels of endogenous PEA in the spinal cord of mice and whether exogenous administration of PEA provides protection from the occurrence of paclitaxel-induced mechanical hypersensitivity. We further examined whether inhibition of N-acylethanolamine-hydrolysing acid amidase (NAAA), a hydrolytic PEA enzyme, would offer protection in mouse model of PIPN. RESULTS Paclitaxel reduced PEA levels in the spinal cord, suggesting that dysregulation of this lipid signalling system may contribute to PIPN. Consistent with this idea, repeated administration of PEA partially prevented the paclitaxel-induced mechanical hypersensitivity. We next evaluated whether the selective NAAA inhibitor, AM9053, would prevent paclitaxel-induced mechanical hypersensitivity in mice. Acute administration of AM9053 dose-dependently reversed mechanical hypersensitivity through a PPAR-α mechanism, whereas repeated administration of AM9053 fully prevented the development of PIPN, without any evidence of tolerance. Moreover, AM9053 produced a conditioned place preference in paclitaxel-treated mice, but not in control mice. This pattern of findings suggests a lack of intrinsic rewarding effects, but a reduction in the pain aversiveness induced by paclitaxel. Finally, AM9053 did not alter paclitaxel-induced cytotoxicity in lung tumour cells. CONCLUSIONS Collectively, these studies suggest that NAAA represents a promising target to treat and prevent PIPN. SIGNIFICANCE The present study demonstrates that the chemotherapeutic paclitaxel alters PEA levels in the spinal cord, whereas repeated exogenous PEA administration moderately alleviates PIPN in mice. Additionally, targeting NAAA, PEA's hydrolysing enzyme with a selective compound AM9053 reverses and prevents the PIPN via the PPAR-α mechanism. Overall, the data suggest that selective NAAA inhibitors denote promising future therapeutics to mitigate and prevent PIPN.
Collapse
Affiliation(s)
- Wisam Toma
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nipa H Patel
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tammy H Tran
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giulia Donvito
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Jane Roberts
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Deniz Bagdas
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, USA
| | - Asti Jackson
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, USA
| | - Aron Lichtman
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Michael S Malamas
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Mast Cell Regulation and Irritable Bowel Syndrome: Effects of Food Components with Potential Nutraceutical Use. Molecules 2020; 25:molecules25184314. [PMID: 32962285 PMCID: PMC7570512 DOI: 10.3390/molecules25184314] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells are key actors in inflammatory reactions. Upon activation, they release histamine, heparin and nerve growth factor, among many other mediators that modulate immune response and neuron sensitization. One important feature of mast cells is that their population is usually increased in animal models and biopsies from patients with irritable bowel syndrome (IBS). Therefore, mast cells and mast cell mediators are regarded as key components in IBS pathophysiology. IBS is a common functional gastrointestinal disorder affecting the quality of life of up to 20% of the population worldwide. It is characterized by abdominal pain and altered bowel habits, with heterogeneous phenotypes ranging from constipation to diarrhea, with a mixed subtype and even an unclassified form. Nutrient intake is one of the triggering factors of IBS. In this respect, certain components of the daily food, such as fatty acids, amino acids or plant-derived substances like flavonoids, have been described to modulate mast cells' activity. In this review, we will focus on the effect of these molecules, either stimulatory or inhibitory, on mast cell degranulation, looking for a nutraceutical capable of decreasing IBS symptoms.
Collapse
|
11
|
Adelmidrol: A New Promising Antioxidant and Anti-Inflammatory Therapeutic Tool in Pulmonary Fibrosis. Antioxidants (Basel) 2020; 9:antiox9070601. [PMID: 32660140 PMCID: PMC7402091 DOI: 10.3390/antiox9070601] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic pulmonary diseases are characterized by airway remodeling due to complex multicellular responses and the production of free oxygen radicals. They lead to a progressive decline of pulmonary functions. Adelmidrol is an analogue of palmitoylethanolamide (PEA), which is a well-known anti-inflammatory and anti-oxidant compound. In this study, we investigated the efficacy of adelmidrol (10 mg/Kg) for bleomycin-induced pulmonary fibrosis in mice. METHODS Bleomycin intratracheal administration was performed on the first day and for the following twenty-one days, mice were treated with adelmidrol (10 mg/Kg). RESULTS The survival rate and body weight gain were recorded daily. At the end of the experiment, adelmidrol-administered animals showed reduced airway infiltration by inflammatory cells, Myeloperoxidase (MPO) activity, and pro-inflammatory cytokine overexpression (IL,6 IL-1β, TNF-α, and TGF-1β). Moreover, adelmidrol treatment was able to manage the significant incapacity of antioxidants and elevation of the oxidant burden, as shown by the MDA, SOD, and GSH levels and decreased nitric oxide production. It was also able to significantly modulate the JAK2/STAT3 and IκBα/NF-kB pathway. Histologic examination of the lung tissues showed reduced sample injury, mast cell degranulation, chymase activity, and collagen deposition. CONCLUSIONS In sum, our results propose adelmidrol as a therapeutic approach in the treatment of pulmonary fibrosis.
Collapse
|
12
|
Palmitoylethanolamide and Related ALIAmides: Prohomeostatic Lipid Compounds for Animal Health and Wellbeing. Vet Sci 2020; 7:vetsci7020078. [PMID: 32560159 PMCID: PMC7355440 DOI: 10.3390/vetsci7020078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Virtually every cellular process is affected by diet and this represents the foundation of dietary management to a variety of small animal disorders. Special attention is currently being paid to a family of naturally occurring lipid amides acting through the so-called autacoid local injury antagonism, i.e., the ALIA mechanism. The parent molecule of ALIAmides, palmitoyl ethanolamide (PEA), has being known since the 1950s as a nutritional factor with protective properties. Since then, PEA has been isolated from a variety of plant and animal food sources and its proresolving function in the mammalian body has been increasingly investigated. The discovery of the close interconnection between ALIAmides and the endocannabinoid system has greatly stimulated research efforts in this field. The multitarget and highly redundant mechanisms through which PEA exerts prohomeostatic functions fully breaks with the classical pharmacology view of “one drug, one target, one disease”, opening a new era in the management of animals’ health, i.e., an according-to-nature biomodulation of body responses to different stimuli and injury. The present review focuses on the direct and indirect endocannabinoid receptor agonism by PEA and its analogues and also targets the main findings from experimental and clinical studies on ALIAmides in animal health and wellbeing.
Collapse
|
13
|
Cordaro M, Cuzzocrea S, Crupi R. An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events. Antioxidants (Basel) 2020; 9:antiox9030216. [PMID: 32150935 PMCID: PMC7139331 DOI: 10.3390/antiox9030216] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammation process represents of a dynamic series of phenomena that manifest themselves with an intense vascular reaction. Neuroinflammation is a reply from the central nervous system (CNS) and the peripheral nervous system (PNS) to a changed homeostasis. There are two cell systems that mediate this process: the glia of the CNS and the lymphocites, monocytes, and macrophages of the hematopoietic system. In both the peripheral and central nervous systems, neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, and in neuropsychiatric illnesses, such as depression and autism spectrum disorders. The resolution of neuroinflammation is a process that allows for inflamed tissues to return to homeostasis. In this process the important players are represented by lipid mediators. Among the naturally occurring lipid signaling molecules, a prominent role is played by the N-acylethanolamines, namely N-arachidonoylethanolamine and its congener N-palmitoylethanolamine, which is also named palmitoylethanolamide or PEA. PEA possesses a powerful neuroprotective and anti-inflammatory power but has no antioxidant effects per se. For this reason, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treating neuroinflammation. The aim of this review is to discuss the role of ultramicronized PEA and co-ultramicronized PEA with luteolin in several neurological diseases using preclinical and clinical approaches.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO 63103, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
14
|
Udovin LD, Kobiec T, Herrera MI, Toro-Urrego N, Kusnier CF, Kölliker-Frers RA, Ramos-Hryb AB, Luaces JP, Otero-Losada M, Capani F. Partial Reversal of Striatal Damage by Palmitoylethanolamide Administration Following Perinatal Asphyxia. Front Neurosci 2020; 13:1345. [PMID: 31969800 PMCID: PMC6960201 DOI: 10.3389/fnins.2019.01345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/29/2019] [Indexed: 01/27/2023] Open
Abstract
Perinatal asphyxia (PA) is a clinical condition brought by a birth temporary oxygen deprivation associated with long-term damage in the corpus striatum, one of the most compromised brain areas. Palmitoylethanolamide (PEA) is a neuromodulator well known for its protective effects in brain injury models, including PA, albeit not deeply studied regarding its particular effects in the corpus striatum following PA. Using Bjelke et al. (1991) PA model, full-term pregnant rats were decapitated, and uterus horns were placed in a water bath at 37°C for 19 min. One hour later, the pups were injected with PEA 10 mg/kg s.c., and placed with surrogate mothers. After 30 days, the animals were perfused, and coronal striatal sections were collected to analyze protein-level expression by Western blot and the reactive area by immunohistochemistry for neuron markers: phosphorylated neurofilament-heavy/medium-chain (pNF-H/M) and microtubule-associated protein-2 (MAP-2), and the astrocyte marker, glial fibrillary acidic protein (GFAP). Results indicated that PA produced neuronal damage and morphological changes. Asphyctic rats showed a decrease in pNF-H/M and MAP-2 reactive areas, GFAP+ cells number, and MAP-2 as well as pNF-H/M protein expression in the striatum. Treatment with PEA largely restored the number of GFAP+ cells. Most important, it ameliorated the decrease in pNF-H/M and MAP-2 reactive areas in asphyctic rats. Noticeably, PEA treatment reversed the decrease in MAP-2 protein expression and largely prevented PA-induced decrease in pNF-H/M protein expression. PA did not affect the GFAP protein level. Treatment with PEA attenuated striatal damage induced by PA, suggesting its therapeutic potential for the prevention of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas D Udovin
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Tamara Kobiec
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina.,Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - María I Herrera
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina.,Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Carlos F Kusnier
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Rodolfo A Kölliker-Frers
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Ana B Ramos-Hryb
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Juan P Luaces
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Francisco Capani
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina.,Departamento de Biología, Universidad Argentina John F. Kennedy (UAJK), Buenos Aires, Argentina
| |
Collapse
|
15
|
Cordaro M, Siracusa R, Impellizzeri D, D' Amico R, Peritore AF, Crupi R, Gugliandolo E, Fusco R, Di Paola R, Schievano C, Cuzzocrea S. Safety and efficacy of a new micronized formulation of the ALIAmide palmitoylglucosamine in preclinical models of inflammation and osteoarthritis pain. Arthritis Res Ther 2019; 21:254. [PMID: 31779692 PMCID: PMC6883534 DOI: 10.1186/s13075-019-2048-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background Osteoarthritis is increasingly recognized as the result of a complex interplay between inflammation, chrondrodegeneration, and pain. Joint mast cells are considered to play a key role in orchestrating this detrimental triad. ALIAmides down-modulate mast cells and more generally hyperactive cells. Here we investigated the safety and effectiveness of the ALIAmide N-palmitoyl-d-glucosamine (PGA) in inflammation and osteoarthritis pain. Methods Acute toxicity of micronized PGA (m-PGA) was assessed in rats following OECD Guideline No.425. PGA and m-PGA (30 mg/kg and 100 mg/kg) were orally administered to carrageenan (CAR)-injected rats. Dexamethasone 0.1 mg/kg was used as reference. Paw edema and thermal hyperalgesia were measured up to 6 h post-injection, when also myeloperoxidase activity and histological inflammation score were assessed. Rats subjected to intra-articular injection of sodium monoiodoacetate (MIA) were treated three times per week for 21 days with PGA or m-PGA (30 mg/kg). Mechanical allodynia and motor function were evaluated at different post-injection time points. Joint histological and radiographic damage was scored, articular mast cells were counted, and macrophages were immunohistochemically investigated. Levels of TNF-α, IL-1β, NGF, and MMP-1, MMP-3, and MMP-9 were measured in serum using commercial colorimetric ELISA kits. One- or two-way ANOVA followed by a Bonferroni post hoc test for multiple comparisons was used. Results Acute oral toxicity of m-PGA resulted in LD50 values in excess of 2000 mg/kg. A single oral administration of PGA and m-PGA significantly reduced CAR-induced inflammatory signs (edema, inflammatory infiltrate, and hyperalgesia), and m-PGA also reduced the histological score. Micronized PGA resulted in a superior activity to PGA on MIA-induced mechanical allodynia, locomotor disability, and histologic and radiographic damage. The MIA-induced increase in mast cell count and serum level of the investigated markers was also counteracted by PGA and to a significantly greater extent by m-PGA. Conclusions The results of the present study showed that PGA is endorsed with anti-inflammatory, pain-relieving, and joint-protective effects. Moreover, it proved that particle size reduction greatly enhances the activity of PGA, particularly on joint pain and disability. Given these results, m-PGA could be considered a valuable option in the management of osteoarthritis.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Ramona D' Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Carlo Schievano
- Innovative Statistical Research srl, Prato Della Valle 24, I-35123, Padova, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy. .,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
16
|
Impellizzeri D, Peritore AF, Cordaro M, Gugliandolo E, Siracusa R, Crupi R, D'Amico R, Fusco R, Evangelista M, Cuzzocrea S, Di Paola R. The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice. FASEB J 2019; 33:11364-11380. [PMID: 31344333 DOI: 10.1096/fj.201900538r] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes connected with morbidity and mortality. DPN presents deterioration of peripheral nerves with pain, feebleness, and loss of sensation. Particular medications might display their remedial potential by controlling neuroinflammation. Palmitoylethanolamide (PEA) is an autacoid local injury antagonist distinguished for its neuroprotective, analgesic, and anti-inflammatory properties in numerous experimental models of neuroinflammation. Based on these findings, the goal of this work was to better test the neuroprotective effects of a formulation of micronized PEA (PEA-m) and the probable mechanism of action in a mouse model of DPN induced by streptozotocin (STZ) injection. Diabetic and control animals received PEA-m (10 mg/kg) by oral gavage daily starting 2 wk from STZ injection. After 16 wk, the animals were euthanized, and blood, urine, spinal cord, and sciatic nerve tissues were collected. Our results demonstrated that after diabetes induction, PEA-m was able to reduce mechanical, thermal hyperalgesia, and motor alterations as well as reduce mast cell activation and nerve growth factor expression. In addition, PEA-m decreased neural histologic damage, oxidative and nitrosative stress, cytokine release, angiogenesis, and apoptosis. Moreover, spinal microglia activation (IBA-1), phospho-P38 MAPK, and nuclear factor NF-κB inflammatory pathways were also inhibited. The protective effects of PEA-m could be correlated at least in part to peroxisome proliferator-activated receptor-α activation. In summary, we demonstrated that PEA-m represents a new therapeutic strategy for neuroinflammation pain associated with mixed neuropathies.-Impellizzeri, D., Peritore, A. F., Cordaro, M., Gugliandolo, E., Siracusa, R., Crupi, R., D'Amico, R., Fusco, R., Evangelista, M., Cuzzocrea, S., Di Paola, R. The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Onesti E, Frasca V, Ceccanti M, Tartaglia G, Gori MC, Cambieri C, Libonati L, Palma E, Inghilleri M. Short-Term Ultramicronized Palmitoylethanolamide Therapy in Patients with Myasthenia Gravis: a Pilot Study to Possible Future Implications of Treatment. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:232-238. [DOI: 10.2174/1871527318666190131121827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Background: The cannabinoid system may be involved in the humoral mechanisms at the
neuromuscular junction. Ultramicronized-palmitoylethanolamide (μm-PEA) has recently been
shown to reduce the desensitization of Acetylcholine (ACh)-evoked currents in denervated patients
modifying the stability of ACh receptor (AChR) function.
<p>
Objective: To analyze the possible beneficial effects of μm-PEA in patients with myasthenia gravis
(MG) on muscular fatigue and neurophysiological changes.
<p>
Method: The duration of this open pilot study, which included an intra-individual control, was three
weeks. Each patient was assigned to a 1-week treatment period with μm-PEA 600 mg twice a day. A
neurophysiological examination based on repetitive nerve stimulation (RNS) of the masseteric and the
axillary nerves was performed, and the quantitative MG (QMG) score was calculated in 22 MG patients
every week in a three-week follow-up period. AChR antibody titer was investigated to analyze a
possible immunomodulatory effect of PEA in MG patients.
<p>
Results: PEA had a significant effect on the QMG score (p=0.03418) and on RNS of the masseteric
nerve (p=0.01763), thus indicating that PEA reduces the level of disability and decremental muscle response.
Antibody titers did not change significantly after treatment.
<p>
Conclusion: According to our observations, μm-PEA as an add-on therapy could improve muscular
response to fatigue in MG. The possible modulation of AChR currents as a means of eliciting a direct
effect from PEA on the conformation of ACh receptors should be investigated. The co-role of cytokines
also warrants an analysis. Given the rapidity and reversibility of the response, we suppose that
PEA acts directly on AChR, though further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Emanuela Onesti
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Vittorio Frasca
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Marco Ceccanti
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Giorgio Tartaglia
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Maria Cristina Gori
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Chiara Cambieri
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Laura Libonati
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Institute Pasteur- Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | - Maurizio Inghilleri
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Campolo M, Siracusa R, Cordaro M, Filippone A, Gugliandolo E, Peritore AF, Impellizzeri D, Crupi R, Paterniti I, Cuzzocrea S. The association of adelmidrol with sodium hyaluronate displays beneficial properties against bladder changes following spinal cord injury in mice. PLoS One 2019; 14:e0208730. [PMID: 30653511 PMCID: PMC6336272 DOI: 10.1371/journal.pone.0208730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023] Open
Abstract
The disruption of coordinated control between the brain, spinal cord and peripheral nervous system caused by spinal cord injury (SCI) leads to several secondary pathological conditions, including lower urinary tract dysfunction. In fact, urinary tract dysfunction associated with SCI is urinary dysfunction could be a consequence of a lack of neuroregeneration of supraspinal pathways that control bladder function. The object of the current research was to explore the effects of adelmidrol + sodium hyaluronate, on bladder damage generated after SCI in mice. Spinal cord was exposed via laminectomy, and SCI was induced by extradural compression at T6 to T7 level, by an aneurysm clip with a closing force of 24 g. Mice were treated intravesically with adelmidrol + sodium hyaluronate daily for 48 h and 7 days after SCI. Adelmidrol + sodium hyaluronate reduced significantly mast cell degranulation and down-regulated the nuclear factor-κB pathway in the bladder after SCI both at 48 h and 7days. Moreover, adelmidrol + sodium hyaluronate reduced nerve growth factor expression, suggesting an association between neurotrophins and bladder pressure. At 7 days after SCI, the bladder was characterized by a marked bacterial infection and proteinuria; surprisingly, adelmidrol + sodium hyaluronate reduced significantly both parameters. These data show the protective roles of adelmidrol + sodium hyaluronate on bladder following SCI, highlighting a potential therapeutic target for the reduction of bladder changes.
Collapse
Affiliation(s)
- Michela Campolo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Rosalba Siracusa
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Marika Cordaro
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Alessia Filippone
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Enrico Gugliandolo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Alessio F. Peritore
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Daniela Impellizzeri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Rosalia Crupi
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Irene Paterniti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Salvatore Cuzzocrea
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
- Saint Louis University School of Medicine, Department of Pharmacological and Physiological Science, Saint Louis, United States of America
- * E-mail:
| |
Collapse
|
19
|
Passavanti MB, Alfieri A, Pace MC, Pota V, Sansone P, Piccinno G, Barbarisi M, Aurilio C, Fiore M. Clinical applications of palmitoylethanolamide in pain management: protocol for a scoping review. Syst Rev 2019; 8:9. [PMID: 30621775 PMCID: PMC6323836 DOI: 10.1186/s13643-018-0934-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Palmitoylethanolamide (PEA) belong to endocannabinoid family, a group of fatty acid amides. PEA has been proven to have analgesic and anti-inflammatory activity and has been used in several controlled studies focused on the management of chronic pain among adult patients with different underlying clinical conditions. METHODS/DESIGN A literature search will be performed using PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL). The population will be patients who have chronic pain, the intervention will be the administration of PEA alone or in combination with other drugs for the pain management; the comparison will be the standard therapy in accordance with the current guidelines for the treatment of pain. The Outcomes will be the reduction of pain not restricted to specific scales laying out the pain outcome data described in the included studies. DISCUSSION This scoping review aims to describe the clinical applications of the PEA in chronic pain management and its outcome. SCOPING REVIEW REGISTRATION Open Science Framework https://osf.io/74tmx/ .
Collapse
Affiliation(s)
- Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia, 2, 80138, Naples, Italy
| | - Aniello Alfieri
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia, 2, 80138, Naples, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia, 2, 80138, Naples, Italy
| | - Vincenzo Pota
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia, 2, 80138, Naples, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia, 2, 80138, Naples, Italy
| | - Giacomo Piccinno
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia, 2, 80138, Naples, Italy
| | - Manlio Barbarisi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia, 2, 80138, Naples, Italy
| | - Caterina Aurilio
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia, 2, 80138, Naples, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia, 2, 80138, Naples, Italy.
| |
Collapse
|
20
|
Acute and Chronic Pain Processing in the Thalamocortical System of Humans and Animal Models. Neuroscience 2018; 387:58-71. [DOI: 10.1016/j.neuroscience.2017.09.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023]
|
21
|
Chirchiglia D, Cione E, Caroleo MC, Wang M, Di Mizio G, Faedda N, Giacolini T, Siviglia S, Guidetti V, Gallelli L. Effects of Add-On Ultramicronized N-Palmitol Ethanol Amide in Patients Suffering of Migraine With Aura: A Pilot Study. Front Neurol 2018; 9:674. [PMID: 30177906 PMCID: PMC6109682 DOI: 10.3389/fneur.2018.00674] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Palmitoyl ethanol amide (PEA) is an endogenously produced substance showing anti-nociceptive effect through both receptor and non-receptor mediated effects at the level of different cellular and tissue sites. This study showed the results of a single blind study that was conducted to evaluate both the safety and the efficacy of ultramicronized PEA (umPEA; 1,200 mg/day) for up 90 days in patients suffering of Migraine with Aura (MA) treated with NSAIDs. Methods: A total of 20 patients, 8 male (33-56-years, average 41.4 ± 7.8) and 12 female (19-61-years, average 38.5 ± 11.9) with MA were admitted to our observation and diagnosed according to ICHD-3 criteria, they received umPEA (1,200 mg/day) in combination with NSAIDs for up to 90 days. They were revaluated at 30, 60, and 90 days after treatment. Results: umPEA administration induced a statistically significant and time dependent pain relief. In particular, these effects were evident at 60 days (male P = 0.01189; female P = <0.01) and they lasted until the end of the study (male P = 0.0066; female P = 0.01473). Conclusion: Although further studies are needed, our findings indicate that in patients suffering of MA treatment with umPEA had good efficacy and safety which candidate this compound as a therapeutic tool in pain migraine management.
Collapse
Affiliation(s)
- Domenico Chirchiglia
- Department of Medical and Surgical Science, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria C Caroleo
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Minyan Wang
- Department of Biological Sciences, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Giulio Di Mizio
- Department of Law, Ecenomy and Sociology, University of Catanzaro, Catanzaro, Italy
| | - Noemi Faedda
- Section of Child and Adolescent Neuropsychiatry, Department of Human Neuroscience, "Sapienza" University, Rome, Italy
| | - Teodosio Giacolini
- Section of Child and Adolescent Neuropsychiatry, Department of Human Neuroscience, "Sapienza" University, Rome, Italy
| | - Serena Siviglia
- Clinical Pharmacology and Pharmacovigilance Operative Unit, Department of Health Science, University of Catanzaro, Mater Domini Hospital Catanzaro, Catanzaro, Italy
| | - Vincenzo Guidetti
- Section of Child and Adolescent Neuropsychiatry, Department of Human Neuroscience, "Sapienza" University, Rome, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Operative Unit, Department of Health Science, University of Catanzaro, Mater Domini Hospital Catanzaro, Catanzaro, Italy
| |
Collapse
|
22
|
Di Cesare Mannelli L, Micheli L, Lucarini E, Ghelardini C. Ultramicronized N-Palmitoylethanolamine Supplementation for Long-Lasting, Low-Dosed Morphine Antinociception. Front Pharmacol 2018; 9:473. [PMID: 29910726 PMCID: PMC5992817 DOI: 10.3389/fphar.2018.00473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 02/02/2023] Open
Abstract
The facilitation of opioid medication is eliciting a nemetic problem since increasing overdose deaths involve prescription of opioid pain relievers. Chronic painful diseases require higher doses of opioids, progressively with the development of tolerance to the antinociceptive effect. Novel strategies for the maintenance of low dosed opioid effectiveness are necessary to relieve pain and decrease abuse, overdose, and side effects. N-Palmitoylethanolamine (PEA) is an endogenous compound able to preserve the homeostasis of the nervous system and to delay the development of morphine tolerance. In the present study, a preemptive and continuative treatment with ultramicronized PEA (30 mg/kg, daily, per os) enhanced the acute antinociceptive efficacy of morphine (10 mg/kg subcutaneously) in rats and prolonged the responsiveness to the natural opioid. Moreover, PEA-treated animals had a more rapid recovery from tolerance. Four opioid free days were enough to regain sensitivity to morphine whereas control animals needed 31 days for full recovery of tolerance. Characteristically, PEA acquired per se antinociceptive properties in tolerant animals, suggesting the possibility of an integrated morphine/PEA treatment protocol. To maintain a significant analgesia, morphine dose had to be increased from 5 up to 100 mg/kg over 17 days of daily treatment. The same pain threshold increase was achieved in animals using preemptive PEA (30 mg/kg, daily) joined to a combinatorial acute treatment with morphine (5–20 mg/kg s.c.) and PEA (30–120 mg/kg, p.o.). Representatively, on day 17, the magnitude of analgesia induced by 100 mg/kg morphine was obtained by combining 13 mg/kg of morphine with 120 mg/kg of PEA. PEA strengthens the efficacy and potency of morphine analgesia, allowing prolonged and effective pain relief with low doses. PEA is suggested in association with morphine for chronic pain therapies distinguished by low risk of side effects.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
23
|
Adelmidrol + sodium hyaluronate in IC/BPS or conditions associated to chronic urothelial inflammation. A translational study. Pharmacol Res 2018; 134:16-30. [PMID: 29800607 DOI: 10.1016/j.phrs.2018.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022]
Abstract
Interstitial cystitis/painful bladder syndrome (IC/PBS) is a chronic bladder condition characterized by frequent urination, bladder inflammation and pain. It is a particular challenging disease and a clear unmet medical need in terms of identifying new therapeutic strategies. The aim of study was to evaluate the anti-inflammatory effects of intravesical Vessilen® (a new formulation of 2% adelmidrol (the diethanolamide derivative of azelaic acid) + 0.1% sodium hyaluronate) administration in rodent models of IC/BPS and in IC/BPS patients or other bladder disorders. Acute and chronic animal models of cystitis were induced by a single or repetitive intraperitoneal injections of cyclophosphamide (CYP); patients with IC/BPS or with bladder pain syndrome associated with symptoms of the lower urinary tract treated once weekly by bladder instillation of Vessilen® for 8 weeks. CYP instillation caused macroscopic and histological bladder alterations, inflammatory infiltrates, increased mast cell numbers, bladder pain, increased expression of nitrotyrosine, decreased expression of endothelial tight junction zonula occludens-1. Intravesical Vessilen® treatment was able to ameliorate CYP induced bladder inflammation and pain by inhibiting nuclear factor-κB pathway and inflammatory mediator levels as well as reduced mechanical allodynia and nerve growth factor levels. A significant improvement in quality of life and symptom intensity were evident in patients with IC/BPS or other bladder disorders treated with Vessilen®. Vessilen® could be a new therapeutic approach for human cystitis.
Collapse
|
24
|
Herrera MI, Udovin LD, Toro-Urrego N, Kusnier CF, Luaces JP, Capani F. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain. Front Neurosci 2018; 12:145. [PMID: 29662433 PMCID: PMC5890174 DOI: 10.3389/fnins.2018.00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Perinatal asphyxia (PA) is an obstetric complication associated with an impaired gas exchange. This health problem continues to be a determinant of neonatal mortality and neurodevelopmental disorders. Palmitoylethanolamide (PEA) has exerted neuroprotection in several models of brain injury and neurodegeneration. We aimed at evaluating the potential neuroprotective role of PEA in an experimental model, which induces PA in the immature rat brain. PA was induced by placing Sprague Dawley newborn rats in a water bath at 37°C for 19 min. Once their physiological conditions improved, they were given to surrogate mothers that had delivered normally within the last 24 h. The control group was represented by non-fostered vaginally delivered pups, mimicking the clinical situation. Treatment with PEA (10 mg/kg) was administered within the first hour of life. Modifications in the hippocampus were analyzed with conventional electron microscopy, immunohistochemistry (for NeuN, pNF-H/M, MAP-2, and GFAP) and western blot (for pNF H/M, MAP-2, and GFAP). Behavior was also studied throughout Open Field (OF) Test, Passive Avoidance (PA) Task and Elevated Plus Maze (EPM) Test. After 1 month of the PA insult, we observed neuronal nucleus degeneration in CA1 using electron microscopy. Immunohistochemistry revealed a significant increase in pNF-H/M and decrease in MAP-2 in CA1 reactive area. These changes were also observed when analyzing the level of expression of these markers by western blot. Vertical exploration impairments and anxiety-related behaviors were encountered in the OF and EPM tests. PEA treatment attenuated PA-induced hippocampal damage and its corresponding behavioral alterations. These results contribute to the elucidation of PEA neuroprotective role after PA and the future establishment of therapeutic strategies for the developing brain.
Collapse
Affiliation(s)
- María I Herrera
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología, Universidad Católica Argentina, Buenos Aires, Argentina.,Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lucas D Udovin
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos F Kusnier
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan P Luaces
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Capani
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Facultad de Medicina, Universidad Católica Argentina, Buenos Aires, Argentina.,Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
25
|
Petrosino S, Cordaro M, Verde R, Schiano Moriello A, Marcolongo G, Schievano C, Siracusa R, Piscitelli F, Peritore AF, Crupi R, Impellizzeri D, Esposito E, Cuzzocrea S, Di Marzo V. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-hyperalgesic Effect. Front Pharmacol 2018; 9:249. [PMID: 29615912 PMCID: PMC5870042 DOI: 10.3389/fphar.2018.00249] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a pleiotropic lipid mediator with established anti-inflammatory and anti-hyperalgesic activity. Ultramicronized PEA (PEA-um) has superior oral efficacy compared to naïve (non-micronized) PEA. The aim of the present study was two-fold: (1) to evaluate whether oral PEA-um has greater absorbability compared to naïve PEA, and its ability to reach peripheral and central tissues under healthy and local inflammatory conditions (carrageenan paw edema); (2) to better characterize the molecular pathways involved in PEA-um action, particularly at the spinal level. Rats were dosed with 30 mg/kg of [13C]4-PEA-um or naïve [13C]4-PEA by oral gavage, and [13C]4-PEA levels quantified, as a function of time, by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry. Overall plasma levels were higher in both healthy and carrageenan-injected rats administered [13C]4-PEA-um as compared to those receiving naïve [13C]4-PEA, indicating the greater absorbability of PEA-um. Furthermore, carrageenan injection markedly favored an increase in levels of [13C]4-PEA in plasma, paw and spinal cord. Oral treatment of carrageenan-injected rats with PEA-um (10 mg/kg) confirmed beneficial peripheral effects on paw inflammation, thermal hyperalgesia and tissue damage. Notably, PEA-um down-regulated distinct spinal inflammatory and oxidative pathways. These last findings instruct on spinal mechanisms involved in the anti-hyperalgesic effect of PEA-um in inflammatory pain.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | | | | | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Alessio F. Peritore
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| |
Collapse
|
26
|
Crupi R, Impellizzeri D, Cordaro M, Siracusa R, Casili G, Evangelista M, Cuzzocrea S. N-palmitoylethanolamide Prevents Parkinsonian Phenotypes in Aged Mice. Mol Neurobiol 2018; 55:8455-8472. [PMID: 29552727 DOI: 10.1007/s12035-018-0959-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by degeneration of dopaminergic neurons. Aging is a major risk factor for idiopathic PD. Several prior studies examined the neuroprotective effects of palmitoylethanolamide (PEA), alone or combined with antioxidants, in a model of PD induced by the dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Here, we analyzed the pretreatment effect of micronized PEA (PEAm) on neuroinflammation and neuronal cell death in the MPTP model. Male CD mice (21 months of age) were pre-treated for 60 days with PEAm. After this time, they received four intraperitoneal injections of MPTP over a 24-h period and were killed 7 days later. On the 8th day, brains were processed. Pretreatment with PEAm ameliorated behavioral deficits and the reductions in expression of tyrosine hydroxylase and dopamine transporter, while blunting the upregulation of α-synuclein and β3-tubulin in the substantia nigra after MPTP induction. Moreover, PEAm reduced proinflammatory cytokine expression and showed a pro-neurogenic effect in hippocampus. These findings propose this strategy as a valid approach to prevent neurodegenerative diseases associated with old age.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy. .,Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO, USA.
| |
Collapse
|
27
|
Skaper SD. Impact of Inflammation on the Blood-Neural Barrier and Blood-Nerve Interface: From Review to Therapeutic Preview. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:29-45. [PMID: 29132542 DOI: 10.1016/bs.irn.2017.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A number of nervous system disorders are characterized by a state of inflammation (neuroinflammation) in which members of the innate immune system, most notably mast cells and microglia-acting as single entities and in unison-produce inflammatory molecules that play major roles. A neuroinflammatory environment can weaken not only blood-nerve and blood-brain barrier (BBB) integrity but also that of the blood-spinal cord barrier. Mast cells, with their distribution in peripheral nerves and the central nervous system, are positioned to influence blood-nerve barrier characteristics. Being close also to the perivasculature and on the brain side of the BBB, the mast cell is well positioned to disrupt BBB function. Interestingly, tissue damage and/or stress activates homeostatic mechanisms/molecules expressed by mast cells and microglia, and includes N-acylethanolamines. Among the latter, N-palmitoylethanolamine has distinguished itself as a key component in supporting homeostasis of the organism against external stressors capable of provoking inflammation. This review will discuss the pathobiology of neuroinflammation with emphasis on mast cells and microglia, their roles in BBB health, and novel therapeutic opportunities, including nanoscale delivery for targeting these immune cells with a view to maintain the BBB.
Collapse
|
28
|
Chen J, Zeng X, Li S, Zhong Z, Hu X, Xiang H, Rao Y, Zhang L, Zhou X, Xia Q, Wang T, Zhang X. Lentivirus-mediated inhibition of AQP4 accelerates motor function recovery associated with NGF in spinal cord contusion rats. Brain Res 2017; 1669:106-113. [DOI: 10.1016/j.brainres.2017.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
|
29
|
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79:119-133. [DOI: 10.1016/j.neubiorev.2017.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
|
30
|
Cordaro M, Impellizzeri D, Siracusa R, Gugliandolo E, Fusco R, Inferrera A, Esposito E, Di Paola R, Cuzzocrea S. Effects of a co-micronized composite containing palmitoylethanolamide and polydatin in an experimental model of benign prostatic hyperplasia. Toxicol Appl Pharmacol 2017; 329:231-240. [DOI: 10.1016/j.taap.2017.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
|
31
|
Fusco M, Skaper SD, Coaccioli S, Varrassi G, Paladini A. Degenerative Joint Diseases and Neuroinflammation. Pain Pract 2017; 17:522-532. [DOI: 10.1111/papr.12551] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Mariella Fusco
- Scientific Information and Documentation Center; Epitech Group; Padua Italy
| | - Stephen D. Skaper
- Department of Pharmaceutical and Pharmacological Sciences; University of Padua; Padua Italy
| | - Stefano Coaccioli
- Department of Internal Medicine and Rheumatology; Santa Maria Hospital; University of Perugia; Terni Italy
| | - Giustino Varrassi
- Department of Anesthesiology and Pain Medicine; School of Dentistry; LUdeS University; La Valletta Malta
- Paolo Procacci Foundation and European League Against Pain; Rome Italy
| | | |
Collapse
|
32
|
Impellizzeri D, Di Paola R, Cordaro M, Gugliandolo E, Casili G, Morittu VM, Britti D, Esposito E, Cuzzocrea S. Adelmidrol, a palmitoylethanolamide analogue, as a new pharmacological treatment for the management of acute and chronic inflammation. Biochem Pharmacol 2016; 119:27-41. [PMID: 27599446 DOI: 10.1016/j.bcp.2016.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/01/2016] [Indexed: 01/22/2023]
Abstract
The aim of study was to examine the anti-inflammatory and analgesic effects of adelmidrol, an analogue of palmitoylethanolamide (PEA), in animal models of acute and chronic inflammation [carrageenan-induced paw edema (CAR) and collagen-induced arthritis (CIA)]. In order to elucidate whether the action of adelmidrol is related to activation of peroxisome proliferator-activated receptors (PPAR-α or PPAR-γ), we investigated the effects of PPAR-γ antagonist, GW9662 on adelmidrol mechanism. CAR induced paw edema, hyperalgesia and the activation of pro-inflammatory NF-κB pathway were markedly reduced by treatment with adelmidrol. GW9662, (administered prior to adelmidrol treatment), antagonized the effect of adelmidrol abolishing its positive action. On the contrary, the genetic absence of PPAR-α receptor did not modify the beneficial results of adelmidrol treatment in the acute model of inflammation. In addition, for the first time, we demonstrated that adelmidrol was able to ameliorate both the clinical signs and the histopathology of the joint and the hind paw during chronic inflammation. In particular, the degree of oxidative damage and proinflammatory cytokines and chemokines production were significantly reduced in adelmidrol-treated mice. Moreover, in CIA model, the effect of GW9662 pre-treatment on adelmidrol mechanism was also confirmed. Thus, in this study, we report that adelmidrol reduces the development of acute and chronic inflammation and could represent a novel therapeutic approach for inflammation and pain.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Giovanna Casili
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | | | - Domenico Britti
- Department of Health Sciences, V.le Europa, Campus S. Venuta, Catanzaro, Italy.
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
33
|
Cordaro M, Impellizzeri D, Gugliandolo E, Siracusa R, Crupi R, Esposito E, Cuzzocrea S. Adelmidrol, a Palmitoylethanolamide Analogue, as a New Pharmacological Treatment for the Management of Inflammatory Bowel Disease. Mol Pharmacol 2016; 90:549-561. [PMID: 27625036 DOI: 10.1124/mol.116.105668] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/01/2016] [Indexed: 08/30/2023] Open
Abstract
Leukocyte infiltration, improved levels of intercellular adhesion molecule 1 (ICAM-1), and oxidative stress in the colon are the principal factors in inflammatory bowel disease. The goal of the current study was to explore the effects of adelmidrol, an analog of the anti-inflammatory fatty acid amide signaling molecule palmitoylethanolamide, in mice subjected to experimental colitis. Additionally, to clarify whether the protective action of adelmidrol is dependent on the activation of peroxisome proliferator-activated receptors (PPARs), we investigated the effects of a PPARγ antagonist, GW9662, on adelmidrol action. Adelmidrol (10 mg/kg daily, o.s.) was tested in a murine experimental model of colitis induced by intracolonic administration of dinitrobenzene sulfonic acid. Nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase, as well as tumor necrosis factor-α and interleukin-1β, were significantly increased in colon tissues after dinitrobenzene sulfonic acid administration. Immunohistochemical staining for ICAM-1, P-selectin, nitrotyrosine, and poly(ADP)ribose showed a positive staining in the inflamed colon. Treatment with adelmidrol decreased diarrhea, body weight loss, and myeloperoxidase activity. Adelmidrol treatment, moreover, reduced nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase expression; proinflammatory cytokine release; and the incidence of nitrotyrosine and poly(ADP)ribose in the colon. It also decreased the upregulation of ICAM-1 and P-selectin. Adelmidrol treatment produced a reduction of Bax and an intensification of Bcl-2 expression. This study clearly demonstrates that adelmidrol exerts important anti-inflammatory effects that are partly dependent on PPARγ, suggesting that this molecule may represent a new pharmacologic approach for inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| |
Collapse
|
34
|
Siracusa R, Paterniti I, Bruschetta G, Cordaro M, Impellizzeri D, Crupi R, Cuzzocrea S, Esposito E. The Association of Palmitoylethanolamide with Luteolin Decreases Autophagy in Spinal Cord Injury. Mol Neurobiol 2016; 53:3783-3792. [PMID: 26143261 PMCID: PMC4937098 DOI: 10.1007/s12035-015-9328-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/26/2015] [Indexed: 12/28/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition of the central nervous system (CNS) often resulting in severe functional impairment and for which there are not yet restorative therapies. In the present study, we performed a widely used model of SCI to determine the neuroprotective propriety of palmitoylethanolamide (PEA) and the antioxidant effect of a flavonoid luteolin (Lut), given as a co-ultramicronized compound co-ultraPEALut. In particular, by western blot analysis and immunofluorescence staining, we investigated whether this compound (at the dose of 1 mg/kg) was able to modulate autophagy. Our results showed that treatment with co-ultraPEALut after SCI reduced the expression of proteins promoter of autophagy such as Beclin-1 and microtubule-associated protein 1A/1B-light chain 3 (MAP-LC3). In contrast, this compound decreased the levels of mammalian target of rapamycin (mTOR), p-Akt, and p-70S6K which are proteins that inhibit autophagy. These data confirmed that the protective role of co-ultraPEALut is associated with inhibition of excessive autophagy and regulation of protein degradation. Therefore, treatment with co-ultraPEALut could be considered as a possible therapeutic approach in an acute traumatic lesion like SCI.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Marika Cordaro
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Daniela Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Rosalia Crupi
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO, 63104, USA
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy.
| |
Collapse
|
35
|
Parrella E, Porrini V, Iorio R, Benarese M, Lanzillotta A, Mota M, Fusco M, Tonin P, Spano P, Pizzi M. PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia. Brain Res 2016; 1648:409-417. [PMID: 27423516 DOI: 10.1016/j.brainres.2016.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
The combination of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines, and the flavonoid luteolin has been found to exert neuroprotective activities in a variety of mouse models of neurological disorders, including brain ischemia. Indirect findings suggest that the two molecules can reduce the activation of mastocytes in brain ischemia, thus modulating crucial cells that trigger the inflammatory cascade. Though, no evidence exists about a direct effect of PEA and luteolin on mast cells in experimental models of brain ischemia, either used separately or in combination. In order to fill this gap, we developed a novel cell-based model of severe brain ischemia consisting of primary mouse cortical neurons and cloned mast cells derived from mouse fetal liver (MC/9 cells) subjected to oxygen and glucose deprivation (OGD). OGD exposure promoted both mast cell degranulation and the release of lactate dehydrogenase (LDH) in a time-dependent fashion. MC/9 cells exacerbated neuronal damage in neuron-mast cells co-cultures exposed to OGD. Likewise, the conditioned medium derived from OGD-exposed MC/9 cells induced significant neurotoxicity in control primary neurons. PEA and luteolin pre-treatment synergistically prevented the OGD-induced degranulation of mast cells and reduced the neurotoxic potential of MC/9 cells conditioned medium. Finally, the association of the two drugs promoted a direct synergistic neuroprotection even in pure cortical neurons exposed to OGD. In summary, our results indicate that mast cells release neurotoxic factors upon OGD-induced activation. The association PEA-luteolin actively reduces mast cell-mediated neurotoxicity as well as pure neurons susceptibility to OGD.
Collapse
Affiliation(s)
- Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Italy.
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Italy.
| | - Rosa Iorio
- Division of Pharmacology, Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Italy.
| | - Marina Benarese
- Division of Pharmacology, Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Italy.
| | - Annamaria Lanzillotta
- Division of Pharmacology, Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Italy.
| | - Mariana Mota
- Division of Pharmacology, Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Italy.
| | | | | | - PierFranco Spano
- Division of Pharmacology, Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Italy; IRCCS San Camillo, Venezia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Italy; IRCCS San Camillo, Venezia, Italy.
| |
Collapse
|
36
|
Paterniti I, Impellizzeri D, Di Paola R, Navarra M, Cuzzocrea S, Esposito E. Erratum to: A new co-ultramicronized composite including palmitoylethanolamide and luteolin to prevent neuroinflammation in spinal cord injury. J Neuroinflammation 2016; 13:128. [PMID: 27245745 PMCID: PMC4888309 DOI: 10.1186/s12974-016-0593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022] Open
Affiliation(s)
- Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166, Messina, Italy
| | - Daniela Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166, Messina, Italy
| | - Rosanna Di Paola
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166, Messina, Italy
| | - Michele Navarra
- Pharmaco-Biological Department, University of Messina, Viale Annunziata, 98100, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166, Messina, Italy
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166, Messina, Italy.
| |
Collapse
|
37
|
Herrera MI, Kölliker-Frers R, Barreto G, Blanco E, Capani F. Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration. Front Aging Neurosci 2016; 8:81. [PMID: 27199733 PMCID: PMC4844606 DOI: 10.3389/fnagi.2016.00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells.
Collapse
Affiliation(s)
- María I Herrera
- Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina; Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología, Universidad Católica ArgentinaBuenos Aires, Argentina
| | - Rodolfo Kölliker-Frers
- Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires, Argentina
| | - George Barreto
- Department of Nutrition and Biochemistry, Faculty of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Eduardo Blanco
- Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida Lleida, Spain
| | - Francisco Capani
- Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina; Facultad de Psicología, Universidad Católica ArgentinaBuenos Aires, Argentina; Departamento de Biología, Universidad Argentina John F. KennedyBuenos Aires, Argentina; Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
38
|
Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, Calignano A, Muccioli GG, Orefice G. Oral Palmitoylethanolamide Treatment Is Associated with Reduced Cutaneous Adverse Effects of Interferon-β1a and Circulating Proinflammatory Cytokines in Relapsing-Remitting Multiple Sclerosis. Neurotherapeutics 2016; 13:428-38. [PMID: 26857391 PMCID: PMC4824021 DOI: 10.1007/s13311-016-0420-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid mediator known to reduce pain and inflammation. However, only limited clinical studies have evaluated the effects of PEA in neuroinflammatory and neurodegenerative diseases. Multiple sclerosis (MS) is a chronic autoimmune and inflammatory disease of the central nervous system. Although subcutaneous administration of interferon (IFN)-β1a is approved as first-line therapy for the treatment of relapsing-remitting MS (RR-MS), its commonly reported adverse events (AEs) such as pain, myalgia, and erythema at the injection site, deeply affect the quality of life (QoL) of patients with MS. In this randomized, double-blind, placebo-controlled study, we tested the effect of ultramicronized PEA (um-PEA) added to IFN-β1a in the treatment of clinically defined RR-MS. The primary objectives were to estimate whether, with um-PEA treatment, patients with MS perceived an improvement in pain and a decrease of the erythema width at the IFN-β1a injection site in addition to an improvement in their QoL. The secondary objectives were to evaluate the effects of um-PEA on circulating interferon-γ, tumor necrosis factor-α, and interleukin-17 serum levels, N-acylethanolamine plasma levels, Expanded Disability Status Scale (EDSS) progression, and safety and tolerability after 1 year of treatment. Patients with MS receiving um-PEA perceived an improvement in pain sensation without a reduction of the erythema at the injection site. A significant improvement in QoL was observed. No significant difference was reported in EDSS score, and um-PEA was well tolerated. We found a significant increase of palmitoylethanolamide, anandamide and oleoylethanolamide plasma levels, and a significant reduction of interferon-γ, tumor necrosis factor-α, and interleukin-17 serum profile compared with the placebo group. Our results suggest that um-PEA may be considered as an appropriate add-on therapy for the treatment of IFN-β1a-related adverse effects in RR-MS.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacy, "Federico II" University, 80131, Naples, Italy
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Silvana Montella
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Franscesco Barbato
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Albert Comelli
- Department of Biopathology and Medical Biotechnologies, Section of Radiological Sciences, University of Palermo, 90129, Palermo, Italy
| | - Antonio Calignano
- Department of Pharmacy, "Federico II" University, 80131, Naples, Italy
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Giuseppe Orefice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy.
| |
Collapse
|
39
|
Crupi R, Impellizzeri D, Bruschetta G, Cordaro M, Paterniti I, Siracusa R, Cuzzocrea S, Esposito E. Co-Ultramicronized Palmitoylethanolamide/Luteolin Promotes Neuronal Regeneration after Spinal Cord Injury. Front Pharmacol 2016; 7:47. [PMID: 27014061 PMCID: PMC4782663 DOI: 10.3389/fphar.2016.00047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/19/2016] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultraPEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5-T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally) daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor, and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Daniela Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Giuseppe Bruschetta
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Marika Cordaro
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Rosalba Siracusa
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of MessinaMessina, Italy; Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, The University of ManchesterManchester, UK
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| |
Collapse
|
40
|
Palmitoylethanolamide, a Natural Retinoprotectant: Its Putative Relevance for the Treatment of Glaucoma and Diabetic Retinopathy. J Ophthalmol 2015; 2015:430596. [PMID: 26664738 PMCID: PMC4667059 DOI: 10.1155/2015/430596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/11/2015] [Accepted: 11/01/2015] [Indexed: 12/11/2022] Open
Abstract
Retinopathy is a threat to the eyesight, and glaucoma and diabetes are the main causes for the damage of retinal cells. Recent insights pointed out a common pathogenetic pathway for both disorders, based on chronic inflammation. Palmitoylethanolamide (PEA) is an endogenous cell protective lipid. Since its discovery in 1957 as a biologically active component in foods and in many living organisms, around 500 scientific papers have been published on PEA's anti-inflammatory and neuron-protective properties. PEA has been evaluated for glaucoma, diabetic retinopathy, and uveitis, pathological states based on chronic inflammation, respiratory disorders, and various pain syndromes in a number of clinical trials since the 70s of 20th century. PEA is available as a food supplement (PeaPure) and as diet food for medical purposes in Italy (Normast, PeaVera, and Visimast). These products are notified in Italy for the nutritional support in glaucoma and neuroinflammation. PEA has been tested in at least 9 double blind placebo controlled studies, among which two studies were in glaucoma, and found to be safe and effective up to 1.8 g/day, with excellent tolerability. PEA therefore holds a promise in the treatment of a number of retinopathies. We discuss PEA as a putative anti-inflammatory and retinoprotectant compound in the treatment of retinopathies, especially related to glaucoma and diabetes.
Collapse
|
41
|
Keppel Hesselink JM, Kopsky DJ. Palmitoylethanolamide, a neutraceutical, in nerve compression syndromes: efficacy and safety in sciatic pain and carpal tunnel syndrome. J Pain Res 2015; 8:729-34. [PMID: 26604814 PMCID: PMC4631430 DOI: 10.2147/jpr.s93106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid modulator in animals and humans, and has been evaluated since the 1970s as an anti-inflammatory and analgesic drug in more than 30 clinical trials, in a total of ~6,000 patients. PEA is currently available worldwide as a nutraceutical in different formulations, with and without excipients. Here we describe the results of all clinical trials evaluating PEA’s efficacy and safety in nerve compression syndromes: sciatic pain and pain due to carpal tunnel syndrome, and review preclinical evidence in nerve impingement models. Both the pharmacological studies as well as the clinical trials supported PEA’s action as an analgesic compound. In total, eight clinical trials have been published in such entrapment syndromes, and 1,366 patients have been included in these trials. PEA proved to be effective and safe in nerve compression syndromes. In one pivotal, double blind, placebo controlled trial in 636 sciatic pain patients, the number needed to treat to reach 50% pain reduction compared to baseline was 1.5 after 3 weeks of treatment. Furthermore, no drug interactions or troublesome side effects have been described so far. Physicians are not always aware of PEA as a relevant and safe alternative to opioids and co-analgesics in the treatment of neuropathic pain. Especially since the often prescribed co-analgesic pregabaline has been proven to be ineffective in sciatic pain in a double blind enrichment trial, PEA should be considered as a new and safe treatment option for nerve compression syndromes.
Collapse
Affiliation(s)
| | - David J Kopsky
- Institute for Neuropathic Pain, Bosch en Duin, the Netherlands
| |
Collapse
|
42
|
Fatty acids, endocannabinoids and inflammation. Eur J Pharmacol 2015; 785:96-107. [PMID: 26325095 DOI: 10.1016/j.ejphar.2015.08.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/01/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system. However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems. Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides. With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation. A key feature of this 'expanded' endocannabinoid system, or 'endocannabinoidome', is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities. Following an update on the role of the 'endocannabinoidome' in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners. Although its pleiotropic character poses scientific challenges, the 'expanded' endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases. In this respect, successes are more likely to come from 'multiple-target' than from 'single-target' strategies.
Collapse
|
43
|
Skaper SD, Facci L, Barbierato M, Zusso M, Bruschetta G, Impellizzeri D, Cuzzocrea S, Giusti P. N-Palmitoylethanolamine and Neuroinflammation: a Novel Therapeutic Strategy of Resolution. Mol Neurobiol 2015; 52:1034-42. [PMID: 26055231 DOI: 10.1007/s12035-015-9253-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 02/06/2023]
Abstract
Inflammation is fundamentally a protective cellular response aimed at removing injurious stimuli and initiating the healing process. However, when prolonged, it can override the bounds of physiological control and becomes destructive. Inflammation is a key element in the pathobiology of chronic pain, neurodegenerative diseases, stroke, spinal cord injury, and neuropsychiatric disorders. Glia, key players in such nervous system disorders, are not only capable of expressing a pro-inflammatory phenotype but respond also to inflammatory signals released from cells of immune origin such as mast cells. Chronic inflammatory processes may be counteracted by a program of resolution that includes the production of lipid mediators endowed with the capacity to switch off inflammation. These naturally occurring lipid signaling molecules include the N-acylethanolamines, N-arachidonoylethanolamine (an endocannabinoid), and its congener N-palmitoylethanolamine (palmitoylethanolamide or PEA). PEA may play a role in maintaining cellular homeostasis when faced with external stressors provoking, for example, inflammation. PEA is efficacious in mast cell-mediated models of neurogenic inflammation and neuropathic pain and is neuroprotective in models of stroke, spinal cord injury, traumatic brain injury, and Parkinson disease. PEA in micronized/ultramicronized form shows superior oral efficacy in inflammatory pain models when compared to naïve PEA. Intriguingly, while PEA has no antioxidant effects per se, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treat neuroinflammation. This review is intended to discuss the role of mast cells and glia in neuroinflammation and strategies to modulate their activation based on leveraging natural mechanisms with the capacity for self-defense against inflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Di Cesare Mannelli L, Pacini A, Corti F, Boccella S, Luongo L, Esposito E, Cuzzocrea S, Maione S, Calignano A, Ghelardini C. Antineuropathic profile of N-palmitoylethanolamine in a rat model of oxaliplatin-induced neurotoxicity. PLoS One 2015; 10:e0128080. [PMID: 26039098 PMCID: PMC4454493 DOI: 10.1371/journal.pone.0128080] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022] Open
Abstract
Neurotoxicity is a main side effect of the anticancer drug oxaliplatin. The development of a neuropathic syndrome impairs quality of life and potentially results in chemotherapy dose reductions and/or early discontinuation. In the complex pattern of molecular and morphological alterations induced by oxaliplatin in the nervous system, an important activation of glia has been preclinically evidenced. N-Palmitoylethanolamine (PEA) modulates glial cells and exerts antinociceptive effects in several animal models. In order to improve the therapeutic chances for chemotherapy-dependent neuropathy management, the role of PEA was investigated in a rat model of oxaliplatin-induced neuropathy (2.4 mg kg-1 daily, intraperitoneally). On day 21, a single administration of PEA (30 mg kg-1 i.p.) was able to reduce oxaliplatin-dependent pain induced by mechanical and thermal stimuli. The repeated treatment with PEA (30 mg kg-1 daily i.p. for 21 days, from the first oxaliplatin injection) prevented lowering of pain threshold as well as increased pain on suprathreshold stimulation. Ex vivo histological and molecular analysis of dorsal root ganglia, peripheral nerves and spinal cord highlighted neuroprotective effects and glia-activation prevention induced by PEA repeated administration. The protective effect of PEA resulted in the normalization of the electrophysiological activity of the spinal nociceptive neurons. Finally, PEA did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. The efficacy of PEA in neuropathic pain control and in preventing nervous tissue alteration candidates this endogenous compound as disease modifying agent. These characteristics, joined to the safety profile, suggest the usefulness of PEA in chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Pharmacology and Toxicology Section, University of Florence, Florence, Italy
- * E-mail:
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine—DMSC—Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Francesca Corti
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, Naples, Italy
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
- Young Against Pain (YAP) group, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
45
|
The anti-inflammatory effects of palmitoylethanolamide (PEA) on endotoxin-induced uveitis in rats. Eur J Pharmacol 2015; 761:28-35. [PMID: 25934566 DOI: 10.1016/j.ejphar.2015.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the effects of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines (NAEs), in rats subjected to endotoxin-induced uveitis (EIU). EIU was induced in male rats by a single footpad injection of 200μg lipopolysaccharide (LPS). PEA was administered intraperitoneally at 1h before and 7h after injection of LPS. Another group of animals was treated with vehicle. Dexamethasone (DEX) was administered as a positive control. Rats were sacrificed 16h after injection and the eyes tissues were collected for histology, immunohistochemical and western blot analyses. The histological evaluation of the iris-ciliary body showed an increase of neutrophilic infiltration and nuclear modification of vessel of endothelial cells. PEA treatment decreased the inflammatory cell infiltration and improved histological damage of eye tissues. In addition, PEA treatment reduced pro-inflammatory tumor necrosis factor (TNF-α) levels, protein extravasion and lipid peroxidation. Immunohistochemical analysis for intracellular adhesion molecule (ICAM)-1 and nitrotyrosine showed a positive staining from LPS-injected rats. The degree of staining for ICAM-1 and nitrotyrosine was significantly reduced in eye sections from LPS-injected rats treated with PEA. In addition, an increase of inducible nitric oxide synthase (iNOS) and nuclear factor (NF-κB) was also evaluated in inflammed ocular tissues by western blot. PEA strongly inhibited iNOS expression and nuclear NF-κB translocation. Thus, in this study we demonstrated that PEA reduces the degree of ocular inflammation in a rat model of EIU.
Collapse
|
46
|
Delay of morphine tolerance by palmitoylethanolamide. BIOMED RESEARCH INTERNATIONAL 2015; 2015:894732. [PMID: 25874232 PMCID: PMC4385605 DOI: 10.1155/2015/894732] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/18/2014] [Indexed: 12/20/2022]
Abstract
In spite of the potency and efficacy of morphine, its clinical application for chronic persistent pain is limited by the development of tolerance to the antinociceptive effect. The cellular and molecular mechanisms underlying morphine tolerance are complex and still unclear. Recently, the activation of glial cells and the release of glia-derived proinflammatory mediators have been suggested to play a role in the phenomenon. N-Palmitoylethanolamine (PEA) is an endogenous compound with antinociceptive effects able to reduce the glial activation. On this basis, 30 mg kg−1 PEA was subcutaneously daily administered in morphine treated rats (10 mg kg−1 intraperitoneally, daily). PEA treatment significantly attenuated the development of tolerance doubling the number of days of morphine antinociceptive efficacy in comparison to the vehicle + morphine group. PEA prevented both microglia and astrocyte cell number increase induced by morphine in the dorsal horn; on the contrary, the morphine-dependent increase of spinal TNF-α levels was not modified by PEA. Nevertheless, the immunohistochemical analysis revealed significantly higher TNF-α immunoreactivity in astrocytes of PEA-protected rats suggesting a PEA-mediated decrease of cytokine release from astrocyte. PEA intervenes in the nervous alterations that lead to the lack of morphine antinociceptive effects; a possible application of this endogenous compound in opioid-based therapies is suggested.
Collapse
|
47
|
Chiurchiù V, Battistini L, Maccarrone M. Endocannabinoid signalling in innate and adaptive immunity. Immunology 2015; 144:352-364. [PMID: 25585882 DOI: 10.1111/imm.12441] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Luca Battistini
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy.,Centre of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
48
|
Wang J, Zheng J, Kulkarni A, Wang W, Garg S, Prather PL, Hauer-Jensen M. Palmitoylethanolamide regulates development of intestinal radiation injury in a mast cell-dependent manner. Dig Dis Sci 2014; 59:2693-703. [PMID: 24848354 PMCID: PMC4213290 DOI: 10.1007/s10620-014-3212-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/10/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mast cells and neuroimmune interactions regulate the severity of intestinal radiation mucositis, a dose-limiting toxicity during radiation therapy of abdominal malignancies. AIM Because endocannabinoids (eCB) regulate intestinal inflammation, we investigated the effect of the cannabimimetic, palmitoylethanolamide (PEA), in a mast competent (+/+) and mast cell-deficient (Ws/Ws) rat model. METHODS Rats underwent localized, fractionated intestinal irradiation, and received daily injections with vehicle or PEA from 1 day before until 2 weeks after radiation. Intestinal injury was assessed noninvasively by luminol bioluminescence, and, at 2 weeks, by histology, morphometry, and immunohistochemical analysis, gene expression analysis, and pathway analysis. RESULTS Compared with +/+ rats, Ws/Ws rats sustained more intestinal structural injury (p = 0.01), mucosal damage (p = 0.02), neutrophil infiltration (p = 0.0003), and collagen deposition (p = 0.004). PEA reduced structural radiation injury (p = 0.02), intestinal wall thickness (p = 0.03), collagen deposition (p = 0.03), and intestinal inflammation (p = 0.02) in Ws/Ws rats, but not in +/+ rats. PEA inhibited mast cell-derived cellular immune response and anti-inflammatory IL-6 and IL-10 signaling and activated the prothrombin pathway in +/+ rats. In contrast, while PEA suppressed nonmast cell-derived immune responses, it increased anti-inflammatory IL-10 and IL-6 signaling and decreased activation of the prothrombin pathway in Ws/Ws rats. CONCLUSIONS These data demonstrate that the absence of mast cells exacerbate radiation enteropathy by mechanisms that likely involve the coagulation system, anti-inflammatory cytokine signaling, and the innate immune system; and that these mechanisms are regulated by PEA in a mast cell-dependent manner. The eCB system should be explored as target for mitigating intestinal radiation injury.
Collapse
Affiliation(s)
- Junru Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Junying Zheng
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ashwini Kulkarni
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Wen Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
49
|
Suárez-Pinilla P, López-Gil J, Crespo-Facorro B. Immune system: a possible nexus between cannabinoids and psychosis. Brain Behav Immun 2014; 40:269-82. [PMID: 24509089 DOI: 10.1016/j.bbi.2014.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Endocannabinoid system is involved in the regulation of the brain-immune axis. Cannabis consumption is related with the development, course, and severity of psychosis. The epidemiological evidence for increased occurrence of immunological alterations in patients with psychosis has not been sufficiently addressed. The aim of this review is to establish whether there is any scientific evidence of the influence of cannabinoids on aspects of immunity that affect susceptibility to psychotic disorder induction. METHODS A comprehensive search of PubMed/MEDLINE, EMBASE and ISI Web of Knowledge was performed using combinations of key terms distributed into three blocks: "immune", "cannabinoid", and "endocannabinoid receptor". Studies were considered to be eligible for the review if they were original articles, they reported a quantitative or qualitative relation between cannabinoid ligands, their receptors, and immune system, and they were carried out in vitro or in mammals, included humans. All the information was systematically extracted and evaluated. RESULTS We identified 122 articles from 446 references. Overall, endocannabinoids enhanced immune response, whereas exogenous cannabinoids had immunosuppressant effects. A general change in the immune response from Th1 to Th2 was also demonstrated for cannabinoid action. Endogenous and synthetic cannabinoids also modulated microglia function and neurotransmitter secretion. CONCLUSION The actions of cannabinoids through the immune system are quite regular and predictable in the peripheral but remain fuzzy in the central nervous system. Despite this uncertainty, it may be hypothesized that exposure to exocannabinoids, in particular during adolescence might prompt immunological dysfunctions that potentially cause a latent vulnerability to psychosis. Further investigations are warranted to clarify the relationship between the immunological effects of cannabis and psychosis.
Collapse
Affiliation(s)
- Paula Suárez-Pinilla
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain.
| | - José López-Gil
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| |
Collapse
|
50
|
Abstract
Inflammatory and neuroinflammatory processes are increasingly recognized as critical pathophysiologic steps in the development of multiple chronic diseases and in the etiology of persistent pain and depression. Mast cells are immune cells now viewed as cellular sensors in inflammation and immunity. When stimulated, mast cells release an array of mediators to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, and may also regulate the activity of other immune cells, including central microglia. New evidence supports the involvement of peripheral and central mast cells in the development of pain processes as well as in the transition from acute, to chronic and neuropathic pain. That behavioral and endocrine states can increase the number and activation of peripheral and brain mast cells suggests that mast cells represent the immune cells that peripherally and centrally coordinate inflammatory processes in neuropsychiatric diseases such as depression and anxiety which are associated with chronic pelvic pain. Given that increasing evidence supports the activated mast cell as a director of common inflammatory pathways/mechanisms contributing to chronic and neuropathic pelvic pain and comorbid neuropsychiatric diseases, mast cells may be considered a viable target for the multifactorial management of both pain and depression.
Collapse
|