1
|
Filho CC, Melfior L, Ramos SL, Pizi MSO, Taruhn LF, Muller ME, Nunes TK, Schmitt LDO, Gaspar JM, de Oliveira MDA, Tassinari G, Cruz L, Latini A. Tetrahydrobiopterin and Autism Spectrum Disorder: A Systematic Review of a Promising Therapeutic Pathway. Brain Sci 2025; 15:151. [PMID: 40002484 PMCID: PMC11853471 DOI: 10.3390/brainsci15020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, along with restricted and repetitive patterns of behavior, interests, or activities. ASD encompasses a wide spectrum of clinical presentations and functional impairments, ranging from mild to severe. Despite its prevalence, the underlying physiopathological mechanisms of ASD remain largely unknown, resulting in a lack of effective targeted therapeutic interventions, contributing to significant financial and emotional burdens on affected families and the healthcare system. Emerging evidence suggests that dysfunction in the tetrahydrobiopterin (BH4) pathway may impair the activity of monoaminergic and nitric oxide (NO)-dependent neurons in individuals with ASD. To explore this potential mechanism, we conducted a systematic review to analyze such impairments to gather information on whether the off-label use of BH4 could represent a novel pharmacological approach for managing ASD. Following the PRISMA 2020 guidelines, we systematically reviewed the literature from four databases: PubMed, Virtual Health Library, Cochrane Library, and SciELO, from January 1967 to December 2021. The quality of the included studies was assessed using the Newcastle-Ottawa scale. The inclusion criteria for this systematic review focused on identifying articles published in English that contained the following keywords, used in various combinations: autism, ASD, autism spectrum disorder, BH4, tetrahydrobiopterin, neopterin, NO, nitric oxide. The analysis was performed between December 2020 and December 2021. The collected data demonstrated that BH4 metabolism was altered in individuals with ASD. Lower levels of BH4 were reported in biological samples from ASD-affected individuals compared to age- and sex-matched controls. Additionally, neopterin levels were elevated in plasma and urine, but decreased in cerebrospinal fluid, while nitric oxide levels were consistently reported to be higher across studies. Treatment with BH4 has shown potential in improving ASD-related symptoms. The reported increase in neopterin in biological fluids indicates inflammation, while the reduction in BH4 levels suggests a potential shift in its metabolic role. Specifically, BH4 may be diverted from its primary role in neurotransmitter synthesis to function as an antioxidant or to perpetuate inflammation through NO production. Given that BH4 is a critical cofactor in monoaminergic neurotransmission, its dysfunction highlights the molecule's therapeutic potential. BH4, already FDA-approved for other conditions, emerges as a promising off-label candidate to alleviate ASD symptomatology.
Collapse
Affiliation(s)
- Clóvis Colpani Filho
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Lucas Melfior
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Sthephanie Luiz Ramos
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - Lilian Freitas Taruhn
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Margrit Ellis Muller
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Thiago Kucera Nunes
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luísa de Oliveira Schmitt
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Pharmacy School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Joana Margarida Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Miguel de Abreu de Oliveira
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giovanna Tassinari
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luisa Cruz
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
2
|
Sandvig HV, Aam S, Alme KN, Lydersen S, Magne Ueland P, Ulvik A, Wethal T, Saltvedt I, Knapskog AB. Neopterin, kynurenine metabolites, and indexes related to vitamin B6 are associated with post-stroke cognitive impairment: The Nor-COAST study. Brain Behav Immun 2024; 118:167-177. [PMID: 38428649 DOI: 10.1016/j.bbi.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND AIMS We have previously shown that systemic inflammation was associated with post-stroke cognitive impairment (PSCI). Because neopterin, kynurenine pathway (KP) metabolites, and B6 vitamers are linked to inflammation, in our study we investigated whether those biomarkers were associated with PSCI. MATERIAL AND METHODS The Norwegian Cognitive Impairment After Stroke study is a prospective multicenter cohort study of patients with acute stroke recruited from May 2015 through March 2017. Plasma samples of 422 participants (59 % male) with ischemic stroke from the index hospital stay and 3 months post-stroke were available for analyses of neopterin, KP metabolites, and B6 vitamers using liquid chromatography-tandem mass spectrometry. Mixed linear regression analyses adjusted for age, sex, and creatinine, were used to assess whether there were associations between those biomarkers and cognitive outcomes, measured by the Montreal Cognitive Assessment scale (MoCA) at 3-, 18-, and 36-month follow-up. RESULTS Participants had a mean (SD) age of 72 (12) years, with a mean (SD) National Institutes of HealthStroke Scale score of 2.7 (3.6) at Day 1. Higher baseline values of quinolinic acid, PAr (i.e., an inflammatory marker based on vitamin B6 metabolites), and HKr (i.e., a marker of functional vitamin B6 status based on selected KP metabolites) were associated with lower MoCA score at 3, 18, and 36 months post-stroke (p < 0.01). Higher baseline concentrations of neopterin and 3-hydroxykynurenine were associated with lower MoCA scores at 18 and 36 months, and higher concentrations of xanthurenic acid were associated with higher MoCA score at 36 months (p < 0.01). At 3 months post-stroke, higher concentrations of neopterin and lower values of pyridoxal 5́-phosphate were associated with lower MoCA scores at 18- and 36-month follow-up, while lower concentrations of picolinic acid were associated with a lower MoCA score at 36 months (p < 0.01). CONCLUSION Biomarkers and metabolites of systemic inflammation, including biomarkers of cellular immune activation, indexes of vitamin B6 homeostasis, and several neuroactive metabolites of the KP pathway, were associated with PSCI. TRIAL REGISTRATION ClinicalTrials.gov: NCT02650531.
Collapse
Affiliation(s)
- Heidi Vihovde Sandvig
- Department of Medicine, Kristiansund Hospital, Møre og Romsdal Hospital Trust, Kristiansund, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Stina Aam
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Katinka N Alme
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Stian Lydersen
- Department of Mental Health, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| | - Torgeir Wethal
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Stroke, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, Ullevaal, Oslo, Norway
| |
Collapse
|
3
|
Qiu D, Zhou S, Donnelly J, Xia D, Zhao L. Aerobic exercise attenuates abnormal myelination and oligodendrocyte differentiation in 3xTg-AD mice. Exp Gerontol 2023; 182:112293. [PMID: 37730187 DOI: 10.1016/j.exger.2023.112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Pathological features of Alzheimer's Disease (AD) include alterations in the structure and function of neurons as well as of myelin sheaths. Accumulated evidence shows that aerobic type of exercise can enhance neuroplasticity in mouse models of AD. However, whether and how aerobic exercise can affect myelin sheath repair and neuroprotection in the AD models remains unclear. In this study we tested the hypotheses that 1) myelin structural alterations in 3xTg-AD mice would be related to abnormalities in oligodendrocyte lineage cells, resulting in impaired learning and memory, and 2) a 6-month aerobic exercise intervention would have beneficial effects on such alterations. Two-month-old male 3xTg-AD mice were randomly assigned to a control (AC) or an exercise (AE) group, and age-matched male C57BL/6;129 mice were also randomly assigned to a normal control (NC) or an exercise (NE) group, with n = 12 in each group. Mice in the exercise groups were trained on a motor-drive treadmill, 60 min per day, 5 days per week for 6 months. Cognitive function was assessed at the end of the intervention period. Then, brain specimens were obtained for assessments of morphological and oligodendrocyte lineage cell changes. The results of electron microscopy showed that myelin ultrastructure demonstrated a higher percentage of loose and granulated myelin sheath around axons in the temporal lobe in the AC, as compared with the NC group, along with greater cognitive dysfunction at 8-months of age. These differences were accompanied by significantly greater myelin basic protein (MBP) expression and less neuron-glial antigen-2 (NG2) protein and mRNA levels in the AC, compared to the NC. However, there were no significant between-group differences in the G-ratio (the ratio of axon diameter to axon plus myelin sheath diameter) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) protein and mRNA levels. The aerobic exercise ameliorated cognitive deterioration and appeared to keep components of myelin sheath and oligodendrocyte precursor cells stabilized, resulting in a decrease in the percentage of loose and granulated myelin sheath and MBP protein, and an increase in NG2 protein and mRNA levels in the AE group. Therefore, the 6-month exercise intervention demonstrated beneficial effects on myelin lesions, abnormal differentiation of oligodendrocytes and general brain function in the 3xTg-AD mice, providing further insights into the role of aerobic exercise in management of neurodegeneration in AD by maintaining intact myelination.
Collapse
Affiliation(s)
- Dan Qiu
- Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou 014030, China; Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China; Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Lismore, NSW, Australia
| | - Shi Zhou
- Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Lismore, NSW, Australia.
| | | | - Dongdong Xia
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
| |
Collapse
|
4
|
Eichwald T, da Silva LDB, Staats Pires AC, Niero L, Schnorrenberger E, Filho CC, Espíndola G, Huang WL, Guillemin GJ, Abdenur JE, Latini A. Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor. Antioxidants (Basel) 2023; 12:1037. [PMID: 37237903 PMCID: PMC10215290 DOI: 10.3390/antiox12051037] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Tetrahydrobiopterin (BH4) is an endogenous cofactor for some enzymatic conversions of essential biomolecules, including nitric oxide, and monoamine neurotransmitters, and for the metabolism of phenylalanine and lipid esters. Over the last decade, BH4 metabolism has emerged as a promising metabolic target for negatively modulating toxic pathways that may result in cell death. Strong preclinical evidence has shown that BH4 metabolism has multiple biological roles beyond its traditional cofactor activity. We have shown that BH4 supports essential pathways, e.g., to generate energy, to enhance the antioxidant resistance of cells against stressful conditions, and to protect from sustained inflammation, among others. Therefore, BH4 should not be understood solely as an enzyme cofactor, but should instead be depicted as a cytoprotective pathway that is finely regulated by the interaction of three different metabolic pathways, thus assuring specific intracellular concentrations. Here, we bring state-of-the-art information about the dependency of mitochondrial activity upon the availability of BH4, as well as the cytoprotective pathways that are enhanced after BH4 exposure. We also bring evidence about the potential use of BH4 as a new pharmacological option for diseases in which mitochondrial disfunction has been implicated, including chronic metabolic disorders, neurodegenerative diseases, and primary mitochondriopathies.
Collapse
Affiliation(s)
- Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Lucila de Bortoli da Silva
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Ananda Christina Staats Pires
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Laís Niero
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Erick Schnorrenberger
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Clovis Colpani Filho
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Gisele Espíndola
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei-Lin Huang
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - José E. Abdenur
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| |
Collapse
|
5
|
Dzhambov AM, Lercher P, Rüdisser J, Browning MH, Markevych I. Home gardens and distances to nature associated with behavior problems in alpine schoolchildren: Role of secondhand smoke exposure and biomarkers. Int J Hyg Environ Health 2022; 243:113975. [DOI: 10.1016/j.ijheh.2022.113975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
|
6
|
Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants (Basel) 2022; 11:antiox11050826. [PMID: 35624690 PMCID: PMC9138070 DOI: 10.3390/antiox11050826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Erythroid-related nuclear factor 2 (NRF2) and the antioxidant-responsive-elements (ARE) signaling pathway are the master regulators of cell antioxidant defenses, playing a key role in maintaining cellular homeostasis, a scenario in which proper mitochondrial function is essential. Increasing evidence indicates that the regular practice of physical exercise increases cellular antioxidant defenses by activating NRF2 signaling. This manuscript reviewed classic and ongoing research on the beneficial effects of exercise on the antioxidant system in both the brain and skeletal muscle.
Collapse
|
7
|
Social dancing: the relationship between physical activity at balls and neopterin in Brazilian older women. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Espíndola G, Scheffer DDL, Latini A. Commentary: Urinary Neopterin, a New Marker of the Neuroinflammatory Status in Amyotrophic Lateral Sclerosis. Front Neurosci 2021; 15:645694. [PMID: 33833664 PMCID: PMC8021780 DOI: 10.3389/fnins.2021.645694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Gisele Espíndola
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Ambulatório de Doenças Neuromusculares e Neurogenéticas Hospital Universitário Polydoro Ernani de São Thiago, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
9
|
Constantino LC, Pamplona FA, Matheus FC, de Carvalho CR, Ludka FK, Massari CM, Boeck CR, Prediger RD, Tasca CI. Functional interplay between adenosine A 2A receptor and NMDA preconditioning in fear memory and glutamate uptake in the mice hippocampus. Neurobiol Learn Mem 2021; 180:107422. [PMID: 33691195 DOI: 10.1016/j.nlm.2021.107422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
N-methyl D-aspartate (NMDA) administered at subtoxic dose plays a protective role against neuronal excitotoxicity, a mechanism described as preconditioning. Since the activation of adenosinergic receptors influences the achievement of NMDA preconditioning in the hippocampus, we evaluated the potential functional interplay between adenosine A1 and A2A receptors (A1R and A2AR) activities and NMDA preconditioning. Adult male Swiss mice received saline (NaCl 0.9 g%, i.p.) or a nonconvulsant dose of NMDA (75 mg/kg, i.p.) and 24 h later they were treated with the one of the ligands: A1R agonist (CCPA, 0.2 mg/kg, i.p.) or antagonist (DPCPX, 3 mg/kg, i.p.), A2AR agonist (CGS21680, 0.05 mg/kg, i.p.) or antagonist (ZM241385, 0.1 mg/kg, i.p.) and subjected to contextual fear conditioning task. Binding properties and content of A2AR and glutamate uptake were assessed in the hippocampus of mice subjected to NMDA preconditioning. Treatment with CGS21680 increased the time of freezing during the exposure of animals to the new environment. NMDA preconditioning did not affect the freezing time of mice per se, but it prevented the response observed after the activation of A2AR. Furthermore, the activation of A2AR by CGS21680 after the preconditioning blocked the increase of glutamate uptake induced by NMDA preconditioning. The immunodetection of A2AR in total hippocampal homogenates showed no significant differences evoked by NMDA preconditioning and did not alter A2AR maximum binding for the selective ligand [3H]CGS21680. These results demonstrate changes in A2AR functionality in mice following NMDA preconditioning.
Collapse
Affiliation(s)
- Leandra C Constantino
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Fabrício A Pamplona
- Instituto Latino-Americano de Ciências da Vida e Saúde, Universidade Federal da Integração Latino-Americana (UNILA), Brazil
| | - Filipe C Matheus
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Cristiane R de Carvalho
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabiana K Ludka
- Curso de Farmácia, Universidade do Contestado, Canoinhas, SC, Brazil
| | - Caio M Massari
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carina R Boeck
- Programa de Pós-graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria, RS, Brazil
| | - Rui D Prediger
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
10
|
Yu J, Zhu H, Taheri S, Mondy W, Perry S, Kindy MS. Plant-Based Nutritional Supplementation Attenuates LPS-Induced Low-Grade Systemic Activation. Int J Mol Sci 2021; 22:ijms22020573. [PMID: 33430045 PMCID: PMC7826722 DOI: 10.3390/ijms22020573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
Plant-based nutritional supplementation has been shown to attenuate and reduce mortality in the processes of both acute and chronic disorders, including diabetes, obesity, cardiovascular disease, cancer, inflammatory diseases, and neurological and neurodegenerative disorders. Low-level systemic inflammation is an important contributor to these afflictions and diets enriched in phytochemicals can slow the progression. The goal of this study was to determine the impact of lipopolysaccharide (LPS)-induced inflammation on changes in glucose and insulin tolerance, performance enhancement, levels of urinary neopterin and concentrations of neurotransmitters in the striatum in mouse models. Both acute and chronic injections of LPS (2 mg/kg or 0.33 mg/kg/day, respectively) reduced glucose and insulin tolerance and elevated neopterin levels, which are indicative of systemic inflammatory responses. In addition, there were significant decreases in striatal neurotransmitter levels (dopamine and DOPAC), while serotonin (5-HT) levels were essentially unchanged. LPS resulted in impaired execution in the incremental loading test, which was reversed in mice on a supplemental plant-based diet, improving their immune function and maintaining skeletal muscle mitochondrial activity. In conclusion, plant-based nutritional supplementation attenuated the metabolic changes elicited by LPS injections, causing systemic inflammatory activity that contributed to both systemic and neurological alterations.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - William Mondy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | | | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL 33620, USA
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
11
|
Scheffer DDL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165823. [PMID: 32360589 PMCID: PMC7188661 DOI: 10.1016/j.bbadis.2020.165823] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
A wide array of molecular pathways has been investigated during the past decade in order to understand the mechanisms by which the practice of physical exercise promotes neuroprotection and reduces the risk of developing communicable and non-communicable chronic diseases. While a single session of physical exercise may represent a challenge for cell homeostasis, repeated physical exercise sessions will improve immunosurveillance and immunocompetence. Additionally, immune cells from the central nervous system will acquire an anti-inflammatory phenotype, protecting central functions from age-induced cognitive decline. This review highlights the exercise-induced anti-inflammatory effect on the prevention or treatment of common chronic clinical and experimental settings. It also suggests the use of pterins in biological fluids as sensitive biomarkers to follow the anti-inflammatory effect of physical exercise.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
12
|
Staats Pires A, Tan VX, Heng B, Guillemin GJ, Latini A. Kynurenine and Tetrahydrobiopterin Pathways Crosstalk in Pain Hypersensitivity. Front Neurosci 2020; 14:620. [PMID: 32694973 PMCID: PMC7338796 DOI: 10.3389/fnins.2020.00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the identification of molecular mechanisms associated with pain persistence, no significant therapeutic improvements have been made. Advances in the understanding of the molecular mechanisms that induce pain hypersensitivity will allow the development of novel, effective, and safe therapies for chronic pain. Various pro-inflammatory cytokines are known to be increased during chronic pain, leading to sustained inflammation in the peripheral and central nervous systems. The pro-inflammatory environment activates additional metabolic routes, including the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways, which generate bioactive soluble metabolites with the potential to modulate neuropathic and inflammatory pain sensitivity. Inflammation-induced upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) and guanosine triphosphate cyclohydrolase I (GTPCH), both rate-limiting enzymes of KYN and BH4 biosynthesis, respectively, have been identified in experimental chronic pain models as well in biological samples from patients affected by chronic pain. Inflammatory inducible KYN and BH4 pathways upregulation is characterized by increase in pronociceptive compounds, such as quinolinic acid (QUIN) and BH4, in addition to inflammatory mediators such as interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). As expected, the pharmacologic and genetic experimental manipulation of both pathways confers analgesia. Many metabolic intermediates of these two pathways such as BH4, are known to sustain pain, while others, like xanthurenic acid (XA; a KYN pathway metabolite) have been recently shown to be an inhibitor of BH4 synthesis, opening a new avenue to treat chronic pain. This review will focus on the KYN/BH4 crosstalk in chronic pain and the potential modulation of these metabolic pathways that could induce analgesia without dependence or abuse liability.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa X. Tan
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
13
|
Moreira ARO, Batista RFL, Ladeira LLC, Thomaz EBAF, Alves CMC, Saraiva MC, Silva AAM, Brondani MA, Ribeiro CCC. Higher sugar intake is associated with periodontal disease in adolescents. Clin Oral Investig 2020; 25:983-991. [PMID: 32519237 DOI: 10.1007/s00784-020-03387-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Analyze the association between higher added sugar exposure and periodontal disease in adolescents (18-19 years old). MATERIALS AND METHODS This was a cross-sectional study nested to RPS Cohorts Consortium, São Luís, Brazil (n = 2515). The exposure was percentage of daily calories from added sugar (≥ 10%), estimated from a quantitative food frequency. The outcome was periodontal disease estimated by the number of teeth affected by bleeding on probing, periodontal probing depth ≥ 4 mm, and clinical attachment level ≥ 4 mm at the same site. A theoretical model was depicted in a directed acyclic graph to identify the minimal sufficient adjustment set: household income, adolescent's educational level, sex, alcohol use, and smoking. Periodontal disease was categorized into < 2 teeth affected, 2 to 3 teeth affected, and ≥ 4 teeth affected to estimate prevalence ratios (PR) by multinomial logistic regression. To test for consistency, means ratio (MR) were estimated using zero-inflated Poisson. RESULTS High sugar intake was associated with ≥ 4 teeth affected by periodontal disease (PR = 1.42; 95% confidence interval (CI) = 1.03-1.94; p = 0.030); consistency Poisson analysis reinforced these results (MR = 1.15; 95% CI = 1.03-1.29; p = 0.011). CONCLUSION High level of added sugar intake was associated with greater extent of periodontal disease in adolescents. CLINICAL RELEVANCE High sugar intake was associated with periodontal disease in adolescents, supporting the integrated hypothesis of dental caries and periodontal disease and giving impetus to future clinical investigation on the effect of restriction of added sugar consumption in periodontal parameters, which potentially may change traditional treatment protocols of periodontal disease.
Collapse
Affiliation(s)
- Ana R O Moreira
- Postgraduate Program of Dentistry, Federal University of Maranhão, Av. dos Portugueses 1966, Cidade Universitária Bacanga, São Luís, MA, 65080-805, Brazil
| | - Rosangela F L Batista
- Postgraduate Program of Public Health, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lorena L C Ladeira
- Postgraduate Program of Dentistry, Federal University of Maranhão, Av. dos Portugueses 1966, Cidade Universitária Bacanga, São Luís, MA, 65080-805, Brazil
| | - Erika B A F Thomaz
- Postgraduate Program of Public Health, Federal University of Maranhão, São Luís, MA, Brazil
| | - Claudia M C Alves
- Postgraduate Program of Dentistry, Federal University of Maranhão, Av. dos Portugueses 1966, Cidade Universitária Bacanga, São Luís, MA, 65080-805, Brazil
- Postgraduate Program of Public Health, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria C Saraiva
- Department of Pediatric Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Antonio A M Silva
- Postgraduate Program of Public Health, Federal University of Maranhão, São Luís, MA, Brazil
| | - Mario A Brondani
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia C C Ribeiro
- Postgraduate Program of Dentistry, Federal University of Maranhão, Av. dos Portugueses 1966, Cidade Universitária Bacanga, São Luís, MA, 65080-805, Brazil.
- Postgraduate Program of Public Health, Federal University of Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
14
|
Anthropometric Parameters in Celiac Disease: A Review on the Different Evaluation Methods and Disease Effects. J Nutr Metab 2019; 2019:4586963. [PMID: 31583132 PMCID: PMC6754920 DOI: 10.1155/2019/4586963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/03/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
This review compiled anthropometric data from 29 original articles, published between 1995 and 2015, corresponding to a total sample of 6368 celiac disease subjects. Body mass index was the main parameter for measuring anthropometry (82.1%), followed by body mass (78.6%), body fat (51.7%), bone mineral density and bone mineral content (46.4%), and fat-free mass (44.8%). The main evaluation method was dual x-ray absorptiometry (83.3%), followed by bioimpedance (16.6%), skinfold thickness (16.6%), and isotope dilution (5.5%). This compilation suggests that celiac disease patients without a gluten-free diet (WGFD) and celiac disease patients with a gluten-free diet (GFD) show a lower body mass than the control group, with inconclusive data about WGFD versus GFD. Body mass index is lower in WGFD and GFD compared to control group, and is lower in WGFD compared to GFD. We observed lower values of FM and FFM in WGFD and GFD versus the control group. No difference was found between WGFD versus GFD. BMD and BMC are lower in WGFD versus GFD and GFD versus the control group, with inconclusive data about WGFD versus GFD. The findings of this review suggest that celiac disease patients must be periodically evaluated through anthropometric parameters, since the pathology has the potential to modulate such values even in a gluten-free diet, with these variables reflecting their healthy status. In parallel, the screening of different anthropometric assessment methodologies can provide support for more accurate evaluations by scientists and clinical professionals who work with celiac disease patients.
Collapse
|
15
|
de Carvalho Cartágenes S, Fernandes LMP, Carvalheiro TCVS, de Sousa TM, Gomes ARQ, Monteiro MC, de Oliveira Paraense RS, Crespo-López ME, Lima RR, Fontes-Júnior EA, Prediger RD, Maia CSF. "Special K" Drug on Adolescent Rats: Oxidative Damage and Neurobehavioral Impairments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5452727. [PMID: 31001375 PMCID: PMC6437740 DOI: 10.1155/2019/5452727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/19/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Ketamine is used in clinical practice as an anesthetic that pharmacologically modulates neurotransmission in postsynaptic receptors, such as NMDA receptors. However, widespread recreational use of ketamine in "party drug" worldwide since the 1990s quickly spread to the Asian orient region. Thus, this study aimed at investigating the behavioral and oxidative effects after immediate withdrawal of intermittent administration of ketamine in adolescent female rats. For this, twenty female Wistar rats were randomly divided into two groups: control and ketamine group (n = 10/group). Animals received ketamine (10 mg/kg/day) or saline intraperitoneally for three consecutive days. Three hours after the last administration, animals were submitted to open field, elevated plus-maze, forced swim tests, and inhibitory avoidance paradigm. Twenty-four hours after behavioral tests, the blood and hippocampus were collected for the biochemical analyses. Superoxide dismutase, catalase, nitrite, and lipid peroxidation (LPO) were measured in the blood samples. Nitrite and LPO were measured in the hippocampus. The present findings demonstrate that the early hours of ketamine withdrawal induced oxidative biochemistry unbalance in the blood samples, with elevated levels of nitrite and LPO. In addition, we showed for the first time that ketamine withdrawal induced depressive- and anxiety-like profile, as well as short-term memory impairment in adolescent rodents. The neurobehavioral deficits were accompanied by the hippocampal nitrite and LPO-elevated levels.
Collapse
Affiliation(s)
- Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Thais Miranda de Sousa
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Antônio Rafael Quadros Gomes
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | | | - Maria Elena Crespo-López
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rui Daniel Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
16
|
Scheffer DDL, Ghisoni K, Aguiar AS, Latini A. Moderate running exercise prevents excessive immune system activation. Physiol Behav 2019; 204:248-255. [PMID: 30794851 DOI: 10.1016/j.physbeh.2019.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/01/2023]
Abstract
Benefits of exercise have been documented for many diseases with a chronic progression, including obesity, diabetes mellitus, cardiovascular diseases, neurodegenerative diseases, certain types of cancers, and overall mortality. Low-grade systemic inflammation is a key component of these pathologies and it has been demonstrated that can be prevented by performing regularly physical exercise. The aim of this study was to examine the effect of lipopolysaccharide (LPS)-induced inflammation on glucose and insulin tolerance, exercise performance, production of urinary neopterin and striatal neurotransmitters levels in adult male C57BL/6 mice. Increased blood glucose clearance and insulin sensitivity were observed after a single administration of glucose (2 g/kg, p.o.) or insulin (0.5 U/kg, i.p.). However, the repeated injection of LPS (0.33 mg/kg/day, i.p.) decreased glucose tolerance and increase urinary neopterin levels, pointing to systemic inflammation. In parallel to the urinary-increased neopterin, it was observed a significant reduction in the striatal dopamine levels and an increase in the serotonin/dopamine ratio. While a single LPS injection (0.33 mg/kg, i.p.) showed impaired performance in the incremental loading test (10 m/min, with 2 m/min increment every 3 min, at 9% grade), a moderate physical exercise protocol (treadmill for three weeks; 5 sessions/week; up to 50 min/day) prevented the exacerbation of immune system activation and preserved mitochondrial activity in skeletal muscle from mice with continuous LPS infusion (infusion pumps: 0.83 mg/kg/day, i.p.). In conclusion, the peripheral-induced inflammation elicited metabolic alterations that provoked impairment in striatal dopamine metabolism. The moderate exercise prevented the increase of urinary neopterin and preserved mitochondrial activity under LPS-induced inflammatory conditions.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Karina Ghisoni
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aderbal Silva Aguiar
- Departamento de Ciências da Saúde, Universidade Federal de Santa Catarina, Araranguá, Brazil.
| | - Alexandra Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
17
|
Hara S, Fukumura S, Ichinose H. Reversible S-glutathionylation of human 6-pyruvoyl tetrahydropterin synthase protects its enzymatic activity. J Biol Chem 2019; 294:1420-1427. [PMID: 30514762 DOI: 10.1074/jbc.ra118.005280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/28/2018] [Indexed: 01/12/2023] Open
Abstract
6-Pyruvoyl tetrahydropterin synthase (PTS) converts 7,8-dihydroneopterin triphosphate into 6-pyruvoyltetrahydropterin and is a critical enzyme for the de novo synthesis of tetrahydrobiopterin, an essential cofactor for aromatic amino acid hydroxylases and nitric-oxide synthases. Neopterin derived from 7,8-dihydroneopterin triphosphate is secreted by monocytes/macrophages, and is a well-known biomarker for cellular immunity. Because PTS activity in the cell can be a determinant of neopterin production, here we used recombinant human PTS protein to investigate how its activity is regulated, especially depending on redox conditions. Human PTS has two cysteines: Cys-43 at the catalytic site and Cys-10 at the N terminus. PTS can be oxidized and consequently inactivated by H2O2 treatment, oxidized GSH, or S-nitrosoglutathione, and determining the oxidized modifications of PTS induced by each oxidant by MALDI-TOF MS, we show that PTS is S-glutathionylated in the presence of GSH and H2O2 S-Glutathionylation at Cys-43 protected PTS from H2O2-induced irreversible sulfinylation and sulfonylation. We also found that PTS expressed in HeLa and THP-1 cells is reversibly modified under oxidative stress conditions. Our findings suggest that PTS activity and S-glutathionylation is regulated by the cellular redox environment and that reversible S-glutathionylation protects PTS against oxidative stress.
Collapse
Affiliation(s)
- Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Soichiro Fukumura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
18
|
Latini A, de Bortoli da Silva L, da Luz Scheffer D, Pires ACS, de Matos FJ, Nesi RT, Ghisoni K, de Paula Martins R, de Oliveira PA, Prediger RD, Ghersi M, Gabach L, Pérez MF, Rubiales-Barioglio S, Raisman-Vozari R, Mongeau R, Lanfumey L, Aguiar AS. Tetrahydrobiopterin improves hippocampal nitric oxide-linked long-term memory. Mol Genet Metab 2018; 125:104-111. [PMID: 29935801 DOI: 10.1016/j.ymgme.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/09/2018] [Accepted: 06/09/2018] [Indexed: 11/24/2022]
Abstract
Tetrahydrobiopterin (BH4) is synthesized by the combined action of three metabolic pathways, namely de novo synthesis, recycling, and salvage pathways. The best-known function of BH4 is its mandatory action as a natural cofactor of the aromatic amino acid hydroxylases and nitric oxide synthases. Thus, BH4 is essential for the synthesis of nitric oxide, a retrograde neurotransmitter involved in learning and memory. We investigated the effect of BH4 (4-4000 pmol) intracerebroventricular administration on aversive memory, and on BH4 metabolism in the hippocampus of rodents. Memory-related behaviors were assessed in Swiss and C57BL/6 J mice, and in Wistar rats. It was consistently observed across all rodent species that BH4 facilitates aversive memory acquisition and consolidation by increasing the latency to step-down in the inhibitory avoidance task. This effect was associated with a reduced threshold to generate hippocampal long-term potentiation process. In addition, two inhibitors of memory formation (N(ω)-nitro-L-arginine methyl ester - L-Name - and dizocilpine - MK-801 -) blocked the enhanced effect of BH4 on memory, while the amnesic effect was not rescue by the co-administration of BH4 or a cGMP analog (8-Br-cGMP). The data strongly suggest that BH4 enhances aversive memory by activating the glutamatergic neurotransmission and the retrograde activity of NO. It was also demonstrated that BH2 can be converted into BH4 by activating the BH4 salvage pathway under physiological conditions in the hippocampus. This is the first evidence showing that BH4 enhances aversive memory and that the BH4 salvage pathway is active in the hippocampus.
Collapse
Affiliation(s)
- Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Lucila de Bortoli da Silva
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ananda Christina Staats Pires
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe José de Matos
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Renata T Nesi
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Karina Ghisoni
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Paulo Alexandre de Oliveira
- LEXDON, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rui D Prediger
- LEXDON, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marisa Ghersi
- Facultad de Ciencias Químicas, CIBICI, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Gabach
- Facultad de Ciencias Químicas, CIBICI, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariela Fernanda Pérez
- Facultad de Ciencias Químicas, CIBICI, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Rita Raisman-Vozari
- Institut de Cerveau et de la Moelle Epinière, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Raymond Mongeau
- Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie, Université Paris Descartes, EA4475, France
| | - Laurence Lanfumey
- Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie, Université Paris Descartes, EA4475, France
| | - Aderbal Silva Aguiar
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
| |
Collapse
|
19
|
de Paula Martins R, Ghisoni K, Lim CK, Aguiar AS, Guillemin GJ, Latini A. Neopterin preconditioning prevents inflammasome activation in mammalian astrocytes. Free Radic Biol Med 2018; 115:371-382. [PMID: 29198726 DOI: 10.1016/j.freeradbiomed.2017.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Neopterin, a well-established biomarker for immune system activation, is found at increased levels in the cerebrospinal fluid of individuals affected by neurological/neurodegenerative diseases. Here, neopterin synthesis was investigated in different nerve cells (rodent and human) and in the mouse hippocampus under inflammatory stimuli. We also aimed to investigate whether neopterin preconditioning could modulate the inflammasome activation, a component of the innate immune system. Increased neopterin was detected in human nerve cells supernatants (highest secretion in astrocytes) exposed to lipopolysaccharide (LPS) and interferon-gamma (INF-γ) and in the hippocampus of mice receiving LPS (0.33mg/kg; intraperitoneal). In parallel to the hippocampal-increased neopterin, it was observed a significant increase in the expression of the rate-limiting enzyme of its biosynthetic pathway, and both phenomena occurred before the inflammasome activation. Moreover, a significant inhibition of the inflammasome activation was observed in neopterin pre-conditioned human astrocytes, when challenged with LPS, by reducing IL-1β, caspase-1 and ASC expression or content, components of the NLRP3 inflammasome. Mechanistically, neopterin might induce eletrophilic stress and consequently the nuclear translocation of the transcription factor Nrf-2, and the anti-inflammatory cytokines IL-10 and IL-1ra release, which would induce the inhibition of the inflammasome activation. Altogether, this strongly suggests an essential role of neopterin during inflammatory processes.
Collapse
Affiliation(s)
- Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, Córrego Grande, Florianópolis, SC 88040-900, Brazil; Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Karina Ghisoni
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, Córrego Grande, Florianópolis, SC 88040-900, Brazil
| | - Chai K Lim
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Aderbal Silva Aguiar
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, Córrego Grande, Florianópolis, SC 88040-900, Brazil
| | - Gilles J Guillemin
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, Córrego Grande, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
20
|
Fields CT, Chassaing B, Castillo-Ruiz A, Osan R, Gewirtz AT, de Vries GJ. Effects of gut-derived endotoxin on anxiety-like and repetitive behaviors in male and female mice. Biol Sex Differ 2018; 9:7. [PMID: 29351816 PMCID: PMC5775597 DOI: 10.1186/s13293-018-0166-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gut dysbiosis is observed in several neuropsychiatric disorders exhibiting increases in anxiety behavior, and recent work suggests links between gut inflammation and such disorders. One source of this inflammation may be lipopolysaccharide (LPS), a toxic component of gram-negative bacteria. Here, we (1) determine whether oral gavage of LPS, as a model of gut-derived endotoxemia, affects anxiety-like and/or repetitive behaviors; (2) test whether these changes depend on TLR4 signaling; and (3) test the extent to which gut-derived endotoxin and TLR4 antagonism affects males and females differently. METHODS In experiment 1, male wild-type (WT) and Tlr4-/- mice were tested for locomotor, anxiety-like, and repetitive behaviors in an automated open field test apparatus, 2 h after oral gavage of LPS or saline. In experiment 2, male and female WT mice received an oral gavage of LPS and an injection of one or two TLR4 antagonists that target different TLR4 signaling pathways ((+)-naloxone and LPS derived from R. sphaeroides (LPS-RS)). Univariate and multivariate analyses were used to identify effects of treatment, sex, and genotype and their interaction. RESULTS In experiment 1, oral gavage of LPS increased anxiety-like behavior in male WT mice but not in Tlr4-/- mice. In experiment 2, oral gavage of LPS increased anxiety-like and decreased repetitive behaviors in WT mice of both sexes. Neither antagonist directly blocked the effects of orally administered LPS. However, treatment with (+)-naloxone, which blocks the TRIF pathway of TLR4, had opposing behavioral effects in males and females (independent of LPS treatment). We also identified sex differences in the expression of interleukin-6, a pro-inflammatory cytokine, in the gut both in basal conditions and in response to LPS. CONCLUSION In spite of the ubiquitous nature of LPS in the gut lumen, this is the first study to demonstrate that intestinally derived LPS can initiate behavioral aspects of the sickness response. While an increased enteric load of LPS increases anxiety-like behavior in both sexes, it likely does so via sex-specific mechanisms. Similarly, TLR4 signaling may promote baseline expression of repetitive behavior differently in males and females. This study lays the groundwork for future interrogations into connections between gut-derived endotoxin and behavioral pathology in males and females.
Collapse
Affiliation(s)
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303 USA
| | | | - Remus Osan
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303 USA
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303 USA
| | - Geert J. de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
21
|
Heritability of plasma neopterin levels in the Old Order Amish. J Neuroimmunol 2017; 307:37-41. [PMID: 28495136 DOI: 10.1016/j.jneuroim.2017.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND We examined the heritability of neopterin, a biomarker for cell-mediated immunity and oxidative stress, and potentially for psychiatric disorders, in the Old Order Amish. METHODS Plasma neopterin levels were determined in 2015 Old Order Amish adults. Quantitative genetic procedures were used to estimate heritability of neopterin. RESULTS Heritability of log-neopterin was estimated at 0.07 after adjusting for age, gender, and household (p=0.03). The shared household effect was 0.06 (p<0.02). CONCLUSIONS We found a low heritability of neopterin and small household effect, suggesting that non-household environmental factors are more important determinants of variance of neopterin levels in the Amish.
Collapse
|
22
|
Strasser B, Sperner-Unterweger B, Fuchs D, Gostner JM. Mechanisms of Inflammation-Associated Depression: Immune Influences on Tryptophan and Phenylalanine Metabolisms. Curr Top Behav Neurosci 2016; 31:95-115. [PMID: 27278641 DOI: 10.1007/7854_2016_23] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolic parameters have a direct role in the regulation of immune cell function. Thereby the inflammation-induced metabolism of aromatic amino acids, most importantly of tryptophan and phenylalanine, plays a central role. In addition, neuropsychiatric conditions that go along with disorders that are characterized by acute or chronic inflammation, such as the development of depression, decreased quality of life or cognitive impairments, are connected to disturbed amino acid and subsequent neurotransmitter metabolism.The bioanalytical procedures for the determination of concentrations of tryptophan and phenylalanine and their respective first stable intermediates kynurenine and tyrosine as well as some analytical finesses and potential sources of errors are discussed in this chapter. Monitoring of these immunometabolic parameters throughout therapies in addition to biomarkers of immune response and inflammation such as neopterin can be useful to determine disease progression but also to plan psychiatric interventions timely, thus to establish personalized treatments.
Collapse
Affiliation(s)
- Barbara Strasser
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80, Innsbruck, Austria.
| | - Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|