1
|
Wedderburn CJ, Yeung S, Subramoney S, Fouche JP, Joshi SH, Narr KL, Rehman AM, Roos A, Gibb DM, Zar HJ, Stein DJ, Donald KA. Association of in utero HIV exposure with child brain structure and language development: a South African birth cohort study. BMC Med 2024; 22:129. [PMID: 38519887 PMCID: PMC10960435 DOI: 10.1186/s12916-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND There is a growing population of children with in utero HIV exposure who are at risk of poor neurodevelopmental outcomes despite avoiding HIV infection. However, the underlying neurobiological pathways are not understood and neuroimaging studies are lacking. We aimed to investigate the cortical brain structure of children who are HIV-exposed and uninfected (HEU) compared to HIV-unexposed (HU) children and to examine the relationship with neurodevelopment. METHODS The Drakenstein Child Health birth cohort study enrolled pregnant women from a high HIV prevalence area in South Africa with longitudinal follow-up of mother-child pairs. High-resolution magnetic resonance imaging scans from 162 children (70 HEU; 92 HU) were acquired at 2-3 years of age. All HEU children were born to mothers taking antiretroviral therapy. Measures of brain structure (cortical thickness and surface area) in the prefrontal cortex regions were extracted from T1-weighted images and compared between groups using multivariate analysis of variance and linear regression. Child development, assessed using the Bayley Scales of Infant and Toddler Development-III, was correlated with cortical structure, and mediation analyses were performed. RESULTS Analyses demonstrated an association between HIV exposure and cortical thickness across the prefrontal cortex (p = 0.035). Children who were HEU had thicker cortices in prefrontal regions, with significantly greater cortical thickness in the medial orbitofrontal cortex (mOFC) bilaterally compared to HU children (3.21 mm versus 3.14 mm, p = 0.009, adjusted effect size 0.44 [95% CI 0.12 to 0.75]). Estimates held across multiple sensitivity analyses. There were no group differences in cortical surface area. Language scores, which were lower in HEU versus HU children (81.82 versus 86.25, p = 0.011, effect size - 0.44 [95% CI - 0.78 to - 0.09]), negatively correlated with prefrontal cortical thickness in both groups. Cortical thickness in the mOFC mediated the relationship between HIV exposure and poor language outcomes (Sobel test p = 0.032). CONCLUSIONS In this cohort study, exposure to HIV during pregnancy was associated with altered cortical structure in early life. Our findings indicate that differences in cortical thickness development in the prefrontal region in children who are HEU may be a pathway leading to language impairment. Longitudinal studies are needed to determine the lasting impact.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK.
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College London, London, UK
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Caceres GA, Scambray KA, Malee K, Smith R, Williams PL, Wang L, Jenkins LM. Relationship between brain structural network integrity and emotional symptoms in youth with perinatally-acquired HIV. Brain Behav Immun 2024; 116:101-113. [PMID: 38043871 PMCID: PMC10842701 DOI: 10.1016/j.bbi.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023] Open
Abstract
Perinatally acquired HIV infection (PHIV) currently affects approximately 1.7 million children worldwide. Youth with PHIV (YPHIV) are at increased risk for emotional and behavioral symptoms, yet few studies have examined relationships between these symptoms and brain structure. Previous neuroimaging studies in YPHIV report alterations within the salience network (SN), cognitive control network (CCN), and default mode network (DMN). These areas have been associated with social and emotional processing, emotion regulation, and executive function. We examined structural brain network integrity from MRI using morphometric similarity networks and graph theoretical measures of segregation (transitivity), resilience (assortativity), and integration (global efficiency). We examined brain network integrity of 40 YPHIV compared to 214 youths without HIV exposure or infection. Amongst YPHIV, we related structural brain network metrics to the Emotional Symptoms Index of the Behavioral Assessment System for Children, 2nd edition. We also examined the relationship of inflammatory biomarkers in YPHIV to brain network integrity. YPHIV had significantly lower global efficiency in the SN, DMN, and the whole brain network compared to controls. YPHIV also demonstrated lower assortativity or resilience (i.e., network robustness) compared to controls in the DMN and whole brain network. Further, higher emotional symptom score was associated with higher global efficiency in the SN and lower global efficiency in the DMN, signaling more emotional challenges. A significant association was also found between several inflammatory and cardiac markers with structural network integrity. These findings suggest an impact of HIV on developing brain networks, and potential dysfunction of the SN and DMN in relation to network efficiency.
Collapse
Affiliation(s)
- Gabriella A Caceres
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kiana A Scambray
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kathleen Malee
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Renee Smith
- University of Illinois, Chicago, IL, United States
| | - Paige L Williams
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lei Wang
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Lisanne M Jenkins
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
3
|
Colón Ortiz R, Knerler S, Fridman LB, Mercado A, Price AS, Rosado-Franco JJ, Wilkins H, Flores BR, Orsburn BC, Williams DW. Cocaine regulates antiretroviral therapy CNS access through pregnane-x receptor-mediated drug transporter and metabolizing enzyme modulation at the blood brain barrier. Fluids Barriers CNS 2024; 21:5. [PMID: 38200564 PMCID: PMC10777548 DOI: 10.1186/s12987-023-00507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. METHODS We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. RESULTS We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and 4 kDa FITC-dextran, as well as tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases that are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. CONCLUSION Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.
Collapse
Affiliation(s)
- Rodnie Colón Ortiz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Stephen Knerler
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lisa B Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Alicia Mercado
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Amira-Storm Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jose J Rosado-Franco
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Hannah Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Bianca R Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Dionna W Williams
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road NE, 30322, Atlanta, Georgia.
| |
Collapse
|
4
|
Salan T, Willen EJ, Cuadra A, Sheriff S, Maudsley AA, Govind V. Whole-brain MR spectroscopic imaging reveals regional metabolite abnormalities in perinatally HIV infected young adults. Front Neurosci 2023; 17:1134867. [PMID: 36937663 PMCID: PMC10017464 DOI: 10.3389/fnins.2023.1134867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Perinatally acquired HIV (PHIV) has been associated with brain structural and functional deficiencies, and with poorer cognitive performance despite the advent of antiretroviral therapy (ART). However, investigation of brain metabolite levels in PHIV measured by proton magnetic resonance spectroscopy (MRS) methods, is still limited with often inconclusive or contradictory findings. In general, these MRS-based methods have used a single voxel approach that can only evaluate metabolite concentrations in a few select brain anatomical regions. Additionally, most of the published data have been on children perinatally infected with HIV with only a few studies examining adult populations, though not exclusively. Therefore, this prospective and cross-sectional study aims to evaluate metabolite differences at the whole-brain level, using a unique whole-brain proton magnetic resonance spectroscopy imaging (MRSI) method, in a group of PHIV infected young adults (N = 28) compared to age and gender matched control sample (N = 28), and to find associations with HIV clinical factors and neurocognitive scores. MRSI data were acquired on a 3T scanner with a TE of 70 ms. Brain metabolites levels of total N-acetylaspartate (tNAA), total choline (tCho) and total creatine (tCre), as well as ratios of tNAA/tCre, tCho/tCre, and tNAA/tCho, were obtained from the whole brain level and evaluated at the level of gray matter (GM) and white matter (WM) tissue types and anatomical regions of interest (ROI). Our results indicate extensive metabolic abnormalities throughout the brains of PHIV infected subjects with significantly elevated levels of tCre and tCho, notably in GM regions. Decreases in tNAA and ratios of tNAA/tCre and tNAA/tCho were also found mostly in WM regions. These metabolic alterations indicate increased glial activation, inflammation, neuronal dysfunction, and energy metabolism in PHIV infected individuals, which correlated with a reduction in CD4 cell count, and lower cognitive scores. Our findings suggest that significant brain metabolite alterations and associated neurological complications persist in the brains of those with PHIV on long-term ART, and advocates the need for continued monitoring of their brain health.
Collapse
Affiliation(s)
- Teddy Salan
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Elizabeth J. Willen
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Anai Cuadra
- Department of Pediatrics, Mailman Center for Child Development, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andrew A. Maudsley
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Varan Govind
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Comorbid disease in children and adolescents with perinatal HIV infection: A pilot study. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background. With the increased use of combination antiretroviral therapy, the mortality of people living with HIV has decreased significantly, which has led to an increase of comorbidity and secondary HIV-related pathology in both adults and also in children and adolescents living with HIV infection. The incidence of children and adolescents with HIV infection and those in the general population varies significantly.The aim. To assess the frequency and range of chronic comorbidities in children and adolescents with perinatal HIV infection Methods. We carried out an observational study. Data on the incidence of 161 children with perinatal HIV infection registered in the Irkutsk Regional AIDS Center were copied.Results. Overall incidence of tuberculosis (18633.5 per 100 000 children), diseases of the digestive system (24844.7 per 100 000 children), diseases of the eye and adnexa (28571.4 per 100 000 children), diseases of the nervous system (18012.4 per 100 000 children), mental and behavioral disorders (13,664.6 per 100 000 children) in children with perinatal HIV infection is the higher than in children of comparable age. The overall incidence values of the endocrine system diseases, eating and metabolic disorders, diseases of the ear and mastoid process, diseases of the circulatory system, diseases of the genitourinary system, as well as congenital disorders and chromosomal disorders in children and adolescents with and without perinatal HIV infection are comparable.Conclusion. The prevalence of diseases of the circulatory, respiratory and genitourinary systems in children with perinatal HIV infection is comparable to that in the corresponding population. Prevalence of tuberculosis, anemia, diseases of the gastrointestinal tract, diseases of the eye and adnexa, diseases of the nervous system, mental and behavioral disorders is higher compared to children not exposed to HIV.
Collapse
|
6
|
Robbins RN, Santoro AF, Ferraris C, Asiedu N, Liu J, Dolezal C, Malee KM, Mellins CA, Paul R, Thongpibul K, Puthanakit T, Aurpibul L. Adaptation and construct validity evaluation of a tablet-based, short neuropsychological test battery for use with adolescents and young adults living with HIV in Thailand. Neuropsychology 2022; 36:695-708. [PMID: 35980694 PMCID: PMC9897317 DOI: 10.1037/neu0000851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Deficits in neurocognitive functioning are common among adolescents and young adults (AYA) with perinatally acquired HIV (PHIV). Limitations of traditional neuropsychological tests hinder assessment of neurocognition in low- and middle-income countries where most AYA with PHIV reside. Computerized testing could make assessment of neurocognition more accessible in these countries. This study examined a culturally modified NeuroScreen, a tablet-based neurocognitive testing app, for use in Thailand. Construct validity was examined among Thai AYA (13-23 years) with and without PHIV. METHOD NeuroScreen underwent adaptation including language, content, and usability review by Thai psychologists, AYA, and clinical staff. One hundred Thai AYA (50 PHIV; 50 HIV-uninfected, matched controls) were administered the adapted NeuroScreen and a battery of traditional paper-and-pencil neuropsychological tests. Correlations, mean differences, and proportions with impaired performance were examined across NeuroScreen and the traditional tests. RESULTS The Thai version of NeuroScreen was deemed understandable and culturally appropriate. A large correlation (.82) between overall performance on the NeuroScreen and traditional batteries was observed. Small-to-large correlations were found between conceptually similar NeuroScreen and traditional tests of processing speed, working memory, motor speed, and executive functioning. Mean test performance differences between AYA with PHIV and controls were similar between test batteries. Both sets of tests identified similar rates of impaired participants. CONCLUSIONS Results provide support for the acceptability and construct validity of the Thai NeuroScreen tests to assess neurocognition in Thai AYA with PHIV. An easy-to-use tool to assess neurocognition can help Thai providers provide better care for AYA with PHIV. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Nana Asiedu
- HIV Center for Clinical and Behavioral Studies
| | - Jun Liu
- New York State Psychiatric Institute
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Khobo IL, Jankiewicz M, Holmes MJ, Little F, Cotton MF, Laughton B, van der Kouwe AJW, Moreau A, Nwosu E, Meintjes EM, Robertson FC. Multimodal magnetic resonance neuroimaging measures characteristic of early cART-treated pediatric HIV: A feature selection approach. Hum Brain Mapp 2022; 43:4128-4144. [PMID: 35575438 PMCID: PMC9374890 DOI: 10.1002/hbm.25907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Children with perinatally acquired HIV (CPHIV) have poor cognitive outcomes despite early combination antiretroviral therapy (cART). While CPHIV-related brain alterations can be investigated separately using proton magnetic resonance spectroscopy (1 H-MRS), structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and functional MRI (fMRI), a set of multimodal MRI measures characteristic of children on cART has not been previously identified. We used the embedded feature selection of a logistic elastic-net (EN) regularization to select neuroimaging measures that distinguish CPHIV from controls and measured their classification performance via the area under the receiver operating characteristic curve (AUC) using repeated cross validation. We also wished to establish whether combining MRI modalities improved the models. In single modality analysis, sMRI volumes performed best followed by DTI, whereas individual EN models on spectroscopic, gyrification, and cortical thickness measures showed no class discrimination capability. Adding DTI and 1 H-MRS in basal measures to sMRI volumes produced the highest classification performancevalidation accuracy = 85 % AUC = 0.80 . The best multimodal MRI set consisted of 22 DTI and sMRI volume features, which included reduced volumes of the bilateral globus pallidus and amygdala, as well as increased mean diffusivity (MD) and radial diffusivity (RD) in the right corticospinal tract in cART-treated CPHIV. Consistent with previous studies of CPHIV, select subcortical volumes obtained from sMRI provide reasonable discrimination between CPHIV and controls. This may give insight into neuroimaging measures that are relevant in understanding the effects of HIV on the brain, thereby providing a starting point for evaluating their link with cognitive performance in CPHIV.
Collapse
Affiliation(s)
- Isaac L. Khobo
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Marcin Jankiewicz
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Cape Universities Body Imaging CenterUniversity of Cape TownCape TownSouth Africa
| | - Martha J. Holmes
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Francesca Little
- Department of Statistical SciencesUniversity of Cape TownCape TownSouth Africa
| | - Mark F. Cotton
- Department of Pediatrics & Child Health, Family Center for Research with Ubuntu, Tygerberg HospitalStellenbosch UniversityCape TownSouth Africa
| | - Barbara Laughton
- Department of Pediatrics & Child Health, Family Center for Research with Ubuntu, Tygerberg HospitalStellenbosch UniversityCape TownSouth Africa
| | - Andre J. W. van der Kouwe
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- A.A. Martinos Centre for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Emmanuel Nwosu
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
| | - Ernesta M. Meintjes
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Cape Universities Body Imaging CenterUniversity of Cape TownCape TownSouth Africa
| | - Frances C. Robertson
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Cape Universities Body Imaging CenterUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
8
|
Nichols SL. Central Nervous System Impact of Perinatally Acquired HIV in Adolescents and Adults: an Update. Curr HIV/AIDS Rep 2022; 19:121-132. [PMID: 35107809 PMCID: PMC8904346 DOI: 10.1007/s11904-021-00598-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/24/2022]
Abstract
Purpose of Review Perinatally acquired HIV infection (PHIV) can confer neurodevelopmental risk. As children with PHIV increasingly survive through adolescence and into adulthood, understanding its long-term central nervous system (CNS) impacts is critical for maximizing adult outcomes and quality of life. Recent Findings Recently published neurocognitive and neuroimaging findings show impacts on the CNS associated with early HIV disease progression that endure into adolescence and young adulthood. Although developmental trajectories in adolescence largely appear stable, further research on maturational processes is indicated. Summary Although early antiretroviral therapy in infancy appears to be protective, it is not universally available and current youth largely developed without its benefit. The neurocognitive effects of HIV and the multiple other risks to neurodevelopment experienced by youth with PHIV call for further longitudinal research and a multifaceted approach to prevention and intervention.
Collapse
Affiliation(s)
- Sharon L Nichols
- Department of Neurosciences, University of California, San Diego 9500 Gilman Drive, #0935, CA, 92093, La Jolla, USA.
| |
Collapse
|
9
|
Hoare J, Fouche JP, Phillips N, Heany SJ, Myer L, Zar HJ, Stein DJ. Alcohol use is associated with mental health problems and brain structural alterations in adolescents with perinatally acquired HIV infection on ART. Alcohol 2021; 97:59-66. [PMID: 34536544 DOI: 10.1016/j.alcohol.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Alcohol use, presents unique challenges for HIV-1 treatment in adolescents with perinatally acquired infection. The effects of alcohol on host-virus interaction in the brain and the immune system remains understudied in this population. Adolescents with perinatally acquired HIV infection (PHIV) well established on ART, from the Cape Town Adolescent Antiretroviral Cohort who self-reported alcohol use (PHIV + alcohol) (n = 26) were compared to age matched 26 PHIV (PHIV-alcohol) and 26 healthy controls (HC) who reported no use of alcohol. Participants completed clinical investigations including highly-sensitive CRP (hs-CRP), a comprehensive neurocognitive test battery and mental health measures. In addition, we investigated the relationship between alcohol use in PHIV and diffusion tensor imaging (DTI) and structural brain magnetic resonance imaging (MRI) to determine fractional anisotropy (FA), mean diffusivity (MD), grey and white matter volumes and cortical thickness. PHIV (mean age 12,5 years; mean age of ART initiation 3.15 years) reported an occasional weekend drinking pattern of alcohol use. hs-CRP was significantly different between groups, with PHIV + alcohol higher than PHIV-alcohol and HC. General intelligence, attention, working memory, processing speed and executive function were more impaired in the PHIV + alcohol than PHIV alone, with HC having the highest scores. In addition, self-concept was significantly lower in PHIV + alcohol. The Child Behavior Checklist (CBCL) Externalizing behaviour, internalising behaviour and CBCL Total problems were significantly higher in PHIV + alcohol. FA of the superior corona radiata, superior fronto-occipital fasciculus and corpus callosum was significantly lower in PHIV + alcohol compared to PHIV-alcohol and MD of the corona radiata was significantly increased in PHIV + alcohol. The cortical thickness of the lateral orbitofrontal, middle frontal and precentral gyri were significantly lower in PHIV + alcohol compared to PHIV-alcohol and HC. In conclusion PHIV associated impairments in systemic inflammation, cognitive function, mental health and changes in brain structure may be exacerbated by alcohol use, even if only occasional use. However, the study is cross-sectional, which is not able to distinguish between cause and effect.
Collapse
|
10
|
Sheppard DP, Matchanova A, Naar S, Outlaw AY, Nichols SL, Morgan EE, Woods SP. Executive functions mediate the association between alcohol use and declarative memory symptoms in daily life. AIDS Care 2021; 35:1022-1029. [PMID: 34850643 DOI: 10.1080/09540121.2021.2007840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Alcohol use is associated with memory problems in young adults with HIV, but the cognitive mechanisms of that association are not known. Sixty adults (aged 19-24 years) living with HIV were administered the Alcohol, Smoking, and Substance Involvement Screening Test to assess alcohol use, Behavior Rating Inventory of Executive Function for self-reported executive functions, and the Prospective and Retrospective Memory Questionnaire (PRMQ) for dailiy memory functioning. Controlling for mood, self-reported executive functions fully mediated the relationship between alcohol use and memory (indirect effect b=.568, 95%CI [.209,.888]). Findings suggest that self-reported executive dysregulation of memory processes (e.g., Strategic encoding and retrieval) may drive the effects of alcohol use on daily memory symptoms.
Collapse
Affiliation(s)
- David P Sheppard
- Department of Psychology, University of Houston, Houston, TX, USA.,Veterans Affairs (VA) Northwest Network (VISN 20) Mental Illness, Research, Education, and Clinical Care (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | | | - Sylvie Naar
- Department of Behavioral Sciences & Social Medicine, Florida State University, Tallahassee, FL, USA
| | - Angulique Y Outlaw
- Department of Family Medicine & Public Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sharon L Nichols
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Erin E Morgan
- Department of Psychiatry, University of California, San Diego, CA, USA
| | | |
Collapse
|
11
|
Haddad A, Voth B, Brooks J, Swang M, Carryl H, Algarzae N, Taylor S, Parker C, Van Rompay KKA, De Paris K, Burke MW. Reduced neuronal population in the dorsolateral prefrontal cortex in infant macaques infected with simian immunodeficiency virus (SIV). J Neurovirol 2021; 27:923-935. [PMID: 34554407 PMCID: PMC8901521 DOI: 10.1007/s13365-021-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Pediatric HIV infection remains a global health crisis with an estimated 150,000 new mother-to-child (MTCT) infections each year. Antiretroviral therapy (ART) has improved childhood survival, but only an estimated 53% of children worldwide have access to treatment. Adding to the health crisis is the neurological impact of HIV on the developing brain, in particular cognitive and executive function, which persists even when ART is available. Imaging studies suggest structural, connectivity, and functional alterations in perinatally HIV-infected youth. However, the paucity of histological data limits our ability to identify specific cortical regions that may underlie the clinical manifestations. Utilizing the pediatric simian immunodeficiency virus (SIV) infection model in infant macaques, we have previously shown that early-life SIV infection depletes the neuronal population in the hippocampus. Here, we expand on these previous studies to investigate the dorsolateral prefrontal cortex (dlPFC). A total of 11 ART-naïve infant rhesus macaques (Macaca mulatta) from previous studies were retrospectively analyzed. Infant macaques were either intravenously (IV) inoculated with highly virulent SIVmac251 at ~1 week of age and monitored for 6-10 weeks or orally challenged with SIVmac251 from week 9 of age onwards with a monitoring period of 10-23 weeks post-infection (19-34 weeks of age), and SIV-uninfected controls were euthanized at 16-17 weeks of age. Both SIV-infected groups show a significant loss of neurons along with evidence of ongoing neuronal death. Oral- and IV-infected animals showed a similar neuronal loss which was negatively correlated to chronic viremia levels as assessed by an area under the curve (AUC) analysis. The loss of dlPFC neurons may contribute to the rapid neurocognitive decline associated with pediatric HIV infection.
Collapse
Affiliation(s)
- Alexandra Haddad
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Brittany Voth
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Janiya Brooks
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Melanie Swang
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Heather Carryl
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Norah Algarzae
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
- King Saudi University, Riyadh, Riyadh, Kingdom of Saudi Arabia
| | - Shane Taylor
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Camryn Parker
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
12
|
Li J, Gao L, Ye Z. Study of Brain Structure in HIV Vertically Infected Adolescents. AIDS Res Hum Retroviruses 2021; 37:647-656. [PMID: 33430682 DOI: 10.1089/aid.2020.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging studies have focused mainly on human immunodeficiency virus (HIV)-infected adults or younger children, showing abnormal brain structures. In this study, we used voxel-based morphometry to investigate the brain integrity of HIV vertically infected adolescents. Twenty-five HIV vertically infected (HIV+) adolescents and 33 HIV-exposed, but uninfected (HIV-) and demographically matched controls participated in this study. T1 high-resolution anatomical magnetic resonance imaging images were obtained and segmented into gray matter (GM) and white matter (WM) segments. Then, population templates were derived from the entire imaging dataset using the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) technique. Between-group GM and WM maps were contrasted using independent two-sample t-tests, with age and sex as nuisance regressors of no interest. Significant effects were identified using voxel-wise p < .001 and cluster-level p < .05 with a family-wise error correction. Whole brain volume between the groups did not demonstrate a significant difference. Relative to HIV- controls, the HIV+ adolescents demonstrated less GM in the bilateral cerebellum, right pallidum, right calcarine, left anterior cingulate cortex (ACC), and right superior occipital lobe. HIV+ adolescents also demonstrated less WM volume in the bilateral cerebellum, right brainstem, and left occipital lobe. Furthermore, the volume of the ACC was positively correlated with the Mini-Mental State Examination (MMSE) and the CD4 cell counts in the HIV+ adolescents. The age of highly active antiretroviral therapy (HAART) onset was positively correlated with GM volume in the right temporal lobe, left occipital lobe, and left precentral gyrus. In HIV+ adolescents, a pattern of less WM density and altered GM and WM volume suggests that early HIV infection combined with neurotoxicity effect of early HAART, a lack of viral control may have a significant effect on the brain structural integrity. The process of corpus callosum formation in the corpus callosum and the frontal WM is more susceptible to HIV infection. Altered ACC integrity may represent a promising biomarker of cognitive dysfunction following HIV infection.
Collapse
Affiliation(s)
- Jielan Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
13
|
Shrivastava N, Husain A, Rashid M, Alsabeelah NF, Karim S, Siddiqui NA. Recent Advances Towards Treatment of HIV: Synthesis and SAR Studies. Mini Rev Med Chem 2021; 21:471-499. [PMID: 30864523 DOI: 10.2174/1389557519666190312170158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
In the present study, authors want to encourage the research exertions through structureactivity relationship for the identification of effective molecules for the treatment of Human immunodeficiency virus because nowadays AIDS is considered as one of the main causes of death in human beings. A diversity of biological resources has been searched and developed for the treatment of HIV but unfortunately, until now, no medicine is found to be fully effective and safe for the cure of patients. Human immunodeficiency virus is a type of lentivirus which causes the infection of HIV and once it enters the human body, it stays for a longer period of time triggering immunodeficiency syndrome. For searching and developing new potent and effective anti-HIV molecules, medicinal chemists have engaged in countless targets with the structure-activity relationship (SAR) of molecules and on this basis, many antiretroviral therapies have been developed to cure HIV infection. Most of these new searched molecules have been found to be clinically active against various types of AIDS patient and auxiliary research in this area may lead to better treatment in the near future. This article encompasses and highlights the recent advancement of innumerable inhibitors laterally through synthetic, semi-synthetic and structure-activity relationship approaches.
Collapse
Affiliation(s)
- Neelima Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Mohammad Rashid
- College of Pharmacy and Dentistry, Buraydah Colleges, Buraydah, Al-Qassim 31717, Saudi Arabia
| | - Nimer Fehaid Alsabeelah
- College of Pharmacy and Dentistry, Buraydah Colleges, Buraydah, Al-Qassim 31717, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdul Aziz University, Jeddah 21589, Saudi Arabia
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Ruiz-Saez B, García MMB, de Aragon AM, Gil-Correa M, Melero H, Malpica NA, de Ory SJ, Zamora B, Guillen S, Rojo P, Falcon-Neyra L, Alvarez A, Fernandez P, Lorente-Jareño ML, Ramos JT, Sainz T, Velo C, Navarro ML, Gonzalez-Tomé MI. Effects of perinatal HIV-infection on the cortical thickness and subcortical gray matter volumes in young adulthood. Medicine (Baltimore) 2021; 100:e25403. [PMID: 33847637 PMCID: PMC8051971 DOI: 10.1097/md.0000000000025403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Brain atrophy has been observed in perinatally HIV-infected patients (PHIV) despite initiation on combined antiretroviral treatment (cART), but neuroimaging studies are limited. We aimed to evaluate cortical thickness (CT) and subcortical gray matter (GM) volumes of PHIV youths with stable immunovirological situation and with a normal daily performance.A prospective cross-sectional study was conducted. A total of 25 PHIV patients on cART and 25 HIV-negative (HIV-) controls matched by age, sex, level of education, and socioeconomic status underwent a magnetic resonance imaging scan. CAT12 toolbox was used to extract CT values from T1w images using parcellations from Desikan-Killiany atlas (DK40). To measure regional brain volumes, native segmented images were parceled in regions of interest according to the Neuromorphometrics Atlas. Neuropsychological assessment and psychopathological symptoms were documented.Fifty participants were included (60% females, median age 20 years [interquartile range, IQR 19-23], 64% Whites). No differences regarding neuropsychological tests or psychopathological symptoms were found between groups (all P > .05). All participants presented an average performance in the Fluid Intelligence (FI) test (PHIV mean: -0.12, HIV- mean: 0.24), When comparing CT, PHIV-infected patients showed thinner cortices compared with their peers in fusiform gyrus (P = .000, P = .009), lateral-orbitofrontal gyrus (P = .006, P = .0024), and right parsobitalis gyrus (P = .047). Regarding subcortical GM volumes, PHIV patients showed lower right amygdala (P = .014) and left putamen (P = .016) volumes when compared with HIV- controls. Within the PHIV group, higher CD4 count was associated with higher volumes in right putamen (B = 0.00000038, P = .045). Moreover, increased age at cART initiation and lower nadir CD4 count was associated with larger volumes in left accumbens (B = 0.0000046, P = .033; B = -0.00000008, P = .045, respectively).PHIV patients showed thinner cortices of areas in temporal, orbito-frontal and occipital lobes and lower volumes of subcortical GM volumes when compared with the HIV- control group, suggesting cortical and subcortical brain alterations in otherwise neuroasymptomatic patients. Nevertheless, larger and longitudinal studies are required to determine the impact of HIV on brain structure in PHIV patients and to further identify risk and protective factors that could be implicated.
Collapse
Affiliation(s)
- Beatriz Ruiz-Saez
- Immunobiology Department, Hospital Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón (IisGM)
| | - Manuela Martín-Bejarano García
- Department of Paediatric Infectious Diseases, Hospital Universitario 12 de Octubre; Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)
| | | | - Mario Gil-Correa
- Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos
| | - Helena Melero
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento - Universidad Complutense de Madrid, Spain, y Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos
| | | | - Santiago Jimenez de Ory
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IisGM)
| | - Berta Zamora
- Paediatric Neuropsychology Department. Hospital Universitario 12 De Octubre, Madrid
| | - Sara Guillen
- Paediatric Infectious Diseases Department, Hospital Universitario de Getafe, Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | - Pablo Rojo
- Paediatric Infectious Diseases Department. Hospital Universitario 12 De Octubre, Madrid, 28041, Spain. Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid
| | - Lola Falcon-Neyra
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Sevilla
| | | | - Pilar Fernandez
- Radiology Department. Hospital Universitario Gregorio Marañón
| | | | - Jose Tomas Ramos
- Paediatric Infectious Diseases Department, Hospital Clínico San Carlos, Madrid, 28040, Spain, Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | - Talía Sainz
- Paediatric Infectious and Tropical Diseases Department, Hospital Universitario La Paz. Hospital La Paz Institute For Health Research (Idipaz), Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | - Carlos Velo
- Department of Paediatric Infectious Diseases, Hospital Universitario 12 de Octubre; Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)
| | - Maria Luisa Navarro
- Paediatric Infectious Diseases Department. Hospital Gregorio Marañon, Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | | |
Collapse
|
15
|
Rowe K, Buivydaite R, Heinsohn T, Rahimzadeh M, Wagner RG, Scerif G, Stein A. Executive function in HIV-affected children and adolescents: a systematic review and meta-analyses. AIDS Care 2021; 33:833-857. [PMID: 33764813 DOI: 10.1080/09540121.2021.1873232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This review aimed to determine: whether EF is affected in children and adolescents (2-24-years-old) with perinatal HIV infection, perinatal HIV exposure without infection, and behaviourally acquired HIV. A systematic review (PROSPERO number: CRD42017067813) was conducted using 11 electronic databases (01.01.1981-09.07.2019) and 8 conference websites. Primary quantitative studies with EF scores on cognitive tasks and/or behavioural report measures were included. Meta-analyses were performed by EF subtype and subpopulations compared. 1789 records were found. Sixty-one studies were included in the narrative synthesis; 32 (N = 7884 participants) were included in meta-analyses. There was a distinct pattern of reduced EF in those with perinatal HIV infection on antiretroviral therapy compared to controls: pooled effect sizes were largest for verbal and visuospatial working memory, with smaller effects on planning, inhibitory control and set-shifting. Data were limited for other HIV-affected subpopulations. Perinatal HIV infection is associated with reduced EF with varying effect sizes for the different EF subtypes.
Collapse
Affiliation(s)
- Kirsten Rowe
- Child and Adolescent Psychiatry, Department of Psychiatry, University of Oxford, Oxford, UK.,MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | - Ruta Buivydaite
- Child and Adolescent Psychiatry, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Torben Heinsohn
- Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Mana Rahimzadeh
- Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Ryan G Wagner
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, University of Witwatersrand, Johannesburg, South Africa.,Centre for Global Health Research, Umeå University, Umeå, Sweden
| | - Gaia Scerif
- Developmental Cognitive Neuroscience, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Alan Stein
- Child and Adolescent Psychiatry, Department of Psychiatry, University of Oxford, Oxford, UK.,MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Sarma MK, Pal A, Keller MA, Welikson T, Ventura J, Michalik DE, Nielsen-Saines K, Deville J, Kovacs A, Operskalski E, Church JA, Macey PM, Biswal B, Thomas MA. White matter of perinatally HIV infected older youths shows low frequency fluctuations that may reflect glial cycling. Sci Rep 2021; 11:3086. [PMID: 33542389 PMCID: PMC7862588 DOI: 10.1038/s41598-021-82587-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
In perinatally HIV-infected (PHIV) children, neurodevelopment occurs in the presence of HIV-infection, and even with combination antiretroviral therapy (cART) the brain can be a reservoir for latent HIV. Consequently, patients often demonstrate long-term cognitive deficits and developmental delay, which may be reflected in altered functional brain activity. Our objective was to examine brain function in PHIV on cART by quantifying the amplitude of low frequency fluctuations (ALFF) and regional homogeneity (ReHo). Further, we studied ALFF and ReHo changes with neuropsychological performance and measures of immune health including CD4 count and viral loads in the HIV-infected youths. We found higher ALFF and ReHo in cerebral white matter in the medial orbital lobe for PHIV (N = 11, age mean ± sd = 22.5 ± 2.9 years) compared to controls (N = 16, age = 22.5 ± 3.0 years), with age and gender as co-variates. Bilateral cerebral white matter showed increased spontaneous regional activity in PHIV compared to healthy controls. No brain regions showed lower ALFF or ReHo in PHIV compared to controls. Higher log10 viral load was associated with higher ALFF and ReHo in PHIV in bilateral cerebral white matter and right cerebral white matter respectively after masking the outcomes intrinsic to the brain regions that showed significantly higher ALFF and ReHo in the PHIV compared to the control. Reductions in social cognition and abstract thinking in PHIV were correlated with higher ALFF at the left cerebral white matter in the left medial orbital gyrus and higher ReHo at the right cerebral white matter in the PHIV patients. Although neuroinflammation and associated neuro repair were not directly measured, the findings support their potential role in PHIV impacting neurodevelopment and cognition.
Collapse
Affiliation(s)
- Manoj K Sarma
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA, 90095-1721, USA
| | - Amrita Pal
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret A Keller
- Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA.,The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tamara Welikson
- Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph Ventura
- Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David E Michalik
- Infectious Diseases-Pediatrics, Miller Children's Hospital of Long Beach, Long Beach, CA, USA
| | | | - Jaime Deville
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrea Kovacs
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.,Los Angeles+USC Medical Center, Los Angeles, CA, USA
| | - Eva Operskalski
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.,Los Angeles+USC Medical Center, Los Angeles, CA, USA
| | - Joseph A Church
- Pediatrics, Keck School of Medicine of University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Paul M Macey
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bharat Biswal
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - M Albert Thomas
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA, 90095-1721, USA.
| |
Collapse
|
17
|
Britton MK, Porges EC, Bryant V, Cohen RA. Neuroimaging and Cognitive Evidence for Combined HIV-Alcohol Effects on the Central Nervous System: A Review. Alcohol Clin Exp Res 2021; 45:290-306. [PMID: 33296091 PMCID: PMC9486759 DOI: 10.1111/acer.14530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Alcohol use disorder (AUD) among people living with HIV (PLWH) is a significant public health concern. Despite the advent of effective antiretroviral therapy, up to 50% of PLWH still experience worsened neurocognition, which comorbid AUD exacerbates. We report converging lines of neuroimaging and neuropsychological evidence linking comorbid HIV/AUD to dysfunction in brain regions linked to executive function, learning and memory, processing speed, and motor control, and consequently to impairment in daily life. The brain shrinkage, functional network alterations, and brain metabolite disruption seen in individuals with HIV/AUD have been attributed to several interacting pathways: viral proteins and EtOH are directly neurotoxic and exacerbate each other's neurotoxic effects; EtOH reduces antiretroviral adherence and increases viral replication; AUD and HIV both increase gut microbial translocation, promoting systemic inflammation and HIV transport into the brain by immune cells; and HIV may compound alcohol's damaging effects on the liver, further increasing inflammation. We additionally review the neurocognitive effects of aging, Hepatitis C coinfection, obesity, and cardiovascular disease, tobacco use, and nutritional deficiencies, all of which have been shown to compound cognitive changes in HIV, AUD, and in their comorbidity. Finally, we examine emerging questions in HIV/AUD research, including genetic and cognitive protective factors, the role of binge drinking in HIV/AUD-linked cognitive decline, and whether neurocognitive and brain functions normalize after drinking cessation.
Collapse
Affiliation(s)
- Mark K. Britton
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Eric C. Porges
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Vaughn Bryant
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
- University of Florida, Department of Epidemiology, 2004 Mowry Road, Gainesville, FL 32610
| | - Ronald A. Cohen
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| |
Collapse
|
18
|
Neurocognitive impairment and gray matter volume reduction in HIV-infected patients. J Neurovirol 2020; 26:590-601. [PMID: 32572834 DOI: 10.1007/s13365-020-00865-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Although neuropsychological studies of human immunodeficiency virus (HIV)-infected patients have demonstrated heterogeneity in neurocognitive impairment and neuroimaging studies have reported diverse brain regions affected by HIV, it remains unclear whether individual differences in neurocognitive impairment are underpinned by their neural bases. Here, we investigated spatial distribution patterns of correlation between neurocognitive function and regional gray matter (GM) volume across patients with HIV. Thirty-one combination antiretroviral therapy-treated HIV-infected Japanese male patients and 33 age- and sex-matched healthy controls were included in the analysis after strict exclusion criteria, especially for substance use. Fifteen neurocognitive tests were used, and volumetric magnetic resonance imaging was performed. We used voxel-based morphometry to compare GM volume between groups and identify regional GM volumes that correlated with neurocognitive tests across patients. Using the Frascati criteria, 10 patients were diagnosed with asymptomatic neurocognitive impairment, while the others were not diagnosed with HIV-associated neurocognitive disorders. Patients showed a significantly lower performance in five neurocognitive tests as well as significantly reduced GM volume relative to controls, with volume-reduced regions spread diffusely across the whole brain. Different aspects of neurocognitive impairment (i.e., figural copy, finger tapping, and Pegboard) were associated with different GM regions. Our findings suggest a biological background constituting heterogeneity of neurocognitive impairment in HIV infection and support the clinical importance of considering individual differences for tailor-made medicine for people living with HIV.
Collapse
|
19
|
Lewis-de Los Angeles CP, Williams PL, Jenkins LM, Huo Y, Malee K, Alpert KI, Uban KA, Herting MM, Csernansky JG, Nichols SL, Van Dyke RB, Sowell ER, Wang L. Brain morphometric differences in youth with and without perinatally-acquired HIV: A cross-sectional study. NEUROIMAGE-CLINICAL 2020; 26:102246. [PMID: 32251906 PMCID: PMC7132093 DOI: 10.1016/j.nicl.2020.102246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022]
Abstract
We performed vertex-wise analyses comparing grey matter in youth with and without perinatally-acquired HIV (PHIV). PHIV youth had reduced cortical thickness, surface area, and gyrification compared to control youth. PHIV youth did not exhibit the same pattern of inverse grey matter-age relationships that were observed in control youth.
Youth with perinatally-acquired HIV (PHIV) experience specific and global cognitive deficits at increased rates compared to typically-developing HIV-uninfected youth. In youth with PHIV, HIV infects the brain early in development. Neuroimaging studies have demonstrated altered grey matter morphometry in youth with PHIV compared to typically-developing youth. This study examined cortical thickness, surface area, and gyrification of grey matter in youth (age 11–20 years old) with PHIV (n = 40) from the Pediatric HIV/AIDS Cohort Study (PHACS) compared to typically-developing presumed HIV uninfected and unexposed youth (n = 80) from the Pediatric Imaging, Neurocognition and Genetics Study (PING) using structural magnetic resonance imaging. This study also examined the relationship between grey matter morphometry and age. Youth with PHIV had reduced cortical thickness, surface area, and gyrification compared to typically-developing youth. In addition, an inverse relationship between age and grey matter volume was found in typically-developing youth, but was not observed in youth with PHIV. Longitudinal studies are necessary to understand the neurodevelopmental trajectory of youth with PHIV.
Collapse
Affiliation(s)
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA, USA; Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lisanne M Jenkins
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Yanling Huo
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kathleen Malee
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Kristina A Uban
- Department of Public Health, University of California Irvine, Irvine, CA, USA
| | - Megan M Herting
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Sharon L Nichols
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Russell B Van Dyke
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA; Department of Radiology, Northwestern University, Chicago, IL, USA.
| | | |
Collapse
|
20
|
Van den Hof M, Ter Haar AM, Caan MWA, Spijker R, van der Lee JH, Pajkrt D. Brain structure of perinatally HIV-infected patients on long-term treatment: A systematic review. Neurol Clin Pract 2019; 9:433-442. [PMID: 31750029 DOI: 10.1212/cpj.0000000000000637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Objective We aim to give an overview of the available evidence on brain structure and function in PHIV-infected patients (PHIV+) using long-term combination antiretroviral therapy (cART) and how differences change over time. Methods We conducted an electronic search using MEDLINE, Embase, and PsycINFO. We used the following selection criteria: cohort and cross-sectional studies that reported on brain imaging differences between PHIV+ of all ages who used cART for at least six months before neuroimaging and HIV-negative controls. Two reviewers independently selected studies, performed data extraction, and assessed quality of studies. Results After screening 1500 abstracts and 343 full-text articles, we identified 19 eligible articles. All included studies had a cross-sectional design and used MRI with different modalities: structural MRI (n = 7), diffusion tensor imaging (DTI) (n = 6), magnetic resonance spectroscopy (n = 5), arterial spin labeling (n = 1), and resting-state functional neuroimaging (n = 1). Studies showed considerable methodological limitations and heterogeneity, preventing us to perform meta-analyses. DTI data on white matter microstructure suggested poorer directional diffusion in cART-treated PHIV+ compared with controls. Other modalities were inconclusive. Conclusion Evidence may suggest brain structure and function differences in the population of PHIV+ on long-term cART compared with the HIV-negative population. Because of a small study population, and considerable heterogeneity and methodological limitations, the extent of brain structure and function differences on neuroimaging between groups remains unknown.
Collapse
Affiliation(s)
- Malon Van den Hof
- Emma Children's Hospital (MVH, AMtH, DP), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Pediatric Infectious Diseases, Amsterdam, the Netherlands; Biomedical Engineering and Physics (MWAC), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Medical Library (RS), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Cochrane Netherlands (RS), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; and Emma Children's Hospital (JHL), Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Pediatric Clinical Research Office, Amsterdam, the Netherlands
| | - Anne Marleen Ter Haar
- Emma Children's Hospital (MVH, AMtH, DP), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Pediatric Infectious Diseases, Amsterdam, the Netherlands; Biomedical Engineering and Physics (MWAC), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Medical Library (RS), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Cochrane Netherlands (RS), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; and Emma Children's Hospital (JHL), Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Pediatric Clinical Research Office, Amsterdam, the Netherlands
| | - Matthan W A Caan
- Emma Children's Hospital (MVH, AMtH, DP), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Pediatric Infectious Diseases, Amsterdam, the Netherlands; Biomedical Engineering and Physics (MWAC), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Medical Library (RS), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Cochrane Netherlands (RS), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; and Emma Children's Hospital (JHL), Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Pediatric Clinical Research Office, Amsterdam, the Netherlands
| | - Rene Spijker
- Emma Children's Hospital (MVH, AMtH, DP), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Pediatric Infectious Diseases, Amsterdam, the Netherlands; Biomedical Engineering and Physics (MWAC), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Medical Library (RS), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Cochrane Netherlands (RS), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; and Emma Children's Hospital (JHL), Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Pediatric Clinical Research Office, Amsterdam, the Netherlands
| | - Johanna H van der Lee
- Emma Children's Hospital (MVH, AMtH, DP), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Pediatric Infectious Diseases, Amsterdam, the Netherlands; Biomedical Engineering and Physics (MWAC), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Medical Library (RS), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Cochrane Netherlands (RS), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; and Emma Children's Hospital (JHL), Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Pediatric Clinical Research Office, Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Emma Children's Hospital (MVH, AMtH, DP), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Pediatric Infectious Diseases, Amsterdam, the Netherlands; Biomedical Engineering and Physics (MWAC), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Medical Library (RS), Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Cochrane Netherlands (RS), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; and Emma Children's Hospital (JHL), Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Pediatric Clinical Research Office, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Yu X, Gao L, Wang H, Yin Z, Fang J, Chen J, Li Q, Xu H, Gui X. Neuroanatomical Changes Underlying Vertical HIV Infection in Adolescents. Front Immunol 2019; 10:814. [PMID: 31110499 PMCID: PMC6499204 DOI: 10.3389/fimmu.2019.00814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/27/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aim of this study was to investigate how human immunodeficiency virus (HIV) affects brain development in adolescents, what are susceptible brain regions, and how these brain structural changes correlate with cognitive abilities. Methods: We used structural magnetic resonance imaging to examine gray matter volume and cortical thickness in 16 HIV-infected children (mean age = 13.63 years) and 25 HIV-exposed uninfected children (mean age = 13.32 years), 12 of them were subjected to a 1-year repetitive magnetic resonance scan of the brain. Five neurocognitive tests were performed on each subject to assess cognitive performance in different areas. Results: Cross-sectional studies showed that the gray matter volume of HIV-infected children was widely reduced (mainly in the bilateral frontal, temporal, and insular regions, and cerebellum). The changes in cortical thickness were mainly due to thinning of the right temporal lobe and thickening of the left occipital lobe. Longitudinal studies showed that the gray matter volume reduction of HIV-infected children after 1 year mainly occurs in the advanced functional area of the right prefrontal, parietal lobe and the motor area, cortical thinning of brain regions were sensorimotor cortex and the limbic system. The gray matter volume of the bilateral cerebellum was positively correlated with the performance of the Wisconsin Card Sorting Test, while the cortical thickness of the right dorsolateral prefrontal cortex was negatively correlated with this test. Conclusion: This study found that HIV-infected pubertal children showed a delayed cortical maturation with atrophy. This abnormal pattern of cortical development may be the structural basis for cognitive impairment in HIV-infected children.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haha Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhuang Yin
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jian Fang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jing Chen
- Publicity Department, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qiang Li
- Training Centre of AIDS Prevention and Cure of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xien Gui
- Training Centre of AIDS Prevention and Cure of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Cohen RA, Gullett JM, Porges EC, Woods AJ, Lamb DG, Bryant VE, McAdams M, Tashima K, Cook R, Bryant K, Monnig M, Kahler CW, Monti PM. Heavy Alcohol Use and Age Effects on HIV-Associated Neurocognitive Function. Alcohol Clin Exp Res 2018; 43:147-157. [PMID: 30371953 DOI: 10.1111/acer.13915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND There is growing concern about the health impact of heavy alcohol use in people infected with human immunodeficiency virus (HIV+). Mixed findings of past studies regarding the cognitive impact of alcohol use in HIV+ adults have been mixed, with inconsistent evidence that alcohol consumption exacerbates HIV-associated brain dysfunction. This study examined contributions of current heavy drinking, lifetime alcohol use disorder (AUD), and age to cognitive deficits in HIV+ adults, and relative to other HIV-associated clinical factors. METHODS Cognitive performance of HIV+ adults (n = 104) was assessed, and comparisons were made between heavy current to nonheavy drinkers (NIAAA criteria), lifetime AUD versus no-AUD, and older (>50 years) versus younger participants. Hierarchical regression analyses were conducted to examine the association between cognitive performance and current heavy drinking, lifetime AUD, and older age, while also correcting for HIV clinical factors and history of other substance use. RESULTS Individuals reporting current heavy drinking and meeting criteria for lifetime AUD demonstrated the greatest degree of deficits across multiple cognitive domains. Deficits were greatest among HIV+ adults with lifetime AUD, and older age was also associated with weaker cognitive performance. Lifetime AUD and older age independently exhibited stronger associations with cognitive performance than HIV clinical factors (e.g., viral load, current CD4, and nadir CD4) or past opiate and cocaine use. CONCLUSIONS Current heavy drinking and lifetime AUD adversely affect cognitive function in HIV+ adults. Greatest deficits existed when there was a history of AUD and continued current heavy drinking, indicating that past AUD continues to have an adverse impact and should not be ignored. That alcohol use was more strongly associated with cognitive performance than HIV clinical factors underscore clinical importance of targeting reduction in heavy alcohol consumption in HIV+ adults.
Collapse
Affiliation(s)
- Ronald A Cohen
- Center for Cognitive Aging and Memory , University of Florida, Gainesville, Florida.,Department of Clinical and Health Psychology , University of Florida, Gainesville, Florida
| | - Joseph M Gullett
- Center for Cognitive Aging and Memory , University of Florida, Gainesville, Florida.,Department of Clinical and Health Psychology , University of Florida, Gainesville, Florida
| | - Eric C Porges
- Center for Cognitive Aging and Memory , University of Florida, Gainesville, Florida.,Department of Clinical and Health Psychology , University of Florida, Gainesville, Florida
| | - Adam J Woods
- Center for Cognitive Aging and Memory , University of Florida, Gainesville, Florida.,Department of Clinical and Health Psychology , University of Florida, Gainesville, Florida
| | - Damon G Lamb
- Department of Psychiatry , University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center , Gainesville, Florida
| | - Vaughn E Bryant
- Center for Cognitive Aging and Memory , University of Florida, Gainesville, Florida.,Department of Clinical and Health Psychology , University of Florida, Gainesville, Florida
| | - Mikayla McAdams
- Department of Infectious Medicine , The Miriam Hospital, Alpert College of Medicine, Brown University, Providence, Rhode Island
| | - Karen Tashima
- Department of Infectious Medicine , The Miriam Hospital, Alpert College of Medicine, Brown University, Providence, Rhode Island
| | - Robert Cook
- Department of Epidemiology , University of Florida, Gainesville, Florida
| | - Kendall Bryant
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Mollie Monnig
- Department of Behavioral Sciences , School of Public Health, Brown University, Providence, Rhode Island
| | - Christopher W Kahler
- Department of Behavioral Sciences , School of Public Health, Brown University, Providence, Rhode Island
| | - Peter M Monti
- Department of Behavioral Sciences , School of Public Health, Brown University, Providence, Rhode Island
| |
Collapse
|
23
|
Hoare J, Fouche JP, Phillips N, Joska JA, Myer L, Zar HJ, Stein DJ. Structural brain changes in perinatally HIV-infected young adolescents in South Africa. AIDS 2018; 32:2707-2718. [PMID: 30234601 DOI: 10.1097/qad.0000000000002024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To describe the structural brain changes, neurocognitive and mental health associations in adolescents perinatally infected with HIV-1 infection. DESIGN Cross-sectional. METHODS Two hundred and four adolescents with perinatally acquired HIV and 44 uninfected frequency-matched controls aged 9-11 years were enrolled within the Cape Town Adolescent Antiretroviral Cohort. Diffusion tensor imaging and structural brain MRI was done to determine fractional anisotropy, mean diffusivity, grey and white matter volumes, cortical thickness and cortical surfractional anisotropy area. Correlation coefficients were calculated between total grey and white matter volume, cortical surface area, cortical thickness, whole brain fractional anisotropy and whole brain mean diffusivity and clinical and laboratory parameters including general intellectual functioning, Becks Youth Inventory, Child Motivation Scale and Child Behaviour Checklist. RESULTS HIV-infected adolescents performed worse than controls on the Wechsler Abbreviated Scale of Intelligence (WASI; P < 0.01). HIV-infected adolescents had significant fractional anisotropy decreases, mean diffusivity increases and decreases in cerebral grey matter volumes, cortical surface area and decreased gyrification. Whole-brain mean fractional anisotropy was significantly reduced in the HIV-infected group (P = 0.031). There were significant correlation coefficients between greater total grey (P = 0.008) and white matter volume (P = 0.004) with the WASI and the Becks self-concept subscale (P = 0.038). Lower whole brain fractional anisotropy was associated with higher scores on the Becks anger (P = 0.018) and disruptive behaviour subscales (P = 0.031). Higher whole brain mean diffusivity was associated with apathy (P = 0.046). CONCLUSION The pattern of increased risk of white matter microstructure alterations, smaller grey matter volumes, reduced cortical surface area and decreased gyrification, suggests abnormal neurodevelopment in perinatally infected younger adolescents.
Collapse
|
24
|
Horn SR, Roos LE, Berkman ET, Fisher PA. Neuroendocrine and immune pathways from pre- and perinatal stress to substance abuse. Neurobiol Stress 2018; 9:140-150. [PMID: 30450380 PMCID: PMC6236513 DOI: 10.1016/j.ynstr.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 12/26/2022] Open
Abstract
Early life adversity is a documented risk factor for substance abuse and addiction. The pre- and perinatal period (i.e., from implantation, through pregnancy, to 6 months of age) is a critical period marked by high biological plasticity and vulnerability, making perinatal stress a particularly robust form of adversity. The neuroendocrine and immune systems are key mechanisms implicated in the transmission of addiction risk. We review animal and human studies that provide preliminary evidence for links between perinatal stress, neuroendocrine and immune dysregulation, and risk for substance abuse and addiction. A translational neuroscience perspective is employed to elucidate pre- and perinatally-induced biological mechanisms linked to addiction and discuss implications for prevention and intervention efforts. Significant evidence supports associations between pre- and perinatal stress and dysregulation of the hypothalamic-pituitary-adrenal axis and immune systems as well as links between neuroendocrine/immune functioning and addiction risk. More work is needed to explicitly examine the interplay between pre- and perinatal stress and neuroendocrine/immune disruptions that together heighten substance abuse risk. Future work is needed to fully understand how pre- and perinatal stress induces biological alterations to predispose individuals to higher risk for addiction. Such knowledge will strengthen theoretically-driven and empirically-supported prevention efforts for substance abuse and addiction.
Collapse
Affiliation(s)
- Sarah R Horn
- University of Oregon, Department of Psychology, 1227 University of Oregon, Eugene, OR, 97402, USA
| | - Leslie E Roos
- University of Oregon, Department of Psychology, 1227 University of Oregon, Eugene, OR, 97402, USA
| | - Elliot T Berkman
- University of Oregon, Department of Psychology, 1227 University of Oregon, Eugene, OR, 97402, USA
| | - Philip A Fisher
- University of Oregon, Department of Psychology, 1227 University of Oregon, Eugene, OR, 97402, USA
| |
Collapse
|
25
|
Wang P, Li J, Wang X, Thapa D, Wu GY. Asymptomatic Human Immunodeficiency Virus Vertical Transmitted Adolescents' Brain Functional Changes: Based on Resting-State Functional Magnetic Resonance Imaging. AIDS Res Hum Retroviruses 2018; 34:699-704. [PMID: 29737186 DOI: 10.1089/aid.2017.0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perinatal HIV-infected (PHIV+) adolescents survive longer with the use of readily found combination antiretroviral therapy (cART); however, they still have the risk of developing cognitive deficits. The article aims to explore the brain functional changes in asymptomatic PHIV+ adolescents with cART based on the resting-state functional magnetic resonance imaging (rs-fMRI). rs-fMRI was performed on 20 PHIV+ adolescents and 28 PHIV- controls to evaluate the regional homogeneity (ReHo) in different brain regions by calculating the Kendall harmonious coefficient. Montreal cognitive assessment and laboratory studies (nadir CD4+ T cell counts) were also performed on all the subjects to evaluate their cognitive and immune status. Thirteen PHIV+ adolescents and 22 PHIV- controls were enrolled. There was a significant difference of ReHo values in PHIV+ adolescents compared to PHIV- controls, the areas with increased ReHo values include bilateral precentral/postcentral gyrus and right middle temporal pole. Also, the areas with decreased ReHo values locate in right putamen/pallidum/insula, left caudate/putamen/insula, right superior temporal pole/insula, right caudate/putamen, bilateral anterior cingulate cortex, and left inferior temporal pole. Furthermore, age, cognitive scores, and laboratory studies (nadir CD4+ T cell counts) did not show any significant correlation with altered ReHo values of brain regions neither in PHIV+ groups nor in PHIV- control groups. Among PHIV+ adolescents, brain areas with increased ReHo values were mainly located in the central somatic motor-sensory cortex, which might be related to the compensatory mechanism, whereas brain areas with decreased ReHo values were mainly focused on corticostriatal pathway, which might be associated with abnormal dopamine consumption. Thus, rs-fMRI could demonstrate the brain functional changes in resting state of asymptomatic PHIV+ adolescents.
Collapse
Affiliation(s)
- Panying Wang
- Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, P.R. China
- Radiology Department, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Jielan Li
- Radiology Department, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Xiangyu Wang
- Radiology Department, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Deepa Thapa
- Radiology Department, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Guang-Yao Wu
- Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, P.R. China
- Radiology Department, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
26
|
Nwosu EC, Robertson FC, Holmes MJ, Cotton MF, Dobbels E, Little F, Laughton B, van der Kouwe A, Meintjes EM. Altered brain morphometry in 7-year old HIV-infected children on early ART. Metab Brain Dis 2018; 33:523-535. [PMID: 29209922 PMCID: PMC5866746 DOI: 10.1007/s11011-017-0162-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Even with the increased roll out of combination antiretroviral therapy (cART), paediatric HIV infection is associated with neurodevelopmental delays and neurocognitive deficits that may be accompanied by alterations in brain structure. Few neuroimaging studies have been done in children initiating ART before 2 years of age, and even fewer in children within the critical stage of brain development between 5 and 11 years. We hypothesized that early ART would limit HIV-related brain morphometric deficits at age 7. Study participants were 7-year old HIV-infected (HIV+) children from the Children with HIV Early Antiretroviral Therapy (CHER) trial whose viral loads were supressed at a young age, and age-matched uninfected controls. We used structural magnetic resonance imaging (MRI) and FreeSurfer ( http://www.freesurfer.net/ ) software to investigate effects of HIV and age at ART initiation on cortical thickness, gyrification and regional brain volumes. HIV+ children showed reduced gyrification compared to controls in bilateral medial parietal regions, as well as reduced volumes of the right putamen, left hippocampus, and global white and gray matter and thicker cortex in small lateral occipital region. Earlier ART initiation was associated with lower gyrification and thicker cortex in medial frontal regions. Although early ART appears to preserve cortical thickness and volumes of certain brain structures, HIV infection is nevertheless associated with reduced gyrification in the parietal cortex, and lower putamen and hippocampus volumes. Our results indicate that in early childhood gyrification is more sensitive than cortical thickness to timing of ART initiation. Future work will clarify the implications of these morphometric effects for neuropsychological function.
Collapse
Affiliation(s)
- Emmanuel C Nwosu
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Frances C Robertson
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martha J Holmes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark F Cotton
- Family Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Els Dobbels
- Family Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- A.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Ernesta M Meintjes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
27
|
Toich JTF, Taylor PA, Holmes MJ, Gohel S, Cotton MF, Dobbels E, Laughton B, Little F, van der Kouwe AJW, Biswal B, Meintjes EM. Functional Connectivity Alterations between Networks and Associations with Infant Immune Health within Networks in HIV Infected Children on Early Treatment: A Study at 7 Years. Front Hum Neurosci 2018; 11:635. [PMID: 29375341 PMCID: PMC5768628 DOI: 10.3389/fnhum.2017.00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
Although HIV has been shown to impact brain connectivity in adults and youth, it is not yet known to what extent long-term early antiretroviral therapy (ART) may alter these effects, especially during rapid brain development in early childhood. Using both independent component analysis (ICA) and seed-based correlation analysis (SCA), we examine the effects of HIV infection in conjunction with early ART on resting state functional connectivity (FC) in 7 year old children. HIV infected (HIV+) children were from the Children with HIV Early Antiretroviral Therapy (CHER) trial and all initiated ART before 18 months; uninfected children were recruited from an interlinking vaccine trial. To better understand the effects of current and early immune health on the developing brain, we also investigated among HIV+ children the association of FC at 7 years with CD4 count and CD4%, both in infancy (6–8 weeks) and at scan. Although we found no differences within any ICA-generated resting state networks (RSNs) between HIV+ and uninfected children (27 HIV+, 18 uninfected), whole brain connectivity to seeds located at RSN connectivity peaks revealed several loci of FC differences, predominantly from seeds in midline regions (posterior cingulate cortex, paracentral lobule, cuneus, and anterior cingulate). Reduced long-range connectivity and increased short-range connectivity suggest developmental delay. Within the HIV+ children, clinical measures at age 7 years were not associated with FC values in any of the RSNs; however, poor immune health during infancy was associated with localized FC increases in the somatosensory, salience and basal ganglia networks. Together these findings suggest that HIV may affect brain development from its earliest stages and persist into childhood, despite early ART.
Collapse
Affiliation(s)
- Jadrana T F Toich
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paul A Taylor
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,African Institute for Mathematical Sciences, Muizenberg, South Africa.,Scientific and Statistical Computing Core, National Institutes of Health, Bethesda, MD, United States
| | - Martha J Holmes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suril Gohel
- Department of Health Informatics, School of Health Professions, Rutgers University, Newark, NJ, United States
| | - Mark F Cotton
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Els Dobbels
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Ernesta M Meintjes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Abstract
Human immunodeficiency virus (HIV) enters the brain early after infecting humans and may remain in the central nervous system despite successful antiretroviral treatment. Many neuroimaging techniques were used to study HIV+ patients with or without opportunistic infections. These techniques assessed abnormalities in brain structures (using computed tomography, structural magnetic resonance imaging (MRI), diffusion MRI) and function (using functional MRI at rest or during a task, and perfusion MRI with or without a contrast agent). In addition, single-photon emission computed tomography with various tracers (e.g., thallium-201, Tc99-HMPAO) and positron emission tomography with various agents (e.g., [18F]-dexoyglucose, [11C]-PiB, and [11C]-TSPO tracers), were applied to study opportunistic infections or HIV-associated neurocognitive disorders. Neuroimaging provides diagnoses and biomarkers to quantitate the severity of brain injury or to monitor treatment effects, and may yield insights into the pathophysiology of HIV infection. As the majority of antiretroviral-stable HIV+ patients are living longer, age-related comorbid disorders (e.g., additional neuroinflammation, cerebrovascular disorders, or other dementias) will need to be considered. Other highly prevalent conditions, such as substance use disorders, psychiatric illnesses, and the long-term effects of combined antiretroviral therapy, all may lead to additional brain injury. Neuroimaging studies could provide knowledge regarding how these comorbid conditions impact the HIV-infected brain. Lastly, specific molecular imaging agents may be needed to assess the central nervous system viral reservoir.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Medicine and Department of Neurology, John A. Burns School of Medicine, University of Hawaii, Manoa, United States.
| | - Dinesh K Shukla
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Randall SR, Warton CMR, Holmes MJ, Cotton MF, Laughton B, van der Kouwe AJW, Meintjes EM. Larger Subcortical Gray Matter Structures and Smaller Corpora Callosa at Age 5 Years in HIV Infected Children on Early ART. Front Neuroanat 2017; 11:95. [PMID: 29163068 PMCID: PMC5673662 DOI: 10.3389/fnana.2017.00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Sub-Saharan Africa is home to 90% of HIV infected (HIV+) children. Since the advent of antiretroviral therapy (ART), HIV/AIDS has transitioned to a chronic condition where central nervous system (CNS) damage may be ongoing. Although, most guidelines recommend early ART to reduce CNS viral reservoirs, the brain may be more vulnerable to potential neurotoxic effects of ART during the rapid development phase in the first years of life. Here we investigate differences in subcortical volumes between 5-year-old HIV+ children who received early ART (before age 18 months) and uninfected children using manual tracing of Magnetic Resonance Images. Participants included 61 Xhosa children (43 HIV+/18 uninfected, mean age = 5.4 ± 0.3 years, 25 male) from the children with HIV early antiretroviral (CHER) trial; 27 children initiated ART before 12 weeks of age (ART-Before12Wks) and 16 after 12 weeks (ART-After12Wks). Structural images were acquired on a 3T Allegra MRI in Cape Town and manually traced using MultiTracer. Volumetric group differences (HIV+ vs. uninfected; ART-Before12Wks vs. ART-After12Wks) were examined for the caudate, nucleus accumbens (NA), putamen (Pu), globus pallidus (GP), and corpus callosum (CC), as well as associations within infected children of structure volumes with age at ART initiation and CD4/CD8 as a proxy for immune health. HIV+ children had significantly larger NA and Pu volumes bilaterally and left GP volumes than controls, whilst CC was smaller. Bilateral Pu was larger in both treatment groups compared to controls, while left GP and bilateral NA were enlarged only in ART-After12Wks children. CC was smaller in both treatment groups compared to controls, and smaller in ART-After12Wks compared to ART-Before12Wks. Within infected children, delayed ART initiation was associated with larger Pu volumes, effects that remained significant when controlling for sex and duration of treatment interruption (left β = 0.447, p = 0.005; right β = 0.325, p = 0.051), and lower CD4/CD8 with larger caudates controlling for sex (left β = -0.471, p = 0.002; right β = -0.440, p = 0.003). Volumetric differences were greater in children who initiated ART after 12 weeks. Results suggest damage is ongoing despite early ART and viral load suppression; however, earlier treatment is neuroprotective.
Collapse
Affiliation(s)
- Steven R. Randall
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher M. R. Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark F. Cotton
- Children's Infectious Diseases Clinical Research Unit, Department of Paediatrics and Child Health, Tygerberg Children's Hospital & Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Barbara Laughton
- Children's Infectious Diseases Clinical Research Unit, Department of Paediatrics and Child Health, Tygerberg Children's Hospital & Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre J. W. van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Ernesta M. Meintjes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|