1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Goudarzi S, Mohammad Jafari R, Farsiu N, Amini B, Manavi MA, Fahanik-Babaei J, Ejtemaei-Mehr S, Dehpour AR. Protective effects of licofelone on scopolamine-induced spatial learning and memory impairment by enhancing parkin-dependent mitophagy and promotion of neural regeneration and in adult mice. Eur J Pharmacol 2024; 984:177025. [PMID: 39395583 DOI: 10.1016/j.ejphar.2024.177025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Inhibition of COX and LOX could contribute to memory formation and prevention of neurodegeneration, by alleviation of neuroinflammation and improvement of mitochondrial homeostasis. We aimed to assess the effect of licofelone, a dual COX and 5-LOX inhibitor on memory formation, neural apoptosis, neural regeneration, and mitophagy in acute and chronic dosages, given that licofelone could regulate nitric oxide levels. Y-maze and Passive Avoidance tests were used to evaluate memory function in NMRI mice using the EthoVision setting, following scopolamine administration (1 mg/kg, i.p.) as an acute amnestic drug. Hippocampi were used to evaluate the levels of apoptosis via TUNEL assay, neural regeneration via immunohistochemistry method detecting doublecortin and nestin, and mitophagy via Western blot of mitophagy proteins Parkin and ATG5. While acute high-dose licofelone (20 mg/kg) could reverse amnestic effects of scopolamine in passive avoidance test (p = 0.0001), Chronic licofelone (10 mg/kg for 10 consecutive days) could improve performance in Y-maze (p = 0.0007). Molecular analysis revealed that the chronic form of the drug could enhance neural regeneration in CA1 and SGZ regions, reset mitophagy levels as much as the healthy state, and reduce apoptosis rate. Licofelone appears to show a desirable anti-amnestic profile in a low dose chronically; it is hence recommended for future clinical studies on the prevention of neuroinflammation and memory deficit.
Collapse
Affiliation(s)
- Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nikou Farsiu
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Amini
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei-Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sharma V, Sharma P, Singh TG. Leukotriene signaling in neurodegeneration: implications for treatment strategies. Inflammopharmacology 2024; 32:3571-3584. [PMID: 39167313 DOI: 10.1007/s10787-024-01557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Leukotrienes (LTs) are a group of substances that cause inflammation. They are produced by the enzyme 5-lipoxygenase (5-LOX) from arachidonic acid. Cysteinyl LTs are a group of lipid molecules that have a prominent role in inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic disease, current advancements in bio-medical research have shed light on the involvement of these inflammatory mediators in diseases such as in the inflammation related to central nervous system (CNS) disorders. Among the CNS diseases, LTs, along with 5-LOX and their receptors, have been shown to be associated with multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Through a comprehensive review of current research and experimentation, this investigation provides an insight on the biosynthesis, receptors, and biological effects of LTs in the body. Furthermore, implications of leukotriene signaling in CNS and its intricate role in neurodegeneration are also studied. Through the revelation of these insights, our aim is to establish a foundation for the development of enhanced and focused therapeutic approaches in the continuous endeavor to combat neurodegeneration. Furthermore, the pharmacological inhibition of leukotriene signaling with selective inhibitors offers promising prospects for future interventions and treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Wang S, Tu Z, Li C, Jin X, Chen Z, Ye X, Xu S, Cai J, Cai C. STC-1 alleviates airway inflammation by regulating epithelial cell apoptosis through the 5-LO pathway. Inflammation 2024:10.1007/s10753-024-02181-5. [PMID: 39546157 DOI: 10.1007/s10753-024-02181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Airway inflammation plays a key role in the pathogenesis and development of asthma. Stanniocalcin-1 (STC-1) has powerful antioxidant, anti-inflammatory and anti-apoptotic functions but its impact on the airway inflammation in asthma lacks evidence. Here, we investigated the effect and potential mechanism of STC-1 on airway inflammation through asthmatic mice model and lipopolysaccharide (LPS)-treated BEAS-2B cells. The data showed that STC-1 treatment before the challenge exerted protective effect on ovalbumin (OVA)-induced asthmatic mice, i.e., decreased the inflammatory cell infiltration, mucus secretion, cytokine levels, apoptosis levels, and p38 MAPK signaling. Additionally, STC-1 reduced 5-LO expression. Meanwhile, STC-1 decreased p38 MAPK signaling, cytokine production, mucin MUC5AC production, 5-LO expression and nuclear translocation, and LTB4 production in vitro. Ultimately, transforming growth factor β (TGF- β ), as a 5-LO inducer, reversed the anti-inflammatory and anti-apoptotic effects of STC-1 in BEAS-2B cells by up-regulating 5-LO expression. It reveals the potential of STC-1 to act as an additional therapy to mitigate airway inflammation in asthma and inhibit 5-LO expression.
Collapse
Affiliation(s)
- Shijia Wang
- Department of Respiratory and Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijian Tu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zehong Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofei Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuyao Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jihao Cai
- Renji College of Wenzhou Medical University, Wenzhou, China
| | - Chang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- To whom correspondence should be addressed at Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Faraji P, Parandavar E, Kuhn H, Habibi-Rezaei M, Borchert A, Zahedi E, Ahmadian S. Oral administration of butylated hydroxytoluene induces neuroprotection in a streptozotocin-induced rat Alzheimer's disease model via inhibition of neuronal ferroptosis. Mol Med 2024; 30:204. [PMID: 39511487 PMCID: PMC11545178 DOI: 10.1186/s10020-024-00980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common human neurodegenerative disorder worldwide. Owing to its chronic nature, our limited understanding of its pathophysiological mechanisms, and because of the lack of effective anti-AD drugs, AD represents a significant socio-economic challenge for all industrialized countries. Neuronal cell death is a key factor in AD pathogenesis and recent studies have suggested that neuronal ferroptosis may play a major patho-physiological role. Since ferroptosis involves free radical-mediated lipid peroxidation, we hypothesized that enteral administration of the radical scavenger butylated hydroxytoluene (BHT) might slow down or even prevent the development of AD-related symptoms in an in vivo animal AD model. MATERIAL AND METHODS To test this hypothesis, we employed the rat model of streptozotocin-induced AD and administered butylated hydroxytoluene orally at a dose of 120 mg/kg body weight. Following BHT treatment, neuronal cell death was induced by bilateral stereotactic intraventricular injection of streptozotocin at a dose of 3.0 mg/kg body weight. Three weeks after surgery, we assessed the learning capabilities and the short-term memory of three experimental groups using the conventional y-maze test: (i) streptozotocin-treated rats (BHT pre-treatment), (ii) streptozotocin-treated rats (no BHT pre-treatment), (iii) sham-operated rats (BHT pre-treatment but no streptozotocin administration). After the y-maze test, the animals were sacrificed, hippocampal tissue was prepared and several biochemical (malonyl dialdehyde formation, glutathione homeostasis, gene expression patterns) and histochemical (Congo-red staining, Nissl staining, Perls staining) readout parameters were quantified. RESULTS Intraventricular streptozotocin injection induced the development of AD-related symptoms, elevated the degree of lipid peroxidation and upregulated the expression of ferroptosis-related genes. Histochemical analysis indicated neuronal cell death and neuroinflammation, which were paralleled by aberrant intraneuronal iron deposition. The streptozotocin-induced alterations were significantly reduced and sometimes even abolished by oral BHT treatment. CONCLUSION Our data indicate that oral BHT treatment attenuated the development of AD-related symptoms in an in vivo rat model, most probably via inhibiting neuronal ferroptosis. These findings suggest that BHT might constitute a promising candidate as anti-AD drug. However, more work is needed to explore the potential applicability of BHT in other models of neurodegeneration and in additional ferroptosis-related disorders.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elham Parandavar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hartmut Kuhn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | | | - Astrid Borchert
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elham Zahedi
- Institute of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Nie R, Zhou X, Fu J, Hu S, Zhang Q, Jiang W, Yan Y, Cao X, Yuan D, Long Y, Hong H, Tang S. GPR17 modulates anxiety-like behaviors via basolateral amygdala to ventral hippocampal CA1 glutamatergic projection. Acta Pharm Sin B 2024; 14:4789-4805. [PMID: 39664418 PMCID: PMC11628806 DOI: 10.1016/j.apsb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
Anxiety disorders are one of the most epidemic and chronic psychiatric disorders. An incomplete understanding of anxiety pathophysiology has limited the development of highly effective drugs against these disorders. GPR17 has been shown to be involved in multiple sclerosis and some acute brain injury disorders. However, no study has investigated the role of GPR17 in psychiatric disorders. In a well-established chronic restraint stress (CRS) mouse model, using a combination of pharmacological and molecular biology techniques, viral tracing, in vitro electrophysiology recordings, in vivo fiber photometry, chemogenetic manipulations and behavioral tests, we demonstrated that CRS induced anxiety-like behaviors and increased the expression of GPR17 in basolateral amygdala (BLA) glutamatergic neurons. Inhibition of GPR17 by cangrelor or knockdown of GPR17 by adeno-associated virus in BLA glutamatergic neurons effectively improved anxiety-like behaviors. Overexpression of GPR17 in BLA glutamatergic neurons increased the susceptibility to anxiety-like behaviors. What's more, BLA glutamatergic neuronal activity was required for anxiolytic-like effects of GPR17 antagonist and GPR17 modulated anxiety-like behaviors via BLA to ventral hippocampal CA1 glutamatergic projection. Our study finds for the first and highlights the new role of GPR17 in regulating anxiety-like behaviors and it might be a novel potential target for therapy of anxiety disorders.
Collapse
Affiliation(s)
- Ruizhe Nie
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xinting Zhou
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaru Fu
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shanshan Hu
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qilu Zhang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weikai Jiang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yizi Yan
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xian Cao
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Hong
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
8
|
Sood R, Anoopkumar-Dukie S, Rudrawar S, Hall S. Neuromodulatory effects of leukotriene receptor antagonists: A comprehensive review. Eur J Pharmacol 2024; 978:176755. [PMID: 38909933 DOI: 10.1016/j.ejphar.2024.176755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Cysteinyl leukotrienes (CysLTs) are central to the pathophysiology of asthma and various inflammatory disorders. Leukotriene receptor antagonists (LTRAs) effectively treat respiratory conditions by targeting cysteinyl leukotriene receptors, CysLT1 and CysLT2 subtypes. This review explores the multifaceted effects of LTs, extending beyond bronchoconstriction. CysLT receptors are not only present in the respiratory system but are also crucial in neuronal signaling pathways. LTRAs modulate these receptors, influencing downstream signaling, calcium levels, inflammation, and oxidative stress (OS) within neurons hinting at broader implications. Recent studies identify novel molecular targets, sparking interest in repurposing LTRAs for therapeutic use. Clinical trials are investigating their potential in neuroinflammation control, particularly in Alzheimer's disease (AD) and Parkinson's diseases (PD). However, montelukast, a long-standing LTRA since 1998, raises concerns due to neuropsychiatric adverse drug reactions (ADRs). Despite widespread use, understanding montelukast's metabolism and underlying ADR mechanisms remains limited. This review comprehensively examines LTRAs' diverse biological effects, emphasizing non-bronchoconstrictive activities. It also analyses plausible mechanisms behind LTRAs' neuronal effects, offering insights into their potential as neurodegenerative disease modulators. The aim is to inform clinicians, researchers, and pharmaceutical developers about LTRAs' expanding roles, particularly in neuroinflammation control and their promising repurposing for neurodegenerative disease management.
Collapse
Affiliation(s)
- Radhika Sood
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia; Institute for Glycomics, Griffith University, Queensland, 4222, Australia
| | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
9
|
Feng T, Zheng H, Zhang Z, Fan P, Yang X. Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease. Ageing Res Rev 2024; 100:102373. [PMID: 38960046 DOI: 10.1016/j.arr.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China
| | | | - Zhan Zhang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Peidong Fan
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
10
|
Islam MR, Rabbi MA, Hossain T, Sultana S, Uddin S. Mechanistic Approach to Immunity and Immunotherapy of Alzheimer's Disease: A Review. ACS Chem Neurosci 2024. [PMID: 39173186 DOI: 10.1021/acschemneuro.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative condition characterized by progressive cognitive decline and memory loss, affecting millions of people worldwide. Traditional treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, offer limited symptomatic relief without addressing the underlying disease mechanisms. These limitations have driven the development of more potent and effective therapies. Recent advances in immunotherapy present promising avenues for AD treatment. Immunotherapy strategies, including both active and passive approaches, harness the immune system to target and mitigate AD-related pathology. Active immunotherapy stimulates the patient's immune response to produce antibodies against AD-specific antigens, while passive immunotherapy involves administering preformed antibodies or immune cells that specifically target amyloid-β (Aβ) or tau proteins. Monoclonal antibodies, such as aducanumab and lecanemab, have shown potential in reducing Aβ plaques and slowing cognitive decline in clinical trials, despite challenges related to adverse immune responses and the need for precise targeting. This comprehensive review explores the role of the immune system in AD, evaluates the current successes and limitations of immunotherapeutic approaches, and discusses future directions for enhancing the treatment efficacy.
Collapse
Affiliation(s)
- Md Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanbir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sadia Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shihab Uddin
- Department of Bioengineering, King Fahad University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Bio Systems and Machines, King Fahad University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| |
Collapse
|
11
|
Karnam S, Maurya S, Ng E, Choudhary A, Thobani A, Flanagan JG, Gronert K. Dysregulation of neuroprotective lipoxin pathway in astrocytes in response to cytokines and ocular hypertension. Acta Neuropathol Commun 2024; 12:58. [PMID: 38610040 PMCID: PMC11010376 DOI: 10.1186/s40478-024-01767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma leads to vision loss due to retinal ganglion cell death. Astrocyte reactivity contributes to neurodegeneration. Our recent study found that lipoxin B4 (LXB4), produced by retinal astrocytes, has direct neuroprotective actions on retinal ganglion cells. In this study, we aimed to investigate how the autacoid LXB4 influences astrocyte reactivity in the retina under inflammatory cytokine-induced activation and during ocular hypertension. The protective activity of LXB4 was investigated in vivo using the mouse silicone-oil model of chronic ocular hypertension. By employing a range of analytical techniques, including bulk RNA-seq, RNAscope in-situ hybridization, qPCR, and lipidomic analyses, we discovered the formation of lipoxins and expression of the lipoxin pathway in rodents (including the retina and optic nerve), primates (optic nerve), and human brain astrocytes, indicating the presence of this neuroprotective pathway across various species. Findings in the mouse retina identified significant dysregulation of the lipoxin pathway in response to chronic ocular hypertension, leading to an increase in 5-lipoxygenase (5-LOX) activity and a decrease in 15-LOX activity. This dysregulation was coincident with a marked upregulation of astrocyte reactivity. Reactive human brain astrocytes also showed a significant increase in 5-LOX. Treatment with LXB4 amplified the lipoxin biosynthetic pathway by restoring and amplifying the generation of another member of the lipoxin family, LXA4, and mitigated astrocyte reactivity in mouse retinas and human brain astrocytes. In conclusion, the lipoxin pathway is functionally expressed in rodents, primates, and human astrocytes, and is a resident neuroprotective pathway that is downregulated in reactive astrocytes. Novel cellular targets for LXB4's neuroprotective action are inhibition of astrocyte reactivity and restoration of lipoxin generation. Amplifying the lipoxin pathway is a potential target to disrupt or prevent astrocyte reactivity in neurodegenerative diseases, including retinal ganglion cell death in glaucoma.
Collapse
Affiliation(s)
- Shruthi Karnam
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Elainna Ng
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Amodini Choudhary
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Arzin Thobani
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA.
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA.
- Infectious Disease and Immunity Program, Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Wang X, Gan W, Kang M, Lv C, Zhao Z, Wu Y, Zhang X, Wang R. Asthma aggravates alzheimer's disease by up-regulating NF- κB signaling pathway through LTD4. Brain Res 2024; 1825:148711. [PMID: 38092296 DOI: 10.1016/j.brainres.2023.148711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
Clinical studies have shown that asthma is a risk factor for dementia or Alzheimer's disease (AD). To investigate whether asthma aggravates AD in APP/PS1 mice and explore the potential mechanisms, an asthma model was established using six-month-old APP/PS1 mice, and montelukast was used as a therapeutic agent in APP/PS1 mice with asthma. The Morris water maze test showed that asthma aggravates spatial learning and memory abilities. Asthma also upregulates the NF-κB inflammatory pathway in APP/PS1 mice and promotes the expression of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), amyloid-β (Aβ) deposition, neuronal damage, synaptic plasticity deficiency, activation of microglia and astrocytes. The level of LTD4 and its receptor CysLT1R in the hippocampus of APP/PS1 mice after the asthma modeling was established was higher than that in APP/PS1 mice, suggesting that asthma may affect the pathology of AD through LTD4 and its receptor Cys-LT1R. Montelukast ameliorates these pathological changes and cognitive impairment. These results suggest that asthma aggravates AD pathology and cognitive impairment of APP/PS1 mice via upregulation of the NF-κB inflammatory pathway, and montelukast ameliorates these pathological changes.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Wenjing Gan
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Meimei Kang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Caizhen Lv
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Zhiwei Zhao
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Yanchuan Wu
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Xu Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China; Beijing Institute for Brain Disorders, Beijing, PR China; National Clinical Research Center for Geriatric Disorders, Beijing, PR China.
| |
Collapse
|
13
|
Karnam S, Maurya S, Ng E, Choudhary A, Thobani A, Flanagan JG, Gronert K. Dysregulation of Neuroprotective Lipoxin Pathway in Astrocytes in Response to Cytokines and Ocular Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.22.546157. [PMID: 37425861 PMCID: PMC10327029 DOI: 10.1101/2023.06.22.546157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Glaucoma leads to vision loss due to retinal ganglion cell death. Astrocyte reactivity contributes to neurodegeneration. Our recent study found that lipoxin B4 (LXB4), produced by retinal astrocytes, has direct neuroprotective actions on retinal ganglion cells. In this study, we aimed to investigate how the autacoid LXB4 influences astrocyte activity in the retina under inflammatory cytokine-induced activation and during ocular hypertension. The protective activity of LXB4 was investigated in vivo using the mouse silicone-oil model of chronic ocular hypertension (n=40). By employing a range of analytical techniques, including bulk RNA-seq, RNAscope in-situ hybridization, qPCR, and lipidomic analyses, we discovered the formation of lipoxins and expression of the lipoxin pathway in rodents (including the retina and optic nerve), primates (optic nerve), and human brain astrocytes, indicating the presence of this neuroprotective pathway across various species. Findings in the mouse retina identified significant dysregulation of the lipoxin pathway in response to chronic ocular hypertension, leading to an increase in 5-lipoxygenase (5-LOX) activity and a decrease in 15-LOX activity. This dysregulation was coincident with a marked upregulation of astrocyte reactivity. Reactive human brain astrocytes also showed a significant increase in 5-LOX. Treatment with LXB4 amplified the lipoxin biosynthetic pathway by restoring and amplifying the generation of another member of the lipoxin family, LXA4, and mitigated astrocyte reactivity in mouse retinas and human brain astrocytes. In conclusion, the lipoxin pathway is functionally expressed in rodents, primates, and human astrocytes, and is a resident neuroprotective pathway that is downregulated in reactive astrocytes. Novel cellular targets for LXB4's neuroprotective action are inhibition of astrocyte reactivity and restoration of lipoxin generation. Amplifying the lipoxin pathway is a potential target to disrupt or prevent astrocyte reactivity in neurodegenerative diseases, including retinal ganglion cell death in glaucoma.
Collapse
Affiliation(s)
- Shruthi Karnam
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | | | - Amodini Choudhary
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Arzin Thobani
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
- Infectious Disease and Immunity Program, Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, CA, United States
| |
Collapse
|
14
|
Krishnamoorthi S, Iyaswamy A, Sreenivasmurthy SG, Thakur A, Vasudevan K, Kumar G, Guan XJ, Lu K, Gaurav I, Su CF, Zhu Z, Liu J, Kan Y, Jayaraman S, Deng Z, Chua KK, Cheung KH, Yang Z, Song JX, Li M. PPARɑ Ligand Caudatin Improves Cognitive Functions and Mitigates Alzheimer's Disease Defects By Inducing Autophagy in Mice Models. J Neuroimmune Pharmacol 2023; 18:509-528. [PMID: 37682502 DOI: 10.1007/s11481-023-10083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aβ) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent the increased production of Aβ and phospho-Tau in AD. Peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that can activate autophagy, and transcriptionally regulate transcription factor EB (TFEB) which is a key regulator of ALP. This suggests that targeting PPARα, to reduce ALP impairment, could be a viable strategy for AD therapy. In this study, we investigated the anti-AD activity of Caudatin, an active constituent of Cynanchum otophyllum (a traditional Chinese medicinal herb, Qing Yang Shen; QYS). We found that Caudatin can bind to PPARα as a ligand and augment the expression of ALP in microglial cells and in the brain of 3XTg-AD mice model. Moreover, Caudatin could activate PPARα and transcriptionally regulates TFEB-augmented lysosomal degradation of Aβ and phosphor-Tau aggregates in AD cell models. Oral administration of Caudatin decreased AD pathogenesis and ameliorated the cognitive dysfunction in 3XTg-AD mouse model. Conclusively, Caudatin can be a potential AD therapeutic agent via activation of PPARα-dependent ALP.
Collapse
Affiliation(s)
- Senthilkumar Krishnamoorthi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | | | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, The University of Chicago, Illinois, USA
| | | | - Gaurav Kumar
- Department of Clinical Research, School of Biological and Biomedical Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Xin-Jie Guan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kejia Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
| | - Cheng-Fu Su
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhou Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Jia Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Yuxuan Kan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine, Department of Biochemistry, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Zhiqiang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Ka Kit Chua
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
| | - Ju-Xian Song
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
15
|
Feng DD, Chen JH, Chen YF, Cao Q, Li BJ, Chen XQ, Jin R, Zhou GP. MALAT1 binds to miR-188-3p to regulate ALOX5 activity in the lung inflammatory response of neonatal bronchopulmonary dysplasia. Mol Immunol 2023; 160:67-79. [PMID: 37385102 DOI: 10.1016/j.molimm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) causes high morbidity and mortality in infants, but no effective preventive or therapeutic agents have been developed to combat BPD. In this study, we assessed the expression of MALAT1 and ALOX5 in peripheral blood mononuclear cells from BPD neonates, hyperoxia-induced rat models and lung epithelial cell lines. Interestingly, we found upregulated expression of MALAT1 and ALOX5 in the experimental groups, along with upregulated expression of proinflammatory cytokines. According to bioinformatics prediction, MALAT1 and ALOX5 simultaneously bind to miR-188-3p, which was downregulated in the experimental groups above. Silencing MALAT1 or ALOX5 and overexpressing miR-188-3p inhibited apoptosis and promoted the proliferation of hyperoxia-treated A549 cells. Suppressing MALAT1 or overexpressing miR-188-3p increased the expression levels of miR-188-3p but decreased the expression levels of ALOX5. Moreover, RNA immunoprecipitation (RIP) and luciferase assays showed that MALAT1 directly targeted miR-188-3p to regulate ALOX5 expression in BPD neonates. Collectively, our study demonstrates that MALAT1 regulates ALOX5 expression by binding to miR-188-3p, providing novel insights into potential therapeutics for BPD treatment.
Collapse
Affiliation(s)
- Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Fei Chen
- Department of Pediatrics, Yancheng Maternal and Child Health Care Hospital, Yancheng 224000, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Bing-Jie Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
16
|
Redzicka A, Wiatrak B, Jęśkowiak-Kossakowska I, Kochel A, Płaczek R, Czyżnikowska Ż. Design, Synthesis, Biological Evaluation, and Molecular Docking Study of 4,6-Dimethyl-5-aryl/alkyl-2-[2-hydroxy-3-(4-substituted-1-piperazinyl)propyl]pyrrolo[3,4- c]pyrrole-1,3(2 H,5 H)-diones as Anti-Inflammatory Agents with Dual Inhibition of COX and LOX. Pharmaceuticals (Basel) 2023; 16:804. [PMID: 37375750 DOI: 10.3390/ph16060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In the present study, we characterize the biological activity of a newly designed and synthesized series of 15 compounds 2-[2-hydroxy-3-(4-substituted-1-piperazinyl)propyl] derivatives of pyrrolo[3,4-c]pyrrole 3a-3o. The compounds were obtained with good yields of pyrrolo[3,4-c]pyrrole scaffold 2a-2c with secondary amines in C2H5OH. The chemical structures of the compounds were characterized by 1H-NMR, 13C-NMR, FT-IR, and MS. All the new compounds were investigated for their potencies to inhibit the activity of three enzymes, i.e., COX-1, COX-2, and LOX, by a colorimetric inhibitor screening assay. In order to analyze the structural basis of interactions between the ligands and cyclooxygenase/lipooxygenase, experimental data were supported by the results of molecular docking simulations. The data indicate that all of the tested compounds influence the activity of COX-1, COX-2, and LOX.
Collapse
Affiliation(s)
- Aleksandra Redzicka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | | | - Andrzej Kochel
- Faculty of Chemistry, University of Wroclaw, ul. F.J oliot-Curie 14, 50-383 Wroclaw, Poland
| | - Remigiusz Płaczek
- Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Żaneta Czyżnikowska
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
17
|
Zhang KY, Li CN, Zhang NX, Gao XC, Shen JM, Cheng DD, Wang YL, Zhang H, Lv JW, Sun JM. UPLC-QE-Orbitrap-Based Cell Metabolomics and Network Pharmacology to Reveal the Mechanism of N-Benzylhexadecanamide Isolated from Maca ( Lepidium meyenii Walp.) against Testicular Dysfunction. Molecules 2023; 28:molecules28104064. [PMID: 37241805 DOI: 10.3390/molecules28104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Testicular dysfunction (TDF) is characterized by testosterone deficiency and is caused by oxidative stress injury in Leydig cells. A natural fatty amide named N-benzylhexadecanamide (NBH), derived from cruciferous maca, has been shown to promote testosterone production. Our study aims to reveal the anti-TDF effect of NBH and explore its potential mechanism in vitro. This study examined the effects of H2O2 on cell viability and testosterone levels in mouse Leydig cells (TM3) under oxidative stress. In addition, cell metabolomics analysis based on UPLC-Q-Exactive-MS/MS showed that NBH was mainly involved in arginine biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, the TCA cycle and other metabolic pathways by affecting 23 differential metabolites, including arginine and phenylalanine. Furthermore, we also performed network pharmacological analysis to observe the key protein targets in NBH treatment. The results showed that its role was to up-regulate ALOX5, down-regulate CYP1A2, and play a role in promoting testicular activity by participating in the steroid hormone biosynthesis pathway. In summary, our study not only provides new insights into the biochemical mechanisms of natural compounds in the treatment of TDF, but also provides a research strategy that integrates cell metabolomics and network pharmacology in order to promote the screening of new drugs for the treatment of TDF.
Collapse
Affiliation(s)
- Kai-Yue Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chun-Nan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Nan-Xi Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiao-Chen Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia-Ming Shen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Duan-Duan Cheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yue-Long Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing-Wei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia-Ming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
18
|
Descoteaux AE, Zuch DT, Bradham CA. Polychrome labeling reveals skeletal triradiate and elongation dynamics and abnormalities in patterning cue-perturbed embryos. Dev Biol 2023; 498:1-13. [PMID: 36948411 DOI: 10.1016/j.ydbio.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
The larval skeleton of the sea urchin Lytechinus variegatus is an ideal model system for studying skeletal patterning; however, our understanding of the etiology of skeletal patterning in sea urchin larvae is limited due to the lack of approaches to live-image skeleton formation. Calcium-binding fluorochromes have been used to study the temporal dynamics of bone growth and healing. To date, only calcein green has been used in sea urchin larvae to fluorescently label the larval skeleton. Here, we optimize labeling protocols for two additional calcium-binding fluorochromes: xylenol orange and calcein blue- and demonstrate that these fluorochromes can be used individually or in nested pulse-chase experiments to understand the temporal dynamics of skeletogenesis and patterning. Using a pulse-chase approach, we show that the initiation of skeletogenesis begins around 15 h post fertilization. We also assess the timing of triradiate formation in embryos treated with a range of patterning perturbagens and demonstrate that triradiate formation is delayed and asynchronous in embryos ventralized via treatment with either nickel or chlorate. Finally, we measure the extent of fluorochrome incorporation in triple-labeled embryos to determine the elongation rate of numerous skeletal elements throughout early skeletal patterning and compare this to the rate of skeletal growth in embryos treated with axitinib to inhibit VEGFR. We find that skeletal elements elongate much more slowly in axitinib-treated embryos, and that axitinib treatment is sufficient to induce abnormal orientation of the triradiates.
Collapse
Affiliation(s)
- Abigail E Descoteaux
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Daniel T Zuch
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States
| | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States; Program in Bioinformatics, Boston University, Boston, MA, 02215, United States.
| |
Collapse
|
19
|
Gong Y, Dai H, Liu W, Liao R, Chen H, Zhang L, Wang X, Chen Z. Exosomes derived from human adipose-derived stem cells alleviate hepatic ischemia-reperfusion (I/R) injury through the miR-183/ALOX5 axis. FASEB J 2023; 37:e22782. [PMID: 36786721 DOI: 10.1096/fj.202200277r] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a crucial factor causing liver injury in the clinic. Recent research has confirmed that human adipose-derived stem cells (ADSCs) can differentiate into functional hepatocytes. However, the mechanism of the effects of ADSCs in the treatment of liver injury remains unclear. The characteristics of ADSCs were first identified, and exosome-derived ADSCs were isolated and characterized. The function and mechanism of action of miR-183 and arachidonate 5-lipoxygenase (ALOX5) were investigated by functional experiments in HL-7702 cells with I/R injury and in I/R rats. Our data disclosed that exosome release from ADSCs induced proliferation and inhibited apoptosis in HL-7702 cells with I/R injury. The effect of miR-183 was similar to that of exosomes derived from ADSCs. In addition, ALOX5, as a target gene of miR-183, was involved in the related functions of miR-183. Moreover, in vivo experiments confirmed that miR-183 and exosomes from ADSCs could improve liver injury in rats and inhibit the MAPK and NF-κB pathways. All of these findings demonstrate that exosomes derived from ADSCs have a significant protective effect on hepatic I/R injury by regulating the miR-183/ALOX5 axis, which might provide a therapeutic strategy for liver injury.
Collapse
Affiliation(s)
- Yi Gong
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haisu Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hailei Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Leida Zhang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaojun Wang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
20
|
Bartolo ND, Mortimer N, Manter MA, Sanchez N, Riley M, O'Malley TT, Hooker JM. Identification and Prioritization of PET Neuroimaging Targets for Microglial Phenotypes Associated with Microglial Activity in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3641-3660. [PMID: 36473177 DOI: 10.1021/acschemneuro.2c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Niall Mortimer
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mariah A Manter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Nicholas Sanchez
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Misha Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Tiernan T O'Malley
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
21
|
Anand S, Azam Ansari M, Kumaraswamy Sukrutha S, Alomary MN, Anwar Khan A, Elderdery AY. Resolvins Lipid Mediators: Potential Therapeutic Targets in Alzheimer and Parkinson Disease. Neuroscience 2022; 507:139-148. [PMID: 36372297 DOI: 10.1016/j.neuroscience.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Inflammation and resolution are highly programmed processes involving a plethora of immune cells. Lipid mediators synthesized from arachidonic acid metabolism play a pivotal role in orchestrating the signaling cascades in the game of inflammation. The majority of the studies carried out so far on inflammation were aimed at inhibiting the generation of inflammatory molecules, whereas recent research has shifted more towards understanding the resolution of inflammation. Owing to chronic inflammation as evident in neuropathophysiology, the resolution of inflammation together with the class of lipid mediators actively involved in its regulation has attracted the attention of the scientific community as therapeutic targets. Both omega-three polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, orchestrate a vital regulatory role in inflammation development. Resolvins derived from these fatty acids comprise the D-and E-series resolvins. A growing body of evidence using in vitro and in vivo models has revealed the pro-resolving and anti-inflammatory potential of resolvins. This systematic review sheds light on the synthesis, specialized receptors, and resolution of inflammation mediated by resolvins in Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Sambamurthy Kumaraswamy Sukrutha
- Department of Microbiology, Biotechnology and Food Technology, Jnana Bharathi Campus, Bangalore University, Bengaluru, Karnataka, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Anmar Anwar Khan
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| |
Collapse
|
22
|
Yang L, Nao J. Ferroptosis: a potential therapeutic target for Alzheimer's disease. Rev Neurosci 2022:revneuro-2022-0121. [PMID: 36514247 DOI: 10.1515/revneuro-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
The most prevalent dementia-causing neurodegenerative condition is Alzheimer's disease (AD). The aberrant buildup of amyloid β and tau hyperphosphorylation are the two most well-known theories about the mechanisms underlying AD development. However, a significant number of pharmacological clinical studies conducted around the world based on the two aforementioned theories have not shown promising outcomes, and AD is still not effectively treated. Ferroptosis, a non-apoptotic programmed cell death defined by the buildup of deadly amounts of iron-dependent lipid peroxides, has received more attention in recent years. A wealth of data is emerging to support the role of iron in the pathophysiology of AD. Cell line and animal studies applying ferroptosis modulators to the treatment of AD have shown encouraging results. Based on these studies, we describe in this review the underlying mechanisms of ferroptosis; the role that ferroptosis plays in AD pathology; and summarise some of the research advances in the treatment of AD with ferroptosis modulators. We hope to contribute to the clinical management of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
23
|
Zeng P, Liu YC, Wang XM, Ye CY, Sun YW, Su HF, Qiu SW, Li YN, Wang Y, Wang YC, Ma J, Li M, Tian Q. Targets and mechanisms of Alpinia oxyphylla Miquel fruits in treating neurodegenerative dementia. Front Aging Neurosci 2022; 14:1013891. [PMID: 36533181 PMCID: PMC9749063 DOI: 10.3389/fnagi.2022.1013891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/10/2022] [Indexed: 11/04/2023] Open
Abstract
The dried and ripe fruits of Alpinia oxyphylla and ripe fruits of Alpinia oxyphylla Miquel (AO) have the effects of tonifying kidney-essence and nourishing intelligence and thus have been widely used in treating dementia. Alzheimer's disease (AD) is a typical form of neurodegenerative dementia with kidney-essence deficiency in Traditional Chinese Medicine (TCM). So far, there is a lack of systematic studies on the biological basis of tonifying kidney-essence and nourishing intelligence and the corresponding phytochemicals. In this study, we investigated the targets of AO in tonifying kidney-essence and nourishing intelligence based on the key pathophysiological processes of neurodegenerative dementia. According to ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry data and Lipinski's rule of five, 49 bioactive phytochemicals from AO were identified, and 26 of them were found to target 168 key molecules in the treatment of neurodegenerative dementia. Nine phytochemicals of AO were shown to target acetylcholinesterase (ACHE), and 19 phytochemicals were shown to target butyrylcholinesterase (BCHE). A database of neurodegenerative dementia with kidney-essence deficiency involving 731 genes was constructed. Furthermore, yakuchinone B, 5-hydroxy-1,7-bis (4-hydroxy-3-methoxyphenyl) heptan-3-one (5-HYD), oxyhylladiketone, oxyphyllacinol, butyl-β-D-fructopyranoside, dibutyl phthalate, chrysin, yakuchinone A, rhamnetin, and rhamnocitrin were identified as the key phytochemicals from AO that regulate the pathogenesis of neurodegenerative dementia in a multitargeted manner. The approach of studying the pharmacological mechanism underlying the effects of medicinal plants and the biological basis of TCM syndrome may be helpful in studying the translation of TCM.
Collapse
Affiliation(s)
- Peng Zeng
- Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuan-Cheng Liu
- Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ming Wang
- Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao-Yuan Ye
- Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Wen Sun
- Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Fei Su
- Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo-Wen Qiu
- Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yao Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan-Chun Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun Ma
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Man Li
- Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Chen X, Xie H, Liu Y, Ou Q, Deng S. Interference of ALOX5 alleviates inflammation and fibrosis in high glucose‑induced renal mesangial cells. Exp Ther Med 2022; 25:34. [PMID: 36605525 PMCID: PMC9798157 DOI: 10.3892/etm.2022.11733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD), seriously threatening the health of individuals. The 5-lipoxygenase (ALOX5) gene has been reported to be associated with diabetes, but whether it is involved in DN remains unclear. The present study aimed to explore the role of ALOX5 in DN and to clarify the potential mechanism. Mouse renal mesangial cells (SV40 MES-13) were treated with high glucose (HG) to mimic a DN model in vitro. The expression level of ALOX5 was assessed using reverse transcription-quantitative PCR and western blotting. Cell Counting Kit-8 and flow cytometric assays were performed to determine cell proliferation, the cell cycle and apoptosis. Immunofluorescence was carried out to detect the expression of Ki67 and proliferating cell nuclear antigen (PCNA). The inflammatory cytokines were assessed using ELISA. The expression of fibrosis- and NF-κB-related proteins was determined using western blotting. The results revealed that ALOX5 was significantly upregulated in HG-induced SV40 MES-13 cells. Interference of ALOX5 greatly hindered HG-induced cell viability loss, as well as increasing the expression of Ki67 and PCNA. In addition, HG induced cell cycle arrest in the G1 phase and cell apoptosis, which were then partly abolished by interference of ALOX5. Moreover, the elevated production of inflammatory cytokines and upregulated fibrosis-related proteins induced by HG were weakened by interference of ALOX5. Eventually, interference of ALOX5 was found to reduce the activity of NF-κB signaling in HG-induced SV40 MES-13 cells. Collectively, interference of ALOX5 serves as a protective role in HG-induced kidney cell injury, providing a potential therapeutic strategy of DN treatment.
Collapse
Affiliation(s)
- Xiaotao Chen
- Department of Endocrinology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan 423000, P.R. China,Correspondence to: Dr Xiaotao Chen, Department of Endocrinology, Affiliated Hospital of Xiangnan University, 25 Renmin West Road, Beihu, Chenzhou, Hunan 423000, P.R. China
| | - Hongwu Xie
- Department of Endocrinology, The Fourth People's Hospital of Chenzhou, Chenzhou, Hunan 423001, P.R. China
| | - Yun Liu
- Department of Endocrinology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Qiujuan Ou
- Department of Nephrology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Shuaijie Deng
- Century College, Beijing University of Posts and Telecommunications, Beijing 102101, P.R. China
| |
Collapse
|
25
|
Chen H, Lin J, Zhu S, Zeng K, Tu P, Jiang Y. Anti-inflammatory constituents from the stems and leaves of Glycosmis ovoidea Pierre. PHYTOCHEMISTRY 2022; 203:113369. [PMID: 35973615 DOI: 10.1016/j.phytochem.2022.113369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Seven undescribed compounds, including four acridones, two coumarins, and a phenylpropanoid, together with 13 known acridone analogues were isolated from the ethanolic extract of the stems and leaves of Glycosmis ovoidea Pierre. Their structures were elucidated on the basis of comprehensive analysis of 1D and 2D NMR and HRESIMS spectroscopic data, and the absolute configurations were assigned by comparison of the experimental and calculated ECD data. Five compounds showed moderate inhibitory effects on nitric oxide production stimulated by lipopolysaccharide in BV-2 microglial cells with IC50 values in the range of 18.30-30.84 μM, and three compounds showed potent inhibition on 5-lipoxygenase (5-LOX) with IC50 values in the range of 2.08-10.26 μM. The possible binding sites of the active compounds with 5-LOX were further performed by molecular docking.
Collapse
Affiliation(s)
- Hongwei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sisi Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
26
|
Norman JE, Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. A high sucrose diet modifies brain oxylipins in a sex-dependent manner. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102506. [PMID: 36244214 DOI: 10.1016/j.plefa.2022.102506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/18/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Oxylipins have been implicated in many biological processes and diseases. Dysregulation of cerebral lipid homeostasis and altered lipid metabolites have been associated with the onset and progression of dementia. Although most dietary interventions have focused on modulation of dietary fats, the impact of a high sucrose diet on the brain oxylipin profile is unknown. METHODS Male and female C57BL/6J mice were fed a high sucrose diet (HSD, 34%) in comparison to a control low sucrose diet (LSD, 12%) for 12 weeks beginning at 20 weeks of age. The profile of 53 free oxylipins was then measured in brain by ultra-high performance liquid chromatography tandem mass spectrometry. Serum glucose and insulin were measured enzymatically. We first assessed whether there were any effects of the diet on the brain oxylipin profile, then assessed for sex differences. RESULTS There were no differences in fasting serum glucose between the sexes for mice fed a HSD or in fasting serum insulin levels for mice on either diet. The HSD altered the brain oxylipin profile in both sexes in distinctly different patterns: there was a reduction in three oxylipins (by 47-61%) and an increase in one oxylipin (16%) all downstream of lipoxygenase enzymes in males and a reduction in eight oxylipins (by 14-94%) mostly downstream of cyclooxygenase activity in females. 9-oxo-ODE and 6-trans-LTB4 were most influential in the separation of the oxylipin profiles by diet in male mice, whereas 5-HEPE and 12-HEPE were most influential in the separation by diet in female mice. Oxylipins 9‑hydroxy-eicosatetraenoic acid (HETE), 11-HETE, and 15-HETE were higher in the brains of females, regardless of diet. CONCLUSION A HSD substantially changes brain oxylipins in a distinctly sexually dimorphic manner. Results are discussed in terms of potential mechanisms and links to metabolic disease. Sex and diet effects on brain oxylipin composition may provide future targets for the management of neuroinflammatory diseases, such as dementia.
Collapse
Affiliation(s)
- Jennifer E Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA.
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, Meyer Hall 3143, One Shields Avenue, Davis, CA 95616, USA
| | - John C Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA
| | - Amparo C Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
27
|
Valiukas Z, Ephraim R, Tangalakis K, Davidson M, Apostolopoulos V, Feehan J. Immunotherapies for Alzheimer’s Disease—A Review. Vaccines (Basel) 2022; 10:vaccines10091527. [PMID: 36146605 PMCID: PMC9503401 DOI: 10.3390/vaccines10091527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that falls under the umbrella of dementia and is characterised by the presence of highly neurotoxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein within the brain. Historically, treatments for AD have consisted of medications that can slow the progression of symptoms but not halt or reverse them. The shortcomings of conventional drugs have led to a growing need for novel, effective approaches to the treatment of AD. In recent years, immunotherapies have been at the forefront of these efforts. Briefly, immunotherapies utilise the immune system of the patient to treat a condition, with common immunotherapies for AD consisting of the use of monoclonal antibodies or vaccines. Most of these treatments target the production and deposition of Aβ due to its neurotoxicity, but treatments specifically targeting tau protein are being researched as well. These treatments have had great variance in their efficacy and safety, leading to a constant need for the research and development of new safe and effective treatments.
Collapse
Affiliation(s)
- Zachary Valiukas
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
| | - Kathy Tangalakis
- First Year College, Victoria University, Melbourne, VIC 3011, Australia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 3011, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
28
|
Abstract
Parkinson’s disease (PD) is a complex, chronic, and progressive neurodegenerative disease that is characterized by irreversible dopaminergic neuronal loss in the substantia nigra. Alpha-synuclein is normally a synaptic protein that plays a key role in PD due to pathological accumulation as oligomers or fibrils. Clustered alpha-synuclein binds to the Toll-like receptors and activates the microglia, which initiates a process that continues with pro-inflammatory cytokine production and secretion. Pro-inflammatory cytokine overproduction and secretion induce cell death and accelerate PD progression. Microglia are found in a resting state in physiological conditions. Microglia became activated by stimulating Toll-like receptors on it under pathological conditions, such as alpha-synuclein aggregation, environmental toxins, or oxidative stress. The interaction between Toll-like receptors and its downstream pathway triggers an activation series, leads to nuclear factor-kappa B activation, initiates the inflammasome formation, and increases cytokine levels. This consecutive inflammatory process leads to dopaminergic cell damage and cell death. Microglia become overactive in response to chronic inflammation, which is observed in PD and causes excessive cytotoxic factor production, such as reactive oxidase, nitric oxide, and tumor necrosis factor-alpha. This inflammatory process contributes to the exacerbation of pathology by triggering neuronal damage or death. Current treatments, such as dopaminergic agonists, anticholinergics, or monoamine oxidase inhibitors alleviate PD symptoms, but they can not stop the disease progression. Finding a radical treatment option or stopping the progression is essential when considering that PD is the second most reported neurodegenerative disorder. Many cytokines are released during inflammation, and they can start the phagocytic process, which caused the degradation of infected cells along with healthy ones. Therefore, targeting the pathological mechanisms, such as microglial activation, mitochondrial dysfunction, and oxidative stress, that should be involved in the treatment program is important. Neuroinflammation is one of the key factors involved in PD pathogenesis as well as alpha-synuclein accumulation, synaptic dysfunction, or dopaminergic neuronal loss, especially in the substantia nigra. Therefore, evaluating the therapeutic efficiency of the mechanisms is important, such as microglial activation and nuclear factor-kappa B pathway or inflammasome formation inhibition, and cytokine release interruption against neuroinflammation may create new treatment possibilities for PD. This study examined the pathological relation between PD and neuroinflammation, and targeting neuroinflammation as an opportunity for PD treatments, such as Toll-like receptor antagonists, NOD-like receptor family pyrin domain containing-3 inflammasome inhibitors, cytokine inhibitors, peroxisome proliferator-activated receptor-γ agonists, reactive oxygen species inhibitors, and nonsteroidal anti-inflammatory drugs.
Collapse
|
29
|
Shinto LH, Raber J, Mishra A, Roese N, Silbert LC. A Review of Oxylipins in Alzheimer's Disease and Related Dementias (ADRD): Potential Therapeutic Targets for the Modulation of Vascular Tone and Inflammation. Metabolites 2022; 12:826. [PMID: 36144230 PMCID: PMC9501361 DOI: 10.3390/metabo12090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
There is now a convincing body of evidence from observational studies that the majority of modifiable Alzheimer's disease and related dementia (ADRD) risk factors are vascular in nature. In addition, the co-existence of cerebrovascular disease with AD is more common than AD alone, and conditions resulting in brain ischemia likely promote detrimental effects of AD pathology. Oxylipins are a class of bioactive lipid mediators derived from the oxidation of long-chain polyunsaturated fatty acids (PUFAs) which act as modulators of both vascular tone and inflammation. In vascular cognitive impairment (VCI), there is emerging evidence that oxylipins may have both protective and detrimental effects on brain structure, cognitive performance, and disease progression. In this review, we focus on oxylipin relationships with vascular and inflammatory risk factors in human studies and animal models pertinent to ADRD. In addition, we discuss future research directions with the potential to impact the trajectory of ADRD risk and disease progression.
Collapse
Affiliation(s)
- Lynne H. Shinto
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
- Departments of Behavioral Neuroscience and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anusha Mishra
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie Roese
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
| | - Lisa C. Silbert
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
- Veterans Affairs Medical Center, Portland, OR 97239, USA
| |
Collapse
|
30
|
Liu R, Zhang Y, Li S, Liu C, Zhuang S, Zhou X, Li Y, Liang J. Receptor-ligand affinity-based screening and isolation of water-soluble 5-lipoxygenase inhibitors from Phellinus igniarius. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123415. [PMID: 35973282 DOI: 10.1016/j.jchromb.2022.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
We developed an efficient combination method for extraction, biological activity screening, and preparation of 5-lipoxygenase inhibitors from Phellinus igniarius. 5-Lipoxygenase inhibitors were rapidly screened using ultrafiltration-liquid chromatography based on the receptor-ligand affinity. Parameters such as extraction time, extraction times, and temperature as well as liquid-solid ratio were optimized using response surface methodology to maximize the total yield of the three target compounds. Next, bioactive ingredients were isolated using high-speed countercurrent chromatography and semi-preparative liquid chromatography. Three active ingredients, phellibaumin E, protocatechuic aldehyde, and osmundacetone, were obtained via ultrafiltration-liquid chromatography. Subsequently, the potential anti-dementia effects of the obtained bioactive compounds were verified using molecular docking assays. The above-mentioned target compounds, with purities of 98.82%, 98.89%, and 99.51%, respectively, were separated using a two-phase solvent system consisting of n-hexane-ethyl acetate-ethanol-water (2.5:2:0.75:3, v/v/v/v) coupled with semi-preparative liquid chromatography.
Collapse
Affiliation(s)
- Ruoyao Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China.
| | - Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China.
| | - Siyuan Zhuang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Xu Zhou
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Yanjie Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Jiaqi Liang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| |
Collapse
|
31
|
Choi HJ, Park JH, Jeong YJ, Hwang JW, Lee S, Lee H, Seol E, Kim IW, Cha BY, Seo J, Moon M, Hoe HS. Donepezil ameliorates Aβ pathology but not tau pathology in 5xFAD mice. Mol Brain 2022; 15:63. [PMID: 35850693 PMCID: PMC9290238 DOI: 10.1186/s13041-022-00948-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022] Open
Abstract
The cholinesterase inhibitor donepezil is used to improve Aβ pathology and cognitive function in patients with Alzheimer’s disease (AD). However, the impact of donepezil on tau pathology is unclear. Thus, we examined the effects of donepezil on Aβ and tau pathology in 5xFAD mice (a model of AD) in this study. We found that intraperitoneal injection of donepezil (1 mg/kg, i.p.) exhibited significant reductions in Aβ plaque number in the cortex and hippocampal DG region. In addition, donepezil treatment (1 mg/kg, i.p.) reduced Aβ-mediated microglial and, to a lesser extent, astrocytic activation in 5xFAD mice. However, neither intraperitoneal/oral injection of donepezil nor oral injection of rivastigmine altered tau phosphorylation at Thr212/Ser214 (AT100), Thr396, and Thr231 in 5xFAD mice. Surprisingly, we observed that intraperitoneal/oral injection of donepezil treatment significantly increased tau phosphorylation at Thr212 in 5xFAD mice. Taken together, these data suggest that intraperitoneal injection of donepezil suppresses Aβ pathology but not tau pathology in 5xFAD mice.
Collapse
Affiliation(s)
- Hee-Jeong Choi
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, 41068, Daegu, Republic of Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, 41068, Daegu, Republic of Korea.,Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, 42988, Daegu, Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, 41068, Daegu, Republic of Korea
| | - Jeong-Woo Hwang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, 41068, Daegu, Republic of Korea
| | - Soojung Lee
- G2GBIO, Inc., Science Park#411, 1646 Yuseond-daero, Yuseong-gu, 34054, Daejeon, Korea
| | - Heeyong Lee
- G2GBIO, Inc., Science Park#411, 1646 Yuseond-daero, Yuseong-gu, 34054, Daejeon, Korea
| | - Eunyoung Seol
- G2GBIO, Inc., Science Park#411, 1646 Yuseond-daero, Yuseong-gu, 34054, Daejeon, Korea
| | - Ik-Whi Kim
- PharmacoRex Co., Ltd., 20 Techno 1-ro, Yuseong-gu, 34016, Daejeon, Korea
| | - Byung-Yoon Cha
- PharmacoRex Co., Ltd., 20 Techno 1-ro, Yuseong-gu, 34016, Daejeon, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, 42988, Daegu, Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 35365, Daejeon, Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, 41068, Daegu, Republic of Korea. .,Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, 42988, Daegu, Korea.
| |
Collapse
|
32
|
Toxoplasma gondii Infection Decreases Intestinal 5-Lipoxygenase Expression, while Exogenous LTB 4 Controls Parasite Growth. Infect Immun 2022; 90:e0002922. [PMID: 35658510 DOI: 10.1128/iai.00029-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
5-Lipoxygenase (5-LO) is an enzyme required for the production of leukotrienes and lipoxins and interferes with parasitic infections. In vitro, Toxoplasma gondii inhibits leukotriene B4 (LTB4) production, and mice deficient in 5-LO are highly susceptible to infection. The aim of this study was to investigate the effects of the pharmacological inhibition of the 5-LO pathway and exogenous LTB4 supplementation during experimental toxoplasmosis. For this purpose, susceptible C57BL/6 mice were orally infected with T. gondii and treated with LTB4 or MK886 (a selective leukotriene inhibitor through inhibition of 5-LO-activating protein [FLAP]). The parasitism, histology, and immunological parameters were analyzed. The infection decreased 5-LO expression in the small intestine, and treatment with MK886 reinforced this reduction during infection; in addition, MK886-treated infected mice presented higher intestinal parasitism, which was associated with lower local interleukin-6 (IL-6), interferon gamma (IFN-γ), and tumor necrosis factor (TNF) production. In contrast, treatment with LTB4 controlled parasite replication in the small intestine, liver, and lung and decreased pulmonary pathology. Interestingly, treatment with LTB4 also preserved the number of Paneth cells and increased α-defensins expression and IgA levels in the small intestine of infected mice. Altogether, these data demonstrated that T. gondii infection is associated with a decrease in 5-LO expression, and on the other hand, treatment with the 5-LO pathway product LTB4 resulted in better control of parasite growth in the organs, adding to the knowledge about the pathogenesis of T. gondii infection.
Collapse
|
33
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
34
|
Wei C, Gao Y, Chen X, Zhao C, Li P. ZNF668: a new diagnostic predictor of kidney renal clear cell carcinoma. Anticancer Drugs 2022; 33:e491-e499. [PMID: 34261923 DOI: 10.1097/cad.0000000000001149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The most common pathological subtype of renal carcinoma is RCC, and its development is closely related to immune infiltration. In our study, we investigated the relationship between zinc finger protein 668 and the prognostic risk, clinical characteristics, overall survival and related pathways. We analyzed the association between ZNF668 and immune cell infiltration through the TIMER database. The results showed that the expression of ZNF668 in RCC was higher than that in normal tissues (P < 0.001). The high expression of ZNF668 is clinically relevant, such as tumor stage (P = 0.001) and TNM classification (T: P = 7.37 e-04; N: P = 0.008; M: P < 0.001). Survival analysis showed that patients with high ZNF668 expression had a significantly poor prognosis (P = 0.023). Univariate analysis showed a significant decrease in overall survival in RCC patients with high ZNF668 expression (P = 0.023). Immuno-cell infiltration showed a significant decrease in CD4+ T cell and dendritic cell infiltration in RCC patients with high expression of ZNF668. GO/KEGG analysis showed that multiple pathways were differentially enriched in the high expression pathway of ZNF668, such as complement activation, and estrogen signaling pathway. In conclusion, high ZNF668 expression is a predictor in RCC.
Collapse
Affiliation(s)
- Chuang Wei
- Institute for Translational Medicine
- School of Basic Medicine, Qingdao University, Qingdao
| | - Yijun Gao
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiatian Chen
- Institute for Translational Medicine
- School of Basic Medicine, Qingdao University, Qingdao
| | - Cheng Zhao
- Institute for Translational Medicine
- School of Basic Medicine, Qingdao University, Qingdao
| | | |
Collapse
|
35
|
Shen W, Jiang L, Zhao J, Wang H, Hu M, Chen L, Chen Y. Bioactive lipids and their metabolism: new therapeutic opportunities for Parkinson's disease. Eur J Neurosci 2021; 55:846-872. [PMID: 34904314 DOI: 10.1111/ejn.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, which can also be associated with non-motor symptoms. Its pathogenesis is thought to stem from a loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of Lewy bodies containing aggregated α-synuclein. Recent works suggested that lipids might play a pivotal role in the pathophysiology of PD. In particular, the so-called "bioactive" lipids whose changes in the concentration may lead to functional consequences and affect many pathophysiological processes, including neuroinflammation, are closely related to PD in terms of symptoms, disease progression, and incidence. This study aimed to explore the molecular metabolism and physiological functions of bioactive lipids, such as fatty acids (mainly unsaturated fatty acids), eicosanoids, endocannabinoids, oxysterols, representative sphingolipids, diacylglycerols, and lysophosphatidic acid, in the development of PD. The knowledge of bioactive lipids in PD gained through preclinical and clinical studies is expected to improve the understanding of disease pathogenesis and provide novel therapeutic avenues.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyi Zhao
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Haili Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Hu
- The Second Xiangya Hospital, Central Sounth University, Changsha, Hunan Province, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
36
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
37
|
El Idrissi F, Gressier B, Devos D, Belarbi K. A Computational Exploration of the Molecular Network Associated to Neuroinflammation in Alzheimer's Disease. Front Pharmacol 2021; 12:630003. [PMID: 34335238 PMCID: PMC8319636 DOI: 10.3389/fphar.2021.630003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation, as defined by the presence of classically activated microglia, is thought to play a key role in numerous neurodegenerative disorders such as Alzheimer’s disease. While modulating neuroinflammation could prove beneficial against neurodegeneration, identifying its most relevant biological processes and pharmacological targets remains highly challenging. In the present study, we combined text-mining, functional enrichment and protein-level functional interaction analyses to 1) identify the proteins significantly associated to neuroinflammation in Alzheimer’s disease over the scientific literature, 2) distinguish the key proteins most likely to control the neuroinflammatory processes significantly associated to Alzheimer's disease, 3) identify their regulatory microRNAs among those dysregulated in Alzheimer's disease and 4) assess their pharmacological targetability. 94 proteins were found to be significantly associated to neuroinflammation in Alzheimer’s disease over the scientific literature and IL4, IL10 and IL13 signaling as well as TLR-mediated MyD88- and TRAF6-dependent responses were their most significantly enriched biological processes. IL10, TLR4, IL6, AKT1, CRP, IL4, CXCL8, TNF-alpha, ITGAM, CCL2 and NOS3 were identified as the most potent regulators of the functional interaction network formed by these immune processes. These key proteins were indexed to be regulated by 63 microRNAs dysregulated in Alzheimer's disease, 13 long non-coding RNAs and targetable by 55 small molecules and 8 protein-based therapeutics. In conclusion, our study identifies eleven key proteins with the highest ability to control neuroinflammatory processes significantly associated to Alzheimer’s disease, as well as pharmacological compounds with single or pleiotropic actions acting on them. As such, it may facilitate the prioritization of diagnostic and target-engagement biomarkers as well as the development of effective therapeutic strategies against neuroinflammation in Alzheimer’s disease.
Collapse
Affiliation(s)
- Fatima El Idrissi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, Lille, France.,Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Bernard Gressier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, Lille, France.,Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, Lille, France.,Département de Pharmacologie Médicale, I-SITE ULNE, LiCEND, Lille, France
| | - Karim Belarbi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, Lille, France.,Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| |
Collapse
|
38
|
Coakley KE, Lardier DT, Holladay KR, Amorim FT, Zuhl MN. Physical Activity Behavior and Mental Health Among University Students During COVID-19 Lockdown. Front Sports Act Living 2021; 3:682175. [PMID: 34308346 PMCID: PMC8299065 DOI: 10.3389/fspor.2021.682175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic placed social, travel, school access, and learning restrictions on University students. Excessive restriction measures have been shown to have negative impacts on mental health. Physical activity preserves mental health, and may be useful during quarantines. Purpose: Explore physical activity and sedentary behavior and associations with depression and anxiety symptoms among University students during COVID-19 restrictions in the Fall 2020 semester. Methods: Six hundred and ninety-seven undergraduates (18-25 years) from a U.S. public University completed a cross-sectional survey in fall 2020. The survey included demographic questions, the Generalized Anxiety Disorder Scale 7 (GAD-7), the Patient Health Questionnaire 9 (PHQ-9), and questions about meeting moderate to vigorous physical activity (MVPA) recommendations and sedentary behavior. Results: Forty-nine percent did not meet MVPA guidelines. Patient Health Questionnaire 9 (p = 0.002) and GAD-7 (p = 0.024) scores were higher among those who did not achieve MVPA. Sitting time (h/day) was a significant associated with depression (B = 0.29 (0.06), p < 0.05, 95% CI = 0.18, 0.41) and anxiety (B = 0.24 (0.05), p < 0.05, 95% CI = 0.13, 0.34) severity. Conclusion: Physical activity was associated with mental health among University students during COVID-19 lockdowns.
Collapse
Affiliation(s)
- Kathryn E Coakley
- Department of Individual, Family, and Community Education, College of Education and Human Sciences, University of New Mexico, Albuquerque, NM, United States
| | - David T Lardier
- Department of Individual, Family, and Community Education, College of Education and Human Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Kelley R Holladay
- Brooks Rehabilitation College of Healthcare Sciences, Jacksonville University, Jacksonville, FL, United States
| | - Fabiano T Amorim
- Department of Individual, Family, and Community Education, College of Education and Human Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Micah N Zuhl
- School of Health Sciences, Central Michigan University, Mt. Pleasant, MI, United States
| |
Collapse
|
39
|
Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A, Chellappan DK, Dua K, Vamanu E, Chaudhary SK, Singh MP. Therapeutic Potential of Phytoconstituents in Management of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5578574. [PMID: 34211570 PMCID: PMC8208882 DOI: 10.1155/2021/5578574] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Since primitive times, herbs have been extensively used in conventional remedies for boosting cognitive impairment and age-associated memory loss. It is mentioned that medicinal plants have a variety of dynamic components, and they have become a prominent choice for synthetic medications for the care of cognitive and associated disorders. Herbal remedies have played a major role in the progression of medicine, and many advanced drugs have already been developed. Many studies have endorsed practicing herbal remedies with phytoconstituents, for healing Alzheimer's disease (AD). All the information in this article was collated from selected research papers from online scientific databases, such as PubMed, Web of Science, and Scopus. The aim of this article is to convey the potential of herbal remedies for the prospect management of Alzheimer's and related diseases. Herbal remedies may be useful in the discovery and advancement of drugs, thus extending new leads for neurodegenerative diseases such as AD. Nanocarriers play a significant role in delivering herbal medicaments to a specific target. Therefore, many drugs have been described for the management of age-linked complaints such as dementia, AD, and the like. Several phytochemicals are capable of managing AD, but their therapeutic claims are restricted due to their lower solubility and metabolism. These limitations of natural therapeutics can be overcome by using a targeted nanocarrier system. This article will provide the primitive remedies as well as the development of herbal remedies for AD management.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Assam 786004, Dibrugarh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, New South Wales, Australia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464, Bucharest, Romania
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun 248 009, Uttarakhand, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
40
|
Potential Effects of Leukotriene Receptor Antagonist Montelukast in Treatment of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22115606. [PMID: 34070609 PMCID: PMC8198163 DOI: 10.3390/ijms22115606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where misfolded alpha-synuclein-enriched aggregates called Lewy bodies are central in pathogenesis. No neuroprotective or disease-modifying treatments are currently available. Parkinson’s disease is considered a multifactorial disease and evidence from multiple patient studies and animal models has shown a significant immune component during the course of the disease, highlighting immunomodulation as a potential treatment strategy. The immune changes occur centrally, involving microglia and astrocytes but also peripherally with changes to the innate and adaptive immune system. Here, we review current understanding of different components of the PD immune response with a particular emphasis on the leukotriene pathway. We will also describe evidence of montelukast, a leukotriene receptor antagonist, as a possible anti-inflammatory treatment for PD.
Collapse
|
41
|
Chilakamarry CR, Mahmood S, Saffe SNBM, Arifin MAB, Gupta A, Sikkandar MY, Begum SS, Narasaiah B. Extraction and application of keratin from natural resources: a review. 3 Biotech 2021; 11:220. [PMID: 33968565 DOI: 10.1007/s13205-021-02734-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Over recent years, keratin has gained great popularity due to its exceptional biocompatible and biodegradable nature. It has shown promising results in various industries like poultry, textile, agriculture, cosmetics, and pharmaceutical. Keratin is a multipurpose biopolymer that has been used in the production of fibrous composites, and with necessary modifications, it can be developed into gels, films, nanoparticles, and microparticles. Its stability against enzymatic degradation and unique biocompatibility has found their way into biomedical applications and regenerative medicine. This review discusses the structure of keratin, its classification and its properties. It also covers various methods by which keratin is extracted like chemical hydrolysis, enzymatic and microbial treatment, dissolution in ionic liquids, microwave irradiation, steam explosion technique, and thermal hydrolysis or superheated process. Special emphasis is placed on its utilisation in the form of hydrogels, films, fibres, sponges, and scaffolds in various biotechnological and industrial sectors. The present review can be noteworthy for the researchers working on natural protein and related usage.
Collapse
Affiliation(s)
- Chaitanya Reddy Chilakamarry
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Nadiah Binti Mohd Saffe
- Faculty of Manufacturing and Mechatronics Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Kuantan Malaysia
| | - Mohd Azmir Bin Arifin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang Malaysia
| | - Arun Gupta
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang Malaysia
| | - Mohamed Yacin Sikkandar
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, 11952 Saudi Arabia
| | - S Sabarunisha Begum
- Department of Chemical Engineering, Sethu Institute of Technology, Kariapatti, 626115 Tamil Nadu India
| | - Boya Narasaiah
- Department of Physics, Indian Institute of Technology, Tirupati, 517506 Andhra Pradesh India
| |
Collapse
|
42
|
Muñoz-Osses M, Quiroz J, Vásquez-Martínez Y, Flores E, Navarrete E, Godoy F, Torrent C, Cortez-San Martín M, Gómez A, Mascayano C. Evaluation of cyrhetrenyl and ferrocenyl precursors as 5-lipoxygenase inhibitors – biological and computational studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01336j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and biological evaluation of precursors derived from ferrocene and cyrhetrene as inhibitors of enzyme 5-hLOX.
Collapse
Affiliation(s)
| | - Javiera Quiroz
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP)
- Escuela de Medicina
- Facultad de Ciencias Médicas
- Universidad de Santiago de Chile
- Chile
| | - Erick Flores
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | | - Fernando Godoy
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | - Claudia Torrent
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | | | - Alejandra Gómez
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | |
Collapse
|