1
|
Moreno RJ, Abu Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2025; 123:1147-1158. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Abu Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
2
|
Qu W, Yan G, Du Y, Zhou X, Huang C, Li B, Zhou J, Li Q. Crosstalk Between Mitochondrial DNA and Immune Response: Focus on Autism Spectrum Disorder. Mol Neurobiol 2024:10.1007/s12035-024-04637-z. [PMID: 39589631 DOI: 10.1007/s12035-024-04637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by multiple dysfunctions in behavior, the nervous system, and the immune system. Increasing evidence suggests that mitochondrial DNA (mtDNA) plays a crucial role in the pathology of ASD. In clinical practice, altered mtDNA levels have been observed in various tissues of individuals with ASD. Mutation or oxidation of mtDNA is also closely related to the immune response associated with the pathology of autism. With mtDNA identified as a causal factor, much interest has focused on how its production affects neurodevelopment and neurophysiology. Here, we review how mtDNA leads to dysfunction of cellular mitochondria and immune response. We also illustrate the relationship between mtDNA alterations and the pathology of autism. Finally, we discuss the existing evidence on cell-free mtDNA associated with ASD and look forward to its application in clinical diagnosis and treatment.
Collapse
Grants
- 82171164; 81500946 the National Natural Science Funds of China, Beijing, China
- 82171164; 81500946 the National Natural Science Funds of China, Beijing, China
- 82171164; 81500946 the National Natural Science Funds of China, Beijing, China
- 82171164; 81500946 the National Natural Science Funds of China, Beijing, China
- 82171164; 81500946 the National Natural Science Funds of China, Beijing, China
- 82171164; 81500946 the National Natural Science Funds of China, Beijing, China
- 82171164; 81500946 the National Natural Science Funds of China, Beijing, China
- 82171164; 81500946 the National Natural Science Funds of China, Beijing, China
Collapse
Affiliation(s)
- Wenxuan Qu
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Ge Yan
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Yajuan Du
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Xinyang Zhou
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Chutian Huang
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Bei Li
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Junmei Zhou
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Qian Li
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China.
| |
Collapse
|
3
|
Anastasescu CM, Gheorman V, Stoicanescu EC, Popescu F, Gheorman V, Udriștoiu I. Immunological Biomarkers in Autism Spectrum Disorder: The Role of TNF-Alpha and Dependent Trends in Serum IL-6 and CXCL8. Life (Basel) 2024; 14:1201. [PMID: 39337983 PMCID: PMC11432970 DOI: 10.3390/life14091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has seen a rise in prevalence, and the immune system's role in brain development is increasingly recognized. This study investigates the relationship between immune dysregulation and ASD by examining serum concentrations of interleukin 6 (IL-6), interleukin 8 (CXCL8), and tumor necrosis factor alpha (TNF-alpha) in children. METHODS Serum samples from 45 children with ASD and 30 controls, aged 2 to 12 years, were analyzed using electrochemiluminescence, chemiluminescent microparticle immunoassay, and chemiluminescent immunoassay. ASD symptoms were assessed using the Autism Spectrum Rating Scale (ASRS) and Social Communication Questionnaire (SCQ). RESULTS No significant correlation was observed between CXCL8 levels and ASD. IL-6 levels showed a trend toward elevation in boys with ASD. TNF-alpha levels were significantly higher in children with ASD under 5 years compared to older children and controls, though no correlation with symptom severity was found. CONCLUSIONS TNF-alpha may be a potential biomarker for early ASD detection, especially in younger children. Further research on larger cohorts is needed to understand the role of immune dysregulation in ASD.
Collapse
Affiliation(s)
| | - Veronica Gheorman
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen-Cristi Stoicanescu
- Pediatry Department, Emergency Clinical Hospital Râmnicu-Vâlcea, 200300 Râmnicu-Vâlcea, Romania;
| | - Florica Popescu
- Pharmacology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (I.U.)
| | - Ion Udriștoiu
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (I.U.)
| |
Collapse
|
4
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
5
|
Butera A, De Simone R, Potenza RL, Sanchez M, Armida M, Campanile D, Di Carlo N, Trenta F, Boirivant M, Ricceri L. Effects of a gut-selective integrin-targeted therapy in male mice exposed to early immune activation, a model for the study of autism spectrum disorder. Brain Behav Immun 2024; 115:89-100. [PMID: 37793488 DOI: 10.1016/j.bbi.2023.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
To clarify the role of gut mucosal immunity in ASD, we evaluated, in the early-life immune activation (EIA) mouse model, the effects of administration of a monoclonal antibody directed against the integrin alpha4 beta7 (α4β7 mAb), blocking the leukocyte homing into the gut mucosa. EIA is a double-hit variant of the maternal immune-activation (MIA) model, including both prenatal (Poly I:C) and postnatal (LPS) immune challenges. In C57BL6/J EIA male adult offspring mice, IL-1β and IL-17A mRNA colonic tissue content increased when compared with controls. Cytofluorimetric analyses of lymphocytes isolated from mesenteric lymph-nodes (MLN) and spleens of EIA mice show increased percentage of total and CD4+α4β7+, unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in MLN and CD4+α4β7+ unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in the spleen. Treatment with anti-α4β7 mAb in EIA male mice was associated with colonic tissue IL-1β, and IL-17A mRNA content and percentage of CD4+ IL-17A+ and IFN-γ+ lymphocytes in MLN and spleens comparable to control mice. The anti-α4β7 mAb treatment rescue social novelty deficit showed in the three-chamber test by EIA male mice. Increased levels of IL-6 and IL-1β and decreased CD68 and TGF-β mRNAs were also observed in hippocampus and prefrontal cortex of EIA male mice together with a reduction of BDNF mRNA levels in all brain regions examined. Anti-α4β7 mAb treatment restored the expression of BDNF, TGF-β and CD68 in hippocampus and prefrontal cortex. Improvement of the gut inflammatory status, obtained by a pharmacological agent acting exclusively at gut level, ameliorates some ASD behavioral features and the neuroinflammatory status. Data provide the first preclinical indication for a therapeutic strategy against gut-immune activation in ASD subjects with peripheral increase of gut-derived (α4β7+) lymphocytes expressing IL-17A.
Collapse
Affiliation(s)
- Alessia Butera
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Roberta De Simone
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Luisa Potenza
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Cytometry Unit-Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Armida
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Doriana Campanile
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Nazzareno Di Carlo
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Trenta
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Boirivant
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
6
|
Willinger Y, Friedland Cohen DR, Turgeman G. Exogenous IL-17A Alleviates Social Behavior Deficits and Increases Neurogenesis in a Murine Model of Autism Spectrum Disorders. Int J Mol Sci 2023; 25:432. [PMID: 38203599 PMCID: PMC10779042 DOI: 10.3390/ijms25010432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Among the proposed mechanisms for autism spectrum disorders (ASD) is immune dysregulation. The proinflammatory cytokine Interleukine-17A (IL-17A) was shown to play a key role in mediating immune-related neurodevelopmental impairment of social behavior. Nevertheless, post-developmental administration of IL-17A was found to increase social behavior. In the present study, we explored the effect of post-developmental administration of IL-17A on ASD-like behaviors induced by developmental exposure to valproic acid (VPA) at postnatal day 4. At the age of seven weeks, VPA-exposed mice were intravenously injected twice with recombinant murine IL-17A (8 μg), and a week later, they were assessed for ASD-like behavior. IL-17A administration increased social behavior and alleviated the ASD-like phenotype. Behavioral changes were associated with increased serum levels of IL-17 and Th17-related cytokines. Exogenous IL-17A also increased neuritogenesis in the dendritic tree of doublecortin-expressing newly formed neurons in the dentate gyrus. Interestingly, the effect of IL-17A on neuritogenesis was more noticeable in females than in males, suggesting a sex-dependent effect of IL-17A. In conclusion, our study suggests a complex role for IL-17A in ASD. While contributing to its pathology at the developmental stage, IL-17 may also promote the alleviation of behavioral deficits post-developmentally by promoting neuritogenesis and synaptogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Yehoshua Willinger
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Daniella R. Friedland Cohen
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Gadi Turgeman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
- The Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
7
|
Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science 2023; 380:eabo7649. [PMID: 37023203 DOI: 10.1126/science.abo7649] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Contemporary studies have completely changed the view of brain immunity from envisioning the brain as isolated and inaccessible to peripheral immune cells to an organ in close physical and functional communication with the immune system for its maintenance, function, and repair. Circulating immune cells reside in special niches in the brain's borders, the choroid plexus, meninges, and perivascular spaces, from which they patrol and sense the brain in a remote manner. These niches, together with the meningeal lymphatic system and skull microchannels, provide multiple routes of interaction between the brain and the immune system, in addition to the blood vasculature. In this Review, we describe current ideas about brain immunity and their implications for brain aging, diseases, and immune-based therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Castellani
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Ashwood P. Preliminary Findings of Elevated Inflammatory Plasma Cytokines in Children with Autism Who Have Co-Morbid Gastrointestinal Symptoms. Biomedicines 2023; 11:436. [PMID: 36830973 PMCID: PMC9952966 DOI: 10.3390/biomedicines11020436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (AU) is present in approximately 2% of the population and is often associated with co-morbidities that can impact quality of life. One of the most common co-morbidities in autism is the presence of gastrointestinal (GI) symptoms consisting of irregular bowel habits such as constipation, diarrhea, or alternating bowel habit. Evidence of immune infiltration and immune activation has been shown in the ileum and colon of children with AU with GI symptoms. Moreover, immune dysfunction is a contributing factor in many GI diseases, and we hypothesize that it would be more apparent in children with AU that exhibit GI symptoms than those who do not present with GI symptoms. The aim of this preliminary study was to determine whether there are altered cytokine levels in plasma in children with AU with GI symptoms compared with children with AU without GI symptoms, typically developing (TD) children with GI symptoms and TD children without GI symptoms, from the same population-based cohort. Plasma cytokine levels were assessed by multiplex assays. No differences in plasma cytokines were observed in TD controls with or without GI symptoms; however, many innate (IL-1α, TNFα, GM-CSF, IFNα) and adaptive cytokines (IL-4, IL-13, IL-12p70) were increased in AU children with GI symptoms compared with children with AU with no GI symptoms. The mucosal relevant cytokine IL-15 was increased in AU with GI symptoms compared with all groups. In contrast, the regulatory cytokine IL-10, was reduced in AU with GI symptoms and may suggest an imbalance in pro-inflammatory/regulatory signals. These data suggest that children with AU and GI symptoms have an imbalance in their immune response that is evident in their circulating plasma cytokine levels. A finding that could point to potential therapeutic and/or monitoring strategies for GI issues in AU.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, School of Medicine, MIND Institute, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Breach MR, Lenz KM. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Curr Top Behav Neurosci 2023; 62:165-206. [PMID: 35435643 PMCID: PMC10286778 DOI: 10.1007/7854_2022_308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex differences are prominent defining features of neurodevelopmental disorders. Understanding the sex biases in these disorders can shed light on mechanisms leading to relative risk and resilience for the disorders, as well as more broadly advance our understanding of how sex differences may relate to brain development. The prevalence of neurodevelopmental disorders is increasing, and the two most common neurodevelopmental disorders, Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) exhibit male-biases in prevalence rates and sex differences in symptomology. While the causes of neurodevelopmental disorders and their sex differences remain to be fully understood, increasing evidence suggests that the immune system plays a critical role in shaping development. In this chapter we discuss sex differences in prevalence and symptomology of ASD and ADHD, review sexual differentiation and immune regulation of neurodevelopment, and discuss findings from human and rodent studies of immune dysregulation and perinatal immune perturbation as they relate to potential mechanisms underlying neurodevelopmental disorders. This chapter will give an overview of how understanding sex differences in neuroimmune function in the context of neurodevelopmental disorders could lend insight into their etiologies and better treatment strategies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Activation of the Monocyte/Macrophage System and Abnormal Blood Levels of Lymphocyte Subpopulations in Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232214329. [PMID: 36430805 PMCID: PMC9699353 DOI: 10.3390/ijms232214329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with a so far unknown etiology. Increasing evidence suggests that a state of systemic low-grade inflammation may be involved in the pathophysiology of this condition. However, studies investigating peripheral blood levels of immune cells, and/or of immune cell activation markers such as neopterin are lacking and have provided mixed findings. We performed a systematic review and meta-analysis of studies comparing total and differential white blood cell (WBC) counts, blood levels of lymphocyte subpopulations and of neopterin between individuals with ASD and typically developing (TD) controls (PROSPERO registration number: CRD CRD42019146472). Online searches covered publications from 1 January 1994 until 1 March 2022. Out of 1170 publication records identified, 25 studies were finally included. Random-effects meta-analyses were carried out, and sensitivity analyses were performed to control for potential moderators. Results: Individuals with ASD showed a significantly higher WBC count (k = 10, g = 0.29, p = 0.001, I2 = 34%), significantly higher levels of neutrophils (k = 6, g = 0.29, p = 0.005, I2 = 31%), monocytes (k = 11, g = 0.35, p < 0.001, I2 = 54%), NK cells (k = 7, g = 0.36, p = 0.037, I2 = 67%), Tc cells (k = 4, g = 0.73, p = 0.021, I2 = 82%), and a significantly lower Th/Tc cells ratio (k = 3, g = −0.42, p = 0.008, I2 = 0%), compared to TD controls. Subjects with ASD were also characterized by a significantly higher neutrophil-to-lymphocyte ratio (NLR) (k = 4, g = 0.69, p = 0.040, I2 = 90%), and significantly higher neopterin levels (k = 3, g = 1.16, p = 0.001, I2 = 97%) compared to TD controls. No significant differences were found with respect to the levels of lymphocytes, B cells, Th cells, Treg cells, and Th17 cells. Sensitivity analysis suggested that the findings for monocyte and neutrophil levels were robust, and independent of other factors, such as medication status, diagnostic criteria applied, and/or the difference in age or sex between subjects with ASD and TD controls. Taken together, our findings suggest the existence of a chronically (and systemically) activated inflammatory response system in, at least, a subgroup of individuals with ASD. This might have not only diagnostic, but also, therapeutic implications. However, larger longitudinal studies including more homogeneous samples and laboratory assessment methods and recording potential confounding factors such as body mass index, or the presence of comorbid psychiatric and/or medical conditions are urgently needed to confirm the findings.
Collapse
|
11
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
12
|
Yao Y, Uddin MN, Manley K, Lawrence DA. Constitutive activation of Notch signalling and T cell activation characterize a mouse model of autism. Cell Biochem Funct 2022; 40:150-162. [PMID: 34978084 DOI: 10.1002/cbf.3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Gene and protein expression of BTBR T+ Itpr3tf /J (BTBR) mice with autistic-like behaviours were compared with the C57BL/6J strain, which is considered to have normal immunity and behaviour. Notch signalling pathway was constitutively activated in the immune system and liver of BTBR T+ Itpr3tf /J (BTBR) mice. Notch ligand 4 (Dll4), Notch receptors (Notch1 Notch2 and Notch3) and recombination signal binding protein for immunoglobulin κ j region (RBPJ) were increased both at gene and protein levels in BTBR spleens and thymi. Notch downstream transcriptional factors, Tbx21, Gata3, Rorc and FoxP3 were increased in BTBR spleens, Gata3 and FoxP3 were increased in BTBR thymi and BTBR mice have a high blood CD4/CD8 T cell ratio. Reduced nucleotide excision repair ability in BTBR spleens was associated with increased 8-oxoguanine, Ogg1 inhibition, an enhanced level of apoptotic thymocytes and higher expression of GATA-3. Ogg1 inhibition and enhanced GATA-3 expression also were detected in BTBR brain. Notch signal promoted mitochondrial dynamics switching to enhanced fission with an increased number and mass of mitochondria in immune cells of BTBR mice, but not in livers and brains. Constitutive influences on mitochondria exist in this mouse model of autism spectrum disorder; similar outcomes from environmental exposures might occur perinatally in susceptible individuals to affect the development of autism.
Collapse
Affiliation(s)
- Yunyi Yao
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | | | - Kevin Manley
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - David A Lawrence
- New York State Department of Health, Wadsworth Center, Albany, New York, USA.,Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
13
|
Ashwood P. Preliminary Evidence of Differentially Induced Immune Responses by Microparticle-adsorbed LPS in Patients with Crohn's Disease. JOURNAL OF CELLULAR IMMUNOLOGY 2022; 4:211-218. [PMID: 36865593 PMCID: PMC9977324 DOI: 10.33696/immunology.4.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inorganic microparticles are ubiquitous in the modern Western diet present as food additives and are actively scavenged by microfold (M) cells overlying human intestinal lymphoid aggregates. In Crohn's disease (CD), inflammation is caused by the inability of the intestinal mucosa to sustain tolerance to gut luminal factors including bacteria and their by-products. Having large, highly charged surface areas dietary particles can avidly bind biomolecules such as lipopolysaccharide (LPS). The aim of this paper was to examine whether the dietary particle, titanium dioxide (TiO2), modified cellular immune responses to LPS differently in peripheral blood mononuclear cells (PBMC) from CD patients compared with healthy controls. Our data showed that LPS-associated particles predominantly stimulated release of IL-1β and induced concurrent cell death in peripheral monocytes following particle uptake in both health and disease. In addition, IL-1β release was increased more in CD patients compared with controls following particle stimulation. In conclusion, LPS adsorption to dietary particulates provides a mechanism for stimulation of phagocytic mononuclear cells and may cause aggravation of mucosal immune responses in inflammatory conditions of the bowel such as CD, irritable bowel syndrome, and autism spectrum disorder and schizophrenia associated gastrointestinal conditions, by immune priming mediated through increased production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- P Ashwood
- The Department of Medical Microbiology and Immunology, University of California Davis, California, USA,Correspondence should be addressed to Dr. P Ashwood,
| |
Collapse
|
14
|
Beversdorf DQ, Sohl K, Levitskiy D, Tennant P, Goin-Kochel RP, Shaffer RC, Confair A, Middleton FA, Hicks SD. Saliva RNA Biomarkers of Gastrointestinal Dysfunction in Children With Autism and Neurodevelopmental Disorders: Potential Implications for Precision Medicine. Front Psychiatry 2021; 12:824933. [PMID: 35126215 PMCID: PMC8811462 DOI: 10.3389/fpsyt.2021.824933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 01/01/2023] Open
Abstract
Gastrointestinal (GI) disorders are common in children with neurodevelopmental disorders such as autism spectrum disorder (ASD). A limited understanding of the biologic factors that predispose this population to GI disorders has prevented development of individualized therapies to address this important medical issue. The goal of the current study was to determine if elements of the salivary micro-transcriptome could provide insight into the biologic perturbations unique to children with ASD-related GI disturbance. This cohort study included 898 children (ages 18-73 months) with ASD, non-ASD developmental delay (DD), or typical development (TD). The saliva micro-transcriptome of each child was assessed with RNA-seq. Outputs were aligned to microbial and human databases. A Kruskal Wallis analysis of variance (ANOVA) was used to compare levels of 1821 micro-transcriptome features across neurodevelopmental status (ASD, DD, or TD) and GI presence or absence. An ANOVA was also used to compare micro-transcriptome levels among GI sub-groups (constipation, reflux, food intolerance, other GI condition, no GI condition), and to identify RNAs that differed among children taking three common GI medications (probiotics, reflux medication, or laxatives). Relationships between features identified in ANOVA testing were examined for associations with scores on the Autism Diagnostic Observation Schedule, 2nd Edition (ADOS-2) and the Vineland Adaptive Behavior Scales. GI disturbance rates were higher among children with ASD than peers with TD but were similar to those with DD. Five piwi-interacting RNAs and three microbial RNAs displayed an interaction between developmental status and GI disturbance. Fifty-seven salivary RNAs differed between GI sub-groups-with microRNA differences between food intolerance and reflux groups being most common. Twelve microRNAs displayed an effect of GI disturbance and showed association with GI medication uses and measures of behavior. These 12 microRNAs displayed enrichment for 13 physiologic pathways, including metabolism/digestion long-term depression, and neurobiology of addiction. This study identifies salivary micro-transcriptome features with differential expression among children with ASD-related GI disturbance. A subset of the RNAs displays relationships with treatment modality and are associated with autistic behaviors. The pathobiologic targets of the micro-transcriptome markers may serve as targets for individualized therapeutic interventions aimed at easing pain and behavioral difficulties seen in ASD-related GI disturbance.
Collapse
Affiliation(s)
| | - Kristin Sohl
- University of Missouri, Columbia, MO, United States
| | | | | | - Robin P Goin-Kochel
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.,Meyer Center for Developmental Pediatrics and Autism, Texas Children's Hospital, Houston, TX, United States
| | - Rebecca C Shaffer
- Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alexandra Confair
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | - Frank A Middleton
- Department of Neuroscience and Physiology, The State University of New York, Upstate Medical University, Syracuse, NY, United States
| | - Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
15
|
Roussin L, Prince N, Perez-Pardo P, Kraneveld AD, Rabot S, Naudon L. Role of the Gut Microbiota in the Pathophysiology of Autism Spectrum Disorder: Clinical and Preclinical Evidence. Microorganisms 2020; 8:microorganisms8091369. [PMID: 32906656 PMCID: PMC7563175 DOI: 10.3390/microorganisms8091369] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 160 people in the world. Although there is a strong genetic heritability to ASD, it is now accepted that environmental factors can play a role in its onset. As the prevalence of gastrointestinal (GI) symptoms is four-times higher in ASD patients, the potential implication of the gut microbiota in this disorder is being increasingly studied. A disturbed microbiota composition has been demonstrated in ASD patients, accompanied by altered production of bacterial metabolites. Clinical studies as well as preclinical studies conducted in rodents have started to investigate the physiological functions that gut microbiota might disturb and thus underlie the pathophysiology of ASD. The first data support an involvement of the immune system and tryptophan metabolism, both in the gut and central nervous system. In addition, a few clinical studies and a larger number of preclinical studies found that modulation of the microbiota through antibiotic and probiotic treatments, or fecal microbiota transplantation, could improve behavior. Although the understanding of the role of the gut microbiota in the physiopathology of ASD is only in its early stages, the data gathered in this review highlight that this role should be taken in consideration.
Collapse
Affiliation(s)
- Léa Roussin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
- Correspondence:
| | - Naika Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (N.P.); (P.P.-P.); (A.D.K.)
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (N.P.); (P.P.-P.); (A.D.K.)
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (N.P.); (P.P.-P.); (A.D.K.)
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, 78350 Jouy-en-Josas, France;
| |
Collapse
|