1
|
Zhao J, Sun Y, Feng Y, Rong J. Brain Specific RagA Overexpression Triggers Depressive-Like Behaviors in Mice via Activating ADORA2A Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404188. [PMID: 39373701 PMCID: PMC11615787 DOI: 10.1002/advs.202404188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Neuroinflammation hallmarks the pathology of depression although the etiological complexity has not yet been resolved. Previous studies demonstrate that bacterial lipopolysaccharide induces depressive-like behaviors by activating RagA-mTOR-p70S6K signaling pathway. The current project aims to investigate whether and how brain-specific RagA overexpression triggers depressive-like behaviors in mice. Full-length RagA cDNA is cloned into the mammalian expression vector under the control of brain specific promoter, and subsequently overexpressed in the brain of mouse embryos. Indeed, RagA transgenic mice exhibit depressive-like behaviors and memory impairments. RNA-seq profiling of the prefrontal cortex (PFC) transcriptome highlights adenosine A2a receptor (ADORA2A) as a key differentially expressed gene (DEG). Western blotting confirms that ADORA2A and phospho-p70S6K are markedly elevated in RagA transgenic mice. Behavioral assessments demonstrate that ADORA2A inhibitor istradefylline markedly attenuates depressive-like behaviors. Further metabolomics reveals that N-acetylserotonin and several depression-related metabolites are downregulated while proteomic profiling showed that OLIG1 and other proteins are significantly regulated in RagA transgenic mice. Collectively, RagA overexpression alters the expression patterns of signaling proteins and the metabolism of depression-associated metabolites. RagA may cause depressive-like behaviors in mice via activating p70S6K/ADORA2A signaling pathway. Thus, RagA-p70S6K-ADORA2A signaling pathway may be a target for the development of new antidepressant therapies.
Collapse
Affiliation(s)
- Jia Zhao
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
- Department of Chinese MedicineThe University of Hong Kong Shenzhen HospitalShenzhen518053P. R. China
| | - Yilu Sun
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
- Department of Chinese MedicineThe University of Hong Kong Shenzhen HospitalShenzhen518053P. R. China
| | - Yibin Feng
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
| | - Jianhui Rong
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
| |
Collapse
|
2
|
Tareen K. Advancing Models of Care in Transplant Psychiatry: A Review and Considerations for Enhancing the Multidisciplinary Approach. Curr Psychiatry Rep 2024; 26:626-634. [PMID: 39305360 DOI: 10.1007/s11920-024-01535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW Psychosocial considerations in transplant candidacy evaluation, waitlist, and post-transplant period is tremendously important to overall transplant care. Integration of mental health services in multidisciplinary transplant teams improves adherence to medical regimens, enhances quality of life, and reduces the risk of post-transplant complications. RECENT FINDINGS Despite this, psychiatrists are often under-utilized by transplant centers, with engagement typically limited to transplant candidacy evaluations or reactive consults in a traditional CL model. In this review, we aim to 1) highlight the relevance of psychiatry throughout the transplant course, 2) outline the role of a CL psychiatrist in advancing patient care and supporting multidisciplinary teams in transplant, 3) develop an understanding of CL service models in both the inpatient and ambulatory setting and 4) consider the utility of innovating current transplant psychiatry practices.
Collapse
Affiliation(s)
- Kinza Tareen
- Department of Psychiatry, University of Michigan, 1500 E. Medical Center Dr., 9814 University Hospital, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Flinkenflügel K, Gruber M, Meinert S, Thiel K, Winter A, Goltermann J, Usemann P, Brosch K, Stein F, Thomas-Odenthal F, Wroblewski A, Pfarr JK, David FS, Beins EC, Grotegerd D, Hahn T, Leehr EJ, Dohm K, Bauer J, Forstner AJ, Nöthen MM, Jamalabadi H, Straube B, Alexander N, Jansen A, Witt SH, Rietschel M, Nenadić I, van den Heuvel MP, Kircher T, Repple J, Dannlowski U. The interplay between polygenic score for tumor necrosis factor-α, brain structural connectivity, and processing speed in major depression. Mol Psychiatry 2024; 29:3151-3159. [PMID: 38693319 PMCID: PMC11449800 DOI: 10.1038/s41380-024-02577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.
Collapse
Grants
- WI 3439/3-1, WI 3439/3-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- RI 908/11-1, RI 908/11-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- JA 1890/7-1, JA 1890/7-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- EP-C-16-015 EPA
- DA1151/5-1, DA1151/5-2, DA1151/11‑1 DA1151/6-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- NO 246/10-1, NO 246/10-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- HA7070/2-2, HA7070/3, HA7070/4 Deutsche Forschungsgemeinschaft (German Research Foundation)
- STR 1146/18-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- ERC-COG 101001062, VIDI-452-16-015 Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- KI 588/14-1, KI 588/14-2, KI 588/22-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- Interdisziplinäres Zentrum für Klinische Forschung, medizinische Fakultät, Münster (Dan3/012/17)
- Innovative medizinische Forschung Münster (IMF): RE111604, RE111722, RE 221707
Collapse
Affiliation(s)
- Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Eva C Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Radiology, University of Münster, Münster, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Martijn P van den Heuvel
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
Sempach L, Doll JPK, Limbach V, Marzetta F, Schaub AC, Schneider E, Kettelhack C, Mählmann L, Schweinfurth-Keck N, Ibberson M, Lang UE, Schmidt A. Examining immune-inflammatory mechanisms of probiotic supplementation in depression: secondary findings from a randomized clinical trial. Transl Psychiatry 2024; 14:305. [PMID: 39048549 PMCID: PMC11269721 DOI: 10.1038/s41398-024-03030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
We recently indicated that four-week probiotic supplementation significantly reduced depression along with microbial and neural changes in people with depression. Here we further elucidated the biological modes of action underlying the beneficial clinical effects of probiotics by focusing on immune-inflammatory processes. The analysis included a total of N = 43 participants with depression, from which N = 19 received the probiotic supplement and N = 24 received a placebo over four weeks, in addition to treatment as usual. Blood and saliva were collected at baseline, at post-intervention (week 4) and follow-up (week 8) to assess immune-inflammatory markers (IL-1β, IL-6, CRP, MIF), gut-related hormones (ghrelin, leptin), and a stress marker (cortisol). Furthermore, transcriptomic analyses were conducted to identify differentially expressed genes. Finally, we analyzed the associations between probiotic-induced clinical and immune-inflammatory changes. We observed a significant group x time interaction for the gut hormone ghrelin, indicative of an increase in the probiotics group. Additionally, the increase in ghrelin was correlated with the decrease in depressive symptoms in the probiotics group. Transcriptomic analyses identified 51 up- and 57 down-regulated genes, which were involved in functional pathways related to enhanced immune activity. We identified a probiotic-dependent upregulation of the genes ELANE, DEFA4 and OLFM4 associated to immune activation and ghrelin concentration. These results underscore the potential of probiotic supplementation to produce biological meaningful changes in immune activation in patients with depression. Further large-scale mechanistic trials are warranted to validate and extend our understanding of immune-inflammatory measures as potential biomarkers for stratification and treatment response in depression. Trial Registration: www.clinicaltrials.gov , identifier: NCT02957591.
Collapse
Affiliation(s)
- Lukas Sempach
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland.
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland.
| | - Jessica P K Doll
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Verena Limbach
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Flavia Marzetta
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anna-Chiara Schaub
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Translational Psychiatry, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
| | - Else Schneider
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Experimental Cognitive and Clinical Affective Neuroscience (ECAN) Laboratory, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
| | - Cedric Kettelhack
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Laura Mählmann
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Undine E Lang
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - André Schmidt
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Ugursu B, Sah A, Sartori S, Popp O, Mertins P, Dunay IR, Kettenmann H, Singewald N, Wolf SA. Microglial sex differences in innate high anxiety and modulatory effects of minocycline. Brain Behav Immun 2024; 119:465-481. [PMID: 38552926 DOI: 10.1016/j.bbi.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
Microglia modulate synaptic refinement in the central nervous system (CNS). We have previously shown that a mouse model with innate high anxiety-related behavior (HAB) displays higher CD68+ microglia density in the key regions of anxiety circuits compared to mice with normal anxiety-related behavior (NAB) in males, and that minocycline treatment attenuated the enhanced anxiety of HAB male. Given that a higher prevalence of anxiety is widely reported in females compared to males, little is known concerning sex differences at the cellular level. Herein, we address this by analyzing microglia heterogeneity and function in the HAB and NAB brains of both sexes. Single-cell RNA sequencing revealed ten distinct microglia clusters varied by their frequency and gene expression profile. We report striking sex differences, especially in the major microglia clusters of HABs, indicating a higher expression of genes associated with phagocytosis and synaptic engulfment in the female compared to the male. On a functional level, we show that female HAB microglia engulfed a greater amount of hippocampal vGLUT1+ excitatory synapses compared to the male. We moreover show that female HAB microglia engulfed more synaptosomes compared to the male HAB in vitro. Due to previously reported effects of minocycline on microglia, we finally administered oral minocycline to HABs of both sexes and showed a significant reduction in the engulfment of synapses by female HAB microglia. In parallel to our microglia-specific findings, we further showed an anxiolytic effect of minocycline on female HABs, which is complementary to our previous findings in the male HABs. Our study, therefore, identifies the altered function of synaptic engulfment by microglia as a potential avenue to target and resolve microglia heterogeneity in mice with innate high anxiety.
Collapse
Affiliation(s)
- Bilge Ugursu
- Psychoneuroimmunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Experimental Ophthalmology, ChariteUniversitätsmedizin Berlin, Germany
| | - Anupam Sah
- Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Austria
| | - Simone Sartori
- Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Austria
| | - Oliver Popp
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute of Health, Berlin, Germany
| | - Philip Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute of Health, Berlin, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Germany
| | - Helmut Kettenmann
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nicolas Singewald
- Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Austria
| | - Susanne A Wolf
- Psychoneuroimmunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Experimental Ophthalmology, ChariteUniversitätsmedizin Berlin, Germany.
| |
Collapse
|
6
|
Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V, Brasso C, Cappellano G, Rocca P, Chiocchetti A. Omics approaches open new horizons in major depressive disorder: from biomarkers to precision medicine. Front Psychiatry 2024; 15:1422939. [PMID: 38938457 PMCID: PMC11210496 DOI: 10.3389/fpsyt.2024.1422939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Major depressive disorder (MDD) is a recurrent episodic mood disorder that represents the third leading cause of disability worldwide. In MDD, several factors can simultaneously contribute to its development, which complicates its diagnosis. According to practical guidelines, antidepressants are the first-line treatment for moderate to severe major depressive episodes. Traditional treatment strategies often follow a one-size-fits-all approach, resulting in suboptimal outcomes for many patients who fail to experience a response or recovery and develop the so-called "therapy-resistant depression". The high biological and clinical inter-variability within patients and the lack of robust biomarkers hinder the finding of specific therapeutic targets, contributing to the high treatment failure rates. In this frame, precision medicine, a paradigm that tailors medical interventions to individual characteristics, would help allocate the most adequate and effective treatment for each patient while minimizing its side effects. In particular, multi-omic studies may unveil the intricate interplays between genetic predispositions and exposure to environmental factors through the study of epigenomics, transcriptomics, proteomics, metabolomics, gut microbiomics, and immunomics. The integration of the flow of multi-omic information into molecular pathways may produce better outcomes than the current psychopharmacological approach, which targets singular molecular factors mainly related to the monoamine systems, disregarding the complex network of our organism. The concept of system biomedicine involves the integration and analysis of enormous datasets generated with different technologies, creating a "patient fingerprint", which defines the underlying biological mechanisms of every patient. This review, centered on precision medicine, explores the integration of multi-omic approaches as clinical tools for prediction in MDD at a single-patient level. It investigates how combining the existing technologies used for diagnostic, stratification, prognostic, and treatment-response biomarkers discovery with artificial intelligence can improve the assessment and treatment of MDD.
Collapse
Affiliation(s)
- Fabiola Stolfi
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Sinella
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Nembrini
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Centonze
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Virginia Landra
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
7
|
Rachayon M, Jirakran K, Sodsai P, Sughondhabirom A, Maes M. T cell activation and deficits in T regulatory cells are associated with major depressive disorder and severity of depression. Sci Rep 2024; 14:11177. [PMID: 38750122 PMCID: PMC11096341 DOI: 10.1038/s41598-024-61865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Major depressive disorder (MDD) is associated with T cell activation, but no studies have examined the combined effects of T cell activation and deficits in T regulatory (Treg) cells on the severity of acute phase MDD. Using flow cytometry, we determined the percentage and median fluorescence intensity of CD69, CD71, CD40L, and HLADR-bearing CD3+, CD4+, and CD8+ cells, and cannabinoid type 1 receptor (CB1), CD152 and GARP (glycoprotein A repetitions predominant)-bearing CD25+ FoxP3 T regulatory (Treg) cells in 30 MDD patients and 20 healthy controls in unstimulated and stimulated (anti-CD3/CD28) conditions. Based on cytokine levels, we assessed M1 macrophage, T helper (Th)-1 cell, immune-inflammatory response system (IRS), T cell growth, and neurotoxicity immune profiles. We found that the immune profiles (including IRS and neurotoxicity) were significantly predicted by decreased numbers of CD152 or GARP-bearing CD25+ FoxP3 cells or CD152 and GARP expression in combination with increases in activated T cells (especially CD8+ CD40L+ percentage and expression). MDD patients showed significantly increased numbers of CD3+ CD71+, CD3+ CD40L+, CD4+ CD71+, CD4+ CD40L+, CD4+ HLADR+, and CD8+ HLADR+ T cells, increased CD3+ CD71+, CD4+ CD71+ and CD4+ HLADR+ expression, and lowered CD25+ FoxP3 expression and CD25+ FoxP+ CB1+ numbers as compared with controls. The Hamilton Depression Rating Scale score was strongly predicted (between 30 and 40% of its variance) by a lower number of CB1 or GARP-bearing Treg cells and one or more activated T cell subtypes (especially CD8+ CD40L+). In conclusion, increased T helper and cytotoxic cell activation along with decreased Treg homeostatic defenses are important parts of MDD that lead to enhanced immune responses and, as a result, neuroimmunotoxicity.
Collapse
Affiliation(s)
- Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Maximizing Children's Developmental Potential, Chulalongkorn University, Bangkok, Thailand
| | - Pimpayao Sodsai
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
8
|
Khan Y, Davis CN, Jinwala Z, Feuer KL, Toikumo S, Hartwell EE, Sanchez-Roige S, Peterson RE, Hatoum AS, Kranzler HR, Kember RL. Combining Transdiagnostic and Disorder-Level GWAS Enhances Precision of Psychiatric Genetic Risk Profiles in a Multi-Ancestry Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307111. [PMID: 38766259 PMCID: PMC11100926 DOI: 10.1101/2024.05.09.24307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The etiology of substance use disorders (SUDs) and psychiatric disorders reflects a combination of both transdiagnostic (i.e., common) and disorder-level (i.e., independent) genetic risk factors. We applied genomic structural equation modeling to examine these genetic factors across SUDs, psychotic, mood, and anxiety disorders using genome-wide association studies (GWAS) of European- (EUR) and African-ancestry (AFR) individuals. In EUR individuals, transdiagnostic genetic factors represented SUDs (143 lead single nucleotide polymorphisms [SNPs]), psychotic (162 lead SNPs), and mood/anxiety disorders (112 lead SNPs). We identified two novel SNPs for mood/anxiety disorders that have probable regulatory roles on FOXP1, NECTIN3, and BTLA genes. In AFR individuals, genetic factors represented SUDs (1 lead SNP) and psychiatric disorders (no significant SNPs). The SUD factor lead SNP, although previously significant in EUR- and cross-ancestry GWAS, is a novel finding in AFR individuals. Shared genetic variance accounted for overlap between SUDs and their psychiatric comorbidities, with second-order GWAS identifying up to 12 SNPs not significantly associated with either first-order factor in EUR individuals. Finally, common and independent genetic effects showed different associations with psychiatric, sociodemographic, and medical phenotypes. For example, the independent components of schizophrenia and bipolar disorder had distinct associations with affective and risk-taking behaviors, and phenome-wide association studies identified medical conditions associated with tobacco use disorder independent of the broader SUDs factor. Thus, combining transdiagnostic and disorder-level genetic approaches can improve our understanding of co-occurring conditions and increase the specificity of genetic discovery, which is critical for psychiatric disorders that demonstrate considerable symptom and etiological overlap.
Collapse
Affiliation(s)
- Yousef Khan
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Christal N. Davis
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kyra L. Feuer
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Sylvanus Toikumo
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Emily E. Hartwell
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, United States
- Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roseann E. Peterson
- Institute for Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Alexander S. Hatoum
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Rachel L. Kember
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| |
Collapse
|
9
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
10
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
11
|
Dang X, Song M, Lv L, Yang Y, Luo XJ. Proteome-wide Mendelian randomization reveals the causal effects of immune-related plasma proteins on psychiatric disorders. Hum Genet 2023; 142:809-818. [PMID: 37085628 DOI: 10.1007/s00439-023-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Immune dysregulation has been consistently reported in psychiatric disorders, however, the causes and mechanisms underlying immune dysregulation in psychiatric disorders remain largely unclear. Here we conduct a Mendelian randomization study by integrating plasma proteome and GWASs of schizophrenia, bipolar disorder and depression. The primate-specific immune-related protein BTN3A3 showed the most significant associations with all three psychiatric disorders. In addition, other immune-related proteins, including AIF1, FOXO3, IRF3, CFHR4, IGLON5, FKBP2, and PI3, also showed significant associations with psychiatric disorders. Our study showed that a proportion of psychiatric risk variants may contribute to disease risk by regulating immune-related plasma proteins, providing direct evidence that connect the genetic risk of psychiatric disorders to immune system.
Collapse
Affiliation(s)
- Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, Henan, China.
| | - Xiong-Jian Luo
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
12
|
Liu C, Yan L, Qian Y, Song P, Wang T, Wei M. The Extract of Acanthopanacis Cortex Relieves the Depression-Like Behavior and Modulates IL-17 Signaling in Chronic Mild Stress-Induced Depressive Mice. Dose Response 2023; 21:15593258221148817. [PMID: 36865497 PMCID: PMC9972068 DOI: 10.1177/15593258221148817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Background Acanthopanacis Cortex (AC) is a valuable Chinese medicine, which exerts beneficial effects on anti-fatigue, anti-stress, and inflammatory modulation in the periphery. However, the central nervous system (CNS) function of AC has not been clearly illustrated. As communication between the peripheral immune system and the CNS converges, it promotes a heightened neuroinflammatory environment that contributes to depression. We investigated the effect of AC against depression through neuroinflammatory modulation. Methods Network pharmacology was used to screen for target compounds and pathways. Mice with CMS-induced depression were used to evaluate the efficacy of AC against depression. Behavioral studies and detection of neurotransmitters, neurotrophic factors, and pro-inflammatory cytokines were performed. The IL-17 signaling cascade was involved to further investigate the underlying mechanism of AC against depression. Results Twenty-five components were screened by network pharmacology and the IL-17 mediated signaling pathway was associated with the antidepressant action of AC. This herb had a beneficial effect on CMS-induced depressive mice, including improvements in depressive behavior, modulation of neurotransmitter levels, neurotrophic factors, and pro-inflammatory cytokines. Conclusions Our results revealed that AC exhibits effects on anti-depression and one of the mechanisms was mediated by neuroinflammatory modulation.
Collapse
Affiliation(s)
- Chuhan Liu
- Nanjing University of Chinese
Medicine, Nanjing, China,Jiangsu Key Laboratory for the
Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy
of Sciences, Nanjing, China
| | - Lu Yan
- Jiangsu Key Laboratory for the
Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy
of Sciences, Nanjing, China
| | - Yiyun Qian
- Jiangsu Key Laboratory for the
Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy
of Sciences, Nanjing, China
| | - Pingping Song
- Jiangsu Key Laboratory for the
Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy
of Sciences, Nanjing, China
| | - Tao Wang
- New drug screening center/Jiangsu
Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical
University, Nanjing, China
| | - Min Wei
- Nanjing University of Chinese
Medicine, Nanjing, China,Jiangsu Key Laboratory for the
Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy
of Sciences, Nanjing, China,Min Wei, Nanjing University of Chinese
Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing 210028, China.
| |
Collapse
|
13
|
Frank D, Gruenbaum BF, Zlotnik A, Semyonov M, Frenkel A, Boyko M. Pathophysiology and Current Drug Treatments for Post-Stroke Depression: A Review. Int J Mol Sci 2022; 23:ijms232315114. [PMID: 36499434 PMCID: PMC9738261 DOI: 10.3390/ijms232315114] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Post-stroke depression (PSD) is a biopsychosocial disorder that affects individuals who have suffered a stroke at any point. PSD has a 20 to 60 percent reported prevalence among stroke survivors. Its effects are usually adverse, can lead to disability, and may increase mortality if not managed or treated early. PSD is linked to several other medical conditions, including anxiety, hyper-locomotor activity, and poor functional recovery. Despite significant awareness of its adverse impacts, understanding the pathogenesis of PSD has proved challenging. The exact pathophysiology of PSD is unknown, yet its complexity has been definitively shown, involving mechanisms such as dysfunction of monoamine, the glutamatergic systems, the gut-brain axis, and neuroinflammation. The current effectiveness of PSD treatment is about 30-40 percent of all cases. In this review, we examined different pathophysiological mechanisms and current pharmacological and non-pharmacological approaches for the treatment of PSD.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
- Correspondence: or
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Michael Semyonov
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Amit Frenkel
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
14
|
Gerring ZF, Thorp JG, Gamazon ER, Derks EM. A Local Genetic Correlation Analysis Provides Biological Insights Into the Shared Genetic Architecture of Psychiatric and Substance Use Phenotypes. Biol Psychiatry 2022; 92:583-591. [PMID: 35525699 PMCID: PMC11034779 DOI: 10.1016/j.biopsych.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Global genetic correlation analysis has provided valuable insight into the shared genetic basis between psychiatric and substance use disorders. However, little is known about which regions disproportionately contribute to the global correlation. METHODS We used Local Analysis of [co]Variant Annotation to calculate bivariate local genetic correlations across 2495 approximately equal-sized, semi-independent genomic regions for 20 psychiatric and substance use phenotypes. We performed a transcriptome-wide association study using expression weights from the prefrontal cortex to identify risk genes for each phenotype, followed by probabilistic fine-mapping to prioritize credible causal genes within each bivariate locus. RESULTS We detected 80 significant (p < 2.08 × 10-6) bivariate local genetic correlations across 61 loci. The expression effect directions for risk genes within each bivariate locus were largely consistent with the local correlation coefficients, suggesting that genetically regulated gene expression may be used in the functional interpretation of local genetic correlations. Probabilistic fine-mapping identified several genes that may drive pleiotropic mechanisms for genetically correlated phenotypes. For example, we confirmed a local genetic correlation between schizophrenia and smoking behavior at 15q25 and prioritized PSMA4 as the most credible gene candidate underlying both phenotypes. CONCLUSIONS Our study reveals previously unreported local bivariate genetic correlations between psychiatric and substance use phenotypes, which we fine-mapped to identify shared credible causal genes underlying genetically correlated phenotypes.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Jackson G Thorp
- Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee; The Cambridge Centre for Data-Driven Discovery, University of Cambridge, Cambridge, United Kingdom
| | - Eske M Derks
- Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Gao H, Ju F, Ti R, Zhang Y, Zhang S. Differential Regulation of Microglial Activation in Response to Different Degree of Ischemia. Front Immunol 2022; 13:792638. [PMID: 35154109 PMCID: PMC8831277 DOI: 10.3389/fimmu.2022.792638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are primary immune cells within the brain and are rapidly activated after cerebral ischemia. The degree of microglial activation is closely associated with the severity of ischemia. However, it remains largely unclear how microglial activation is differentially regulated in response to a different degree of ischemia. In this study, we used a bilateral common carotid artery ligation (BCAL) model and induced different degrees of ischemia by varying the duration of ligation to investigate the microglial response in CX3CR1GFP/+ mice. Confocal microscopy, immunofluorescence staining, RNA sequencing, and qRT-PCR were used to evaluate the de-ramification, proliferation, and differential gene expression associated with microglial activation. Our results showed that 30 min of ischemia induced rapid de-ramification of microglia but did not have significant influence on the microglial density. In contrast, 60 min of ischemia led to a significant decrease in microglial density and more pronounced de-ramification of microglial processes. Importantly, 30 min of ischemia did not induce proliferation of microglia, but 60 min of ischemia led to a marked increase in the density of proliferative microglia. Further analysis utilized transcriptome sequencing showed that microglial activation is differentially regulated in response to different degrees of ischemia. A total of 1,097 genes were differentially regulated after 60 min of ischemia, but only 68 genes were differentially regulated after 30 min of ischemia. Pathway enrichment analysis showed that apoptosis, cell mitosis, immune receptor activity and inflammatory-related pathways were highly regulated after 60 min of ischemia compared to 30 min of ischemia. Multiple microglia-related genes such as Cxcl10, Tlr7, Cd86, Tnfrsf1a, Nfkbia, Tgfb1, Ccl2 and Il-6, were upregulated with prolonged ischemia. Pharmacological inhibition of CSF1 receptor demonstrated that CSF1R signaling pathway contributed to microglial proliferation. Together, these results suggest that the proliferation of microglia is gated by the duration of ischemia and microglia were differentially activated in responding to different degrees of ischemia.
Collapse
|