1
|
Witchey S, Haupt A, Caldwell HK. Oxytocin receptors in the nucleus accumbens shell are necessary for the onset of maternal behavior. Front Neurosci 2024; 18:1356448. [PMID: 39015375 PMCID: PMC11250266 DOI: 10.3389/fnins.2024.1356448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
In rodents, oxytocin (Oxt) contributes to the onset of maternal care by shifting the perception of pups from aversive to attractive. Both Oxt receptor knockout (Oxtr -/-) and forebrain-specific Oxtr knockout (FB/FB) dams abandon their first litters, likely due to a failure of the brain to 'switch' to a more maternal state. Whether this behavioral shift is neurochemically similar in virgin females, who can display maternal behaviors when repeatedly exposed to pups, or what neuroanatomical substrate is critical for the onset of maternal care remains unknown. To understand similarities and differences in Oxtr signaling in virgin pup-sensitized Oxtr FB/FB as opposed to post-parturient Oxtr -/- and Oxtr FB/FB dams, maternal behavior (pup-sensitized females only) and immediate early gene activation were assessed. Pup-sensitized Oxtr FB/FB females retrieved pups faster on day one of testing and had reduced c-Fos expression in the dorsal lateral septum as compared to virgin pup-sensitized Oxtr +/+ females. This differs from what was observed in post-parturient Oxtr -/- and Oxtr FB/FB dams, where increased c-Fos expression was observed in the nucleus accumbens (NAcc) shell. Based on these data, we then disrupted Oxtr signaling in the NAcc shell or the posterior paraventricular thalamus (pPVT) (control region) of female Oxtr floxed mice using a Cre recombinase expressing adeno-associated virus. Knockout of the Oxtr only in the NAcc shell prevented the onset of maternal care post-parturient females. Our data suggest that a pup-sensitized brain may differ from a post-parturient brain and that Oxtr signaling in the NAcc shell is critical to the onset of maternal behavior.
Collapse
Affiliation(s)
- Shannah Witchey
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Alexandra Haupt
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences and the Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Heather K. Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences and the Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
2
|
Zhou H, Zhu R, Xia Y, Zhang X, Wang Z, Lorimer GH, Ghiladi RA, Bayram H, Wang J. Neuropeptides affecting social behavior in mammals: Oxytocin. Peptides 2024; 177:171223. [PMID: 38626843 DOI: 10.1016/j.peptides.2024.171223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 04/30/2024]
Abstract
Oxytocin (OXT), a neuropeptide consisting of only nine amino acids, is synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Although OXT is best known for its role in lactation and parturition, recent research has shown that it also has a significant impact on social behaviors in mammals. However, a comprehensive review of this topic is still lacking. In this paper, we systematically reviewed the effects of OXT on social behavior in mammals. These effects of OXT from the perspective of five key behavioral dimensions were summarized: parental behavior, anxiety, aggression, attachment, and empathy. To date, researchers have agreed that OXT plays a positive regulatory role in a wide range of social behaviors, but there have been controversially reported results. In this review, we have provided a detailed panorama of the role of OXT in social behavior and, for the first time, delved into the underlying regulatory mechanisms, which may help better understand the multifaceted role of OXT. Levels of OXT in previous human studies were also summarized to provide insights for diagnosis of mental disorders.
Collapse
Affiliation(s)
- Hong Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Rui Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuqing Xia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xinming Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zixu Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | | | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hasan Bayram
- Department of Pulmonary Medicine, Koç University School of Medicine, Istanbul 34450, Turkey
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
3
|
Li M. Roadmap for maternal behavior research in domestic dogs: lessons from decades of laboratory rodent work. Front Vet Sci 2024; 11:1394201. [PMID: 38993275 PMCID: PMC11236756 DOI: 10.3389/fvets.2024.1394201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Maternal behavior research in laboratory rats has revealed important behavioral and neurobiological mechanisms governing the onset, maintenance and decline of maternal behavior. However, the extent to which these mechanisms are evolutionarily conserved across species is less clear. This manuscript proposes that examining these mechanisms in dogs may be a viable approach to test their generality and help bridge the gap between rodent and human research, as domestic dogs show greater individual differences and exhibit more human-like maternal characteristics than rodents. These aspects represent advantages over rodent models, which in turn allow systems biological approaches not available in rodents. Additionally, domestic dogs share similar social environments with humans, suffer from the same mental disorders as humans, and can be treated with the same medications. This paper begins with a summary of key findings and theoretical developments from decades of rat maternal behavior research, followed by a literature review of the extant maternal behavior research on dogs and related methodology, highlighting the unique behavioral characteristics of dog maternal behavior and similarities and differences from rat maternal behavior. Finally, several knowledge gaps in dog maternal behavior research, as well as the future research in this area is discussed. It concludes that research on dog maternal behavior will not only advance our understanding of the universality of the neurobiological and behavioral mechanisms in maternal behavior, but also improve our understanding of risk factors associated with postpartum mental disorders.
Collapse
Affiliation(s)
- Ming Li
- Department of Psychology, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Bortolini T, Laport MC, Latgé-Tovar S, Fischer R, Zahn R, de Oliveira-Souza R, Moll J. The extended neural architecture of human attachment: An fMRI coordinate-based meta-analysis of affiliative studies. Neurosci Biobehav Rev 2024; 159:105584. [PMID: 38367888 DOI: 10.1016/j.neubiorev.2024.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Functional imaging studies and clinical evidence indicate that cortical areas relevant to social cognition are closely integrated with evolutionarily conserved basal forebrain structures and neighboring regions, enabling human attachment and affiliative emotions. The neural circuitry of human affiliation is continually being unraveled as functional magnetic resonance imaging (fMRI) becomes increasingly prevalent, with studies examining human brain responses to various attachment figures. However, previous fMRI meta-analyses on affiliative stimuli have encountered challenges, such as low statistical power and the absence of robustness measures. To address these issues, we conducted an exhaustive coordinate-based meta-analysis of 79 fMRI studies, focusing on personalized affiliative stimuli, including one's infants, family, romantic partners, and friends. We employed complementary coordinate-based analyses (Activation Likelihood Estimation and Signed Differential Mapping) and conducted a robustness analysis of the results. Findings revealed cluster convergence in cortical and subcortical structures related to reward and motivation, salience detection, social bonding, and cognition. Our study thoroughly explores the neural correlates underpinning affiliative responses, effectively overcoming the limitations noted in previous meta-analyses. It provides an extensive view of the neural substrates associated with affiliative stimuli, illuminating the intricate interaction between cortical and subcortical regions. Our findings significantly contribute to understanding the neurobiology of human affiliation, expanding the known human attachment circuitry beyond the traditional basal forebrain regions observed in other mammals to include uniquely human isocortical structures.
Collapse
Affiliation(s)
- Tiago Bortolini
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; IDOR - Pioneer Science Initiative, São Paulo, Brazil.
| | - Maria Clara Laport
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Sofia Latgé-Tovar
- Institute of Psychiatry, Center for Alzheimer's Disease, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ronald Fischer
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; IDOR - Pioneer Science Initiative, São Paulo, Brazil; School of Psychology, PO Box 600, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Roland Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Ricardo de Oliveira-Souza
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Moll
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; IDOR - Pioneer Science Initiative, São Paulo, Brazil
| |
Collapse
|
5
|
Kuroda KO, Fukumitsu K, Kurachi T, Ohmura N, Shiraishi Y, Yoshihara C. Parental brain through time: The origin and development of the neural circuit of mammalian parenting. Ann N Y Acad Sci 2024; 1534:24-44. [PMID: 38426943 DOI: 10.1111/nyas.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.
Collapse
Affiliation(s)
- Kumi O Kuroda
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kansai Fukumitsu
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Kurachi
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nami Ohmura
- RIKEN Center for Brain Science, Saitama, Japan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Yuko Shiraishi
- RIKEN Center for Brain Science, Saitama, Japan
- Kawamura Gakuen Woman's University, Chiba, Japan
| | - Chihiro Yoshihara
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
6
|
Alsina-Llanes M, Olazábal DE. NMDA- and 6-OHDA-induced Lesions in the Nucleus Accumbens Differently Affect Maternal and Infanticidal Behavior in Pup-naïve Female and Male Mice. Neuroscience 2024; 539:35-50. [PMID: 38176609 DOI: 10.1016/j.neuroscience.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Virgin and pups-naïve female and male adult mice display two opposite responses when they are exposed to pups for the first time. While females generally take care of the pups, males attack them. Since the nucleus accumbens (NA), and its dopaminergic modulation, is critical in integrating information and processing reward and aversion, we investigated if NMDA- and 6-OHDA-induced lesions, damaging mostly NA output and dopaminergic inputs respectively, affected female maternal behavior (MB) or male infanticidal behavior (IB) in mice. Our results revealed minor or no effects of both smaller and larger NMDA-induced lesions in MB and IB. On the other hand, while 6-OHDA-induced lesions in females reduced the incidence of full MB (12.5% 6-OHDA vs. 85.7% SHAM) increasing the latency to retrieve the pups, those lesions did not affect IB in males. There were no differences in locomotor and exploratory activity between the lesioned- and SHAM- females. Despite those lesions did not induce any major effect on IB, NMDA-lesioned males spent less time in the central area of an open field, while dopaminergic-lesioned males showed reduced number of rearing and peripheral crosses. The current study shows that an intact NA is not necessary for the expression of MB and IB. However, dopaminergic inputs to NA play different role in MB and IB. While damaging dopaminergic terminals into the NA did not affect IB, it clearly delayed the more flexible and rewarding expression of parental behavior.
Collapse
Affiliation(s)
- M Alsina-Llanes
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| | - D E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
7
|
Agrati D, Uriarte N. What can challenging reproductive contexts tell us about the rat's maternal behavior? Front Behav Neurosci 2023; 17:1239681. [PMID: 37521725 PMCID: PMC10375047 DOI: 10.3389/fnbeh.2023.1239681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Maternal behavior in mammals encompasses a complex repertoire of activities that ensure the survival of the offspring and shape their neural and behavioral development. The laboratory rat has been employed as a classic model for investigating maternal behavior, and recently with the use of advanced techniques, the knowledge of its neural basis has been expanded significantly. However, the standard laboratory testing conditions in which rats take care of a single litter impose constraints on the study of maternal flexibility. Interestingly, the reproductive characteristics of this species, including the existence of a fertile postpartum estrus, allow us to study maternal behavior in more complex and ethologically relevant contexts, even in laboratory settings. Here we review how maternal and sexual motivations interact during the postpartum estrus, shaping the behavioral response of females according to the presence of the pups and males. Next, we describe how impregnation during the postpartum estrus creates a new reproductive context in which mothers simultaneously care for two successive litters, adapting their responses to different behavioral and physiological demands of pups. These findings illustrate the behavioral adaptability of maternal rats to pups' needs and the presence of other reinforcers, as well as its dependence on the context. In our view, future perspectives in the field, by incorporating the use of cutting-edge techniques, should analyze maternal flexibility and its neural substrates in models that incorporate complex and challenging contexts. This approach would allow a more comprehensive understanding of brain circuits involved in the adaptive and flexible nature of parenting.
Collapse
Affiliation(s)
- Daniella Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Gifford JJ, Pluchino JR, Della Valle R, Van Weele B, Brezoczky E, Caulfield JI, Cavigelli SA, Schwarz JM. Effects of limited bedding and nesting on postpartum mood state in rats. J Neuroendocrinol 2023; 35:e13275. [PMID: 37186019 PMCID: PMC10524593 DOI: 10.1111/jne.13275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/04/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023]
Abstract
This study examined the effect of limited bedding and nesting (LBN) stress on postpartum anhedonia, maternal behaviors, anxiety-like behaviors, and neuroendocrine and neuroimmune function as a potential model of postpartum depression. Dams underwent sucrose preference tests prior to breeding, during gestation and again postpartum, to examine the potential onset of anhedonia. On embryonic day 19, dams were placed into either a LBN or control housing condition. Contrary to our predictions, LBN stress had no effect on postpartum sucrose preference. We also found no effect of LBN condition on fecal estradiol or corticosterone levels, both of which increased at birth and decreased postpartum. Regardless of housing conditions, approximately 40% of new mothers exhibited a decrease in sucrose preference, while others show no change, suggesting an individual susceptibility to postpartum anhedonia. In a separate cohort of LBN and control dams, we measured pup retrieval, hoarding behavior, elevated plus maze (EPM), and marble burying. LBN dams exhibited increased anxiety, associated with decreased time spent in the open arms of the EPM. We also measured a significant increase in IL-6 expression in the dorsal hippocampus and medial prefrontal cortex of postpartum dams compared to nonpregnant dams. These findings suggest that while LBN stress has effects on anxiety and maternal care, it does not induce postpartum anhedonia. Rather, there are inherent differences in susceptibility to anhedonia in individual dams, and future studies should be conducted to better understand individual vulnerability and resilience to postpartum anhedonia.
Collapse
Affiliation(s)
- Janace J Gifford
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Jenna R Pluchino
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Rebecca Della Valle
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Brooke Van Weele
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Emma Brezoczky
- Department of Neuroscience, Claremont McKenna College, Claremont, California, USA
| | - Jasmine I Caulfield
- Department of Biobehavioral Health, Penn State University, State College, Pennsylvania, USA
| | - Sonia A Cavigelli
- Department of Biobehavioral Health, Penn State University, State College, Pennsylvania, USA
| | - Jaclyn M Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
10
|
Carretero-Hernández M, Catalano-Iniesta L, Blanco EJ, García-Barrado MJ, Carretero J. Highlights regarding prolactin in the dentate gyrus and hippocampus. VITAMINS AND HORMONES 2022; 118:479-505. [PMID: 35180938 DOI: 10.1016/bs.vh.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prolactin (PRL) is a pituitary hormone that has been typically related to lactogenesis in mammals. However, it has been described over 300 roles in the organism of vertebrae and its relationship with the central nervous system (CNS) is yet to be clarified. Mainly secreted by the pituitary gland, the source of prolactin in the CNS remains unclear, where some experiments suggest active transport via an unknown carrier or, on the contrary, PRL being synthesized on the brain. So far, it seems to be involved with neurogenesis, neuroprotection, maternal behavior and cognitive processes in the hippocampus and dentate gyrus, among other regions.
Collapse
Affiliation(s)
- Marta Carretero-Hernández
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain.
| | - Leonardo Catalano-Iniesta
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - Enrique J Blanco
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - María José García-Barrado
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | - José Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| |
Collapse
|
11
|
Mapping excessive "disgust" in the brain: Ventral pallidum inactivation recruits distributed circuitry to make sweetness "disgusting". COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:141-159. [PMID: 31836960 DOI: 10.3758/s13415-019-00758-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ventral pallidum (VP) is an important structure in processing reward. The VP may be the only brain structure where localized lesions in rats replace normal facial "liking" expressions to sweetness with excessive "disgust" reactions, such as gapes and chin rubs, that are normally reserved for unpalatable tastes. The posterior half of the VP (pVP) contains a hedonic hot spot where opioid or related neurochemical stimulations can amplify positive "liking" reactions to sweet taste. This is the same site where lesions or pharmacological inactivations replace positive hedonic reactions to sucrose with intense negative "disgust." In the present study, we aimed to identify brain networks recruited by pVP inactivation to generate excessive "disgust," using neuronal Fos expression as a marker of neurobiological activation. Microinjections in pVP of inhibitory GABAA/B agonists (muscimol and baclofen) caused rats to exhibit excessive "disgust" reactions to sucrose. Excessive "disgust" was accompanied by recruitment of neural Fos activation in several subcortical structures, including the posterior medial shell of nucleus accumbens (which also contains another GABAergic "disgust"-inducing "hedonic cold spot"), the bed nucleus of stria terminalis, lateral habenula, hypothalamus, and midbrain ventral tegmentum. Fos suppression was found in cortical limbic regions, including previously identified hedonic hot spots in the anteromedial orbitofrontal cortex and posterior insula. Finally, in addition to inducing excessive "disgust," pVP inactivation abolished motivational "wanting" to eat palatable food, reduced positive social interactions, and reordered sensorimotor relations. Our findings identify potential "disgust" generators in the brain that are released into excitation by pVP inhibition and may serve as targets for future research.
Collapse
|
12
|
Wallin CM, Bowen SE, Brummelte S. Opioid use during pregnancy can impair maternal behavior and the Maternal Brain Network: A literature review. Neurotoxicol Teratol 2021; 86:106976. [PMID: 33812002 DOI: 10.1016/j.ntt.2021.106976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/26/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Opioid Use Disorder (OUD) is a global epidemic also affecting women of reproductive age. A standard form of pharmacological treatment for OUD is Opioid Maintenance Therapy (OMT) and buprenorphine has emerged as the preferred treatment for pregnant women with OUD relative to methadone. However, the consequences of BUP exposure on the developing Maternal Brain Network and mother-infant dyad are not well understood. The maternal-infant bond is dependent on the Maternal Brain Network, which is responsible for the dynamic transition from a "nulliparous brain" to a "maternal brain". The Maternal Brain Network consists of regions implicated in maternal care (e.g., medial preoptic area, nucleus accumbens, ventral pallidum, ventral tegmentum area) and maternal defense (e.g., periaqueductal gray). The endogenous opioid system modulates many of the neurochemical changes in these areas during the transition to motherhood. Thus, it is not surprising that exogenous opioid exposure during pregnancy can be disruptive to the Maternal Brain Network. Though less drastic than misused opioids, OMTs may not be without risk of disrupting the neural and molecular structures of the Maternal Brain Network. This review describes the Maternal Brain Network as a framework for understanding how pharmacological differences in exogenous opioid exposure can disrupt the onset and maintenance of the maternal brain and summarizes opioid and OMT (in particular buprenorphine) use in the context of pregnancy and maternal behavior. This review also highlights future directions for evaluating exogenous opioid effects on the Maternal Brain Network in the hopes of raising awareness for the impact of the opioid crisis not only on exposed infants, but also on mothers and subsequent mother-infant bonds.
Collapse
Affiliation(s)
- Chela M Wallin
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
13
|
Tsuneoka Y, Funato H. Cellular Composition of the Preoptic Area Regulating Sleep, Parental, and Sexual Behavior. Front Neurosci 2021; 15:649159. [PMID: 33867927 PMCID: PMC8044373 DOI: 10.3389/fnins.2021.649159] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The preoptic area (POA) has long been recognized as a sleep center, first proposed by von Economo. The POA, especially the medial POA (MPOA), is also involved in the regulation of various innate functions such as sexual and parental behaviors. Consistent with its many roles, the MPOA is composed of subregions that are identified by different gene and protein expressions. This review addresses the current understanding of the molecular and cellular architecture of POA neurons in relation to sleep and reproductive behavior. Optogenetic and pharmacogenetic studies have revealed a diverse group of neurons within the POA that exhibit different neural activity patterns depending on vigilance states and whose activity can enhance or suppress wake, non-rapid eye movement (NREM) sleep, or rapid eye movement (REM) sleep. These sleep-regulating neurons are not restricted to the ventrolateral POA (VLPO) region but are widespread in the lateral MPOA and LPOA as well. Neurons expressing galanin also express gonadal steroid receptors and regulate motivational aspects of reproductive behaviors. Moxd1, a novel marker of sexually dimorphic nuclei (SDN), visualizes the SDN of the POA (SDN-POA). The role of the POA in sleep and other innate behaviors has been addressed separately; more integrated observation will be necessary to obtain physiologically relevant insight that penetrates the different dimensions of animal behavior.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
A Scientometric Approach to Review the Role of the Medial Preoptic Area (MPOA) in Parental Behavior. Brain Sci 2021; 11:brainsci11030393. [PMID: 33804634 PMCID: PMC8003755 DOI: 10.3390/brainsci11030393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Research investigating the neural substrates underpinning parental behaviour has recently gained momentum. Particularly, the hypothalamic medial preoptic area (MPOA) has been identified as a crucial region for parenting. The current study conducted a scientometric analysis of publications from 1 January 1972 to 19 January 2021 using CiteSpace software to determine trends in the scientific literature exploring the relationship between MPOA and parental behaviour. In total, 677 scientific papers were analysed, producing a network of 1509 nodes and 5498 links. Four major clusters were identified: “C-Fos Expression”, “Lactating Rat”, “Medial Preoptic Area Interaction” and “Parental Behavior”. Their content suggests an initial trend in which the properties of the MPOA in response to parental behavior were studied, followed by a growing attention towards the presence of a brain network, including the reward circuits, regulating such behavior. Furthermore, while attention was initially directed uniquely to maternal behavior, it has recently been extended to the understanding of paternal behaviors as well. Finally, although the majority of the studies were conducted on rodents, recent publications broaden the implications of previous documents to human parental behavior, giving insight into the mechanisms underlying postpartum depression. Potential directions in future works were also discussed.
Collapse
|
15
|
Kuroda KO, Shiraishi Y, Shinozuka K. Evolutionary-adaptive and nonadaptive causes of infant attack/desertion in mammals: Toward a systematic classification of child maltreatment. Psychiatry Clin Neurosci 2020; 74:516-526. [PMID: 32592505 DOI: 10.1111/pcn.13096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Behaviors comparable to human child maltreatment are observed widely among mammals, in which parental care is mandatory for offspring survival. This article first reviews the recent findings on the neurobiological mechanisms for nurturing (infant caregiving) behaviors in mammals. Then the major causes of attack/desertion toward infants (conspecific young) in nonhuman mammals are classified into five categories. Three of the categories are 'adaptive' in terms of reproductive fitness: (i) attack/desertion toward non-offspring; (ii) attack/desertion toward biological offspring with low reproductive value; and (iii) attack/desertion toward biological offspring under unfavorable environments. The other two are nonadaptive failures of nurturing motivation, induced by: (iv) caregivers' inexperience; or (v) dysfunction in caregivers' brain mechanisms required for nurturing behavior. The proposed framework covering both adaptive and nonadaptive factors comprehensively classifies the varieties of mammalian infant maltreatment cases and will support the future development of tailored preventive measures for each human case. Also included are remarks that are relevant to interpretation of available animal data to humans: (1) any kind of child abuse/neglect is not justified in modern human societies, even if it is widely observed and regarded as adaptive in nonhuman animals from the viewpoint of evolutionary biology; (2) group-level characteristics cannot be generalized to individuals; and (3) risk factors are neither deterministic nor irreversible.
Collapse
Affiliation(s)
- Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Yuko Shiraishi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
16
|
Abstract
In recent decades, human sociocultural changes have increased the numbers of fathers that are involved in direct caregiving in Western societies. This trend has led to a resurgence of interest in understanding the mechanisms and effects of paternal care. Across the animal kingdom, paternal caregiving has been found to be a highly malleable phenomenon, presenting with great variability among and within species. The emergence of paternal behaviour in a male animal has been shown to be accompanied by substantial neural plasticity and to be shaped by previous and current caregiving experiences, maternal and infant stimuli and ecological conditions. Recent research has allowed us to gain a better understanding of the neural basis of mammalian paternal care, the genomic and circuit-level mechanisms underlying paternal behaviour and the ways in which the subcortical structures that support maternal caregiving have evolved into a global network of parental care. In addition, the behavioural, neural and molecular consequences of paternal caregiving for offspring are becoming increasingly apparent. Future cross-species research on the effects of absence of the father and the transmission of paternal influences across generations may allow research on the neuroscience of fatherhood to impact society at large in a number of important ways.
Collapse
|
17
|
Pose S, Zuluaga MJ, Ferreño M, Agrati D, Bedó G, Uriarte N. Raising overlapping litters: Differential activation of rat maternal neural circuitry after interacting with newborn or juvenile pups. J Neuroendocrinol 2019; 31:e12701. [PMID: 30784145 DOI: 10.1111/jne.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/05/2023]
Abstract
The maternal behaviour of a rat dynamically changes during the postpartum period, adjusting to the characteristics and physiological needs of the pups. This adaptation has been attributed to functional modifications in the maternal circuitry. Maternal behaviour can also flexibly adapt according to different litter compositions. Thus, mothers with two overlapping litters can concurrently take care of neonate and juvenile pups, mostly directing their attention to the newborns. We hypothesised that the maternal circuitry of these mothers would show a differential activation pattern after interacting with pups depending on the developmental stage of their offspring. Thus, we evaluated the activation of several areas of the maternal circuitry in mothers of overlapping litters, using c-Fos immunoreactivity as a marker of neuronal activation, after interacting with newborns or juveniles. The results showed that mothers with overlapping litters display different behavioural responses towards their newborn and their juvenile pups. Interestingly, these behavioural displays co-occurred with specific patterns of activation of the maternal neural circuitry. Thus, a similar expression of c-Fos was observed in some key brain areas of mothers that interacted with newborns or juveniles, such as the medial preoptic area and the nucleus accumbens, whereas a differential activation was quantified in the ventral region of the bed nucleus of the stria terminalis, the infralimbic and prelimbic subregions of the medial prefrontal cortex and the basolateral and medial nuclei of the amygdala. We posit that the specific profile of activation of the neural circuitry controlling maternal behaviour in mothers with overlapping litters enables dams to respond adequately to the newborn and the juvenile pups.
Collapse
Affiliation(s)
- Sabrina Pose
- Laboratorio de Neurociencias, Sección Biomatemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María José Zuluaga
- PDU Biofisicoquímica, Centro Universitario Regional Norte - Sede Salto, Universidad de la República, Montevideo, Uruguay
| | - Marcela Ferreño
- Laboratorio de Neurociencias, Sección Biomatemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniella Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gabriela Bedó
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Sección Biomatemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Mayer HS, Crepeau M, Duque-Wilckens N, Torres LY, Trainor BC, Stolzenberg DS. Histone deacetylase inhibitor treatment promotes spontaneous caregiving behaviour in non-aggressive virgin male mice. J Neuroendocrinol 2019; 31:e12734. [PMID: 31081252 PMCID: PMC7571573 DOI: 10.1111/jne.12734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023]
Abstract
The majority of mammalian species are uniparental, with the mother solely providing care for young conspecifics, although fathering behaviours can emerge under certain circumstances. For example, a great deal of individual variation in response to young pups has been reported in multiple inbred strains of laboratory male mice. Furthermore, sexual experience and subsequent cohabitation with a female conspecific can induce caregiving responses in otherwise indifferent, fearful or aggressive males. Thus, a highly conserved parental neural circuit is likely present in both sexes; however, the extent to which infants are capable of activating this circuit may vary. In support of this idea, fearful or indifferent responses toward pups in female mice are linked to greater immediate early gene (IEG) expression in a fear/defensive circuit involving the anterior hypothalamus compared to that in an approach/attraction circuit involving the ventral tegmental area. However, experience with infants, particularly in combination with histone deacetylase inhibitor (HDACi) treatment, can reverse this pattern of pup-induced activation of fear/defence circuitry and promote approach behaviour. Thus, HDACi treatment may increase the transcription of primed/poised genes that play a role in the activation and selection of a maternal approach circuit in response to pup stimuli. In the present study, we investigated whether HDACi treatment would impact behavioural response selection and associated IEG expression changes in virgin male mice that are capable of ignoring, attacking or caring for pups. The results obtained indicate that systemic HDACi treatment induces spontaneous caregiving behaviour in non-aggressive male mice and alters the pattern of pup-induced IEG expression across a fear/defensive neural circuit.
Collapse
Affiliation(s)
- Heather S Mayer
- Department of Psychology, University of California, Davis, Davis, California
| | - Marc Crepeau
- Department of Psychology, University of California, Davis, Davis, California
| | | | - Lisette Y Torres
- Department of Psychology, University of California, Davis, Davis, California
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, Davis, California
| | | |
Collapse
|
19
|
Stolzenberg DS, Mayer HS. Experience-dependent mechanisms in the regulation of parental care. Front Neuroendocrinol 2019; 54:100745. [PMID: 31009675 PMCID: PMC7347228 DOI: 10.1016/j.yfrne.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
Maternal behavior is a defining characteristic of mammals, which is regulated by a core, conserved neural circuit. However, mothering behavior is not always a default response to infant conspecifics. For example, initial fearful, fragmented or aggressive responses toward infants in laboratory rats and mice can give way to highly motivated and organized caregiving behaviors following appropriate hormone exposure or repeated experience with infants. Therefore hormonal and/or experiential factors must be involved in determining the extent to which infants access central approach and avoidance neural systems. In this review we describe evidence supporting the idea that infant conspecifics are capable of activating distinct neural pathways to elicit avoidant, aggressive and parental responses from adult rodents. Additionally, we discuss the hypothesis that alterations in transcriptional regulation within the medial preoptic area of the hypothalamus may be a key mechanism of neural plasticity involved in programming the differential sensitivity of these neural pathways.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States.
| | - Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States
| |
Collapse
|
20
|
Keller M, Vandenberg LN, Charlier TD. The parental brain and behavior: A target for endocrine disruption. Front Neuroendocrinol 2019; 54:100765. [PMID: 31112731 PMCID: PMC6708493 DOI: 10.1016/j.yfrne.2019.100765] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
During pregnancy, the sequential release of progesterone, 17β-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.
Collapse
Affiliation(s)
- Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRA/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
21
|
Mayer HS, Helton J, Torres LY, Cortina I, Brown WM, Stolzenberg DS. Histone deacetylase inhibitor treatment induces postpartum-like maternal behavior and immediate early gene expression in the maternal neural pathway in virgin mice. Horm Behav 2019; 108:94-104. [PMID: 29499221 PMCID: PMC6135716 DOI: 10.1016/j.yhbeh.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/02/2018] [Accepted: 02/24/2018] [Indexed: 01/29/2023]
Abstract
The peripartum period is associated with the onset of behaviors that shelter, feed and protect young offspring from harm. The neural pathway that regulates caregiving behaviors has been mapped in female rats and is conserved in mice. However, rats rely on late gestational hormones to shift their perception of infant cues from aversive to attractive, whereas laboratory mice are "spontaneously" maternal, but their level of responding depends on experience. For example, pup-naïve virgin female mice readily care for pups in the home cage, but avoid pups in a novel environment. In contrast, pup-experienced virgin mice care for pups in both contexts. Thus, virgin mice rely on experience to shift their perception of infant cues from aversive to attractive in a novel context. We hypothesize that alterations in immediate early gene activation may underlie the experience-driven shift in which neural pathways (fear/avoidance versus maternal/approach) are activated by pups to modulate context-dependent changes in maternal responding. Here we report that the effects of sodium butyrate, a drug that allows for an amplification of experience-induced histone acetylation and gene expression in virgins, are comparable to the natural onset of caregiving behaviors in postpartum mice and induce postpartum-like patterns of immediate early gene expression across brain regions. These data suggest that pups can activate a fear/defensive circuit in mice and experience-driven improvements in caregiving behavior could be regulated in part through decreased activation of this pathway.
Collapse
Affiliation(s)
- Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Jamie Helton
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Lisette Y Torres
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Ignacio Cortina
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Whitney M Brown
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA.
| |
Collapse
|
22
|
Dobolyi A, Cservenák M, Young LJ. Thalamic integration of social stimuli regulating parental behavior and the oxytocin system. Front Neuroendocrinol 2018; 51:102-115. [PMID: 29842887 PMCID: PMC6175608 DOI: 10.1016/j.yfrne.2018.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022]
Abstract
Critically important components of the maternal neural circuit in the preoptic area robustly activated by suckling were recently identified. In turn, suckling also contributes to hormonal adaptations to motherhood, which includes oxytocin release and consequent milk ejection. Other reproductive or social stimuli can also trigger the release of oxytocin centrally, influencing parental or social behaviors. However, the neuronal pathways that transfer suckling and other somatosensory stimuli to the preoptic area and oxytocin neurons have been poorly characterized. Recently, a relay center of suckling was determined and characterized in the posterior intralaminar complex of the thalamus (PIL). Its neurons containing tuberoinfundibular peptide 39 project to both the preoptic area and oxytocin neurons in the hypothalamus. The present review argues that the PIL is a major relay nucleus conveying somatosensory information supporting maternal behavior and oxytocin release in mothers, and may be involved more generally in social cue evoked oxytocin release, too.
Collapse
Affiliation(s)
- Arpad Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, USA.
| |
Collapse
|
23
|
Medina J, Workman JL. Maternal experience and adult neurogenesis in mammals: Implications for maternal care, cognition, and mental health. J Neurosci Res 2018; 98:1293-1308. [DOI: 10.1002/jnr.24311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Joanna Medina
- Department of Psychology and the Center for Neuroscience Research University at Albany, State University of New York New York
| | - Joanna L. Workman
- Department of Psychology and the Center for Neuroscience Research University at Albany, State University of New York New York
| |
Collapse
|
24
|
Subramanian S, Reichard RA, Stevenson HS, Schwartz ZM, Parsley KP, Zahm DS. Lateral preoptic and ventral pallidal roles in locomotion and other movements. Brain Struct Funct 2018; 223:2907-2924. [PMID: 29700637 PMCID: PMC5997555 DOI: 10.1007/s00429-018-1669-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
The lateral preoptic area (LPO) and ventral pallidum (VP) are structurally and functionally distinct territories in the subcommissural basal forebrain. It was recently shown that unilateral infusion of the GABAA receptor antagonist, bicuculline, into the LPO strongly invigorates exploratory locomotion, whereas bicuculline infused unilaterally into the VP has a negligible locomotor effect, but when infused bilaterally, produces vigorous, abnormal pivoting and gnawing movements and compulsive ingestion. This study was done to further characterize these responses. We observed that bilateral LPO infusions of bicuculline activate exploratory locomotion only slightly more potently than unilateral infusions and that unilateral and bilateral LPO injections of the GABAA receptor agonist muscimol potently suppress basal locomotion, but only modestly inhibit locomotion invigorated by amphetamine. In contrast, unilateral infusions of muscimol into the VP affect basal and amphetamine-elicited locomotion negligibly, but bilateral VP muscimol infusions profoundly suppress both. Locomotor activation elicited from the LPO by bicuculline was inhibited modestly and profoundly by blockade of dopamine D2 and D1 receptors, respectively, but was not entirely abolished even under combined blockade of dopamine D1 and D2 receptors. That is, infusing the LPO with bic caused instances of near normal, even if sporadic, invigoration of locomotion in the presence of saturating dopamine receptor blockade, indicating that LPO can stimulate locomotion in the absence of dopamine signaling. Pivoting following bilateral VP bicuculline infusions was unaffected by dopamine D2 receptor blockade, but was completely suppressed by D1 receptor blockade. The present results are discussed in a context of neuroanatomical and functional organization underlying exploratory locomotion and adaptive movements.
Collapse
Affiliation(s)
- Suriya Subramanian
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Rhett A Reichard
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Hunter S Stevenson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Zachary M Schwartz
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| |
Collapse
|
25
|
Gerecsei LI, Csillag A, Zachar G, Gévai L, Simon L, Dobolyi Á, Ádám Á. Gestational Exposure to the Synthetic Cathinone Methylenedioxypyrovalerone Results in Reduced Maternal Care and Behavioral Alterations in Mouse Pups. Front Neurosci 2018; 12:27. [PMID: 29459818 PMCID: PMC5807393 DOI: 10.3389/fnins.2018.00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
The member of synthetic cathinone family, methylenedioxypyrovalerone (MDPV), is a frequently used psychoactive drug of abuse. The objective of our study was to determine the effect of MDPV (administered from the 8th to the 14th day of gestation) on the behavior of neonatal and adolescent mice, as well as its effect on maternal care. We measured maternal care (pup retrieval test, nest building), locomotor activity (open field test), and motor coordination (grip strength test) of dams, whereas on pups we examined locomotor activity at postnatal day 7 and day 21 (open field test) and motor coordination on day 21 (grip strength test). On fresh-frozen brain samples of the dams we examined the expression of two important peptides implicated in the regulation of maternal behavior and lactation: tuberoinfundibular peptide 39 (TIP39) mRNA in the thalamic posterior intralaminar complex, and amylin mRNA in the medial preoptic nucleus. We detected decreased birth rate and survival of offspring, and reduced maternal care in the drug-treated animals, whereas there was no difference between the motility of treated and control mothers. Locomotor activity of the pups was increased in the MDPV treated group both at 7 and 21 days of age, while motor coordination was unaffected by MDPV treatment. TIP39 and amylin were detected in their typical location but failed to show a significant difference of expression between the drug-treated and control groups. The results suggest that chronic systemic administration of the cathinone agent MDPV to pregnant mice can reduce birth rate and maternal care, and it also enhances motility (without impairment of motor coordination) of the offspring.
Collapse
Affiliation(s)
- László I Gerecsei
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Lőrinc Gévai
- Laboratory of Sensorimotor Adaptation, Semmelweis University, Budapest, Hungary
| | - László Simon
- Laboratory of Sensorimotor Adaptation, Semmelweis University, Budapest, Hungary
| | - Árpád Dobolyi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Ágota Ádám
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Horrell ND, Hickmott PW, Saltzman W. Neural Regulation of Paternal Behavior in Mammals: Sensory, Neuroendocrine, and Experiential Influences on the Paternal Brain. Curr Top Behav Neurosci 2018; 43:111-160. [PMID: 30206901 DOI: 10.1007/7854_2018_55] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Across the animal kingdom, parents in many species devote extraordinary effort toward caring for offspring, often risking their lives and exhausting limited resources. Understanding how the brain orchestrates parental care, biasing effort over the many competing demands, is an important topic in social neuroscience. In mammals, maternal care is necessary for offspring survival and is largely mediated by changes in hormones and neuropeptides that fluctuate massively during pregnancy, parturition, and lactation (e.g., progesterone, estradiol, oxytocin, and prolactin). In the relatively small number of mammalian species in which parental care by fathers enhances offspring survival and development, males also undergo endocrine changes concurrent with birth of their offspring, but on a smaller scale than females. Thus, fathers additionally rely on sensory signals from their mates, environment, and/or offspring to orchestrate paternal behavior. Males can engage in a variety of infant-directed behaviors that range from infanticide to avoidance to care; in many species, males can display all three behaviors in their lifetime. The neural plasticity that underlies such stark changes in behavior is not well understood. In this chapter we summarize current data on the neural circuitry that has been proposed to underlie paternal care in mammals, as well as sensory, neuroendocrine, and experiential influences on paternal behavior and on the underlying circuitry. We highlight some of the gaps in our current knowledge of this system and propose future directions that will enable the development of a more comprehensive understanding of the proximate control of parenting by fathers.
Collapse
Affiliation(s)
- Nathan D Horrell
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Peter W Hickmott
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
27
|
Cittern D, Edalat A. A Neural Model of Empathic States in Attachment-Based Psychotherapy. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2017; 1:132-167. [PMID: 30090856 PMCID: PMC6067830 DOI: 10.1162/cpsy_a_00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 04/21/2017] [Indexed: 01/09/2023]
Abstract
We build on a neuroanatomical model of how empathic states can motivate caregiving behavior, via empathy circuit-driven activation of regions in the hypothalamus and amygdala, which in turn stimulate a mesolimbic-ventral pallidum pathway, by integrating findings related to the perception of pain in self and others. On this basis, we propose a network to capture states of personal distress and (weak and strong forms of) empathic concern, which are particularly relevant for psychotherapists conducting attachment-based interventions. This model is then extended for the case of self-attachment therapy, in which conceptualized components of the self serve as both the source of and target for empathic resonance. In particular, we consider how states of empathic concern involving an other that is perceived as being closely related to the self might enhance the motivation for self-directed bonding (which in turn is proposed to lead the individual toward more compassionate states) in terms of medial prefrontal cortex-mediated activation of these caregiving pathways. We simulate our model computationally and discuss the interplay between the bonding and empathy protocols of the therapy.
Collapse
Affiliation(s)
- David Cittern
- Algorithmic Human Development, Department of Computing, Imperial College London, London, United Kingdom
| | - Abbas Edalat
- Algorithmic Human Development, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Zilkha N, Scott N, Kimchi T. Sexual Dimorphism of Parental Care: From Genes to Behavior. Annu Rev Neurosci 2017; 40:273-305. [DOI: 10.1146/annurev-neuro-072116-031447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niv Scott
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
29
|
Bester-Meredith JK, Burns JN, Conley MF, Mammarella GE, Ng ND. Peromyscus as a model system for understanding the regulation of maternal behavior. Semin Cell Dev Biol 2016; 61:99-106. [PMID: 27381343 DOI: 10.1016/j.semcdb.2016.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022]
Abstract
The genus Peromyscus has been used as a model system for understanding maternal behavior because of the diversity of reproductive strategies within this genus. This review will describe the ecological factors that determine litter size and litter quality in polygynous species such as Peromyscus leucopus and Peromyscus maniculatus. We will also outline the physiological and social factors regulating maternal care in Peromyscus californicus, a monogamous and biparental species. Because biparental care is relatively rare in mammals, most research in P. californicus has focused on understanding the biology of paternal care while less research has focused on understanding maternal care. As a result, the social, sensory, and hormonal cues used to coordinate parental care between male and female P. californicus have been relatively well-studied. However, less is known about the physiology of maternal care in P. californicus and in other Peromyscus species. The diversity of the genus Peromyscus provides the potential for future research to continue to examine how variation in social systems has shaped the mechanisms that underlie maternal care.
Collapse
Affiliation(s)
- Janet K Bester-Meredith
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA.
| | - Jennifer N Burns
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA
| | - Mariah F Conley
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA
| | - Grace E Mammarella
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA
| | - Nathaniel D Ng
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA
| |
Collapse
|
30
|
Gammie SC. Current Models and Future Directions for Understanding the Neural Circuitries of Maternal Behaviors in Rodents. ACTA ACUST UNITED AC 2016; 4:119-35. [PMID: 16251728 DOI: 10.1177/1534582305281086] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maternal behaviors in rodents include a number of subcomponents, such as nursing, nest building, licking and grooming of pups, pup retrieval, and maternal aggression. Because each behavior involves a unique motor pattern, a unique ensemble neural circuitry must underlie each behavior. To what extent there is overlap in terms of brain regions and specific neurons for each circuit is being actively investigated. This review will first examine overlapping and separate components of pup retrieval and maternal aggression circuitries while examining a central role for medial preoptic area (MPA) in both behaviors. With an emphasis on experimental approaches, the review will then highlight recent findings and propose future directions for understanding maternal behavior regulation. Finally, examples for why studying the neural basis of maternal behaviors can bring insights to other areas of neuroscience, such as feeding, addiction, and anxiety and aggression regulation will be provided.
Collapse
|
31
|
Abstract
Rat maternal behavior is a complex social behavior. Many clinically used antipsychotic drugs, including the typical drug haloperidol and the atypical drugs clozapine, risperidone, olanzapine, quetiapine, aripiprazole, and amisulpride, disrupt active maternal responses (e.g. pup retrieval, pup licking, and nest building) to various extents. In this review, I present a summary of recent studies on the behavioral effects and neurobiological mechanisms of antipsychotic action on maternal behavior in rats. I argue that antipsychotic drugs at clinically relevant doses disrupt active maternal responses primarily by suppressing maternal motivation. Atypical drug-induced sedation also contributes to their disruptive effects, especially that on pup nursing. Among many potential receptor mechanisms, dopamine D2 receptors and serotonin 5-HT2A/2C receptors are shown to be critically involved in the mediation of the maternal disruptive effects of antipsychotic drugs, with D2 receptors contributing more to typical antipsychotic-induced disruptions, whereas 5-HT2A/2C receptors contributing more to atypical drug-induced disruptions. The nucleus accumbens shell-related reward circuitry is an essential neural network in the mediation of the behavioral effects of antipsychotic drugs on maternal behavior. This research not only helps understand the extent and mechanisms of impact of antipsychotic medications on human maternal care, but is also important for enhancing our understanding of the neurochemical basis of maternal behavior. It is also valuable for understanding the complete spectrum of therapeutic effects and side-effects of antipsychotic treatment. This knowledge may facilitate the development of effective intervening strategies to help patients coping with such undesirable effects.
Collapse
|
32
|
Numan M, Young LJ. Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Horm Behav 2016; 77:98-112. [PMID: 26062432 PMCID: PMC4671834 DOI: 10.1016/j.yhbeh.2015.05.015] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
This article is part of a Special Issue "Parental Care". Mother-infant bonding is a characteristic of virtually all mammals. The maternal neural system may have provided the scaffold upon which other types of social bonds in mammals have been built. For example, most mammals exhibit a polygamous mating system, but monogamy and pair bonding between mating partners occur in ~5% of mammalian species. In mammals, it is plausible that the neural mechanisms that promote mother-infant bonding have been modified by natural selection to establish the capacity to develop a selective bond with a mate during the evolution of monogamous mating strategies. Here we compare the details of the neural mechanisms that promote mother-infant bonding in rats and other mammals with those that underpin pair bond formation in the monogamous prairie vole. Although details remain to be resolved, remarkable similarities and a few differences between the mechanisms underlying these two types of bond formation are revealed. For example, amygdala and nucleus accumbens-ventral pallidum (NA-VP) circuits are involved in both types of bond formation, and dopamine and oxytocin actions within NA appear to promote the synaptic plasticity that allows either infant or mating partner stimuli to persistently activate NA-VP attraction circuits, leading to an enduring social attraction and bonding. Further, although the medial preoptic area is essential for maternal behavior, its role in pair bonding remains to be determined. Our review concludes by examining the broader implications of this comparative analysis, and evidence is provided that the maternal care system may have also provided the basic neural foundation for other types of strong social relationships, beyond pair bonding, in mammals, including humans.
Collapse
Affiliation(s)
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
33
|
Pereira M, Ferreira A. Neuroanatomical and neurochemical basis of parenting: Dynamic coordination of motivational, affective and cognitive processes. Horm Behav 2016; 77:72-85. [PMID: 26296592 DOI: 10.1016/j.yhbeh.2015.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "Parental Care". Becoming a parent is arguably the most profound transforming experience in life. It is also inherently very emotionally and physically demanding, such that the reciprocal interaction with the young changes the brain and behavior of the parents. In this review, we examine the neurobiological mechanisms of parenting primarily discussing recent research findings in rodents and primates, especially humans. We argue that it is essential to consider parenting within a conceptual framework that recognizes the dynamics of the reciprocal mother-young relationship, including both the complexity and neuroplasticity of its underlying mechanisms. Converging research suggests that the concerted activity of a distributed network of subcortical and cortical brain structures regulates different key aspects of parenting, including the sensory analysis of infant stimuli as well as motivational, affective and cognitive processes. The interplay among these processes depends on the action of various neurotransmitters and hormones that modulate the timely and coordinated execution of caregiving responses of the maternal circuitry exquisitely attuned to the young's affect, needs and developmental stage. We conclude with a summary and a set of questions that may guide future research.
Collapse
Affiliation(s)
- Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, USA.
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
34
|
Stolzenberg DS, Champagne FA. Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Horm Behav 2016; 77:204-10. [PMID: 26172856 DOI: 10.1016/j.yhbeh.2015.07.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022]
Abstract
This article is part of a Special Issue "Parental Care". Though hormonal changes occurring throughout pregnancy and at the time of parturition have been demonstrated to prime the maternal brain and trigger the onset of mother-infant interactions, extended experience with neonates can induce similar behavioral interactions. Sensitization, a phenomenon in which rodents engage in parental responses to young following constant cohabitation with donor pups, was elegantly demonstrated by Rosenblatt (1967) to occur in females and males, independent of hormonal status. Study of the non-hormonal basis of maternal behavior has contributed significantly to our understanding of hormonal influences on the maternal brain and the cellular and molecular mechanisms that mediate maternal behavior. Here, we highlight our current understanding regarding both hormone-induced and experience-induced maternal responsivity and the mechanisms that may serve as a common pathway through which increases in maternal behavior are achieved. In particular, we describe the epigenetic changes that contribute to chromatin remodeling and how these molecular mechanisms may influence the neural substrates of the maternal brain. We also consider how individual differences in these systems emerge during development in response to maternal care. This research has broad implications for our understanding of the parental brain and the role of experience in the induction of neurobiological and behavior changes.
Collapse
|
35
|
Akther S, Huang Z, Liang M, Zhong J, Fakhrul AAKM, Yuhi T, Lopatina O, Salmina AB, Yokoyama S, Higashida C, Tsuji T, Matsuo M, Higashida H. Paternal Retrieval Behavior Regulated by Brain Estrogen Synthetase (Aromatase) in Mouse Sires that Engage in Communicative Interactions with Pairmates. Front Neurosci 2015; 9:450. [PMID: 26696812 PMCID: PMC4678232 DOI: 10.3389/fnins.2015.00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/13/2015] [Indexed: 12/03/2022] Open
Abstract
Parental behaviors involve complex social recognition and memory processes and interactive behavior with children that can greatly facilitate healthy human family life. Fathers play a substantial role in child care in a small but significant number of mammals, including humans. However, the brain mechanism that controls male parental behavior is much less understood than that controlling female parental behavior. Fathers of non-monogamous laboratory ICR mice are an interesting model for examining the factors that influence paternal responsiveness because sires can exhibit maternal-like parental care (retrieval of pups) when separated from their pups along with their pairmates because of olfactory and auditory signals from the dams. Here we tested whether paternal behavior is related to femininity by the aromatization of testosterone. For this purpose, we measured the immunoreactivity of aromatase [cytochrome P450 family 19 (CYP19)], which synthesizes estrogen from androgen, in nine brain regions of the sire. We observed higher levels of aromatase expression in these areas of the sire brain when they engaged in communicative interactions with dams in separate cages. Interestingly, the number of nuclei with aromatase immunoreactivity in sires left together with maternal mates in the home cage after pup-removing was significantly larger than that in sires housed with a whole family. The capacity of sires to retrieve pups was increased following a period of 5 days spent with the pups as a whole family after parturition, whereas the acquisition of this ability was suppressed in sires treated daily with an aromatase inhibitor. The results demonstrate that the dam significantly stimulates aromatase in the male brain and that the presence of the pups has an inhibitory effect on this increase. These results also suggest that brain aromatization regulates the initiation, development, and maintenance of paternal behavior in the ICR male mice.
Collapse
Affiliation(s)
- Shirin Akther
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Zhiqi Huang
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Mingkun Liang
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Azam A K M Fakhrul
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan ; Department of Biochemistry, Medical Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Chiharu Higashida
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Takahiro Tsuji
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Mie Matsuo
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| |
Collapse
|
36
|
Martín-Sánchez A, Valera-Marín G, Hernández-Martínez A, Lanuza E, Martínez-García F, Agustín-Pavón C. Wired for motherhood: induction of maternal care but not maternal aggression in virgin female CD1 mice. Front Behav Neurosci 2015; 9:197. [PMID: 26257621 PMCID: PMC4512027 DOI: 10.3389/fnbeh.2015.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 12/28/2022] Open
Abstract
Virgin adult female mice display nearly spontaneous maternal care towards foster pups after a short period of sensitization. This indicates that maternal care is triggered by sensory stimulation provided by the pups and that its onset is largely independent on the physiological events related to gestation, parturition and lactation. Conversely, the factors influencing maternal aggression are poorly understood. In this study, we sought to characterize two models of maternal sensitization in the outbred CD1 strain. To do so, a group of virgin females (godmothers) were exposed to continuous cohabitation with a lactating dam and their pups from the moment of parturition, whereas a second group (pup-sensitized females), were exposed 2 h daily to foster pups. Both groups were tested for maternal behavior on postnatal days 2–4. Godmothers expressed full maternal care from the first test. Also, they expressed higher levels of crouching than dams. Pup-sensitized females differed from dams in all measures of pup-directed behavior in the first test, and expressed full maternal care after two sessions of contact with pups. However, both protocols failed to induce maternal aggression toward a male intruder after full onset of pup-directed maternal behavior, even in the presence of pups. Our study confirms that adult female mice need a short sensitization period before the onset of maternal care. Further, it shows that pup-oriented and non-pup-oriented components of maternal behavior are under different physiological control. We conclude that the godmother model might be useful to study the physiological and neural bases of the maternal behavior repertoire.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Laboratory of Functional Neuroanatomy (NeuroFun), Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain ; Departaments de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Guillermo Valera-Marín
- Departaments de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Adoración Hernández-Martínez
- Departaments de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Enrique Lanuza
- Departaments de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Fernando Martínez-García
- Laboratory of Functional Neuroanatomy (NeuroFun), Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Laboratory of Functional Neuroanatomy (NeuroFun), Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| |
Collapse
|
37
|
Yang Y, Qin J, Chen W, Sui N, Chen H, Li M. Behavioral and pharmacological investigation of anxiety and maternal responsiveness of postpartum female rats in a pup elevated plus maze. Behav Brain Res 2015; 292:414-27. [PMID: 26159828 DOI: 10.1016/j.bbr.2015.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023]
Abstract
The present study investigated the validity of a novel pup-based repeated elevated plus maze task to detect reduced anxiety and increased maternal responsiveness in postpartum female rats and explored the roles of dopamine D2, serotonin transporter and GABA/benzodiazepine receptors in the mediation of these processes. Sprague-Dawley postpartum or nulliparous female rats were tested 4 times every other day on postpartum days 4, 6 and 8 in an elevated plus maze with 4 pups or 4 pup-size erasers placed on each end of the two open arms. When tested with erasers, untreated postpartum mother rats entered the open arms proportionally more than nulliparous rats. They also tended to spend more time in the open arms, indicating reduced anxiety. When tested with pups, postpartum rats retrieved pups into the closed arms, entered the open arms and closed arms more and had a higher moving speed than nulliparous rats, indicating increased maternal responsiveness. Both haloperidol (0.1 or 0.2 mg/kg, sc) and fluoxetine (5 or 10 mg/kg, ip) dose- and time-dependently decreased the percentage of time spent in the open arms and speed, but did not affect the percentage of open arm entries. Diazepam (1.0 or 2.0 mg/kg, ip) did not affect pup retrieval, open arm time/entry in lactating rats. Thus, the percentage of open arm entries appears to be the most sensitive measure of anxiety in postpartum female rats, while speed could be used to index maternal responsiveness to pups, which are likely mediated by the dopamine D2 and serotonin transporter systems.
Collapse
Affiliation(s)
- Yu Yang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingxue Qin
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Weihai Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
38
|
Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 2015; 130:29-70. [PMID: 25857550 PMCID: PMC4687907 DOI: 10.1016/j.pneurobio.2015.03.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 03/19/2015] [Accepted: 03/29/2015] [Indexed: 12/17/2022]
Abstract
The ventral pallidum (VP) plays a critical role in the processing and execution of motivated behaviors. Yet this brain region is often overlooked in published discussions of the neurobiology of mental health (e.g., addiction, depression). This contributes to a gap in understanding the neurobiological mechanisms of psychiatric disorders. This review is presented to help bridge the gap by providing a resource for current knowledge of VP anatomy, projection patterns and subregional circuits, and how this organization relates to the function of VP neurons and ultimately behavior. For example, ventromedial (VPvm) and dorsolateral (VPdl) VP subregions receive projections from nucleus accumbens shell and core, respectively. Inhibitory GABAergic neurons of the VPvm project to mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area, and this VP subregion helps discriminate the appropriate conditions to acquire natural rewards or drugs of abuse, consume preferred foods, and perform working memory tasks. GABAergic neurons of the VPdl project to subthalamic nucleus and substantia nigra pars reticulata, and this VP subregion is modulated by, and is necessary for, drug-seeking behavior. Additional circuits arise from nonGABAergic neuronal phenotypes that are likely to excite rather than inhibit their targets. These subregional and neuronal phenotypic circuits place the VP in a unique position to process motivationally relevant stimuli and coherent adaptive behaviors.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, New Brunswick, NJ 08854, United States.
| | - Roberto I Melendez
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, United States.
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, United States.
| | - T Celeste Napier
- Departments of Pharmacology and Psychiatry, Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
39
|
Lonstein JS, Lévy F, Fleming AS. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Horm Behav 2015; 73:156-85. [PMID: 26122301 PMCID: PMC4546863 DOI: 10.1016/j.yhbeh.2015.06.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal "models" do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing caregiving behaviors.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA; Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| | - Frédéric Lévy
- Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours IFCE, Nouzilly 37380, France.
| | - Alison S Fleming
- Fraser Mustard Institute for Human Development, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
40
|
Sensitive periods in human social development: New insights from research on oxytocin, synchrony, and high-risk parenting. Dev Psychopathol 2015; 27:369-95. [DOI: 10.1017/s0954579415000048] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractSensitive periods (SP) in behavioral development appeared in the biological sciences during the first decade of the 20th century, and research in animal models beginning in the 1950s provide terminology and evidence for SP effects. This paper proposes a rigorous program for human SP research and argues that the complexity of the human brain and variability of the human ecology necessitate that SP effects must be studied in humans, employ longitudinal designs starting at birth, test mechanism-based hypotheses based on animal studies that manipulate early environments, and utilize high-risk conditions as “natural experiments.” In light of research on the molecular basis of critical periods and their sequential cascades, it is proposed that the oxytocin (OT) system, an ancient and integrative system that cross-talks with the stress, reward, immune, and brain stem mediated homeostatic systems and supports mammalian sociality, plays a unique role in experience-dependent plasticity that buttresses SP effects due to its (a) dendritic mode of release leading to autoregulated functioning primed by early experience, (b) pulsatile pattern of activity, and (c) special role in neural plasticity at the molecular and network assembly levels. Synchrony, the coordination of biology and behavior during social contact, is suggested as a mechanism by which SP exert their effect on OT functionality, the social brain, and adult sociality. Findings from four high-risk birth cohorts, each followed repeatedly from birth to 10 years, provide unique “natural experiments” for human SP research based on specific programs in animal models. These include prematurity (maternal proximity), multiple birth (peer rearing), postpartum depression (low licking and grooming), and chronic unpredictable trauma (maternal rotation, variable foraging demands). In each cohort, hypotheses are based on the missing environmental component during SP, and findings on social synchrony, OT functionality, stress response, emotion regulation, and mental health accord with the multilevel and dynamic principles of developmental psychopathology. The results on the potential for reparation versus chronicity following early deprivation highlight a flexible conceptualization of resilience based on human SP research. Consideration of SP effects at the molecular, endocrine, brain, and behavioral levels and in relation to the neural plasticity and multifinality of human social functions may assist in fine-tuning early detection and the construction of targeted individualized interventions.
Collapse
|
41
|
Zhong J, Liang M, Akther S, Higashida C, Tsuji T, Higashida H. c-Fos expression in the paternal mouse brain induced by communicative interaction with maternal mates. Mol Brain 2014; 7:66. [PMID: 25208928 PMCID: PMC4172782 DOI: 10.1186/s13041-014-0066-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Appropriate parental care by fathers greatly facilitates health in human family life. Much less is known from animal studies regarding the factors and neural circuitry that affect paternal behavior compared with those affecting maternal behavior. We recently reported that ICR mouse sires displayed maternal-like retrieval behavior when they were separated from pups and caged with their mates (co-housing) because the sires receive communicative interactions via ultrasonic and pheromone signals from the dams. We investigated the brain structures involved in regulating this activity by quantifying c-Fos-immunoreactive cells as neuronal activation markers in the neural pathway of male parental behavior. RESULTS c-Fos expression in the medial preoptic area (mPOA) was significantly higher in sires that exhibited retrieval behavior (retrievers) than those with no such behavior (non-retrievers). Identical increased expression was found in the mPOA region in the retrievers stimulated by ultrasonic vocalizations or pheromones from their mates. Such increases in expression were not observed in the ventral tegmental area (VTA), nucleus accumbens (NAcc) or ventral palladium (VP). On the following day that we identified the families of the retrievers or non-retrievers, c-Fos expression in neuronal subsets in the mPOA, VTA, NAcc and VP was much higher in the retriever sires when they isolated together with their mates in new cages. This difference was not observed in the singly isolated retriever sires in new cages. The non-retriever sires did not display expression changes in the four brain regions that were assessed. CONCLUSION The mPOA neurons appeared to be activated by direct communicative interactions with mate dams, including ultrasonic vocalizations and pheromones. The mPOA-VTA-NAcc-VP neural circuit appears to be involved in paternal retrieval behavior.
Collapse
Affiliation(s)
| | | | | | | | | | - Haruhiro Higashida
- Kanazawa University Center for Child Mental Development, Kanazawa, Japan.
| |
Collapse
|
42
|
Benedetto L, Pereira M, Ferreira A, Torterolo P. Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides 2014; 58:20-5. [PMID: 24893251 DOI: 10.1016/j.peptides.2014.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/16/2023]
Abstract
Melanin-concentrating hormone (MCH) is an inhibitory neuropeptide mainly synthesized in neurons of the lateral hypothalamus and incerto-hypothalamic area of mammals that has been implicated in behavioral functions related to motivation. During lactation, this neuropeptide is also expressed in the medial preoptic area (mPOA), a key region of the maternal behavior circuitry. Notably, whereas MCH expression in the mPOA progressively increases during lactation, maternal behavior naturally declines, suggesting that elevated MCHergic activity in the mPOA inhibit maternal behavior in the late postpartum period. To explore this idea, we assessed the maternal behavior of early postpartum females following bilateral microinfusions of either MCH (50 and 100 ng/0.2 μl/side) or the same volume of vehicle into the mPOA. As expected, females receiving 100 ng MCH into the mPOA exhibited significant deficits in the active components of maternal behavior, including retrieving and nest building. In contrast, nursing, as well as other behaviors, including locomotor activity, exploration, and anxiety-like behavior, were not affected by intra-mPOA MCH infusion. The present results, together with previous findings showing elevated expression of this neuropeptide toward the end of the postpartum period, suggest that modulation of mPOA function by MCH may contribute to the weaning of maternal responsiveness characteristic of the late postpartum period.
Collapse
Affiliation(s)
- Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Pereira
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
43
|
Veening JG, de Jong TR, Waldinger MD, Korte SM, Olivier B. The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 2014; 753:209-28. [PMID: 25088178 DOI: 10.1016/j.ejphar.2014.07.045] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
Oxytocin (OT) is a nonapeptide with an impressive variety of physiological functions. Among them, the 'prosocial' effects have been discussed in several recent reviews, but the direct effects on male and female sexual behavior did receive much less attention so far. As our contribution to honor the lifelong interest of Berend Olivier in the control mechanisms of sexual behavior, we decided to explore the role of OT in the present review. In the successive sections, some physiological mechanisms and the 'pair-bonding' effects of OT will be discussed, followed by sections about desire, female appetitive and copulatory behavior, including lordosis and orgasm. At the male side, the effects on erection and ejaculation are reviewed, followed by a section about 'premature ejaculation' and a possible role of OT in its treatment. In addition to OT, serotonin receives some attention as one of the main mechanisms controlling the effects of OT. In the succeeding sections, the importance of OT for 'the fruits of labor' is discussed, as it plays an important role in both maternal and paternal behavior. Finally, we pay attention to an intriguing brain area, the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), apparently functioning in both sexual and aggressive behavior, which are at first view completely opposite behavioral systems.
Collapse
Affiliation(s)
- J G Veening
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands; Department of Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - T R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany
| | - M D Waldinger
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - S M Korte
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - B Olivier
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
44
|
Liang M, Zhong J, Liu HX, Lopatina O, Nakada R, Yamauchi AM, Higashida H. Pairmate-dependent pup retrieval as parental behavior in male mice. Front Neurosci 2014; 8:186. [PMID: 25071431 PMCID: PMC4092370 DOI: 10.3389/fnins.2014.00186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/11/2014] [Indexed: 01/20/2023] Open
Abstract
Appropriate parental care by fathers can greatly facilitate healthy human family life. However, much less is known about paternal behavior in animals compared to those regarding maternal behavior. Previously, we reported that male ICR strain laboratory mice, although not spontaneously parental, can be induced to display maternal-like parental care (pup retrieval) when separated from their pups by signals from the pairmate dam (Liu et al., 2013). This parental behavior by the ICR sires, which are not genetically biparental, is novel and has been designated as pairmate-dependent paternal behavior. However, the factors critical for this paternal behavior are unclear. Here, we report that the pairmate-dependent paternal retrieval behavior is observed especially in the ICR strain and not in C57BL/6 or BALB/c mice. An ICR sire displays retrieval behavior only toward his biological pups. A sire co-housed with an unrelated non-pairing dam in a new environment, under which 38-kHz ultrasonic vocalizations are not detected, does not show parenting behavior. It is important for sires to establish their own home territory (cage) by continuous housing and testing to display retrieval behavior. These results indicated that the ICR sires display distinct paternity, including father-child social interaction, and shed light on parental behavior, although further analyses of paternal care at the neuroendocrinological and neurocircuitry levels are required.
Collapse
Affiliation(s)
- Mingkun Liang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Hong-Xiang Liu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Ryusuke Nakada
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Agnes-Mikiko Yamauchi
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| |
Collapse
|
45
|
Akther S, Fakhrul AAKM, Higashida H. Effects of electrical lesions of the medial preoptic area and the ventral pallidum on mate-dependent paternal behavior in mice. Neurosci Lett 2014; 570:21-5. [PMID: 24721669 DOI: 10.1016/j.neulet.2014.03.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/25/2014] [Accepted: 03/29/2014] [Indexed: 11/18/2022]
Abstract
In laboratory animals, less is known about the neural circuits that mediate paternal behavior than those that influence maternal behavior. In mice, we recently reported that when sires are separated with their mate dams from their pups, ultrasound and pheromonal signals from the dams can evoke and initiate maternal-like retrieval behavior in the sires upon reunion with the offspring; this is termed mate-dependent paternal care. We used electrolytic brain lesion (EBL) methods to identify the potential roles of the medial preoptic area (mPOA) and ventral pallidum (VP) regions in regulating paternal care, areas known to be critical for the expression of maternal behavior. Electrolytic lesions of the mPOA or VP disrupted mate-dependent paternal care; latencies to initiate pup retrieval, grooming and crouching were longer in the EBL-treated sires relative to the sham-operated mice. The number of grooming episodes and duration of crouching were also lower in sires with the EBL in both areas. These results indicate that the mPOA and VP regions are essential for mate-dependent paternal care in mice.
Collapse
Affiliation(s)
- Shirin Akther
- Department of Basic Research on Social Cognition, Kanazawa University Center for Child Mental Development, Kanazawa 920-8640, Japan
| | - Azam A K M Fakhrul
- Department of Basic Research on Social Cognition, Kanazawa University Center for Child Mental Development, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Cognition, Kanazawa University Center for Child Mental Development, Kanazawa 920-8640, Japan.
| |
Collapse
|
46
|
Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology 2013; 38:3070-84. [PMID: 24094875 PMCID: PMC3844093 DOI: 10.1016/j.psyneuen.2013.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 01/17/2023]
Abstract
Nursing has important physiological and psychological consequences on mothers during the postpartum period. Tuberoinfundibular peptide of 39 residues (TIP39) may contribute to its effects on prolactin release and maternal motivation. Since TIP39-containing fibers and the receptor for TIP39, the parathyroid hormone 2 receptor (PTH2 receptor) are abundant in the arcuate nucleus and the medial preoptic area, we antagonized TIP39 action locally to reveal its actions. Mediobasal hypothalamic injection of a virus encoding an antagonist of the PTH2 receptor markedly decreased basal serum prolactin levels and the suckling-induced prolactin release. In contrast, injecting this virus into the preoptic area had no effect on prolactin levels, but did dampen maternal motivation, judged by reduced time in a pup-associated cage during a place preference test. In support of an effect of TIP39 on maternal motivation, we observed that TIP39 containing fibers and terminals had the same distribution within the preoptic area as neurons expressing Fos in response to suckling. Furthermore, TIP39 terminals closely apposed the plasma membrane of 82% of Fos-ir neurons. Retrograde tracer injected into the arcuate nucleus and the medial preoptic area labeled TIP39 neurons in the posterior intralaminar complex of the thalamus (PIL), indicating that these cells but not other groups of TIP39 neurons project to these hypothalamic regions. We also found that TIP39 mRNA levels in the PIL markedly increased around parturition and remained elevated throughout the lactation period, demonstrating the availability of the peptide in postpartum mothers. Furthermore, suckling, but not pup exposure without physical contact, increased Fos expression by PIL TIP39 neurons. These results indicate that suckling activates TIP39 neurons in the PIL that affect prolactin release and maternal motivation via projections to the arcuate nucleus and the preoptic area, respectively.
Collapse
|
47
|
Henschen CW, Palmiter RD, Darvas M. Restoration of dopamine signaling to the dorsal striatum is sufficient for aspects of active maternal behavior in female mice. Endocrinology 2013; 154:4316-27. [PMID: 23959937 PMCID: PMC5398593 DOI: 10.1210/en.2013-1257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Striatal dopamine (DA) is important for motivated behaviors, including maternal behavior. Recent evidence linking the dorsal striatum with goal-directed behavior suggests that DA signaling in the dorsal striatum, not just the nucleus accumbens, could be involved in maternal behavior. To investigate this question, we tested the maternal behavior of mice with DA genetically restricted to the dorsal striatum. These mice had a mild deficit in pup retrieval but had normal licking/grooming and nursing behavior; consequently, pups were weaned successfully. We also tested a separate group of mice with severely depleted DA in all striatal areas. They had severe deficits in pup retrieval and licking/grooming behavior, whereas nursing behavior was left intact; again, pups survived to weaning at normal rates. We conclude that DA signaling in the striatum is a part of the circuitry mediating maternal behavior and is specifically relevant for active, but not passive, maternal behaviors. In addition, DA in the dorsal striatum is sufficient to allow for active maternal behavior.
Collapse
Affiliation(s)
- Charles W Henschen
- Department of Biochemistry, 1959 Northeast Pacific Street, Box 357370, University of Washington, Seattle, WA 98195.
| | | | | |
Collapse
|
48
|
Banerjee SB, Liu RC. Storing maternal memories: hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues. Front Neuroendocrinol 2013; 34:300-14. [PMID: 23916405 PMCID: PMC3788048 DOI: 10.1016/j.yfrne.2013.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/15/2022]
Abstract
Much of the literature on maternal behavior has focused on the role of infant experience and hormones in a canonical subcortical circuit for maternal motivation and maternal memory. Although early studies demonstrated that the cerebral cortex also plays a significant role in maternal behaviors, little has been done to explore what that role may be. Recent work though has provided evidence that the cortex, particularly sensory cortices, contains correlates of sensory memories of infant cues, consistent with classical studies of experience-dependent sensory cortical plasticity in non-maternal paradigms. By reviewing the literature from both the maternal behavior and sensory cortical plasticity fields, focusing on the auditory modality, we hypothesize that maternal hormones (predominantly estrogen) may act to prime auditory cortical neurons for a longer-lasting neural trace of infant vocal cues, thereby facilitating recognition and discrimination. This couldthen more efficiently activate the subcortical circuit to elicit and sustain maternal behavior.
Collapse
Affiliation(s)
- Sunayana B. Banerjee
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322
| | - Robert C. Liu
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322
| |
Collapse
|
49
|
Akther S, Korshnova N, Zhong J, Liang M, Cherepanov SM, Lopatina O, Komleva YK, Salmina AB, Nishimura T, Fakhrul AA, Hirai H, Kato I, Yamamoto Y, Takasawa S, Okamoto H, Higashida H. CD38 in the nucleus accumbens and oxytocin are related to paternal behavior in mice. Mol Brain 2013; 6:41. [PMID: 24059452 PMCID: PMC3848913 DOI: 10.1186/1756-6606-6-41] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
Background Mammalian sires participate in infant care. We previously demonstrated that sires of a strain of nonmonogamous laboratory mice initiate parental retrieval behavior in response to olfactory and auditory signals from the dam during isolation in a new environment. This behavior is rapidly lost in the absence of such signals when the sires are caged alone. The neural circuitry and hormones that control paternal behavior are not well-understood. CD38, a membrane glycoprotein, catalyzes synthesis of cyclic ADP-ribose and facilitates oxytocin (OT) secretion due to cyclic ADP-ribose-dependent increases in cytosolic free calcium concentrations in oxytocinergic neurons in the hypothalamus. In this paper, we studied CD38 in the nucleus accumbens (NAcc) and the role of OT on paternal pup retrieval behavior using CD38 knockout (CD38−/−) mice of the ICR strain. Results CD38−/− sires failed to retrieve when they were reunited with their pups after isolation together with the mate dams, but not with pup, in a novel cage for 10 min. CD38−/− sires treated with a single subcutaneous injection of OT exhibited recovery in the retrieval events when caged with CD38−/− dams treated with OT. We introduced human CD38 in the NAcc of CD38−/− sires using a lentiviral infection technique and examined the effects of local expression of CD38. Pairs of knockout dams treated with OT and sires expressing CD38 in the NAcc showed more retrieval (83% of wild-type sire levels). Complete recovery of retrieval was obtained in sires with the expression of CD38 in the NAcc in combination with OT administration. Other paternal behaviors, including pup grooming, crouching and huddling, were also more common in CD38−/− sires with CD38 expression in the NAcc compared with those in CD38−/− sires without CD38 expression in the NAcc. Conclusions CD38 in the NAcc and OT are critical in paternal behavior.
Collapse
Affiliation(s)
- Shirin Akther
- Kanazawa University Center for Child Mental Development, Kanazawa 920-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ophir AG, Sorochman G, Evans BL, Prounis GS. Stability and dynamics of forebrain vasopressin receptor and oxytocin receptor during pregnancy in prairie voles. J Neuroendocrinol 2013; 25:719-28. [PMID: 23656585 PMCID: PMC3716852 DOI: 10.1111/jne.12049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 04/19/2013] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
During pregnancy, females undergo several physiologically driven changes that facilitate adaptive behaviours and prepare the mother to care for her developing offspring. The nonapeptide hormone oxytocin is best recognised for its involvement in mammalian pregnancy and has been tightly associated with maternal care, in addition to its roles in pregnancy, parturition and lactation. A closely-related nonapeptide hormone, arganine vasopressin, has received considerably less attention for its role in pregnancy, although it has recently been implicated in modulating maternal care and aggression. In the present study, we examined the expression patterns of receptors for oxytocin (OXTR) and vasopressin (V1aR) over the course of pregnancy, ranging from non-mated virgin to immediately postpartum female prairie voles (Microtus ochrogaster). Unexpectedly, we found that OXTR was highly stable in all measured structures in the forebrain. V1aR was also stable throughout most of the brain. Two exceptions to this were found in the ventral pallidum (VPall) and the paraventricular nucleus of the hypothalamus (PVN); both significantly correlated with the length of time that females were pregnant. Changes in the PVN may reflect functional feedback in vasopressin release, or preparatory changes for ensuing maternal behaviour. The results also indicate an unappreciated role for VPall V1aR in pregnancy, which may relate to the function of the VPall in hedonic 'liking' and motivational 'wanting.' Taken together, our data indicate that, with a few compelling exceptions, nonapeptide dynamics during prairie vole pregnancy are largely limited to changes in the synthesis and release of oxytocin and vasopressin, and not the receptors to which they bind.
Collapse
Affiliation(s)
- A G Ophir
- Department of Zoology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|