1
|
Zhai W, Fu Y, Liu L, Huang X, Wang S. Metabolomics Reveal Key Metabolic Pathway Responses to Anxiety State Regulated by Serotonin in Portunus trituberculatus. Metabolites 2024; 14:568. [PMID: 39452949 PMCID: PMC11509519 DOI: 10.3390/metabo14100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Anxiety refers to the pathological persistence and intensification of emotional responses to danger, affecting health from psychological and physical aspects. Serotonin is an important neurotransmitter involved in the onset of anxiety. METHODS AND RESULTS To explore the biological changes in the formation of anxiety in crustaceans under the regulation of serotonin, we applied the open field-like test method for assessing anxiety states of larval Portunus trituberculatus, a highly aggressive crustacean species with a more simple neural structure compared with rodents and mammals. Compared with the control group, serotonin treatment resulted in a significant decrease in the time spent by the larvae in the central zone, suggesting anxiety-like behavior. Clonazepam treatment reversed this result and provided further evidence that the behavior of larval P. trituberculatus displayed anxiety. Moreover, a non-targeted metabolomic analysis found a significant alteration in the metabolites involved in tryptophan metabolism pathways associated with anxiety, including L-kynurenine, N-acetyl serotonin, and serotonin. These metabolites are involved in the serotonin pathway, the kynurenine pathway, and other pathways that affect anxiety through tryptophan metabolism. There were no significant differences in tryptophan metabolism levels between the control and clonazepam treatment groups. CONCLUSIONS Our results demonstrate the possible existence of anxiety-like behavior in the larvae of P. trituberculatus from two perspectives. Being a species with a simpler neural structure than that of mammals, the larvae of P. trituberculatus offer a convenient model for studying the mechanisms of anxiety in crustaceans.
Collapse
Affiliation(s)
- Wei Zhai
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo 315832, China;
| | - Lei Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| | - Xinlian Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| | - Sixiang Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| |
Collapse
|
2
|
de Oliveira-Júnior BA, Marques DB, Rossignoli MT, Prizon T, Leite JP, Ruggiero RN. Multidimensional behavioral profiles associated with resilience and susceptibility after inescapable stress. Sci Rep 2024; 14:9699. [PMID: 38678053 PMCID: PMC11055923 DOI: 10.1038/s41598-024-59984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Clinical depression is characterized by multiple concurrent symptoms, manifesting as a complex heterogeneous condition. Although some well-established classical behavioral assessments are widespread in rodent models, it remains uncertain whether rats also display stress-induced depression-related phenotypes in a multidimensional manner, i.e., simultaneous alterations in multiple behavioral tests. Here, we investigated multivariate patterns and profiles of depression-related behavioral traits in male Wistar rats subjected to inescapable footshocks (IS) or no-shocks (NS), followed by a comprehensive battery of behavioral tests and ethological characterization. We observed generalized stronger intra-test but weaker inter-test correlations. However, feature clustering of behavioral measures successfully delineated variables linked to resilience and susceptibility to stress. Accordingly, a noteworthy covariation pattern emerged, characterized by increased open field locomotion, reduced time in the elevated plus maze open arms, lower sucrose preference, and increased shuttle box escape failures that consistently differentiated IS from NS. Surprisingly there is little contribution from forced swim. In addition, individual clustering revealed a diversity of behavioral profiles, naturally separating NS and IS, including subpopulations entirely characterized by resilience or susceptibility. In conclusion, our study elucidates intricate relationships among classical depression-related behavioral measures, highlighting multidimensional individual variability. Our work emphasizes the importance of a multivariate framework for behavioral assessment in animal models to understand stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Benedito Alves de Oliveira-Júnior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Gallas-Lopes M, Bastos LM, Benvenutti R, Panzenhagen AC, Piato A, Herrmann AP. Systematic review and meta-analysis of 10 years of unpredictable chronic stress in zebrafish. Lab Anim (NY) 2023; 52:229-246. [PMID: 37709998 DOI: 10.1038/s41684-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
The zebrafish (Danio rerio) is a model animal that is being increasingly used in neuroscience research. A decade ago, the first study on unpredictable chronic stress (UCS) in zebrafish was published, inspired by protocols established for rodents in the early 1980s. Since then, several studies have been published by different groups, in some cases with conflicting results. Here we conducted a systematic review to identify studies evaluating the effects of UCS in zebrafish and meta-analytically synthetized the data of neurobehavioral outcomes and relevant biomarkers. Literature searches were performed in three databases (PubMed, Scopus and Web of Science) with a two-step screening process based on inclusion/exclusion criteria. The included studies underwent extraction of qualitative and quantitative data, as well as risk-of-bias assessment. Outcomes of included studies (n = 38) were grouped into anxiety/fear-related behavior, locomotor function, social behavior or cortisol level domains. UCS increased anxiety/fear-related behavior and cortisol levels while decreasing locomotor function, but a significant summary effect was not observed for social behavior. Despite including a substantial number of studies, the high heterogeneity and the methodological and reporting problems evidenced in the risk-of-bias analysis made it difficult to assess the internal validity of most studies and the overall validity of the model. Our review thus evidences the need to conduct well-designed experiments to better evaluate the effects of UCS on diverse behavioral patterns displayed by zebrafish.
Collapse
Affiliation(s)
- Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo M Bastos
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Radharani Benvenutti
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alana C Panzenhagen
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil.
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Pharmacological Implications of Adjusting Abnormal Fear Memory: Towards the Treatment of Post-Traumatic Stress Disorder. Pharmaceuticals (Basel) 2022; 15:ph15070788. [PMID: 35890087 PMCID: PMC9322538 DOI: 10.3390/ph15070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a unique clinical mental abnormality presenting a cluster of symptoms in which patients primarily experience flashbacks, nightmares and uncontrollable thoughts about the event that triggered their PTSD. Patients with PTSD may also have comorbid depression and anxiety in an intractable and long-term course, which makes establishing a comprehensive treatment plan difficult and complicated. The present article reviews current pharmacological manipulations for adjusting abnormal fear memory. The roles of the central monoaminergic systems (including serotonin, norepinephrine and dopamine) within the fear circuit areas and the involvement of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor (GR) are explored based on attempts to integrate current clinical and preclinical basic studies. In this review, we explain how these therapeutic paradigms function based on their connections to stages of the abnormal fear memory process from condition to extinction. This may provide useful translational interpretations for clinicians to manage PTSD.
Collapse
|
5
|
Bosch K, Sbrini G, Burattini I, Nieuwenhuis D, Calabrese F, Schubert D, Henckens MJAG, Homberg JR. Repeated testing modulates chronic unpredictable mild stress effects in male rats. Behav Brain Res 2022; 432:113960. [PMID: 35697177 DOI: 10.1016/j.bbr.2022.113960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Depression is a highly prevalent, debilitating mental disorder. Chronic unpredictable mild stress (CUMS) is the most widely applied model to study this affliction in rodents. While studies incorporating CUMS prior to an intervention often require long-lasting stress effects that persist after exposure is ceased, the longevity of these effects is rarely studied. Additionally, it is unclear whether behavioural assessments can be performed before and after interventions without repeated testing effects. In rats, we investigated CUMS effects on components of depressive-like behaviour both acutely after stress cessation and after a recovery period, as well as effects of repeated testing. We observed acute disruptions of the circadian locomotor rhythm and a reduced sucrose preference immediately after CUMS exposure. While circadian locomotor rhythm effects persisted up until four weeks after stress cessation, independently of repeated testing, sucrose preference effects did not. Interestingly, CUMS animals tested once after a recovery period of four weeks showed reduced anxiety-like behaviour in the open field and elevated plus maze compared to their control group and repeatedly-tested CUMS animals. These findings suggest that distinct CUMS-induced components of depressive-like behaviour are affected differentially by recovery time and repeated testing; these aspects should be considered carefully in future study designs.
Collapse
Affiliation(s)
- Kari Bosch
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands.
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Irene Burattini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Desirée Nieuwenhuis
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands
| |
Collapse
|
6
|
Li Y, Chen Z, Zhao J, Yu H, Chen X, He Y, Tian Y, Wang Y, Chen C, Cheng K, Xie P. Neurotransmitter and Related Metabolic Profiling in the Nucleus Accumbens of Chronic Unpredictable Mild Stress-Induced Anhedonia-Like Rats. Front Behav Neurosci 2022; 16:862683. [PMID: 35571281 PMCID: PMC9100667 DOI: 10.3389/fnbeh.2022.862683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental disorder that affects many people. The neurotransmitter deficiency hypothesis has been the crux of much research on the treatment of depression. Anhedonia, as a core symptom, was closely associated with altered levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and diverse types of glutamate (Glu) receptors in the nucleus accumbens (NAc). However, there were no reports showing how Glu changed in the NAc, and there were other unreported molecules involved in modulating stress-induced anhedonia. Thus, we investigated changes in neurotransmitters and their related metabolites in GABAergic, serotonergic and catecholaminergic pathways in the NAc of a rat model of chronic unpredictable mild stress- (CUMS-) induced anhedonia-like behavior. Then, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to detect target neurotransmitters and related metabolites in the NAc. Finally, the Western blot was used to assess the expression of key enzymes and receptors. Here, we found that the 5-HT level in anhedonia-susceptible (Sus) rats was increased while the Glu level decreased. DA did not show a significant change among CUMS rats. Correspondingly, we detected a reduction in monoamine oxidase-A (MAOA) and Glu receptor 1 levels in anhedonia-Sus rats while Glu receptor 2 (GluR2) and NMDA2B levels were increased in anhedonia-resilient (Res) rats. We also found that the levels of glutamine (Gln), kynurenic acid (Kya), histamine (HA), L-phenylalanine (L-Phe), and tyramine (Tyra) were changed after CUMS. These alterations in neurotransmitters may serve as a new insight into understanding the development of anhedonia-like behavior in depression.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Zhi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Jianting Zhao
- Department of Neurology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical College, Xinxiang, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Ke Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
- *Correspondence: Ke Cheng,
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
- Peng Xie,
| |
Collapse
|
7
|
Gaspar R, Soares-Cunha C, Domingues AV, Coimbra B, Baptista FI, Pinto L, Ambrósio AF, Rodrigues AJ, Gomes CA. The Duration of Stress Determines Sex Specificities in the Vulnerability to Depression and in the Morphologic Remodeling of Neurons and Microglia. Front Behav Neurosci 2022; 16:834821. [PMID: 35330844 PMCID: PMC8940280 DOI: 10.3389/fnbeh.2022.834821] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Stress exposure has been shown to induce a variety of molecular and functional alterations associated with anxiety and depression. Some studies suggest that microglia, the immune cells of the brain, play a significant role in determining neuronal and behavioral responses to chronic stress and also contribute to the development of stress-related psychopathologies. However, little is known about the impact of the duration of stress exposure upon microglia and neurons morphology, particularly considering sex differences. This issue deserves particular investigation, considering that the process of morphologic remodeling of neurons and microglia is usually accompanied by functional changes with behavioral expression. Here, we examine the effects of short and long unpredictable chronic mild stress (uCMS) protocols on behavior, evaluating in parallel microglia and neurons morphology in the dorsal hippocampus (dHIP) and in the nucleus accumbens (NAc), two brain regions involved in the etiology of depression. We report that long-term uCMS induced more behavioral alterations in males, which present anxiety and depression-like phenotypes (anhedonia and helplessness behavior), while females only display anxiety-like behavior. After short-term uCMS, both sexes presented anxiety-like behavior. Microglia cells undergo a process of morphologic adaptation to short-term uCMS, dependent on sex, in the NAc: we observed a hypertrophy in males and an atrophy in females, transient effects that do not persist after long-term uCMS. In the dHIP, the morphologic adaptation of microglia is only observed in females (hypertrophy) and after the protocol of long uCMS. Interestingly, males are more vulnerable to neuronal morphological alterations in a region-specific manner: dendritic atrophy in granule neurons of the dHIP and hypertrophy in the medium spiny neurons of the NAc, both after short- or long-term uCMS. The morphology of neurons in these brain regions were not affected in females. These findings raise the possibility that, by differentially affecting neurons and microglia in dHIP and NAc, chronic stress may contribute for differences in the clinical presentation of stress-related disorders under the control of sex-specific mechanisms.
Collapse
Affiliation(s)
- Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António F. Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
- *Correspondence: Ana João Rodrigues,
| | - Catarina A. Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Catarina A. Gomes,
| |
Collapse
|
8
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
9
|
Osacka J, Kiss A, Mach M, Tillinger A, Koprdova R. Haloperidol and aripiprazole affects CRH system and behaviour of animals exposed to chronic mild stress. Neurochem Int 2021; 152:105224. [PMID: 34798194 DOI: 10.1016/j.neuint.2021.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
CRH system integrates responses to stress challenges, whereas antipsychotics may impinge on this process. Effect of haloperidol (HAL) and aripiprazole (ARI) on chronic mild stress (CMS) induced neurobehavioral and CRH/CRHR1 system changes was studied in functionally interconnected rat brain areas including prefrontal cortex (PFC), bed nucleus of the stria terminalis (BNST), hypothalamic paraventricular nucleus (PVN), hippocampus (HIP), and amygdala (AMY). Animals were exposed to CMS for 3-weeks and since the 7th day of CMS injected with vehicle (VEH), HAL (1 mg/kg) or ARI (10 mg/kg) for 4-weeks. Expression levels of CRH, CRHR1, and c-fos genes and anxiety-like and anhedonia behavioural patterns were evaluated. CMS in VEH animals suppressed CRH gene expression in the PFC and BNST, c-fos expression in all areas, except HIP, and increased CRHR1 gene expression in the HIP. Antipsychotics decreased CRH gene expression in all areas, except HIP and by CMS elevated CRHR1 expression in the HIP (ARI also in AMY). CMS and antipsychotics decreased the sucrose preference. Aripiprazole prevented CRH expression decrease in the BNST and sucrose preference induced by CMS. Haloperidol increased time spent in the EPM open arms. These data indicate that HAL and ARI selectively influenced behavioural parameters and CRH/CRHR1 gene expression levels in CMS animals.
Collapse
Affiliation(s)
- Jana Osacka
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Alexander Kiss
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Mojmir Mach
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Andrej Tillinger
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Romana Koprdova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia.
| |
Collapse
|
10
|
MacLellan A, Fureix C, Polanco A, Mason G. Can animals develop depression? An overview and assessment of ‘depression-like’ states. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Describing certain animal behaviours as ‘depression-like’ or ‘depressive’ has become common across several fields of research. These typically involve unusually low activity or unresponsiveness and/or reduced interest in pleasure (anhedonia). While the term ‘depression-like’ carefully avoids directly claiming that animals are depressed, this narrative review asks whether stronger conclusions can be legitimate, with animals developing the clinical disorder as seen in humans (cf., DSM-V/ICD-10). Here, we examine evidence from animal models of depression (especially chronically stressed rats) and animals experiencing poor welfare in conventional captive conditions (e.g., laboratory mice and production pigs in barren environments). We find troubling evidence that animals are indeed capable of experiencing clinical depression, but demonstrate that a true diagnosis has yet to be confirmed in any case. We thus highlight the importance of investigating the co-occurrence of depressive criteria and discuss the potential welfare and ethical implications of animal depression.
Collapse
Affiliation(s)
- Aileen MacLellan
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Carole Fureix
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Andrea Polanco
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Georgia Mason
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
11
|
Haloperidol and aripiprazole impact on the BDNF and glucocorticoid receptor levels in the rat hippocampus and prefrontal cortex: effect of the chronic mild stress. Endocr Regul 2021; 55:153-162. [PMID: 34523299 DOI: 10.2478/enr-2021-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective. Changes in the brain derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR) expression in the prefrontal cortex (PFC) and hippocampus (HIP) are associated with psychiatric diseases and stress response. Chronic mild stress (CMS) may alter BDNF as well as GR levels in both the PFC and the HIP. The aim of the present study was to find out whether chronic treatment with a typical antipsychotic haloperidol (HAL) and an atypical antipsychotic aripiprazole (ARI) may modify the CMS effect on the BDNF and GR expression in the above-mentioned structures. Methods. The rats were exposed to CMS for 3 weeks and from the 7th day of CMS injected with vehicle (VEH), HAL (1 mg/kg) or ARI (10 mg/kg) for 4 weeks. BDNF and GR mRNA levels were established in the PFC and the HIP by Real Time PCR, whereas, PFC and HIP samples were obtained by punching them from 500 µm thick frozen sections. C-Fos immunoreactivity was analyzed in the PFC and the HIP on 30 µm thick paraformaldehyde fixed sections. Weight gain and corticosterone (CORT) levels were also measured. Results. The CMS and HAL suppressed the BDNF and GR mRNA levels in the PFC. In the HIP, CMS elevated BDNF mRNA levels that were suppressed by HAL and ARI treatments. The CMS decreased the c-Fos immunoreactivity in the PFC in both HAL- and ARI-treated animals. In the HIP, HAL increased the c-Fos immunoreactivity that was again diminished in animals exposed to CMS. Stressed animals gained markedly less weight until the 7th day of CMS, however, later their weight gain did not differ from the unstressed ones or was even higher in CMS+HAL group. Un-stressed HAL and ARI animals gained less weight than the VEH ones. Neither CMS nor HAL/ARI affected the plasma CORT levels. Conclusion. The present data indicate that HAL and ARI in the doses 1 mg/kg or 10 mg/kg, respectively, does not modify the effect of the CMS preconditioning on the BDNF and GR mRNA levels in the PFC or the HIP. However, HAL seems to modify the CMS effect on the HIP activation.
Collapse
|
12
|
Erdil A, Demirsoy MS, Çolak S, Duman E, Sümbül O, Aygun H. The effect of dexketoprofen trometamol on WAG/Rij rats with absence epilepsy (dexketoprofen in absence epilepsy). Neurol Res 2021; 43:1116-1125. [PMID: 34278977 DOI: 10.1080/01616412.2021.1952510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM Epilepsy is one of the most common neurological diseases. Dexketoprofen (DEX) is a nonselective nonsteroidal anti-inflammatory drug that is used as an analgesic. The present study aimed to assess the efficiency of DEX on WAG/Rij rats by electrophysiologically and behaviorally. MATERIAL AND METHODS Twenty-eight male WAG/Rij rats were used. The effects of acute treatment with DEX (5, 25, and 50 mg/kg, i.p) on absence-like seizures, and related psychiatric comorbidity were assessed. The ECoG recording was taken for 180 min before and after drug injection. After drug injection and EcoG recording, anxiety-depression-like behavior was tested with the open field test for 5 min. RESULTS The 5 mg/kg DEX significantly reduced the number and duration of SWDs percentage (p < 0.05) between 120 and 180 min, but 25 and 50 mg/kg DEX significantly increased the number and duration of SWDs percentage between 0 and 30 min (p < 0.05), and after 30 min the increase stopped (p > 0.05). And also, the 5 mg/kg DEX decreased the number and duration of SWDs percentage (p < 0.05) for 180 min (p < 0.05), but 25 and 50 mg/kg DEX administration did not alter (p > 0.05). The 5, 25, and 50 mg/kg doses of DEX significantly increased the duration of grooming (p < 0.05) but did not change the number of squares crossed (p > 0.05). CONCLUSION Low dose DEX reduced absence-like seizures, but care should be taken when using high doses in absence epilepsy. Also, it may be beneficial for painful diseases accompanied by anxiety-depression.
Collapse
Affiliation(s)
- Aras Erdil
- TR Ministry of Health, Sivas Dental Health Hospital, Sivas, Turkey
| | - Mustafa Sami Demirsoy
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Sakarya University, Sakarya, Turkey
| | | | - Esra Duman
- Department of Veterinary Medicine, Laboratory and Veterinary Health Program Vocational School University of Gazi Osmanpasa, Tokat, Turkey
| | - Orhan Sümbül
- Department of Neurology, Faculty of Medicine University of Gaziosmanpasa, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
13
|
Metformin reduces oxandrolone- induced depression-like behavior in rats via modulating the expression of IL-1β, IL-6, IL-10 and TNF-α. Behav Brain Res 2021; 414:113475. [PMID: 34280460 DOI: 10.1016/j.bbr.2021.113475] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/22/2023]
Abstract
Oxandrolone (OXA) is an androgen and anabolic steroid (AAS) that is used to reverse weight loss associated with some medical conditions. One of the side effects of OXA is its potential to induce depressive symptoms. Growing evidence suggested that neuroinflammation and cytokines play crucial roles in sickness behavioral and associated mood disturbances. Previous studies showed that metformin attenuated neuroinflammation. This study investigated the potential protective role of metformin against OXA-induced depression-like behavior and neuroinflammation. Twenty- four Wistar male rats were randomly grouped into four groups: the control group (Control) received only vehicle; the oxandrolone group (OXA) received oxandrolone (0.28 mg/kg, i.p); the metformin group (MET) received metformin (100 mg/kg, i.p); and the oxandrolone / metformin group (OXA + MET) received both oxandrolone (0.28 mg/kg, i.p) and metformin (100 mg/kg, i.p). These treatments were administered for fourteen consecutive days. Behavioral tests to measure depression-like behavior were conducted before and after treatments. qRT-PCR was used to measure the relative expression of proinflammatory and anti-inflammatory cytokines in the hippocampus and hypothalamus. The results showed that oxandrolone induced depression-like behavior and dysregulated pro-/anti-inflammatory cytokines, while metformin attenuated these effects. These findings suggest that metformin is a potential treatment to reverse the depressive effects induced by oxandrolone that involve neuroinflammatory effects.
Collapse
|
14
|
de Sousa MBC, de Meiroz Grilo MLP, Galvão-Coelho NL. Natural and Experimental Evidence Drives Marmosets for Research on Psychiatric Disorders Related to Stress. Front Behav Neurosci 2021; 15:674256. [PMID: 34177478 PMCID: PMC8227430 DOI: 10.3389/fnbeh.2021.674256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022] Open
Abstract
Knowledge of the behavioral ecology of marmosets carried out in their natural habitat associated with the advent of a non-invasive technique for measuring steroid hormones in feces has made a significant contribution to understanding their social relationships and sexual strategies. These studies showed that they are mainly monogamous, live in relatively stable social groups according to a social hierarchy in which females compete and males cooperate, and form social bonds similar to humans, which makes this species a potential animal model to study disorders related to social stress. In addition, laboratory studies observed the expression of behaviors similar to those in nature and deepened the descriptions of their social and reproductive strategies. They also characterized their responses to the challenge using behavioral, cognitive, physiological, and genetic approaches that were sexually dimorphic and influenced by age and social context. These findings, added to some advantages which indicate good adaptation to captivity and the benefits of the birth of twins, small size, and life cycle in comparison to primates of the Old World, led to their use as animal models for validating psychiatric diseases such as major depression. Juvenile marmosets have recently been used to develop a depression model and to test a psychedelic brew called Ayahuasca from the Amazon rainforest as an alternative treatment for major depression, for which positive results have been found which encourage further studies in adolescents. Therefore, we will review the experimental evidence obtained so far and discuss the extension of the marmoset as an animal model for depression.
Collapse
Affiliation(s)
- Maria Bernardete Cordeiro de Sousa
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Postgraduation Program in Psychobiology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Postgraduation Program in Neuroscience, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Laboratory of Advanced Studies in Primates, UFRN-Brazil, and Laboratory of Hormone Measurement, Department of Physiology and Behavior, Natal, Brazil
| | - Maria Lara Porpino de Meiroz Grilo
- Postgraduation Program in Psychobiology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Laboratory of Advanced Studies in Primates, UFRN-Brazil, and Laboratory of Hormone Measurement, Department of Physiology and Behavior, Natal, Brazil
| | - Nicole Leite Galvão-Coelho
- Postgraduation Program in Psychobiology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Laboratory of Advanced Studies in Primates, UFRN-Brazil, and Laboratory of Hormone Measurement, Department of Physiology and Behavior, Natal, Brazil.,Department of Physiology and Behavior, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,National Institute of Science and Technology in Translational Medicine, Ribeirao Preto, Brazil
| |
Collapse
|
15
|
Caffino L, Mottarlini F, Zita G, Gawliński D, Gawlińska K, Wydra K, Przegaliński E, Fumagalli F. The effects of cocaine exposure in adolescence: Behavioural effects and neuroplastic mechanisms in experimental models. Br J Pharmacol 2021; 179:4233-4253. [PMID: 33963539 PMCID: PMC9545182 DOI: 10.1111/bph.15523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
Drug addiction is a devastating disorder with a huge economic and social burden for modern society. Although an individual may slip into drug abuse throughout his/her life, adolescents are at higher risk, but, so far, only a few studies have attempted to elucidate the underlying cellular and molecular bases of such vulnerability. Indeed, preclinical evidence indicates that psychostimulants and adolescence interact and contribute to promoting a dysfunctional brain. In this review, we have focused our attention primarily on changes in neuroplasticity brought about by cocaine, taking into account that there is much less evidence from exposure to cocaine in adolescence, compared with that from adults. This review clearly shows that exposure to cocaine during adolescence, acute or chronic, as well as contingent or non‐contingent, confers a vulnerable endophenotype, primarily, by causing changes in neuroplasticity. Given the close relationship between drug abuse and psychiatric disorders, we also discuss the translational implications providing an interpretative framework for clinical studies involving addictive as well as affective or psychotic behaviours.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gianmaria Zita
- Dipartimento di Salute Mentale e Dipendenze, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Effects of intravenous administration of recombinant Phα1β toxin in a mouse model of fibromyalgia. Toxicon 2021; 195:104-110. [PMID: 33753115 DOI: 10.1016/j.toxicon.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023]
Abstract
This study investigated the effects of intravenous (iv) administration of recombinant Phα1β toxin, pregabalin, and diclofenac by the intrathecal route using an animal model fibromyalgia (FM). The reserpine administration (0.25 mg/kg s. c) once daily for three consecutive days significantly induced hyperalgesia, immobility time, and sucrose consumption in mice on the 4th day. Reserpine caused hyperalgesia on the mechanical and thermal hyperalgesia on the 4th day was reverted by recombinant Phα1β (0.2 mg/kg iv) and pregabalin (1.25 μmol/site i. t) treatments. In contrast, diclofenac (215 nmol/site i. t) was ineffective. Recombinant Phα1β toxin, pregabalin, and diclofenac did not affect the depressive-like behavioural effect induced by reserpine on mice during the forced swim and sucrose consumption tests. The data confirmed the analgesic effect of the recombinant Phα1β toxin administered intravenously in a fibromyalgia mouse model.
Collapse
|
17
|
Bondy E, Baranger DAA, Balbona J, Sputo K, Paul SE, Oltmanns TF, Bogdan R. Neuroticism and reward-related ventral striatum activity: Probing vulnerability to stress-related depression. JOURNAL OF ABNORMAL PSYCHOLOGY 2021; 130:223-235. [PMID: 33539118 DOI: 10.1037/abn0000618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Elevated neuroticism may confer vulnerability to the depressogenic effects of stressful life events (SLEs). However, the mechanisms underlying this susceptibility remain poorly understood. Accumulating evidence suggests that stress-related disruptions in neural reward processing might undergird links between stress and depression. Using data from the Saint Louis Personality and Aging Network (SPAN) study and Duke Neurogenetics Study (DNS), we examined whether neuroticism moderates links between stressful life events (SLE) and depression as well as SLEs and ventral striatum (VS) response to reward. In the longitudinal SPAN sample (n = 971 older adults), SLEs prospectively predicted future depressive symptoms, especially among those reporting elevated neuroticism, even after accounting for prior depressive symptoms and previous SLE exposure (NxSLE interaction: p = .016, ΔR² = 0.003). Cross-sectional analyses of the DNS, a young adult college sample with neuroimaging data, replicated this interaction (n = 1,343: NxSLE interaction: p = .019, ΔR² = 0.003) and provided evidence that neuroticism moderates the association between SLEs and reward-related VS response (n = 1,195, NxSLE: p = .017, ΔR² = 0.0048). Blunted left VS response to reward was associated with a lifetime depression diagnosis, r = -0.07, p = .02, but not current depressive symptoms, r = -0.003, p = .93. These data suggest that neuroticism may promote vulnerability to stress-related depression and that sensitivity to stress-related reductions in VS response may be a potential neural mechanism underlying vulnerability to clinically significant depression. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Erin Bondy
- Department of Psychological and Brain Sciences
| | | | | | | | | | | | - Ryan Bogdan
- Department of Psychological and Brain Sciences
| |
Collapse
|
18
|
Nguyen CTY, Zhao M, Saltzman W. Effects of sex and age on parental motivation in adult virgin California mice. Behav Processes 2020; 178:104185. [PMID: 32603677 DOI: 10.1016/j.beproc.2020.104185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/01/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Female mammals often demonstrate a rapid initiation of maternal responsiveness immediately after giving birth, as a result of neuroendocrine changes that occur during pregnancy and parturition. However, fathers and virgins of some species may display infant care similar to that performed by mothers but without experiencing these physiological events. In biparental species, in which both mothers and fathers care for their offspring, both sex and age may affect parental motivation, even in adult virgins. We examined the effects of sex and age on parental motivation in the California mouse, a monogamous, biparental rodent. We compared parental motivation of male and female virgins in both mid- and old adulthood using two new tests - a T-maze test and a rain test - as well as in standard parental-behavior tests. Adult virgin males were more parentally motivated than adult virgin females in both the T-maze test and the parental-behavior test, but parental motivation did not differ markedly between middle-aged and older adults of either sex. These findings suggest that sex differences in parental motivation in adult virgins are similar to those observed in other biparental rodents, and indicate that the T-maze test may be useful for evaluating parental motivation in this species.
Collapse
Affiliation(s)
- Catherine T Y Nguyen
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States
| | - Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States.
| |
Collapse
|
19
|
Costa R, Tamascia ML, Sanches A, Moreira RP, Cunha TS, Nogueira MD, Casarini DE, Marcondes FK. Tactile stimulation of adult rats modulates hormonal responses, depression-like behaviors, and memory impairment induced by chronic mild stress: Role of angiotensin II. Behav Brain Res 2020; 379:112250. [DOI: 10.1016/j.bbr.2019.112250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
|
20
|
Behavioural characterisation of chronic unpredictable stress based on ethologically relevant paradigms in rats. Sci Rep 2019; 9:17403. [PMID: 31758000 PMCID: PMC6874551 DOI: 10.1038/s41598-019-53624-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
The chronic unpredictable stress (CUS) paradigm is extensively used in preclinical research. However, CUS exhibits translational inconsistencies, some of them resulting from the use of adult rodents, despite the evidence that vulnerability for many psychiatric disorders accumulates during early life. Here, we assessed the validity of the CUS model by including ethologically-relevant paradigms in juvenile rats. Thus, socially-isolated (SI) rats were submitted to CUS and compared with SI (experiment 1) and group-housed controls (experiment 1 and 2). We found that lower body-weight gain and hyperlocomotion, instead of sucrose consumption and preference, were the best parameters to monitor the progression of CUS, which also affected gene expression and neurotransmitter contents associated with that CUS-related phenotype. The behavioural characterisation after CUS placed locomotion and exploratory activity as the best stress predictors. By employing the exploratory factor analysis, we reduced each behavioural paradigm to few latent variables which clustered into two general domains that strongly predicted the CUS condition: (1) hyper-responsivity to novelty and mild threats, and (2) anxiety/depressive-like response. Altogether, the analyses of observable and latent variables indicate that early-life stress impairs the arousal-inhibition system leading to augmented and persistent responses towards novel, rewarding, and mildly-threatening stimuli, accompanied by lower body-weight gain.
Collapse
|
21
|
Chan J, Stout D, Pittenger ST, Picciotto MR, Lewis AS. Induction of reversible bidirectional social approach bias by olfactory conditioning in male mice. Soc Neurosci 2019; 15:25-35. [PMID: 31303111 DOI: 10.1080/17470919.2019.1644370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Social avoidance is a common component of neuropsychiatric disorders that confers substantial functional impairment. An unbiased approach to identify brain regions and neuronal circuits that regulate social avoidance might enable development of novel therapeutics. However, most paradigms that alter social avoidance are irreversible and accompanied by multiple behavioral confounds. Here we report a straightforward behavioral paradigm in male mice enabling the reversible induction of social avoidance or approach with temporal control. C57BL/6J mice repeatedly participated in both negative and positive social experiences. Negative social experience was induced by brief social defeat by an aggressive male CD-1 mouse, while positive social experience was induced by exposure to a female mouse, each conducted daily for five days. Each social experience valence was conducted in a specific odorant context (i.e. negative experience in odorant A, positive experience in odorant B). Odorants were equally preferred pre-conditioning. However, after conditioning, mice sniffed positive experience-paired odorants more than negative experience-paired odorants. Furthermore, positive- or negative-conditioned odorant contexts increased or decreased, respectively, the approach behavior of conditioned mice toward conspecifics. Because individual mice undergo both positive and negative conditioning, this paradigm may be useful to examine neural representations of social approach or avoidance within the same subject.
Collapse
Affiliation(s)
- Justin Chan
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dawson Stout
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,The Avielle Foundation, Newtown, CT, USA
| | | | | | - Alan S Lewis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Departments of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
22
|
Minocycline ameliorates anxiety-related self-grooming behaviors and alters hippocampal neuroinflammation, GABA and serum cholesterol levels in female Sprague-Dawley rats subjected to chronic unpredictable mild stress. Behav Brain Res 2019; 363:109-117. [DOI: 10.1016/j.bbr.2019.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/20/2022]
|
23
|
Tactile Stimulation on Adulthood Modifies the HPA Axis, Neurotrophic Factors, and GFAP Signaling Reverting Depression-Like Behavior in Female Rats. Mol Neurobiol 2019; 56:6239-6250. [PMID: 30741369 DOI: 10.1007/s12035-019-1522-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022]
Abstract
Depression is a common psychiatric disease which pharmacological treatment relieves symptoms, but still far from ideal. Tactile stimulation (TS) has shown beneficial influences in neuropsychiatric disorders, but the mechanism of action is not clear. Here, we evaluated the TS influence when applied on adult female rats previously exposed to a reserpine-induced depression-like animal model. Immediately after reserpine model (1 mg/kg/mL, 1×/day, for 3 days), female Wistar rats were submitted to TS (15 min, 3×/day, for 8 days) or not (unhandled). Imipramine (10 mg/kg/mL) was used as positive control. After behavioral assessments, animals were euthanized to collect plasma and prefrontal cortex (PFC). Behavioral observations in the forced swimming test, splash test, and sucrose preference confirmed the reserpine-induced depression-like behavior, which was reversed by TS. Our findings showed that reserpine increased plasma levels of adrenocorticotropic hormone and corticosterone, decreased brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B, and increased proBDNF immunoreactivity in the PFC, which were also reversed by TS. Moreover, TS reestablished glial fibrillary acidic protein and glucocorticoid receptor levels, decreased by reserpine in PFC, while glial cell line-derived neurotrophic factor was increased by TS per se. Our outcomes are showing that TS applied in adulthood exerts a beneficial influence in depression-like behaviors, modulating the HPA axis and regulating neurotrophic factors more effectively than imipramine. Based on this, our proposal is that TS, in the long term, could be considered a new therapeutic strategy for neuropsychiatric disorders improvement in adult life, which may represent an interesting contribution to conventional pharmacological treatment.
Collapse
|
24
|
Morano R, Hoskins O, Smith BL, Herman JP. Loss of Environmental Enrichment Elicits Behavioral and Physiological Dysregulation in Female Rats. Front Behav Neurosci 2019; 12:287. [PMID: 30740046 PMCID: PMC6357926 DOI: 10.3389/fnbeh.2018.00287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/06/2018] [Indexed: 02/04/2023] Open
Abstract
Chronic stress drives behavioral and physiological changes associated with numerous psychiatric disease states. In rodents, the vast majority of chronic stress models involve imposition of external stressors, whereas in humans stress is often driven by internal cues, commonly associated with a sense of loss. We previously exposed groups of rats to environmental enrichment (EE) for a protracted period (1 month), followed by removal of enrichment (ER), to induce an experience of loss in male rats. ER enhanced immobility in the forced swim test (FST), led to hypothalamic pituitary adrenal (HPA) axis hypoactivity, and caused hyperphagia relative to continuously enriched (EE), single-housed (Scon) and pair-housed (Pcon) groups, most of which were reversible by antidepressant treatment (Smith et al., 2017). Here, we have applied the same approach to study enrichment loss in female rats. Similar to the males, enrichment removal in females led to an increase in the time spent immobile in the FST and increased daytime food intake compared to the single and pair-housed controls. Unlike males, ER females showed decreased sucrose preference, and showed estrus cycle-dependent HPA axis hyperactivity to an acute restraint stress. The increase in passive coping (immobility), anhedonia-like behavior in the sucrose preference test and HPA axis dysregulation suggest that enrichment removal produces a loss phenotype in females that differs from that seen in males, which may be more pronounced in nature.
Collapse
Affiliation(s)
- Rachel Morano
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Olivia Hoskins
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
25
|
Wassouf Z, Hentrich T, Casadei N, Jaumann M, Knipper M, Riess O, Schulze-Hentrich JM. Distinct Stress Response and Altered Striatal Transcriptome in Alpha-Synuclein Overexpressing Mice. Front Neurosci 2019; 12:1033. [PMID: 30686992 PMCID: PMC6336091 DOI: 10.3389/fnins.2018.01033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with motor symptoms and a plethora of non-motor and neuropsychiatric features that accompany the disease from prodromal to advanced stages. While several genetic defects have been identified in familial forms of PD, the predominance of cases are sporadic and result from a complex interplay of genetic and non-genetic factors. Clinical evidence, moreover, indicates a role of environmental stress in PD, supported by analogies between stress-induced pathological consequences and neuronal deterioration observed in PD. From this perspective, we set out to investigate the effects of chronic stress exposure in the context of PD by using a genetic mouse model that overexpresses human wildtype SNCA. Mimicking chronic stress was achieved by adapting a chronic unpredictable mild stress protocol (CUMS) comprising eight different stressors that were applied randomly over a period of eight weeks starting at an age of four months. A distinctive stress response with an impact on anxiety-related behavior was observed upon SNCA overexpression and CUMS exposure. SNCA-overexpressing mice showed prolonged elevation of cortisol metabolites during CUMS exposure, altered anxiety-related traits, and declined motor skills surfacing with advanced age. To relate our phenotypic observations to molecular events, we profiled the striatal and hippocampal transcriptome and used a 2 × 2 factorial design opposing genotype and environment to determine differentially expressed genes. Disturbed striatal gene expression and minor hippocampal gene expression changes were observed in SNCA-overexpressing mice at six months of age. Irrespective of the CUMS-exposure, genes attributed to the terms neuroinflammation, Parkinson's signaling, and plasticity of synapses were altered in the striatum of SNCA-overexpressing mice.
Collapse
Affiliation(s)
- Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mirko Jaumann
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
26
|
Effect of chronic unpredictable stress on mice with developmental under-expression of the Ahi1 gene: behavioral manifestations and neurobiological correlates. Transl Psychiatry 2018; 8:124. [PMID: 29967406 PMCID: PMC6028478 DOI: 10.1038/s41398-018-0171-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/25/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
The Abelson helper integration site 1 (Ahi1) gene plays a pivotal role in brain development and is associated with genetic susceptibility to schizophrenia, and other neuropsychiatric disorders. Translational research in genetically modified mice may reveal the neurobiological mechanisms of such associations. Previous studies of mice heterozygous for Ahi1 knockout (Ahi1+/-) revealed an attenuated anxiety response on various relevant paradigms, in the context of a normal glucocorticoid response to caffeine and pentylenetetrazole. Resting-state fMRI showed decreased amygdalar connectivity with various limbic brain regions and altered network topology. However, it was not clear from previous studies whether stress-hyporesponsiveness reflected resilience or, conversely, a cognitive-emotional deficit. The present studies were designed to investigate the response of Ahi1+/- mice to chronic unpredictable stress (CUS) applied over 9 weeks. Wild type (Ahi1+/+) mice were significantly affected by CUS, manifesting decreased sucrose preference (p < 0.05); reduced anxiety on the elevated plus maze and light dark box and decreased thigmotaxis in the open field (p < 0.01 0.05); decreased hyperthermic response to acute stress (p < 0.05); attenuated contextual fear conditioning (p < 0.01) and increased neurogenesis (p < 0.05). In contrast, Ahi1+/- mice were indifferent to the effects of CUS assessed with the same parameters. Our findings suggest that Ahi1 under-expression during neurodevelopment, as manifested by Ahi1+/- mice, renders these mice stress hyporesponsive. Ahi1 deficiency during development may attenuate the perception and/or integration of environmental stressors as a result of impaired corticolimbic connectivity or aberrant functional wiring. These neural mechanisms may provide initial clues as to the role Ahi1 in schizophrenia and other neuropsychiatric disorders.
Collapse
|
27
|
Borrow AP, Bales NJ, Stover SA, Handa RJ. Chronic Variable Stress Induces Sex-Specific Alterations in Social Behavior and Neuropeptide Expression in the Mouse. Endocrinology 2018; 159:2803-2814. [PMID: 29788320 PMCID: PMC6692887 DOI: 10.1210/en.2018-00217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Chronic exposure to stressors impairs the function of multiple organ systems and has been implicated in increased disease risk. In the rodent, the chronic variable stress (CVS) paradigm has successfully modeled several stress-related illnesses. Despite striking disparities between men and women in the prevalence and etiology of disorders associated with chronic stress, most preclinical research examining chronic stressor exposure has focused on male subjects. One potential mediator of the consequences of CVS is oxytocin (OT), a known regulator of stress neurocircuitry and behavior. To ascertain the sex-specific effects of CVS in the C57BL/6 mouse on OT and the structurally similar neuropeptide arginine vasopressin (AVP), the numbers of immunoreactive and mRNA-containing neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) were determined using immunohistochemistry and in situ hybridization, respectively. In addition, the mice underwent a battery of behavioral tests to determine whether CVS affects social behaviors known to be regulated by OT and AVP. Six weeks of CVS increased sociability in the female mouse and decreased PVN OT immunoreactivity (ir) and AVP mRNA. In the male mice, CVS decreased PVN OT mRNA but had no effect on social behavior, AVP, or OT-ir. CVS also increased the soma volume for PVN OT neurons. In contrast, OT and AVP neurons in the SON were unaffected by CVS treatment. These findings demonstrate clear sex differences in the effects of CVS on neuropeptides in the mouse, suggest a pathway through which CVS alters sociability and stress-coping responses in females and reveals a vulnerability to CVS in the C57BL/6 mouse strain.
Collapse
Affiliation(s)
- Amanda P Borrow
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Natalie J Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Sally A Stover
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Correspondence: Robert J. Handa, PhD, Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado 80523. E-mail:
| |
Collapse
|
28
|
Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 2018; 23:1432-1445. [PMID: 29257131 DOI: 10.1038/mp.2017.237] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Stress-related psychopathology is highly prevalent among elderly individuals and is associated with detrimental effects on mood, appetite and cognition. Conversely, under certain circumstances repeated mild-to-moderate stressors have been shown to enhance cognitive performance in rodents and exert stress-inoculating effects in humans. As most stress-related favorable outcomes have been reported in adolescence and young-adulthood, this apparent disparity could result from fundamental differences in how aging organisms respond to stress. Furthermore, given prominent age-related alterations in sex hormones, the effect of chronic stress in aging females remains a highly relevant yet little studied issue. In the present study, female C57BL/6 mice aged 3 (young-adult) and 20-23 (old) months were subjected to 8 weeks of chronic unpredictable stress (CUS). Behavioral outcomes were measured during the last 3 weeks of the CUS protocol, followed by brain dissection for histological and molecular end points. We found that in young-adult female mice, CUS resulted in decreased anxiety-like behavior and enhanced cognitive performance, whereas in old female mice it led to weight loss, dysregulated locomotion and memory impairment. These phenotypes were paralleled by differential changes in the expression of hypothalamic insulin and melanocortin-4 receptors and were consistent with an age-dependent reduction in the dynamic range of stress-related changes in the hippocampal transcriptome. Supported by an integrated microRNA (miRNA)-mRNA expression analysis, the present study proposes that, when confronted with ongoing stress, neuroprotective mechanisms involving the upregulation of neurogenesis, Wnt signaling and miR-375 can be harnessed more effectively during young-adulthood. Conversely, we suggest that aging alters the pattern of immune activation elicited by stress. Ultimately, interventions that modulate these processes could reduce the burden of stress-related psychopathology in late life.
Collapse
|
29
|
Green A, Esser MJ, Perrot TS. Developmental expression of anxiety and depressive behaviours after prenatal predator exposure and early life homecage enhancement. Behav Brain Res 2017; 346:122-136. [PMID: 29183765 DOI: 10.1016/j.bbr.2017.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/25/2023]
Abstract
Stressful events during gestation can have sex-specific effects on brain and behaviour, and may contribute to some of the differences observed in adult stress responding and psychopathology. We investigated the impact of a novel repeated prenatal psychological stress (prenatal predator exposure - PPS) during the last week of gestation in rats on offspring behaviours related to social interaction (play behaviour), open field test (OFT), forced swim test (FST) and sucrose preference test (SP) during the juvenile period and in adulthood. We further examined the role of postnatal environmental, using an enhanced housing condition (EHC), to prevent/rescue any changes. Some effects on anxiety, anhedonia, and stress-related coping behaviours (e.g., OFT, SP and OFT) did not emerge until adulthood. PPS increased OFT anxiety behaviours in adult males, and some OFT and SP behaviours in adult females. Contrary to this, EHC had few independent effects; most were apparent only when combined with PPS. In keeping with age-group differences, juvenile behaviours did not necessarily predict the same adult behaviours although juvenile OFT rearing and freezing, and juvenile FST immobility did predict adult FST immobility and sucrose preference, suggesting that some aspects of depressive behaviours may emerge early and predict adult vulnerability or coping behaviours. Together, these results suggest an important, though complex, role for early life psychological stressors and early life behaviours in creating an adult vulnerability to anxiety or depressive disorders and that environmental factors further modulate the effects of the prenatal stressors.
Collapse
Affiliation(s)
- Amanda Green
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Michael J Esser
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
30
|
Martis LS, Krog S, Tran TP, Bouzinova E, Christiansen SL, Møller A, Holmes MC, Wiborg O. The effect of rat strain and stress exposure on performance in touchscreen tasks. Physiol Behav 2017; 184:83-90. [PMID: 29129610 DOI: 10.1016/j.physbeh.2017.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Patients suffering from depression-associated cognitive impairments often recover incompletely after remission from the core symptoms of depression (lack of energy, depressed mood and anhedonia). This study aimed to set the basis for clinically relevant testing of cognitive impairments in a preclinical model of depression. Hence, we used the chronic mild stress (CMS) model of depression, which provokes the core symptom of anhedonia in a fraction of the stress exposed animals, while others remain resilient, and assessed the entire CMS groups' cognitive performance on the touchscreen operant platform. Specifically, we applied the pairwise discrimination (PD) and reversal task including a retention phase on Wistar and Long Evans controls and CMS exposed Long Evans rats. We observed differences between the albino Wistar and the pigmented Long Evans strain regarding performance in the PD and reversal task as well as in memory consolidation. CMS exposure did not alter learning and memory in the PD and reversal task, even though it altered affective behaviours in the elevated plus-maze and open field test. This is likely due to the heterogeneity of the CMS group, in which stress exposure elicited the expected range of phenotypes from anhedonic-like to resilient shown with the sucrose consumption test. Thus, our study suggests that pigmented rat strains, such as Long Evans, are superior to albino rats in the vision-based touchscreen studies. Furthermore, we propose investigation of the CMS subgroups in more complex, hippocampus-dependent tasks to refine a translational preclinical model of depression-induced cognitive impairments. Hence, this study increased awareness of strain-specific differences in touchscreen performance and added to the literature regarding the sensitivity of the PD and reversal task to stress-induced cognitive alterations.
Collapse
Affiliation(s)
- Lena-Sophie Martis
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, UK.
| | - Simone Krog
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Thao Phuong Tran
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Elena Bouzinova
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Sofie L Christiansen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Arne Møller
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Denmark
| | - Megan C Holmes
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Health Science and Technology, Aalborg University, Denmark
| |
Collapse
|
31
|
Impact of anger emotional stress before pregnancy on adult male offspring. Oncotarget 2017; 8:98837-98852. [PMID: 29228731 PMCID: PMC5716771 DOI: 10.18632/oncotarget.22007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
Previous studies have reported that maternal chronic stress or depression is linked to an increased risk of affective disorders in progeny. However, the impact of maternal chronic stress before pregnancy on the progeny of animal models is unknown. We investigated the behaviors and the neurobiology of 60-day-old male offspring of female rats subjected to 21 days of resident-intruder stress before pregnancy. An anger stressed parental rat model was established using the resident-intruder paradigm and it was evaluated using behavioral tests. Anger stressed maternal rats showed a significant increase in locomotion and aggression but a reduction in sucrose preference. Offspring subjected to pre-gestational anger stress displayed enhanced aggressive behaviors, reduced anxiety, and sucrose preference. Further, offspring subjected to pre-gestational stress showed significant impairments in the recognition index (RI) on the object recognition test and the number of platform crossings in the Morris water maze test. The monoaminergic system was significantly altered in pre-gestationally stressed offspring, and the expression of phosphorylated cyclic adenosine monophosphate response element binding protein (P-CREB), brain-derived neurotrophic factor (BDNF), and serotonin transporter (SERT) levels in pre-gestational stressed offspring were altered in some brain regions. Fluoxetine was used to treat pre-gestational stressed maternal rats and it significantly reduced the changes caused by stress, as evidenced by both behaviors and neural biochemical indexes in the offspring in some but not all cases. These findings suggest that anger stress before pregnancy could induce aggressive behaviors, cognitive deficits, and neurobiological alterations in offspring.
Collapse
|
32
|
Joshi N, Leslie RA, Perrot TS. Analyzing the experiences of adolescent control rats: Effects of the absence of physical or social stimulation on anxiety-like behaviour are dependent on the test. Physiol Behav 2017; 179:30-41. [PMID: 28527682 DOI: 10.1016/j.physbeh.2017.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/01/2023]
Abstract
The present study was designed to systematically assess the control experience routinely used in our laboratory as part of studies on predator odour stress. Specifically, we examined effects of the physical and social components of this control experience on measures of anxiety-like behaviour in adolescent rats. Adolescent animals are at increased susceptibility to environmental perturbations and have been used for such studies much less often. Long-Evans rats of both sexes were subjected to physical stimulation (Exposed or Unexposed) and social stimulation (Single-Housed or Pair-Housed), resulting in four groups. Exposed rats received six 30-min exposures to an enclosed arena containing an unscented piece of cat collar occurring between adolescence and early adulthood, while Unexposed remained in the home cage. Groups of Exposed and Unexposed animals were housed singly (Single-Housed) from early adolescence to early adulthood or Pair-Housed during this time. Experimental procedures began in adolescence and involved repeated assessment of startle amplitude (measure of anxiety-like behaviour) and prepulse inhibition (PPI; a measure of sensorimotor gating) to gauge the short-term impact of social and/or physical stimulation. All animals were re-paired in adulthood prior to a final startle/PPI session to assess if isolation limited to adolescence could impose long-term effects that were not reversible. We also measured anxiety-like behaviour in adulthood using an extended open field test (EOFT; addition of novel objects to the open field on later days), and the elevated plus maze task (EPM), as well as a sucrose preference test (SPT) to measure anhedonia. An absence of social or physical stimulation resulted in increased startle amplitude and some measures of anxiety-like behaviour in the EOFT, but a reduction in such anxiety-like behaviour in the EPM task. These results suggest common neural substrates for the physical and social experiences. Performance in the SPT was unaltered by any experimental treatments. Sensorimotor gating, as measured by PPI, was increased in the absence of physical stimulation with no short-term effect of isolation, or of re-pairing. These results indicate the importance of considering individual components of the rearing environment of rats, while showing the need to use multiple assays of anxiety-like behaviour.
Collapse
Affiliation(s)
- Namrata Joshi
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Ronald A Leslie
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Tara S Perrot
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
33
|
Pase CS, Roversi K, Roversi K, Vey LT, Dias VT, Veit JC, Maurer LH, Duarte T, Emanuelli T, Duarte M, Bürger ME. Maternal trans fat intake during pregnancy or lactation impairs memory and alters BDNF and TrkB levels in the hippocampus of adult offspring exposed to chronic mild stress. Physiol Behav 2017; 169:114-123. [DOI: 10.1016/j.physbeh.2016.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 01/10/2023]
|
34
|
Munn AJ, Phelan S, Rigby M, Roberts JA. Behavioural adjustments of wild-caught kangaroos to captivity. AUSTRALIAN MAMMALOGY 2017. [DOI: 10.1071/am16019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is important to understand how wild-caught animals may respond to captivity, and whether their behaviours in captivity are reflective of their wild counterparts. We observed the behaviour of wild-caught western grey kangaroos (Macropus fuliginosus) and red kangaroos (Osphranter rufus; formerly M. rufus) that were transferred to a large naturally vegetated enclosure. Observations were made on the first day of captivity and again after 7–10 days, and were compared with the behaviour of free-living kangaroos at the same locality and over the same period. We quantified feeding, moving, grooming and non-alert behaviours. Of these, grooming was higher in captive kangaroos than in free-living animals on the first day of captivity only, and was no different to that of wild animal by 7–10 days’ captivity. Such self-directed behaviour may be indicative of heightened distress for kangaroos on the first day of captivity, but it may also be indicative of grooming to eliminate contamination of human smells or debris following capture by darting and recovery. Overall, our findings indicate that after a short period of captivity, wild-caught kangaroos adjust to a novel environment relatively quickly, and animals from each species showed behaviour patterns comparable with free-ranging counterparts within 7–10 days after capture and captivity.
Collapse
|
35
|
Antidepressant-Like Effect of Lipid Extract of Channa striatus in Chronic Unpredictable Mild Stress Model of Depression in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2986090. [PMID: 28074100 PMCID: PMC5203926 DOI: 10.1155/2016/2986090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/16/2016] [Indexed: 01/18/2023]
Abstract
This study evaluated the antidepressant-like effect of lipid extract of C. striatus in chronic unpredictable mild stress (CUMS) model of depression in male rats and its mechanism of action. The animals were subjected to CUMS for six weeks by using variety of stressors. At the end of CUMS protocol, animals were subjected to forced swimming test (FST) and open field test followed by biochemical assay. The CUMS protocol produced depressive-like behavior in rats by decreasing the body weight, decreasing the sucrose preference, and increasing the duration of immobility in FST. The CUMS protocol increased plasma corticosterone and decreased hippocampal and prefrontal cortex levels of monoamines (serotonin, noradrenaline, and dopamine) and brain-derived neurotrophic factor. Further, the CUMS protocol increased interleukin-6 (in hippocampus and prefrontal cortex) and nuclear factor-kappa B (in prefrontal cortex but not in hippocampus). The lipid extract of C. striatus (125, 250, and 500 mg/kg) significantly (p < 0.05) reversed all the above parameters in rats subjected to CUMS, thus exhibiting antidepressant-like effect. The mechanism was found to be mediated through decrease in plasma corticosterone, increase in serotonin levels in prefrontal cortex, increase in dopamine and noradrenaline levels in hippocampus and prefrontal cortex, increase in BDNF in hippocampus and prefrontal cortex, and decrease in IL-6 and NF-κB in prefrontal cortex.
Collapse
|
36
|
Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiol Learn Mem 2016; 134 Pt B:379-91. [DOI: 10.1016/j.nlm.2016.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/06/2016] [Accepted: 08/19/2016] [Indexed: 01/19/2023]
|
37
|
Chang HA, Wang YH, Tung CS, Yeh CB, Liu YP. 7,8-Dihydroxyflavone, a Tropomyosin-Kinase Related Receptor B Agonist, Produces Fast-Onset Antidepressant-Like Effects in Rats Exposed to Chronic Mild Stress. Psychiatry Investig 2016; 13:531-540. [PMID: 27757132 PMCID: PMC5067348 DOI: 10.4306/pi.2016.13.5.531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) and its specific receptor, tropomyosin-related kinase (TrkB), play important roles in treating depression. In this experiment, we examined whether 7,8-dihydroxyflavone, a novel potent TrkB agonist, could reverse the behavioral and biochemical abnormalities induced by the chronic mild stress (CMS) paradigm in rats. METHODS SD rats were exposed to a battery of stressors for 56 days. 7,8-dihydroxyflavone (5 and 20 mg/kg) were administered intraperitoneally during the last 28 days of the CMS paradigm. Rats were tested in sucrose consumption test (SCT), forced-swimming test (FST) and elevated T-maze (ETM). Serum corticosterone levels and hippocampal BDNF levels of the rats were measured. RESULTS Four-week CMS on the rats induced their depression-like behavior in SCT. The CMS-reduced sucrose consumption was reversed starting from 7 days after the 7,8-dihydroxyflavone (20 mg/kg) treatment and remained across the subsequent treatment regime. 7,8-dihydroxyflavone, when given at 5 mg/kg for 3 weeks, reduced the immobility time in the FST in the CMS-subjected rats. Additionally, the 4-week treatment with 7,8-dihydroxyflavone (20 mg/kg) attenuated the CMS-induced increase in anxiety-like behavior in the ETM. For the CMS-subjected rats, 7,8-dihydroxyflavone treatment dose-dependently reduced their serum corticosterone levels but increased their hippocampal BDNF levels only at 5 mg/kg. CONCLUSION 7,8-dihydroxyflavone was beneficial for both depression and anxiety-like behaviors, and may exert fast-onset antidepressant effects. This provides a new insight into the pharmacological management of depression.
Collapse
Affiliation(s)
- Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Hsiu Wang
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Che-Se Tung
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
- Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chin-Bin Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yia-Ping Liu
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
38
|
Young-Adult Male Rats' Vulnerability to Chronic Mild Stress Is Reflected by Anxious-Like instead of Depressive-Like Behaviors. NEUROSCIENCE JOURNAL 2016; 2016:5317242. [PMID: 27433469 PMCID: PMC4940564 DOI: 10.1155/2016/5317242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022]
Abstract
In a previous study, we found that chronic mild stress (CMS) paradigm did not induce anhedonia in young-adult male rats but it reduced their body weight gain. These contrasting results encouraged us to explore other indicators of animal's vulnerability to stress such as anxious-like behaviors, since stress is an etiologic factor also for anxiety. Thus, in this study, we evaluated the vulnerability of these animals to CMS using behavioral tests of depression or anxiety and measuring serum corticosterone. Male Wistar rats were exposed to four weeks of CMS; the animals' body weight and sucrose preference (indicator of anhedonia) were assessed after three weeks, and, after the fourth week, some animals were evaluated in a behavioral battery (elevated plus maze, defensive burying behavior, and forced swimming tests); meanwhile, others were used to measure serum corticosterone. We found that CMS (1) did not affect sucrose preference, immobility behavior in the forced swimming test, or serum corticosterone; (2) decreased body weight gain; and (3) increased the rat's entries into closed arms of the plus maze and the cumulative burying behavior. These data indicate that young male rats' vulnerability to CMS is reflected as poor body weight gain and anxious-like instead of depressive-like behaviors.
Collapse
|
39
|
Shiota N, Narikiyo K, Masuda A, Aou S. Water spray-induced grooming is negatively correlated with depressive behavior in the forced swimming test in rats. J Physiol Sci 2016; 66:265-73. [PMID: 26586000 PMCID: PMC10717009 DOI: 10.1007/s12576-015-0424-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022]
Abstract
Rodents show grooming, a typical self-care behavior, under stress and non-stress conditions. Previous studies revealed that grooming under stress conditions such as the open-field test (OFT) or the elevated plus-maze test (EPM) is associated with anxiety, but the roles of grooming under non-stress conditions are not well understood. Here, we examined spray-induced grooming as a model of grooming under a non-stress condition to investigate the relationship between this grooming and depression-like behavior in the forced swim test (FST) and tail suspension test, and we compared spray-induced grooming with OFT- and EPM-induced grooming. The main finding was that the duration of spray-induced grooming, but not that of OFT/EPM-induced grooming, was negatively correlated with the duration of immobility in the FST, an index of depression-like behavior. The results suggest that spray-induced grooming is functionally different from the grooming in the OFT and EPM and is related to reduction of depressive behavior.
Collapse
Affiliation(s)
- Noboru Shiota
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
- Department of Health and Welfare, Seinan Jo Gakuin University, Kitakyushu, 803-0835, Japan
| | - Kimiya Narikiyo
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Akira Masuda
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Shuji Aou
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan.
| |
Collapse
|
40
|
Gross M, Pinhasov A. Chronic mild stress in submissive mice: Marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav Brain Res 2016; 298:25-34. [DOI: 10.1016/j.bbr.2015.10.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
|
41
|
Bhatt S, Shukla P, Raval J, Goswami S. Role of Aspirin and Dexamethasone against Experimentally Induced Depression in Rats. Basic Clin Pharmacol Toxicol 2016; 119:10-8. [DOI: 10.1111/bcpt.12539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Jibril Raval
- L. J. Institute of Pharmacy; L.J. Campus; Ahmedabad India
| | - Sunita Goswami
- Department of Pharmacology; L. M. College of Pharmacy; Navrangpura Ahmedabad India
| |
Collapse
|
42
|
The Effects of Gender Differences in Patients with Depression on Their Emotional Working Memory and Emotional Experience. Behav Neurol 2015; 2015:807343. [PMID: 26578820 PMCID: PMC4633552 DOI: 10.1155/2015/807343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/27/2015] [Accepted: 10/04/2015] [Indexed: 11/17/2022] Open
Abstract
A large amount of research has been conducted on the effects of sex hormones on gender differences in patients with depression, yet research on cognitive differences between male and female patients with depression is insufficient. This study uses emotion pictures to investigate the differences of the emotional working memory ability and emotional experience in male and female patients with depression. Despite identifying that the working memory of patients with depression is impaired, our study found no significant gender differences in emotional working memory. Moreover, the research results revealed that memory effects of mood congruence are produced in both men and women, which may explain why the depression state can be maintained. Furthermore, female patients have more emotional experiences than male patients, which is particularly significant in terms of negative emotional experiences. This result provides cognitive evidence to explain why women suffer from longer terms of depression, are more susceptible to relapse, and can more easily suffer from major depressive disorder in the future.
Collapse
|
43
|
Sinclair A, Weber Wyneken C, Veldkamp T, Vinco L, Hocking P. Behavioural assessment of pain in commercial turkeys (Meleagris gallopavo) with foot pad dermatitis. Br Poult Sci 2015; 56:511-21. [PMID: 26248066 PMCID: PMC4667540 DOI: 10.1080/00071668.2015.1077204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 10/31/2022]
Abstract
Two experiments were conducted to investigate the differences in susceptibility to foot pad dermatitis (FPD) of two medium-heavy lines of turkeys, and whether FPD is painful, by detailed analysis of behaviour in birds with and without analgesic treatment (betamethasone). Turkeys housed on dry litter in the first experiment generally had more frequent bouts of different behaviours that were of shorter duration than birds on wet litter. T-patterns (behavioural sequences) were more frequent, varied and complex on dry than on wet litter. Betamethasone-injected birds of line B, but not breed A, had shorter resting and longer standing durations on wet litter than saline-injected birds. In the second experiment, turkeys on wet litter given saline stood less and rested more than all other treatment groups, suggesting that they experienced pain that was alleviated in birds receiving betamethasone. Turkeys on dry litter had more frequent, varied and complex patterns of behaviour than turkeys on wet litter and birds kept on intermediate litter wetness. Betamethasone provision increased pattern variety regardless of litter treatment. Turkeys with low FPD scores transferred to wet litter and given saline injections had a longer total duration of resting and shorter duration of standing compared to betamethasone-treated birds. Low FPD birds transferred to wet litter had a similar number of patterns and total pattern occurrence as high FPD birds transferred to dry litter. Betamethasone increased pattern variety and frequency compared to saline injections whereas overall pattern complexity was similar. It was concluded that wet litter affects the behaviour of turkey poults independently of FPD and that betamethasone may also change the behaviour of turkeys. There was some evidence from analgesic treatment and T-pattern analyses that FPD was painful. However, there was no evidence of differences in susceptibility to FPD of the two commercial hybrids.
Collapse
Affiliation(s)
- A. Sinclair
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - C. Weber Wyneken
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - T. Veldkamp
- Department Animal Nutrition, Wageningen UR Livestock Research, Wageningen, The Netherlands
| | - L.J. Vinco
- National Reference Centre for Animal Welfare, Istituto Zooprofilattico della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - P.M. Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
44
|
Vey LT, Rosa HZ, Barcelos RCS, Segat HJ, Metz VG, Dias VT, Duarte T, Duarte MMMF, Burger ME. Stress during the gestational period modifies pups' emotionality parameters and favors preference for morphine in adolescent rats. Behav Brain Res 2015; 296:408-417. [PMID: 26300452 DOI: 10.1016/j.bbr.2015.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 12/27/2022]
Abstract
Experimental animal studies have shown that early life periods are highly vulnerable to environmental factors, which may exert prolonged impact on HPA axis function and on subsequent neurochemical and behavioral responses in adulthood. Here we evaluated the influence of environmental stressful situations in two different early life stages on stress-related behaviors, and morphine-conditioned place preference (CPP), which is indicative of addiction. While in the gestational stress (Gest-S) dams were exposed to daily sessions of chronic mild stress (CMS) for 2 weeks, in the postnatal stress (post-NS) the offspring were exposed daily to neonatal isolation from postnatal day (PND) 2 to PND 9 for 60 min. Animals exposed to post-NS showed lesser anxiety in different behavioral paradigms (elevated plus maze-EPM and defensive burying test-DBT) as well as increased exploratory behavior (open-field task-OFT), and no preference for morphine in CPP. In contrast, animals exposed to Gest-S showed increased corticosterone plasma levels together with anxiety symptoms and greater preference for morphine following three days of drug withdrawal. Our findings indicate that the gestational period is critical for stress, whose effects may be manifest throughout life. On the other hand, post-NS can trigger neuroadaptations able to overcome emotional consequences of early life. We hypothesized that Gest-S is able to modify responses to opioids along adulthood, which may facilitate development of addiction to these drugs.
Collapse
Affiliation(s)
- Luciana Taschetto Vey
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Prédio 18, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Higor Zuquetto Rosa
- Departamento de Fisiologia e Farmacologia, UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Raquel Cristine Silva Barcelos
- Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Hecson Jesser Segat
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Prédio 18, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Vinícia Garzella Metz
- Departamento de Fisiologia e Farmacologia, UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Verônica Tironi Dias
- Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Thiago Duarte
- Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Marta M M F Duarte
- Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil; Lutheran University of Brazil (ULBRA), Santa Maria, Brazil
| | - Marilise Escobar Burger
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Prédio 18, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil; Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
45
|
Camp RM, Johnson JD. Repeated stressor exposure enhances contextual fear memory in a beta-adrenergic receptor-dependent process and increases impulsivity in a non-beta receptor-dependent fashion. Physiol Behav 2015; 150:64-8. [PMID: 25747320 DOI: 10.1016/j.physbeh.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
Abstract
Memory formation is promoted by stress via the release of norepinephrine and stimulation of beta-adrenergic receptors (β-ARs). Previous data demonstrate that repeated stressor exposure increases norepinephrine turnover and β-AR signaling within the amygdala, which led to the hypothesis that some stress-induced behavioral changes are likely due to facilitated associative learning. To test this, Fischer rats were exposed to chronic mild stress for four days. On day 5, subjects (including non-stressed controls) were injected with the beta-blocker propranolol or vehicle prior to conditioning in an operant box (animals receive two mild foot shocks) or passive avoidance apparatus (animals received a foot shock upon entry into the dark chamber). Twenty-four hours later, subjects were returned to the operant box for measurement of freezing or returned to the passive avoidance apparatus for measurement of latency to enter the dark chamber. Subjects were also tested in an open field to assess context-independent anxiety-like behavior. Animals exposed to chronic stress showed significantly more freezing behavior in the operant box than did controls, and this exaggerated freezing was blocked by propranolol during the conditioning trial. There was no effect of stress on behavior in the open field. Unexpectedly, retention latency was significantly reduced in subjects exposed to chronic stress. These results indicate that chronic exposure to stress results in complex behavioral changes. While repeated stress appears to enhance the formation of fearful memories, it also results in behavioral responses that resemble impulsive behaviors that result in poor decision-making.
Collapse
Affiliation(s)
- Robert M Camp
- Kent State University, Biological Sciences Department, Kent, OH 44242, United States
| | - John D Johnson
- Kent State University, Biological Sciences Department, Kent, OH 44242, United States.
| |
Collapse
|
46
|
Giannotti G, Caffino L, Malpighi C, Melfi S, Racagni G, Fumagalli F. A single exposure to cocaine during development elicits regionally-selective changes in basal basic Fibroblast Growth Factor (FGF-2) gene expression and alters the trophic response to a second injection. Psychopharmacology (Berl) 2015; 232:713-9. [PMID: 25124315 DOI: 10.1007/s00213-014-3708-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022]
Abstract
RATIONALE During adolescence, the brain is maturing and more sensitive to drugs of abuse that can influence its developmental trajectory. Recently, attention has been focused on basic fibroblast growth factor (FGF-2) given that its administration early in life enhances the acquisition of cocaine self-administration and sensitization at adulthood (Turner et al. (Pharmacol Biochem Behav 92:100-4, 2009), Clinton et al. (Pharmacol Biochem Behav103:6-17, 2012)). Additionally, we found that abstinence from adolescent cocaine exposure long lastingly dysregulates FGF-2 transcription (Giannotti et al. (Psychopharmacology (Berl) 225:553-60, 2013 ). OBJECTIVES The objectives of the study are to evaluate if (1) a single injection of cocaine (20 mg/kg) at postnatal day 35 alters FGF-2 messenger RNA (mRNA) levels and (2) the first injection influences the trophic response to a second injection (10 mg/kg) provided 24 h or 7 days later. RESULTS We found regional differences in the FGF-2 expression pattern as either the first or the second injection of cocaine by themselves upregulated FGF-2 mRNA in the medial prefrontal cortex and nucleus accumbens while downregulating it in the hippocampus. The first injection influences the trophic response of the second. Of note, 24 h after the first injection, accumbal and hippocampal FGF-2 changes produced by cocaine in saline-pretreated rats were prevented in cocaine-pretreated rats. Conversely, in the medial prefrontal cortex and hippocampus 7 days after the first injection, the cocaine-induced FGF-2 changes were modified by the subsequent exposure to the psychostimulant. CONCLUSIONS These findings show that a single cocaine injection is sufficient to produce enduring changes in the adolescent brain and indicate that early cocaine priming alters the mechanisms regulating the trophic response in a brain region-specific fashion.
Collapse
Affiliation(s)
- Giuseppe Giannotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Caffino L, Calabrese F, Giannotti G, Barbon A, Verheij MMM, Racagni G, Fumagalli F. Stress rapidly dysregulates the glutamatergic synapse in the prefrontal cortex of cocaine-withdrawn adolescent rats. Addict Biol 2015; 20:158-69. [PMID: 24102978 DOI: 10.1111/adb.12089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although several lines of evidence have shown that chronic cocaine use is associated with stress system dysregulation, the underlying neurochemical mechanisms are still elusive. To investigate whether the rapid stress-induced response of the glutamatergic synapse was influenced by a previous history of cocaine, rats were exposed to repeated cocaine injections during adolescence [from postnatal day (PND) 28-42], subjected to a single swim stress (5 minutes) three days later (PND 45) and sacrificed 15 minutes after the end of this stressor. Critical determinants of glutamatergic homeostasis were measured in the medial prefrontal cortex (mPFC) whereas circulating corticosterone levels were measured in the plasma. Exposure to stress in saline-treated animals did not show changes in the crucial determinants of the glutamatergic synapse. Conversely, in cocaine-treated animals, stress dynamically altered the glutamatergic synapse by: (1) enhancing the presynaptic vesicular mediators of glutamate release; (2) reducing the transporters responsible for glutamate clearance; (3) increasing the postsynaptic responsiveness of the N-methyl-D-aspartate subunit GluN1; and (4) causing hyperresponsive spines as evidenced by increased activation of the postsynaptic cdc42-Pak pathway. These findings indicate that exposure to cocaine during adolescence sensitizes mPFC glutamatergic synapses to stress. It is suggested that changes in glutamatergic signaling may contribute to the increased sensitivity to stress observed in cocaine users. Moreover, glutamatergic processes may play an important role in stress-induced reinstatement of cocaine seeking.
Collapse
Affiliation(s)
- Lucia Caffino
- Centro di Neurofarmacologia, Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milan Italy
- Collaborative Center of Department of Antidrug Policies; Presidency of the Council of Ministers; Rome Italy
| | - Francesca Calabrese
- Centro di Neurofarmacologia, Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milan Italy
- Collaborative Center of Department of Antidrug Policies; Presidency of the Council of Ministers; Rome Italy
| | - Giuseppe Giannotti
- Centro di Neurofarmacologia, Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milan Italy
- Collaborative Center of Department of Antidrug Policies; Presidency of the Council of Ministers; Rome Italy
| | - Alessandro Barbon
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, National Institute of Neuroscience; University of Brescia; Brescia Italy
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Giorgio Racagni
- Centro di Neurofarmacologia, Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milan Italy
- Collaborative Center of Department of Antidrug Policies; Presidency of the Council of Ministers; Rome Italy
- I.R.C.C.S. San Giovanni di Dio-Fatebenefratelli; Brescia Italy
| | - Fabio Fumagalli
- Centro di Neurofarmacologia, Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milan Italy
- Collaborative Center of Department of Antidrug Policies; Presidency of the Council of Ministers; Rome Italy
| |
Collapse
|
48
|
Chronic light deprivation inhibits appetitive associative learning induced by ethanol and its respective c-Fos and pCREB expression. Int J Neuropsychopharmacol 2014; 17:1815-30. [PMID: 24905237 DOI: 10.1017/s1461145714000480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To address the role of mixed anxiety/mood disorder on appetitive associative learning, we verify whether previous chronic light deprivation changes ethanol-induced conditioned place preference and its respective expression of c-Fos and pCREB, markers of neuronal activity and plasticity. The experimental group was maintained in light deprivation for 24 h for a period of 4 wk. Subsequently, it was adapted to a standard light-dark cycle for 1 wk. As a control, some mice were maintained in standard cycle for a period of 4 wk (Naïve group). Then, all animals were submitted to behavioral tests to assess emotionality: elevated plus maze; open field; and forced swim. After that, they were submitted to ethanol-induced conditioned place preference. Ninety minutes after the place preference test, they were perfused, and their brains processed for c-Fos and pCREB immunohistochemistry. Light deprivation induced anxiety-like trait (elevated plus maze), despair (forced swim), and hyperlocomotion (open field), common features seen in other animal models of depression. Ethanol-induced conditioned place preference was accompanied by increases on c-Fos and pCREB in the hippocampus, prefrontal cortex and striatum. Interestingly, mice previously submitted to light deprivation did not develop either acquisition and/or expression of ethanol-induced conditioned place preference or increases in c-Fos and pCREB. Therefore, chronic light deprivation mimics several behavioral aspects of other animal models of depression. Furthermore, it could be useful to study the neurochemical mechanisms involved in the dual diagnosis. However, given its likely deleterious effects on appetitive associative memory, it should be used with caution to investigate the cognitive aspects related to the dual diagnosis.
Collapse
|
49
|
Lee JH, Kim JY, Jahng JW. Highly Palatable Food during Adolescence Improves Anxiety-Like Behaviors and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Rats that Experienced Neonatal Maternal Separation. Endocrinol Metab (Seoul) 2014; 29:169-78. [PMID: 25031890 PMCID: PMC4091489 DOI: 10.3803/enm.2014.29.2.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/02/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study was conducted to examine the effects of ad libitum consumption of highly palatable food (HPF) during adolescence on the adverse behavioral outcome of neonatal maternal separation. METHODS Male Sprague-Dawley pups were separated from dam for 3 hours daily during the first 2 weeks of birth (maternal separation, MS) or left undisturbed (nonhandled, NH). Half of MS pups received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28 (MS+HPF). Pups were subjected to behavioral tests during young adulthood. The plasma corticosterone response to stress challenge was analyzed by radioimmunoassay. RESULTS Daily caloric intake and body weight gain did not differ among the experimental groups. Ambulatory activities were decreased defecation activity and rostral grooming were increased in MS controls (fed with chow only) compared with NH rats. MS controls spent less time in open arms, and more time in closed arms during the elevated plus maze test, than NH rats. Immobility duration during the forced swim test was increased in MS controls compared with NH rats. Cookie access normalized the behavioral scores of ambulatory and defecation activities and grooming, but not the scores during the elevated plus maze and swim tests in MS rats. Stress-induced corticosterone increase was blunted in MS rats fed with chow only, and cookie access normalized it. CONCLUSION Prolonged access to HPF during adolescence and youth partly improves anxiety-related, but not depressive, symptoms in rats that experienced neonatal maternal separation, possibly in relation with improved function of the hypothalamic-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- Jong-Ho Lee
- Program in Craniofacial Structure and Functional Biology, Department of Dental Science, Graduate School, Seoul National University School of Dentistry, Seoul, Korea
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea
- Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Jin Young Kim
- Program in Craniofacial Structure and Functional Biology, Department of Dental Science, Graduate School, Seoul National University School of Dentistry, Seoul, Korea
| | - Jeong Won Jahng
- Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| |
Collapse
|
50
|
Basta-Kaim A, Szczesny E, Glombik K, Slusarczyk J, Trojan E, Tomaszewski KA, Budziszewska B, Kubera M, Lason W. Prenatal stress leads to changes in IGF-1 binding proteins network in the hippocampus and frontal cortex of adult male rat. Neuroscience 2014; 274:59-68. [PMID: 24857711 DOI: 10.1016/j.neuroscience.2014.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022]
Abstract
Depression is a mental disorder of still unknown origin. Currently, much attention is paid to the potential influence of disturbances in the functioning of neurotrophic factors on the onset of this disease. Insulin-like growth factor 1 (IGF-1) is one of the most important growth agents affecting processes that are crucial for brain development. To date, there are no data showing the impact of prenatal stress on the family of six IGF binding proteins (IGFBP 1-6) that regulate IGF-1 bioactivity. The goal of this study was to investigate whether the decreased expression of IGF-1 in the frontal cortex (FCx) and hippocampus (Hp) of adult male rats following a prenatal stress procedure is related to changes in the IGFBP family. Our results show that rats exposed prenatally to stressful stimuli displayed depression-like behavior based on sucrose preference and elevated plus maze tests. In both cases, in the adult rat brain structures that were examined after the prenatal stress procedure, the IGF-1 protein level was reduced. Moreover, we observed changes of varying degrees in the levels of IGFBPs in stressed animals. A decrease in IGFBP-2 and IGFBP-3 accompanied by an increase in the IGFBP-4 concentration in the Hp and the FCx was detected. There were no differences in IGFBP-1 and IGFBP-6 brain levels between the stressed and control animals, whereas IGFBP-5 concentration was decreased in the Hp of prenatally stressed animals. This study demonstrated that stress during pregnancy may lead not only to behavioral disturbances but also to a decrease in IGF-1 level and the dysregulation of the IGF-1 binding protein network in adult rat offspring.
Collapse
Affiliation(s)
- A Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343 Krakow, Poland.
| | - E Szczesny
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343 Krakow, Poland
| | - K Glombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343 Krakow, Poland
| | - J Slusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343 Krakow, Poland
| | - E Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343 Krakow, Poland
| | - K A Tomaszewski
- Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika St, 31-034 Krakow, Poland
| | - B Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343 Krakow, Poland
| | - M Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343 Krakow, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343 Krakow, Poland
| |
Collapse
|