1
|
Du C, Wang J, Tan H, Han N, Li X, Sun B, Zhang G, Chang M. Dopamine D 4 receptors in the lateral habenula regulate anxiety-related behaviors in a rat model of Parkinson's disease. Brain Res Bull 2024; 219:111122. [PMID: 39521183 DOI: 10.1016/j.brainresbull.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Although the output of the lateral habenula (LHb) controls the activity of midbrain dopamine (DA) and 5-hydroxytryptamine (5-HT) containing systems, which are implicated in the pathophysiology of anxiety, it is not clear how activation and blockade of LHb D4 receptors affects anxiety-like behaviors, particularly in Parkinson's disease related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) in rats induced anxiety-like behaviors, which attribute to hyperactivity of LHb neurons and decrease in the level of DA in the medial prefrontal cortex (mPFC), amygdala and ventral hippocampus (vHip) compared to sham-operated rats. Intra-LHb injection of D4 receptor agonist A412997 induced or increased the expression of anxiety-like behaviors, while injection of D4 receptor antagonist L741742 showed anxiolytic effects in sham-operated and the SNc-lesioned rats. However, the doses producing behavioral effects in the lesioned rats were higher than those of sham-operated rats. Intra-LHb injection of A412997 increased firing rate of LHb neurons, and decreased levels of DA and 5-HT in the mPFC, amygdala and vHip; conversely, L741742 decreased firing rate of LHb neurons, and increased levels of DA and 5-HT in two groups of rats. Compared to sham-operated rats, the duration of A412997 and L741742 action on the firing rate of neurons was markedly shortened in the lesioned rats. Collectively, these findings suggest that D4 receptors in the LHb are involved in the regulation of anxiety-like behaviors, and degeneration of the nigrostriatal pathway down-regulates function and/or expression of these receptors.
Collapse
Affiliation(s)
- Chengxue Du
- The College of Life Sciences, Northwest University, Xi'an, China; Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Jiachen Wang
- The College of Life Sciences, Northwest University, Xi'an, China; Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Huihui Tan
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Nannan Han
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Xiaobo Li
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Baihua Sun
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Gejuan Zhang
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China.
| | - Mingze Chang
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China.
| |
Collapse
|
2
|
Cruz-Trujillo R, Díaz-Urbina D, Díaz-Gandarilla JA, Vidal-López DG, Escartín-Pérez RE, Mancilla-Diaz JM, Florán B, Tejas-Juárez JG. Stimulation of Dopamine D4 Receptors in the Nucleus Accumbens Shell Increases Palatable Food Intake in Satiated Male Rats: Modulation by NMDA and AMPA Receptors. Brain Sci 2024; 14:1103. [PMID: 39595865 PMCID: PMC11592207 DOI: 10.3390/brainsci14111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Palatability significantly influences food consumption, often leading to overeating and obesity by activating the brain's reward systems. The nucleus accumbens (NAc) plays a central role in this process, modulating reward mechanisms primarily via dopamine through D2-like receptors (D2R, D3R, D4R). While the involvement of D2 receptors in feeding is well-documented, the role of D4 receptors (D4Rs) is less clear. METHODS Male Wistar rats received intra-NAc shell microinjections of the D4R agonist PD-168077 and the antagonist L-745870. This study also examined the modulation between D4R and glutamatergic transmission by administration of NMDA, NMDA receptor antagonist AP-5, AMPA, and AMPA receptor antagonist CNQX. RESULTS PD-168077 increased sweet solution intake by 46%, an effect that was reversed by L-745870. Pre-treatment with NMDA prevented the stimulatory effect of PD-168077, whereas the NMDA receptor antagonist AP-5 had no such effect. Additionally, AMPA administration reduced sweet solution intake by 63%, counteracting the effect of PD-168077, while the AMPA receptor antagonist CNQX, on its own, increased intake by 40%. CONCLUSIONS These findings suggest that D4Rs promote hedonic feeding by modulating glutamatergic transmission in the NAc shell, highlighting the complexity of D4R involvement in food intake regulation. This study underscores the potential of targeting D4Rs for therapeutic interventions in eating disorders and obesity, though further research is essential to clarify the precise mechanisms through which D4R modulates AMPA and NMDA receptor activity in feeding behavior.
Collapse
Affiliation(s)
- Refugio Cruz-Trujillo
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas (UNACH), Carretera Panamericana Ocozocoautla-Cintalapa Km. 2.5, Ocozocoautla de Espinosa 29140, Mexico;
- Departamento de Químicos Farmacobiólogos, Universidad Pablo Guardado Chávez (UPGCH), Libramiento Norte Oriente No. 3450, Tuxtla Gutiérrez 29040, Mexico
| | - Daniel Díaz-Urbina
- Laboratory on Neurobiology of Compulsive Behaviors, NIMH, National Institutes of Health, Bethesda, MD 20892, USA;
- Laboratorio de Neurobiología de la Alimentación, Grupo de Investigación en Nutrición, División de Investigación y Posgrado de la FES Iztacala, UNAM, Ciudad de México 04510, Mexico; (R.E.E.-P.); (J.M.M.-D.)
| | - José Alfredo Díaz-Gandarilla
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco (UJAT), Comalcalco 86658, Mexico;
| | | | - Rodrigo Erick Escartín-Pérez
- Laboratorio de Neurobiología de la Alimentación, Grupo de Investigación en Nutrición, División de Investigación y Posgrado de la FES Iztacala, UNAM, Ciudad de México 04510, Mexico; (R.E.E.-P.); (J.M.M.-D.)
| | - Juan Manuel Mancilla-Diaz
- Laboratorio de Neurobiología de la Alimentación, Grupo de Investigación en Nutrición, División de Investigación y Posgrado de la FES Iztacala, UNAM, Ciudad de México 04510, Mexico; (R.E.E.-P.); (J.M.M.-D.)
| | - Benjamín Florán
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Fisiología, Biofísica y Neurociencias, Ciudad de México 07360, Mexico;
| | - Juan Gabriel Tejas-Juárez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco (UJAT), Comalcalco 86658, Mexico;
| |
Collapse
|
3
|
Torres V, Pérez‐Montesino J, Fernández‐Santiago R, Fernández M, Camara A, Compta Y, Martí M, Guerra Beltran À, Rios J, Valldeoriola F, Ezquerra M. DRD4 gene polymorphism and impulse control disorder induced by dopamine agonists in Parkinson's disease. Ann Clin Transl Neurol 2024; 11:2222-2229. [PMID: 38952083 PMCID: PMC11330210 DOI: 10.1002/acn3.52111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Impulse control disorders and their consequences display variability among individuals, indicating potential involvement of environmental and genetic factors. In this retrospective study, we analyzed a cohort of Parkinson's disease patients treated with dopamine agonists and investigated the influence of the dopamine D4 receptor gene polymorphism, DRD4 7R+, which is linked to psychiatric disorders, impulsive traits, and addictive behaviors. We found that DRD4 7R+ is a significant genetic risk factor associated with the severity of ICD.
Collapse
Affiliation(s)
- Viviana Torres
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceInstitut de Neurociencies UBNeuro, Hospital Clínic Universitari de BarcelonaBarcelonaCataloniaSpain
| | - Jesica Pérez‐Montesino
- Lab of Parkinson's disease and other Neurodegenerative Movement Disorders: Clinical and Experimental ResearchInstitut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)Barcelona08036CataloniaSpain
| | - Rubén Fernández‐Santiago
- Lab of Parkinson's disease and other Neurodegenerative Movement Disorders: Clinical and Experimental ResearchInstitut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)Barcelona08036CataloniaSpain
| | - Manel Fernández
- Lab of Parkinson's disease and other Neurodegenerative Movement Disorders: Clinical and Experimental ResearchInstitut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)Barcelona08036CataloniaSpain
| | - Ana Camara
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceInstitut de Neurociencies UBNeuro, Hospital Clínic Universitari de BarcelonaBarcelonaCataloniaSpain
| | - Yaroslau Compta
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceInstitut de Neurociencies UBNeuro, Hospital Clínic Universitari de BarcelonaBarcelonaCataloniaSpain
| | - María‐José Martí
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceInstitut de Neurociencies UBNeuro, Hospital Clínic Universitari de BarcelonaBarcelonaCataloniaSpain
| | - Àlex Guerra Beltran
- Lab of Parkinson's disease and other Neurodegenerative Movement Disorders: Clinical and Experimental ResearchInstitut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)Barcelona08036CataloniaSpain
| | - José Rios
- Department of Clinical Pharmacology, Hospital Clinic, and Medical Statistics Core FacilityInstitutd'InvestigacionsBiomèdiques August Pi ISunyer (IDIBAPS)BarcelonaCataloniaSpain
- Biostatistics Unit, School of MedicineUniversitatAutònoma de BarcelonaBarcelonaCataloniaSpain
| | - Francesc Valldeoriola
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceInstitut de Neurociencies UBNeuro, Hospital Clínic Universitari de BarcelonaBarcelonaCataloniaSpain
| | - Mario Ezquerra
- Lab of Parkinson's disease and other Neurodegenerative Movement Disorders: Clinical and Experimental ResearchInstitut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)Barcelona08036CataloniaSpain
| |
Collapse
|
4
|
O'Gorman ET, Meyer GJ. Developmental cascades from early childhood attachment security to adolescent level of personality functioning among high-risk youth. Dev Psychopathol 2024:1-14. [PMID: 38934483 PMCID: PMC11671614 DOI: 10.1017/s0954579424001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This study examines associations between early childhood attachment security and adolescent personality functioning in a high-risk sample within a developmental psychopathology framework. Data from 2,268 children (1165 male; 1103 female) and caregivers participating in Future of Families and Child Well-Being Study (FFCWS) were used to examine (1) effects of genetic polymorphisms of the serotonin transporter (5-HTTLPR) and dopamine D4 receptor (DRD4) genes and adverse childhood experiences (ACEs) on attachment security and emotional and behavioral dysregulation in early childhood and (2) longitudinal associations and transactional relationships among attachment security, dysregulation, negative parenting attitudes and behaviors, social competence, and adolescent personality functioning. Results revealed that ACEs predicted attachment security over and above sex or the genetic risk, and gene × environment interactions did not increment prediction. Results of cascade models showed that greater early childhood attachment security predicted higher adolescent level of personality functioning via pathways through intermediary variables. Limitations and future research directions are discussed.
Collapse
Affiliation(s)
- Emily T O'Gorman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gregory J Meyer
- Department of Psychology, University of Toledo, Toledo, OH, USA
| |
Collapse
|
5
|
Engel-Yeger B. The development and validation of the "SENSE" - Sensory and Behavioral Modulation Questionnaire for adults. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 147:104715. [PMID: 38471295 DOI: 10.1016/j.ridd.2024.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Sensory modulation is critical for interacting with the physical and social environment. When sensory input from the environment is not properly perceived and modulated, it may elevate arausability, avoidant behavior, impair function and wellbeing. Sensory modulation difficulties (SMD) are mainly reported during childhood and are related to neurodevelopmental conditions such as Attention-Deficit Hyperactivity Disorder (ADHD). SMD in adulthood further deteriorate function and emotional status, hence should be screened and treated. Nonetheless, relevant measures of SMD for adults are limited. This study aims to establish the psychometric properties of the "SENSE" - Sensory and Behavioral Modulation Questionnaire for adults. Based on theoretical/clinical knowledge the SENSE measures sensitivity/arousability, habituation and avoidance. After establishing content and face validity, 663 participants aged 18-65 completed a sociodemographic and health questionnaire, the Adult ADHD Scale-5 (ASRS-5), the SENSE and the Highly Sensitive Person Scale (HSPS). Factor analysis approved the determination of SENSE scales. Medium- high internal consistency was found. SENSE discriminated between adults with/without ADHD and correlated with HSPS scores, confirming concurrent validity. CONCLUSIONS: SENSE has good psychometric properties and may be feasible for screening sensory-behavioral modulation difficulties in adults. Studies should further examine SENSE applicability to clinical populations.
Collapse
Affiliation(s)
- Batya Engel-Yeger
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Alachkar A, Phan A, Dabbous T, Alhassen S, Alhassen W, Reynolds B, Rubinstein M, Ferré S, Civelli O. Humanized dopamine D 4.7 receptor male mice display risk-taking behavior and deficits of social recognition and working memory in light/dark-dependent manner. J Neurosci Res 2024; 102:e25299. [PMID: 38361407 PMCID: PMC11503891 DOI: 10.1002/jnr.25299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
The dopamine D4 receptor 7-repeat allele (D4.7 R) has been linked with psychiatric disorders such as attention-deficit-hyperactivity disorder, autism, and schizophrenia. However, the highly diverse study populations and often contradictory findings make it difficult to draw reliable conclusions. The D4.7 R has the potential to explain individual differences in behavior. However, there is still a great deal of ambiguity surrounding whether it is causally connected to the etiology of psychiatric disorders. Therefore, humanized D4.7 R mice, with the long third intracellular domain of the human D4.7 R, may provide a valuable tool to examine the relationship between the D4.7 R variant and specific behavioral phenotypes. We report that D4.7 R male mice carrying the humanized D4.7 R variant exhibit distinct behavioral features that are dependent on the light-dark cycle. The behavioral phenotype was characterized by a working memory deficit, delayed decision execution in the light phase, decreased stress and anxiety, and increased risk behavior in the dark phase. Further, D4.7 R mice displayed impaired social recognition memory in both the light and dark phases. These findings provide insight into the potential causal relationship between the human D4.7 R variant and specific behaviors and encourage further consideration of dopamine D4 receptor (DRD4) ligands as novel treatments for psychiatric disorders in which D4.7 R has been implicated.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, Irvine, California, USA
- UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, California, USA
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, California, USA
| | - Alvin Phan
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, Irvine, California, USA
| | - Travis Dabbous
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, Irvine, California, USA
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, Irvine, California, USA
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, Irvine, California, USA
| | - Bryan Reynolds
- Department of Drama, School of the Arts, University of California-Irvine, Irvine, California, USA
| | - Marcelo Rubinstein
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Buenos Aires, Argentina
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, Irvine, California, USA
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Ferraiolo M, Hermans E. The complex molecular pharmacology of the dopamine D 2 receptor: Implications for pramipexole, ropinirole, and rotigotine. Pharmacol Ther 2023; 245:108392. [PMID: 36958527 DOI: 10.1016/j.pharmthera.2023.108392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
With L-DOPA, dopamine agonists such as pramipexole, ropinirole and rotigotine constitute key therapeutic options for the management of motor symptoms of Parkinson's disease. These compounds exert their beneficial effect on motor behaviours by activating dopamine D2-class receptors and thereby compensating for the declining dopaminergic transmission in the dorsal striatum. Despite a strong similarity in their mechanism of action, these three dopamine agonists present distinct clinical profiles, putatively underpinned by differences in their pharmacological properties. In this context, this review aims at contributing to close the gap between clinical observations and data from molecular neuropharmacology by exploring the properties of pramipexole, ropinirole and rotigotine from both the clinical and molecular perspectives. Indeed, this review first summarizes and compares the clinical features of these three dopamine agonists, and then explores their binding profiles at the different dopamine receptor subtypes. Moreover, the signalling profiles of pramipexole, ropinirole and rotigotine at the D2 receptor are recapitulated, with a focus on biased signalling and the potential therapeutic implications. Overall, this review aims at providing a unifying framework of interpretation for both clinicians and fundamental pharmacologists interested in a deep understanding of the pharmacological properties of pramipexole, ropinirole and rotigotine.
Collapse
Affiliation(s)
- Mattia Ferraiolo
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Emmanuel Hermans
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium.
| |
Collapse
|
8
|
Burström V, Ågren R, Betari N, Valle-León M, Garro-Martínez E, Ciruela F, Sahlholm K. Dopamine-induced arrestin recruitment and desensitization of the dopamine D4 receptor is regulated by G protein-coupled receptor kinase-2. Front Pharmacol 2023; 14:1087171. [PMID: 36778010 PMCID: PMC9911804 DOI: 10.3389/fphar.2023.1087171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
The dopamine D4 receptor (D4R) is expressed in the retina, prefrontal cortex, and autonomic nervous system and has been implicated in attention deficit hyperactivity disorder (ADHD), substance use disorders, and erectile dysfunction. D4R has also been investigated as a target for antipsychotics due to its high affinity for clozapine. As opposed to the closely related dopamine D2 receptor (D2R), dopamine-induced arrestin recruitment and desensitization at the D4R have not been studied in detail. Indeed, some earlier investigations could not detect arrestin recruitment and desensitization of this receptor upon its activation by agonist. Here, we used a novel nanoluciferase complementation assay to study dopamine-induced recruitment of β-arrestin2 (βarr2; also known as arrestin3) and G protein-coupled receptor kinase-2 (GRK2) to the D4R in HEK293T cells. We also studied desensitization of D4R-evoked G protein-coupled inward rectifier potassium (GIRK; also known as Kir3) current responses in Xenopus oocytes. Furthermore, the effect of coexpression of GRK2 on βarr2 recruitment and GIRK response desensitization was examined. The results suggest that coexpression of GRK2 enhanced the potency of dopamine to induce βarr2 recruitment to the D4R and accelerated the rate of desensitization of D4R-evoked GIRK responses. The present study reveals new details about the regulation of arrestin recruitment to the D4R and thus increases our understanding of the signaling and desensitization of this receptor.
Collapse
Affiliation(s)
- Viktor Burström
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Nibal Betari
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Marta Valle-León
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain
| | - Emilio Garro-Martínez
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain
| | - Kristoffer Sahlholm
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden,Department of Neuroscience, Karolinska Institutet, Solna, Sweden,Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain,*Correspondence: Kristoffer Sahlholm,
| |
Collapse
|
9
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Interaction of the preferential D3 agonist (+)PHNO with dopamine D3-D2 receptor heterodimers and diverse classes of monoamine receptors: Relevance for PET imaging. Eur J Pharmacol 2022; 925:175016. [DOI: 10.1016/j.ejphar.2022.175016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
|
11
|
Heteromerization between α 2A adrenoceptors and different polymorphic variants of the dopamine D 4 receptor determines pharmacological and functional differences. Implications for impulsive-control disorders. Pharmacol Res 2021; 170:105745. [PMID: 34182128 PMCID: PMC9885860 DOI: 10.1016/j.phrs.2021.105745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 02/01/2023]
Abstract
Polymorphic alleles of the human dopamine D4 receptor gene (DRD4) have been consistently associated with individual differences in personality traits and neuropsychiatric disorders, particularly between the gene encoding dopamine D4.7 receptor variant and attention deficit hyperactivity disorder (ADHD). The α2A adrenoceptor gene has also been associated with ADHD. In fact, drugs targeting the α2A adrenoceptor (α2AR), such as guanfacine, are commonly used in ADHD treatment. In view of the involvement of dopamine D4 receptor (D4R) and α2AR in ADHD and impulsivity, their concurrent localization in cortical pyramidal neurons and the demonstrated ability of D4R to form functional heteromers with other G protein-coupled receptors, in this study we evaluate whether the α2AR forms functional heteromers with D4R and weather these heteromers show different properties depending on the D4R variant involved. Using cortical brain slices from hD4.7R knock-in and wild-type mice, here, we demonstrate that α2AR and D4R heteromerize and constitute a significant functional population of cortical α2AR and D4R. Moreover, in cortical slices from wild-type mice and in cells transfected with α2AR and D4.4R, we detect a negative crosstalk within the heteromer. This negative crosstalk is lost in cortex from hD4.7R knock-in mice and in cells expressing the D4.7R polymorphic variant. We also show a lack of efficacy of D4R ligands to promote G protein activation and signaling only within the α2AR-D4.7R heteromer. Taken together, our results suggest that α2AR-D4R heteromers play a pivotal role in catecholaminergic signaling in the brain cortex and are likely targets for ADHD pharmacotherapy.
Collapse
|
12
|
Liu PP, Chao CC, Liao RM. Lack of effect of dopamine receptor blockade on SKF83959-altered operant behavior in male rats. CHINESE J PHYSIOL 2021; 64:1-15. [PMID: 33642339 DOI: 10.4103/cjp.cjp_92_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dopamine (DA) is important for the performance of operant behavior as revealed by psychopharmacological studies that manipulate the activity of DA subtype receptors. However, the effects of SKF83959, an atypical DA D1 receptor agonist, on operant behavior and the underlying pharmacological mechanisms remain unclear. The present study sought to determine whether blockade of DA D1- and D2-subtyped receptors would reverse the operant behavior altered by SKF83959. Male rats were trained to respond on either a fixed-interval 30 s (FI30) schedule or a differential reinforcement of low-rate response 10 s (DRL10) schedule, two timing-relevant tasks but with distinct reinforcement contingencies. Pharmacological evaluation was conducted with injection of a selective D1 (or D2) receptor antagonist alone or in combined with SKF83959 (1.0 mg/kg) following a stable baseline of behavioral performance. The results showed that SKF83959 treatment alone significantly disrupted the performance of FI30 and DRL10 behaviors mainly by showing the decreases of the response-related measures, and the distinct profiles of the behavior altered by the drug were manifested by the qualitative analysis of inter-response time data on both tasks. The effects of SKF83959 were not significantly affected/reversed by the pretreatment of either SCH23390 or eticlopride injected at the doses of 0.02 and 0.06 mg/kg; however, a subtle reversal effect was observed in the treatment of low-dose eticlopride. Despite that these results confirm the FI30 and DRL10 behaviors changed by SKF83959, the absence of pharmacological reversal effect by DA receptor antagonist suggests that either D1- or D2-subtyped receptors may not play a critical role in the alteration of timing-relevant operant behavior produced by SKF83959.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan
| | - Chih-Chang Chao
- Institute of Neuroscience; Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan
| | - Ruey-Ming Liao
- Department of Psychology; Institute of Neuroscience; Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan
| |
Collapse
|
13
|
Giorgioni G, Del Bello F, Pavletić P, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Recent findings leading to the discovery of selective dopamine D 4 receptor ligands for the treatment of widespread diseases. Eur J Med Chem 2020; 212:113141. [PMID: 33422983 DOI: 10.1016/j.ejmech.2020.113141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or β-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | | | | | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
14
|
Kuwagata M, Muneoka K, Honda K, Miyazaki A. Hypothalamic Monoaminergic Pathology in a Neurodevelopmental Rat Model Showing Prenatal 5-Bromo-2'-Deoxyuridine Treatment-Induced Hyperactivity and Hyporeproductivity. Neuropsychobiology 2020; 79:161-169. [PMID: 31822012 DOI: 10.1159/000504552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/03/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Prenatal treatment of rats with 5-bromo-2'-deoxyuridine (BrdU) is a neurodevelopmental model showing hyperactivity and impaired sexual activity. Human neurodevelopmental disorders, such as autism, exhibit sex-related pathology, but sex-related neurodevelopment has not been fully investigated in this model. We conducted this study to facilitate the understanding of the pathophysiology of neurodevelopmental disorders. METHODS Pregnant rats received 50 mg/kg BrdU on gestational days 9-15. The tissue content of dopamine (DA), serotonin (5-HT), and their metabolites dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid were measured in male and female offspring at 3 weeks (juveniles) and 10 weeks (adults) of age. RESULTS Prenatally BrdU-treated rats had reduced DA metabolism or DA content in the hypothalamus from the juvenile through the adult period without sex differences, but sex-specific striatal DA abnormalities emerged after maturation. A reduction in 5-HT metabolism was measured in the hypothalamus without sex differences throughout development. Developmental alterations in the striatal 5-HT states were sex-dependent. Temporal changes in DA or 5-HT metabolism were found in the frontal cortex and midbrain. CONCLUSION The sex-specific influence of a genotoxic factor on the development of the DA and 5-HT systems was clarified in the hypothalamus and striatum. The results suggest that the observed sex dependence and region specificity are related to the pathology of social dysfunction in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Makiko Kuwagata
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan.,Laboratory of Safety Evaluation, Division of Safety, Hatano Research Institute, Food and Drug Safety Center, Hadano, Japan.,Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Science, Kawasaki, Japan
| | - Katsumasa Muneoka
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan, .,Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan,
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Liao IM, Chen JC. Lack of dopamine D4 receptor participation in mouse hyperdopaminergic locomotor response. Behav Brain Res 2020; 396:112925. [PMID: 32971195 DOI: 10.1016/j.bbr.2020.112925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Chronic methamphetamine (METH) treatment induces behavioral sensitization in rodents. During this process, hyperactivation of the mesolimbic dopamine system plays a central role, and dopamine D2-like receptor-based antipsychotics are known to alleviate the behavioral hyperactivity. The atypical antipsychotic, clozapine (Clz), acts partially as a dopamine D4 receptor (D4R) antagonist and mitigates hyperdopaminergic drug addiction and/or comorbid psychotic symptoms; however, it remains unclear whether D4R blockade contributes to the therapeutic effects of Clz. Here, we evaluated the potential role of D4R in regulating hyperdopaminergia-induced behavioral hyperactivity in METH behavioral sensitization and dopamine transporter (DAT) knockdown (KD) mice. Clz or a D4R-selective antagonist, L-745,870, were co-administered to mice with daily METH in a METH sensitization model, and Clz or L-745,870 were administered alone in a DAT KD hyperactivity model. Locomotor activity and accumbal D4R expression were analyzed. Clz suppressed both the initiation and expression of METH behavioral sensitization, as well as DAT KD hyperactivity. However, repetitive Clz treatment induced tolerance to the suppression effect on METH sensitization initiation. In contrast, D4R inhibition by L-745,870 had no effect on METH sensitization or DAT KD hyperactivity. Accumbal D4R expression was similar between METH-sensitized mice with and without Clz co-treatment. In sum, our results suggest the mesolimbic D4R does not participate in behavioral sensitization encoded by hyperdopaminergia, a finding which likely extends to the therapeutic effects of Clz. Therefore, molecular targets other than D4R should be prioritized in the development of future therapeutics for treatment of hyperdopaminergia-dependent neuropsychiatric disorders.
Collapse
Affiliation(s)
- I-Mei Liao
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, United States
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Memorial Hospital, Keelung, Taiwan; Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
16
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
17
|
Tan T, Wang W, Williams J, Ma K, Cao Q, Yan Z. Stress Exposure in Dopamine D4 Receptor Knockout Mice Induces Schizophrenia-Like Behaviors via Disruption of GABAergic Transmission. Schizophr Bull 2019; 45:1012-1023. [PMID: 30476265 PMCID: PMC6737476 DOI: 10.1093/schbul/sby163] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A combination of genetic and environmental risk factors has been considered as the pathogenic cause for mental disorders including schizophrenia. Here, we sought to find out whether the abnormality of the dopamine system, coupled with the exposure to modest stress, is sufficient to trigger the manifestation of schizophrenia-like behaviors. We found that exposing dopamine D4 receptor knockout (D4KO) mice with 1-week restraint stress (2 h/d) induced significant deficits in sensorimotor gating, cognitive processes, social engagement, as well as the elevated exploratory behaviors, which are reminiscent to schizophrenia phenotypes. Electrophysiological studies found that GABAergic transmission was significantly reduced in prefrontal cortical neurons from stressed D4KO mice. Additionally, administration of diazepam, a GABA enhancer, restored GABAergic synaptic responses and ameliorated some behavioral abnormalities in stressed D4KO mice. These results have revealed that the combination of 2 key genetic and environmental susceptibility factors, dopamine dysfunction and stress, is a crucial trigger for schizophrenia-like phenotypes, and GABA system in the prefrontal cortex is a downstream convergent target that mediates some behavioral outcomes.
Collapse
Affiliation(s)
- Tao Tan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY,Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Wei Wang
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Jamal Williams
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Kaijie Ma
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Qing Cao
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY,To whom correspondence should be addressed; tel: 716-829-3058, fax: 716-829-2344, e-mail:
| |
Collapse
|
18
|
Keck T, Free RB, Day MM, Brown SL, Maddaluna MS, Fountain G, Cooper C, Fallon B, Holmes M, Stang CT, Burkhardt R, Bonifazi A, Ellenberger MP, Newman AH, Sibley DR, Wu C, Boateng CA. Dopamine D 4 Receptor-Selective Compounds Reveal Structure-Activity Relationships that Engender Agonist Efficacy. J Med Chem 2019; 62:3722-3740. [PMID: 30883109 PMCID: PMC6466480 DOI: 10.1021/acs.jmedchem.9b00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 01/08/2023]
Abstract
The dopamine D4 receptor (D4R) plays important roles in cognition, attention, and decision making. Novel D4R-selective ligands have promise in medication development for neuropsychiatric conditions, including Alzheimer's disease and substance use disorders. To identify new D4R-selective ligands, and to understand the molecular determinants of agonist efficacy at D4R, we report a series of eighteen novel ligands based on the classical D4R agonist A-412997 (1, 2-(4-(pyridin-2-yl)piperidin-1-yl)- N-( m-tolyl)acetamide). Compounds were profiled using radioligand binding displacement assays, β-arrestin recruitment assays, cyclic AMP inhibition assays, and molecular dynamics computational modeling. We identified several novel D4R-selective ( Ki ≤ 4.3 nM and >100-fold vs other D2-like receptors) compounds with diverse partial agonist and antagonist profiles, falling into three structural groups. These compounds highlight receptor-ligand interactions that control efficacy at D2-like receptors and may provide insights into targeted drug discovery, leading to a better understanding of the role of D4Rs in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas
M. Keck
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Cooper
Medical School of Rowan University, 401 Broadway, Camden, New
Jersey 08103, United
States
| | - R. Benjamin Free
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Marilyn M. Day
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sonvia L. Brown
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Michele S. Maddaluna
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Griffin Fountain
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Charles Cooper
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Brooke Fallon
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Matthew Holmes
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Christopher T. Stang
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Russell Burkhardt
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Michael P. Ellenberger
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy H. Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - David R. Sibley
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chun Wu
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Comfort A. Boateng
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| |
Collapse
|
19
|
Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU, Maggio R, Scarselli M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther 2018; 192:20-41. [PMID: 29953902 DOI: 10.1016/j.pharmthera.2018.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only in terms of hospitalization and reduction in symptoms severity, but also in terms of safety, socialization and better rehabilitation in the society. Regarding the mechanism of action, AAPs are weak D2 receptor antagonists and they act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmitters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism, hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors. This review revisits previous and current findings within the class of AAPs and highlights the differences in terms of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of "atypia" that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other AAPs fall within the extremes of this spectrum. Clozapine is still considered the gold standard in refractory schizophrenia and in psychoses present in Parkinson's disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this, it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify better the old and new hallmarks of "atypia". Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effectiveness of AAPs in clinical practice.
Collapse
Affiliation(s)
- Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Valeria Verdesca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrico Cini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
20
|
Jing Li J, Szkudlarek H, Renard J, Hudson R, Rushlow W, Laviolette SR. Fear Memory Recall Potentiates Opiate Reward Sensitivity through Dissociable Dopamine D1 versus D4 Receptor-Dependent Memory Mechanisms in the Prefrontal Cortex. J Neurosci 2018; 38:4543-4555. [PMID: 29686048 PMCID: PMC6705931 DOI: 10.1523/jneurosci.3113-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Disturbances in prefrontal cortical (PFC) dopamine (DA) transmission are well established features of psychiatric disorders involving pathological memory processing, such as post-traumatic stress disorder and opioid addiction. Transmission through PFC DA D4 receptors (D4Rs) has been shown to potentiate the emotional salience of normally nonsalient emotional memories, whereas transmission through PFC DA D1 receptors (D1Rs) has been demonstrated to selectively block recall of reward- or aversion-related associative memories. In the present study, using a combination of fear conditioning and opiate reward conditioning in male rats, we examined the role of PFC D4/D1R signaling during the processing of fear-related memory acquisition and recall and subsequent sensitivity to opiate reward memory formation. We report that PFC D4R activation potentiates the salience of normally subthreshold fear conditioning memory cues and simultaneously potentiates the rewarding effects of systemic or intra-ventral tegmental area (VTA) morphine conditioning cues. In contrast, blocking the recall of salient fear memories with intra-PFC D1R activation, blocks the ability of fear memory recall to potentiate systemic or intra-VTA morphine place preference. These effects were dependent upon dissociable PFC phosphorylation states involving calcium-calmodulin-kinase II or extracellular signal-related kinase 1-2, following intra-PFC D4 or D1R activation, respectively. Together, these findings reveal new insights into how aberrant PFC DAergic transmission and associated downstream molecular signaling pathways may modulate fear-related emotional memory processing and concomitantly increase opioid addiction vulnerability.SIGNIFICANCE STATEMENT Post-traumatic stress disorder is highly comorbid with addiction. In this study, we use a translational model of fear memory conditioning to examine how transmission through dopamine D1 or D4 receptors, in the prefrontal cortex (PFC), may differentially control acquisition or recall of fear memories and how these mechanisms might regulate sensitivity to the rewarding effects of opioids. We demonstrate that PFC D4 activation not only controls the salience of fear memory acquisition, but potentiates the rewarding effects of opioids. In contrast, PFC D1 receptor activation blocks recall of fear memories and prevents potentiation of opioid reward effects. Together, these findings demonstrate novel PFC mechanisms that may account for how emotional memory disturbances might increase the addictive liability of opioid-class drugs.
Collapse
Affiliation(s)
| | | | | | - Roger Hudson
- Departments of Anatomy and Cell Biology, and
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Walter Rushlow
- Departments of Anatomy and Cell Biology, and
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Steven R Laviolette
- Departments of Anatomy and Cell Biology, and
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
21
|
Neurochemical arguments for the use of dopamine D 4 receptor stimulation to improve cognitive impairment associated with schizophrenia. Pharmacol Biochem Behav 2017; 157:16-23. [DOI: 10.1016/j.pbb.2017.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/23/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
|
22
|
Bonaventura J, Quiroz C, Cai NS, Rubinstein M, Tanda G, Ferré S. Key role of the dopamine D 4 receptor in the modulation of corticostriatal glutamatergic neurotransmission. SCIENCE ADVANCES 2017; 3:e1601631. [PMID: 28097219 PMCID: PMC5226642 DOI: 10.1126/sciadv.1601631] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Polymorphic variants of the dopamine D4 receptor gene (DRD4) have been repeatedly associated with numerous neuropsychiatric disorders. Yet, the functional role of the D4 receptor and the functional differences of the products of DRD4 polymorphic variants remained enigmatic. Immunohistochemical and optogenetic-microdialysis experiments were performed in knock-in mice expressing a D4 receptor with the long intracellular domain of a human DRD4 polymorphic variant associated with attention deficit hyperactivity disorder (ADHD). When compared with the wild-type mouse D4 receptor, the expanded intracellular domain of the humanized D4 receptor conferred a gain of function, blunting methamphetamine-induced cortical activation and optogenetic and methamphetamine-induced corticostriatal glutamate release. The results demonstrate a key role of the D4 receptor in the modulation of corticostriatal glutamatergic neurotransmission. Furthermore, these data imply that enhanced D4 receptor-mediated dopaminergic control of corticostriatal transmission constitutes a vulnerability factor of ADHD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marcelo Rubinstein
- Institute of Investigation in Genetic Engineering and Molecular Biology, Buenos Aires 1428, Argentina
| | - Gianluigi Tanda
- Medications Development Program, National Institute on Drug Abuse, Intramural research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
23
|
Holroyd CB, Umemoto A. The research domain criteria framework: The case for anterior cingulate cortex. Neurosci Biobehav Rev 2016; 71:418-443. [DOI: 10.1016/j.neubiorev.2016.09.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023]
|
24
|
LASSBio-1422: a new molecular scaffold with efficacy in animal models of schizophrenia and disorders of attention and cognition. Behav Pharmacol 2016; 28:48-62. [PMID: 27755061 DOI: 10.1097/fbp.0000000000000267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aiming to identify new antipsychotic lead-compounds, our group has been working on the design and synthesis of new N-phenylpiperazine derivatives. Here, we characterized LASSBio-1422 as a pharmacological prototype of this chemical series. Adult male Wistar rats and CF1 mice were used for in-vitro and in-vivo assays, respectively. LASSBio-1422 [1 and 5 mg/kg, postoperatively (p.o.)] inhibited apomorphine-induced climbing as well as ketamine-induced hyperlocomotion (1 and 5 mg/kg, p.o.), animal models predictive of efficacy on positive symptoms. Furthermore, LASSBio-1422 (5 mg/kg, p.o.) prevented the prepulse impairment induced by apomorphine, (±)-2,5-dimethoxy-4-iodoamphetamine, and ketamine, as well as the memory impairment induced by ketamine in the novel object-recognition task at the acquisition, consolidation, and retrieval phases of memory formation. Potential extrapyramidal side-effects and sedation were assessed by catatonia, rota-rod, locomotion, and barbiturate sleeping time, and LASSBio-1422 (15 mg/kg, p.o.) did not affect any of the parameters observed. Binding assays showed that LASSBio-1422 has a binding profile different from the known atypical antipsychotic drugs: it does not bind to AMPA, kainate, N-methyl-D-aspartate, glicine, and mGluR2 receptors and has low or negligible affinity for D1, D2, and 5-HT2A/C receptors, but high affinity for D4 receptors (Ki=0.076 µmol/l) and, to a lesser extent, for 5-HT1A receptors (Ki=0.493 µmol/l). The antagonist action of LASSBio-1422 at D4 receptors was assessed through the classical GTP-shift assay. In conclusion, LASSBio-1422 is effective in rodent models of positive and cognitive symptoms of schizophrenia and its ability to bind to D4 and 5-HT1A receptors may at least in part explain its effects in these animal models.
Collapse
|
25
|
Cocker PJ, Lin MY, Barrus MM, Le Foll B, Winstanley CA. The agranular and granular insula differentially contribute to gambling-like behavior on a rat slot machine task: effects of inactivation and local infusion of a dopamine D4 agonist on reward expectancy. Psychopharmacology (Berl) 2016; 233:3135-47. [PMID: 27417550 DOI: 10.1007/s00213-016-4355-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
Abstract
RATIONALE Rats, like humans, are susceptible to the reinforcing effects of reward-related stimuli presented within a compound stimulus array, putatively analogous to the so-called near-miss effect. We have previously demonstrated using a rodent slot machine task (rSMT) that the reward expectancy these stimuli elicit is critically mediated by the dopamine D4 receptor. D4 receptors are principally located in prefrontal regions activated during slot machine play in humans, such as the insular cortex. The insula has recently attracted considerable interest as it appears to play a crucial role in substance and behavioral addictions. However, the insula is a heterogeneous area, and the relative contributions of subregions to addictive behaviors are unclear. METHODS Male Long Evans rats were trained to perform the rSMT, and then bilateral cannula targeting either the granular or agranular insula were implanted. The effects of inactivation and local administration of a D4 agonist were investigated. RESULTS Temporary inactivation of the agranular, but not the granular insula impaired performance on the rSMT. In contrast, local infusion of the D4 agonist PD168077 into the agranular insula had no effect on task performance, but when administered into the granular insula, it improved animals' ability to differentiate winning from non-winning trials. The agranular insula may therefore modulate decision making when conflicting stimuli are present, potentially due to its role in generating a cohesive emotional percept based on both externally and internally generated signals, whereas the granular insular is not critical for this process. Nevertheless, D4 receptors within the granular insula may amplify the incentive salience of aversive environmental stimuli. DISCUSSION These data provide insight into the neurobiological mechanism underpinning maladaptive reward expectancy during gambling and provide further evidence that D4 receptors represent a potential target for developing pharmacotherapies for problem gambling.
Collapse
Affiliation(s)
- P J Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - M Y Lin
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - M M Barrus
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - B Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, CAMH, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - C A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
26
|
Ferreira R, Brandão ML, Nobre MJ. 5-HT1A receptors of the prelimbic cortex mediate the hormonal impact on learned fear expression in high-anxious female rats. Horm Behav 2016; 84:84-96. [PMID: 27328163 DOI: 10.1016/j.yhbeh.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
Hormones highly influence female behaviors. However, research on this topic has not usually considered the variable hormonal status. The prelimbic cortex (PrL) is commonly engaged in fear learning. Connections from and to this region are known to be critical in regulating anxiety, in which serotonin (5-HT) plays a fundamental role, particularly through changes in 5-HT1A receptors functioning. Also, hormone fluctuations can greatly influence anxiety in humans and anxiety-related behavior in rodents, and this influence involves the functioning of 5-HT brain systems. The present investigation sought to determine whether fluctuations in ovarian hormones relative to the estrous cycle would influence the expression of learned fear in female rats previously selected as low- (LA) or high-anxious (HA). Furthermore, we investigate the role of the 5-HT system of the PrL, particularly the 5-HT1A receptors, as a possible modulator of estrous cycle influence on the expression of learned fear through intra-PrL microinjections of 5-HT itself or the full 5-HT1A agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propylamine)tetralin). Behavioral changes were assessed using the fear-potentiated startle (FPS) procedure. The results showed that fear intensity is associated with hormonal decay, being more accentuated during the estrus phase. This increase in fear levels was found to be negatively correlated with the expression of potentiated startle. In rats prone to anxiety and tested during the proestrus and estrus phases, 5-HT mechanisms of the PrL seem to play a regulatory role in the expression of learned fear. These results were not replicated in the LA rats. Similar but less intense results were found regarding the early and late diestrus. Our data indicate that future studies on this subject need to take into account the dissociation between low- and high-responsive females to understand how hormones affect emotional behavior.
Collapse
Affiliation(s)
- Renata Ferreira
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Marcus Lira Brandão
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Manoel Jorge Nobre
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Departamento de Psicologia, Uni-FACEF, 14401-135 Franca, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
27
|
Cocker PJ, Vonder Haar C, Winstanley CA. Elucidating the role of D4 receptors in mediating attributions of salience to incentive stimuli on Pavlovian conditioned approach and conditioned reinforcement paradigms. Behav Brain Res 2016; 312:55-63. [PMID: 27275521 DOI: 10.1016/j.bbr.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 12/17/2022]
Abstract
The power of drug-associated cues to instigate drug 'wanting' and consequently promote drug seeking is a corner stone of contemporary theories of addiction. Gambling disorder has recently been added to the pantheon of addictive disorders due to the phenomenological similarities between the diseases. However, the neurobiological mechanism that may mediate increased sensitivity towards conditioned stimuli in addictive disorders is unclear. We have previously demonstrated using a rodent analogue of a simple slot machine that the dopamine D4 receptor is critically engaged in controlling animals' attribution of salience to stimuli associated with reward in this paradigm, and consequently may represent a target for the treatment of gambling disorder. Here, we investigated the role of acute administration of a D4 receptor agonist on animals' responsivity to conditioned stimuli on both a Pavlovian conditioned approach (autoshaping) and a conditioned reinforcement paradigm. Following training on one of the two tasks, separate cohorts of rats (male and female) were administered a dose of PD168077 shown to be maximally effective at precipitating errors in reward expectancy on the rat slot machine task (10mg/kg). However, augmenting the activity of the D4 receptors in this manner did not alter behaviour on either task. These data therefore provide novel evidence that the D4 receptor does not alter incentive motivation in response to cues on simple behavioural tasks.
Collapse
Affiliation(s)
- P J Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| | - C Vonder Haar
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - C A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
28
|
Kohno M, Nurmi EL, Laughlin CP, Morales AM, Gail EH, Hellemann GS, London ED. Functional Genetic Variation in Dopamine Signaling Moderates Prefrontal Cortical Activity During Risky Decision Making. Neuropsychopharmacology 2016; 41:695-703. [PMID: 26119471 PMCID: PMC4707816 DOI: 10.1038/npp.2015.192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023]
Abstract
Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity.
Collapse
Affiliation(s)
- Milky Kohno
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher P Laughlin
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Angelica M Morales
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Emma H Gail
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Gerhard S Hellemann
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, University of California Los Angeles, Los Angeles, CA, USA,Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,Semel Institute of Neuroscience and Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA, Tel: +310 825 0606, Fax: +310 825 0812, E-mail:
| |
Collapse
|
29
|
Yildirim BO, Derksen JJL. Mesocorticolimbic dopamine functioning in primary psychopathy: A source of within-group heterogeneity. Psychiatry Res 2015; 229:633-77. [PMID: 26277034 DOI: 10.1016/j.psychres.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/08/2015] [Accepted: 07/05/2015] [Indexed: 01/17/2023]
Abstract
Despite similar emotional deficiencies, primary psychopathic individuals can be situated on a continuum that spans from controlled to disinhibited. The constructs on which primary psychopaths are found to diverge, such as self-control, cognitive flexibility, and executive functioning, are crucially regulated by dopamine (DA). As such, the goal of this review is to examine which specific alterations in the meso-cortico-limbic DA system and corresponding genes (e.g., TH, DAT, COMT, DRD2, DRD4) might bias development towards a more controlled or disinhibited expression of primary psychopathy. Based on empirical data, it is argued that primary psychopathy is generally related to a higher tonic and population activity of striatal DA neurons and lower levels of D2-type DA receptors in meso-cortico-limbic projections, which may boost motivational drive towards incentive-laden goals, dampen punishment sensitivity, and increase future reward-expectancy. However, increasingly higher levels of DA activity in the striatum (moderate versus pathological elevations), lower levels of DA functionality in the prefrontal cortex, and higher D1-to-D2-type receptor ratios in meso-cortico-limbic projections may lead to increasingly disinhibited and impetuous phenotypes of primary psychopathy. Finally, in order to provide a more coherent view on etiological mechanisms, we discuss interactions between DA and serotonin that are relevant for primary psychopathy.
Collapse
Affiliation(s)
- Bariş O Yildirim
- Department of Clinical Psychology, Radboud University Nijmegen, De Kluyskamp 1002, 6545 JD Nijmegen, The Netherlands.
| | - Jan J L Derksen
- Department of Clinical Psychology, Room: A.07.04B, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Millan MJ, Goodwin GM, Meyer-Lindenberg A, Ove Ögren S. Learning from the past and looking to the future: Emerging perspectives for improving the treatment of psychiatric disorders. Eur Neuropsychopharmacol 2015; 25:599-656. [PMID: 25836356 DOI: 10.1016/j.euroneuro.2015.01.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 02/06/2023]
Abstract
Modern neuropsychopharmacology commenced in the 1950s with the serendipitous discovery of first-generation antipsychotics and antidepressants which were therapeutically effective yet had marked adverse effects. Today, a broader palette of safer and better-tolerated agents is available for helping people that suffer from schizophrenia, depression and other psychiatric disorders, while complementary approaches like psychotherapy also have important roles to play in their treatment, both alone and in association with medication. Nonetheless, despite considerable efforts, current management is still only partially effective, and highly-prevalent psychiatric disorders of the brain continue to represent a huge personal and socio-economic burden. The lack of success in discovering more effective pharmacotherapy has contributed, together with many other factors, to a relative disengagement by pharmaceutical firms from neuropsychiatry. Nonetheless, interest remains high, and partnerships are proliferating with academic centres which are increasingly integrating drug discovery and translational research into their traditional activities. This is, then, a time of transition and an opportune moment to thoroughly survey the field. Accordingly, the present paper, first, chronicles the discovery and development of psychotropic agents, focusing in particular on their mechanisms of action and therapeutic utility, and how problems faced were eventually overcome. Second, it discusses the lessons learned from past successes and failures, and how they are being applied to promote future progress. Third, it comprehensively surveys emerging strategies that are (1), improving our understanding of the diagnosis and classification of psychiatric disorders; (2), deepening knowledge of their underlying risk factors and pathophysiological substrates; (3), refining cellular and animal models for discovery and validation of novel therapeutic agents; (4), improving the design and outcome of clinical trials; (5), moving towards reliable biomarkers of patient subpopulations and medication efficacy and (6), promoting collaborative approaches to innovation by uniting key partners from the regulators, industry and academia to patients. Notwithstanding the challenges ahead, the many changes and ideas articulated herein provide new hope and something of a framework for progress towards the improved prevention and relief of psychiatric and other CNS disorders, an urgent mission for our Century.
Collapse
Affiliation(s)
- Mark J Millan
- Pole for Innovation in Neurosciences, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| | - Guy M Goodwin
- University Department of Psychiatry, Oxford University, Warneford Hospital, Oxford OX3 7JX, England, UK
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, J5, D-68159 Mannheim, Germany
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-17177 Stockholm, Sweden
| |
Collapse
|
31
|
Chiang FK, Cheng RK, Liao RM. Differential effects of dopamine receptor subtype-specific agonists with respect to operant behavior maintained on a differential reinforcement of low-rate responding (DRL) schedule. Pharmacol Biochem Behav 2015; 130:67-76. [DOI: 10.1016/j.pbb.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/16/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022]
|
32
|
Wood M, Dubois V, Scheller D, Gillard M. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors. Br J Pharmacol 2015; 172:1124-35. [PMID: 25339241 PMCID: PMC4314200 DOI: 10.1111/bph.12988] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). EXPERIMENTAL APPROACH The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. KEY RESULTS [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. CONCLUSIONS AND IMPLICATIONS Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties.
Collapse
Affiliation(s)
- Martyn Wood
- UCB BioPharma SPRL, Chemin de ForiestBraine-l'Alleud, Belgium
| | - Vanessa Dubois
- UCB BioPharma SPRL, Chemin de ForiestBraine-l'Alleud, Belgium
| | - Dieter Scheller
- UCB BioPharma SPRL, Chemin de ForiestBraine-l'Alleud, Belgium
| | - Michel Gillard
- UCB BioPharma SPRL, Chemin de ForiestBraine-l'Alleud, Belgium
| |
Collapse
|
33
|
Cocker P, Winstanley C. Irrational beliefs, biases and gambling: Exploring the role of animal models in elucidating vulnerabilities for the development of pathological gambling. Behav Brain Res 2015; 279:259-73. [DOI: 10.1016/j.bbr.2014.10.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 12/23/2022]
|
34
|
Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia. Neuropsychopharmacology 2014; 39:2473-84. [PMID: 24784549 PMCID: PMC4138759 DOI: 10.1038/npp.2014.99] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 02/07/2023]
Abstract
Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.
Collapse
|
35
|
A selective role for dopamine D₄ receptors in modulating reward expectancy in a rodent slot machine task. Biol Psychiatry 2014; 75:817-24. [PMID: 24094512 DOI: 10.1016/j.biopsych.2013.08.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/15/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cognitive distortions regarding gambling outcomes confer vulnerability to pathological gambling. Using a rat slot machine task (rSMT), we previously demonstrated that the nonspecific D₂ agonist quinpirole enhances erroneous expectations of reward on near-miss trials, suggesting a pivotal role for the D₂ receptor family in mediating the near-miss effect. Identifying which receptor subtype is involved could facilitate treatment development for compulsive slot machine play. METHODS Thirty-two male Long Evans rats learned the rSMT. Three flashing lights could be set to on or off. A win was signaled if all three lights were set to on, whereas any other light pattern indicated a loss. Rats then chose between responding on the collect lever, which delivered 10 sugar pellets on win trials but a 10-second time penalty on loss trials, or to start a new trial instead. Performance was assessed following systemic administration of selective D₂, D₃, and D₄ receptor ligands. RESULTS The selective D₂ antagonist L-741,626, the D₃ antagonist SB-277011-A, and the D₃ agonist PD128,907 had no effect. In contrast, the selective D₄ agonist PD168077 partially mimicked quinpirole's effects, increasing erroneous collect responses on nonwin trials, whereas the D₄ antagonist L-745,870 improved the error rate. L-745,870 was also the only antagonist that could attenuate the deleterious effects of quinpirole. CONCLUSIONS The dopamine D₄ receptor is critically involved in signaling reward expectancy in the rSMT. The ability of L-745,870 to reduce the classification of losses as wins suggests that D₄ antagonists could be effective in treating problematic slot machine play.
Collapse
|
36
|
Thomson CJ, Rajala AK, Carlson SR, Rupert JL. Variants in the dopamine-4-receptor gene promoter are not associated with sensation seeking in skiers. PLoS One 2014; 9:e93521. [PMID: 24691022 PMCID: PMC3972116 DOI: 10.1371/journal.pone.0093521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/06/2014] [Indexed: 11/23/2022] Open
Abstract
Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (−1106T/C, −906T/C, −809G/A, −291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population.
Collapse
Affiliation(s)
- Cynthia J. Thomson
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Amelia K. Rajala
- Department of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott R. Carlson
- Department of Psychology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Jim L. Rupert
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Ferreira R, Nobre MJ. Conditioned fear in low- and high-anxious rats is differentially regulated by cortical subcortical and midbrain 5-HT(1A) receptors. Neuroscience 2014; 268:159-68. [PMID: 24657773 DOI: 10.1016/j.neuroscience.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/25/2014] [Accepted: 03/05/2014] [Indexed: 02/01/2023]
Abstract
Interactions between the prelimbic cortex and the basolateral amygdala underlie fear memory processing, mostly through acquiring and consolidating the learning of a conditioned fear. More recently, studies highlighted the role of the dorsal periaqueductal gray (DPAG) in the modulation of learning fear responses. In addition, extensive data in the literature have signaled the importance of serotonin (5-HT) on fear and anxiety. In the present study, the role of 5-HT neurotransmission of the prelimbic cortex, basolateral amygdala or the DPAG on the unconditioned and conditioned fear responses in rats previously selected as low- (LA) or high-anxious (HA) were assessed through local infusions of 5-HT itself (10nmol/0.2μl) or the selective 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT - 0.3μg/0.2μl). Behavioral analysis was conducted using the fear-potentiated startle (FPS) procedure. Dependent variables recorded were the latency and amplitude of the unconditioned startle response and FPS. Our findings suggest that, on the prelimbic cortex, 5-HT modulates the expression of conditioned fear response in HA rats and this modulation is dependent on 5-HT1A receptors. This is not true, however, for the basolateral amygdala or the DPAG. In these regions LA but not HA rats were susceptible to the anxiolytic-like effect of 5-HT1A receptor activation. It is thought that the expression of conditioned fear in HA subjects may be dependent on other 5-HT receptors, as the 5-HT1B subtype, and/or changes in other systems such as the GABA and glutamate neurotransmitters. These results increase our understanding of the rostrocaudal influence of 5-HT on the unconditioned and conditioned fear responses in LA and HA subjects and, to some extent, are in disagreement with the theoretical current that emphasizes the role of 5-HT on anxiety, mainly at the subcortical and midbrain levels.
Collapse
Affiliation(s)
- R Ferreira
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - M J Nobre
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Departamento de Psicologia, Uni-FACEF, 14401-135 Franca, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
38
|
Hayes DJ, Jupp B, Sawiak SJ, Merlo E, Caprioli D, Dalley JW. Brain γ-aminobutyric acid: a neglected role in impulsivity. Eur J Neurosci 2014; 39:1921-32. [DOI: 10.1111/ejn.12485] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Dave J. Hayes
- Toronto Western Research Institute; Toronto Western Hospital and Division of Neurosurgery; University of Toronto; Toronto ON Canada
- Mind, Brain Imaging and Neuroethics; Institute of Mental Health Research; University of Ottawa; Ottawa ON Canada
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Bianca Jupp
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Steve J. Sawiak
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Wolfson Brain Imaging Centre; Department of Clinical Neurosciences; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
| | - Emiliano Merlo
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | | | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychiatry; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| |
Collapse
|
39
|
Sakata K, Duke SM. Lack of BDNF expression through promoter IV disturbs expression of monoamine genes in the frontal cortex and hippocampus. Neuroscience 2013; 260:265-75. [PMID: 24345476 DOI: 10.1016/j.neuroscience.2013.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of psychiatric conditions including major depression and schizophrenia. Mice lacking activity-driven BDNF expression through promoter IV (knock-in promoter IV: KIV) exhibit depression-like behavior, inflexible learning, and impaired response inhibition. Monoamine systems (serotonin, dopamine, and noradrenaline) are suggested to be involved in depression and schizophrenia since many of the current antidepressants and antipsychotics increase the brain levels of monoamines and/or act on monoamine receptors. To elucidate the impact of activity-driven BDNF on the monoamine systems, we examined mRNA levels for 30 monoamine-related genes, including receptors, transporters, and synthesizing enzymes, in KIV and control wild-type mice by using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). mRNA levels were measured in the frontal cortex and hippocampus, which are regions related to depression and schizophrenia and where promoter IV is active. The frontal cortex of KIV mice showed reduced levels of mRNA expression for serotonin receptors 1b, 2a, and 5b (5HTR1b, 5HTR2a, 5HTR5b), dopamine D2 receptors (DRD2), and adrenergic receptors alpha 1a and 1d (AdRα1a and AdRα1b), but increased levels for serotonin synthesizing enzyme, tryptophan hydroxylase (TPH), and dopamine D4 receptor (DRD4) when compared to control wild-type mice. The hippocampus of KIV mice showed decreased levels of 5HTR5b. Our results provide causal evidence that lack of promoter IV-driven BDNF disturbs expression of monoaminergic genes in the frontal cortex and hippocampus. These disturbed expression changes in the monoamine systems may mediate the depression- and schizophrenia-like behavior of KIV mice. Our results also suggest that antidepressant and antipsychotic treatments may actually interfere with and normalize the disturbed monoamine systems caused by reduced activity-dependent BDNF, while the treatment responses to these drugs may differ in the subject with reduced BDNF levels caused by stress and lack of neuronal activity.
Collapse
Affiliation(s)
- K Sakata
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - S M Duke
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
40
|
Good CH, Wang H, Chen YH, Mejias-Aponte CA, Hoffman AF, Lupica CR. Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms. J Neurosci 2013; 33:16853-64. [PMID: 24155292 PMCID: PMC3807019 DOI: 10.1523/jneurosci.1844-13.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/15/2013] [Accepted: 09/05/2013] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic lateral habenula (LHb) output communicates negative motivational valence to ventral tegmental area (VTA) dopamine (DA) neurons via activation of the rostromedial tegmental nucleus (RMTg). However, the LHb also receives a poorly understood DA input from the VTA, which we hypothesized constitutes an important feedback loop regulating DA responses to stimuli. Using whole-cell electrophysiology in rat brain slices, we find that DA initiates a depolarizing inward current (I(DAi)) and increases spontaneous firing in 32% of LHb neurons. I(DAi) was also observed upon application of amphetamine or the DA uptake blockers cocaine or GBR12935, indicating involvement of endogenous DA. I(DAi) was blocked by D4 receptor (D4R) antagonists (L745,870 or L741,742), and mimicked by a selective D4R agonist (A412997). I(DAi) was associated with increased whole-cell conductance and was blocked by Cs+ or a selective blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel, ZD7288. I(DAi) was also associated with a depolarizing shift in half-activation voltage for the hyperpolarization-activated cation current (Ih) mediated by HCN channels. Recordings from LHb neurons containing fluorescent retrograde tracers revealed that I(DAi) was observed only in cells projecting to the RMTg and not the VTA. In parallel with direct depolarization, DA also strongly increased synaptic glutamate release and reduced synaptic GABA release onto LHb cells. These results demonstrate that DA can excite glutamatergic LHb output to RMTg via multiple cellular mechanisms. Since the RMTg strongly inhibits midbrain DA neurons, activation of LHb output to RMTg by DA represents a negative feedback loop that may dampen DA neuron output following activation.
Collapse
Affiliation(s)
- Cameron H. Good
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| | - Huikun Wang
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| | - Yuan-Hao Chen
- Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Carlos A. Mejias-Aponte
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland 21224, and
| | | | - Carl R. Lupica
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| |
Collapse
|
41
|
Dopamine agonist-induced penile erection and yawning: A comparative study in outbred Roman high- and low-avoidance rats. Pharmacol Biochem Behav 2013; 109:59-66. [DOI: 10.1016/j.pbb.2013.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 11/22/2022]
|
42
|
Thomson CJ, Carlson SR, Rupert JL. Association of a common D3 dopamine receptor gene variant is associated with sensation seeking in skiers and snowboarders. JOURNAL OF RESEARCH IN PERSONALITY 2013. [DOI: 10.1016/j.jrp.2012.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Li Y, Baker-Ericzen M, Ji N, Chang W, Guan L, Qian Q, Zhang Y, Faraone SV, Wang Y. Do SNPs of DRD4 gene predict adult persistence of ADHD in a Chinese sample? Psychiatry Res 2013; 205:143-50. [PMID: 23031802 DOI: 10.1016/j.psychres.2012.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 12/13/2022]
Abstract
The dopamine D4 receptor (DRD4) gene has been frequently studied in relation to attention deficit hyperactivity disorder (ADHD) but little is known about the contribution of single nucleotide polymorphisms (SNPs) of the DRD4 gene to the development and persistence of ADHD. In the present study, we examined the association between two SNPs in DRD4 (rs1800955, rs916455) and adult ADHD persistence in a Chinese sample. Subjects (n=193) were diagnosed with ADHD in childhood and reassessed in young adulthood at an affiliated clinic of Peking University Sixth Hospital. Kaplan-Meier survival analyses and Cox proportional hazard models were used to test the association between ADHD remission and alleles of the two SNPs. DRD4 rs916455 C allele carriers were more likely to have persistent ADHD symptoms in adulthood. No significant association was found between rs1800955 allele and the course of ADHD. These newly detected associations between DRD4 polymorphisms and ADHD prognosis in adulthood may help to predict the persistence of childhood ADHD into adulthood.
Collapse
Affiliation(s)
- Yueling Li
- Institute of Mental Health, Peking University (Sixth Hospital, Peking University), Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thomson CJ, Hanna CW, Carlson SR, Rupert JL. The -521 C/T variant in the dopamine-4-receptor gene (DRD4) is associated with skiing and snowboarding behavior. Scand J Med Sci Sports 2012; 23:e108-13. [PMID: 23252368 DOI: 10.1111/sms.12031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/12/2022]
Abstract
Sensation seeking is the tendency to seek out new and thrilling experiences and to take risks for the sake of such experiences. A single-nucleotide polymorphism, -521 C/T (rs1800955) in the promoter region of the dopamine-4-receptor gene (DRD4), is associated with approach-related traits including novelty seeking and extraversion, in some, but not all studies. To our knowledge, no studies have been conducted on the genetics of risk-taking behavior in sports. Using a joint-analysis approach, we measured sensation seeking in two cohorts of experienced male and female skiers and snowboarders (n = 503) using a sports-specific tool developed for this study, the Contextual Sensation Seeking Questionnaire for Skiing and Snowboarding (CSSQ-S), and a more general trait measure, the Zuckerman-Kuhlman Personality Questionnaire impulsive sensation-seeking subscale. We detected, and then replicated a significant association between the DRD4 -521CC genotype and sports-specific sensation seeking as measured using the CSSQ-S (P < 0.001). These data suggest that the DRD4 -521 C/T polymorphism contributes to a "risk-taking phenotype" in skiers and snowboarders, but the variant was not associated with impulsive sensation seeking (P = 0.9).
Collapse
Affiliation(s)
- C J Thomson
- School of Kinesiology, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
45
|
Lauzon NM, Bechard M, Ahmad T, Laviolette SR. Supra-normal stimulation of dopamine D1 receptors in the prelimbic cortex blocks behavioral expression of both aversive and rewarding associative memories through a cyclic-AMP-dependent signaling pathway. Neuropharmacology 2012; 67:104-14. [PMID: 23164618 DOI: 10.1016/j.neuropharm.2012.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/11/2012] [Accepted: 10/06/2012] [Indexed: 11/28/2022]
Abstract
Dopamine (DA) receptor transmission through either D(1) or D(2)-like subtypes is involved critically in the processing of emotional information within the medial prefrontal cortex (mPFC). However the functional role of specific DA D(1)-like receptor transmission in the expression of emotionally salient associative memories (either aversive or rewarding) is not currently understood. Here we demonstrate that specific activation of DA D(1) receptors in the prelimbic (PLC) division of the mPFC causes a transient block in the behavioral expression of both aversive and rewarding associative memories. We report that intra-PLC microinfusions of a selective D(1) receptor agonist block the spontaneous expression of an associative olfactory fear memory, without altering the stability of the original memory trace. Furthermore, using an unbiased place conditioning procedure (CPP), intra-PLC D(1) receptor activation blocks the spontaneous expression of an associative morphine (5 mg/kg; i.p.) reward memory, while leaving morphine-primed memory expression intact. Interestingly, both intra-PLC D(1)-receptor mediated block of either fear-related or reward-related associative memories were dependent upon downstream cyclic-AMP (cAMP) signaling as both effects were rescued by co-administration of a cAMP signaling inhibitor. The blockade of both rewarding and aversive associative memories is mediated through a D(1)-specific signaling pathway, as neither forms of spontaneous memory expression were blocked by intra-PLC microinfusions of a D(2)-like receptor agonist. Our results demonstrate that the spontaneous expression of either rewarding or aversive emotionally salient memories shares a common, D(1)-receptor mediated substrate within the mPFC.
Collapse
Affiliation(s)
- Nicole M Lauzon
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada N5Y 5T8
| | | | | | | |
Collapse
|
46
|
Lauzon NM, Ahmad T, Laviolette SR. Dopamine D4 receptor transmission in the prefrontal cortex controls the salience of emotional memory via modulation of calcium calmodulin-dependent kinase II. Cereb Cortex 2012; 22:2486-94. [PMID: 22120417 PMCID: PMC4705337 DOI: 10.1093/cercor/bhr326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dopamine (DA) signaling in the medial prefrontal cortex (mPFC) plays a critical role in the processing of emotional information and memory encoding. Activation of DA D4 receptors within the prelimbic (PLC) division of the mPFC bidirectionally modulates emotional memory by strongly potentiating the salience of normally nonsalient emotional memories but blocking the acquisition of suprathreshold emotionally salient fear memories. Previous in vitro studies have shown that activation of cortical DA D4 receptors can bidirectionally modulate levels of α-calcium calmodulin-dependent kinase II (α-CaMKII), a molecule essential for learning and memory. Using an olfactory fear conditioning procedure in rats combined with microinfusions into the mPFC, we examined the potential role of D4 receptor-mediated control of emotional memory salience through signaling via CaMKII, cAMP/protein kinase A (PKA), and protein phosphatase-1 (PP1) signaling. We report that CaMKII blockade prevents the ability of intra-mPFC DA D4 receptor activation to potentiate the salience of subthreshold fear memory. In contrast, blockade of either cAMP/PKA or PP1 signaling pathways rescued the blockade of suprathreshold fear memory via intra-mPFC D4 receptor activation. Our results demonstrate that modulation of emotional memory salience via intra-mPFC DA D4 receptor transmission depends upon downstream signaling via CaMKII, cAMP/PKA, and PP1 substrates.
Collapse
Affiliation(s)
- Nicole M Lauzon
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N5Y 5T8
| | | | | |
Collapse
|
47
|
Ivanchak N, Fletcher K, Jicha GA. Attention-deficit/hyperactivity disorder in older adults: prevalence and possible connections to mild cognitive impairment. Curr Psychiatry Rep 2012; 14:552-60. [PMID: 22886581 PMCID: PMC3718885 DOI: 10.1007/s11920-012-0305-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Attentional deficits are frequently seen in isolation as the presenting sign and symptom of neurodegenerative disease, manifest as mild cognitive impairment (MCI). Persistent ADHD in the geriatric population could well be misconstrued as MCI, leading to the incorrect assumption that such persons are succumbing to a neurodegenerative disease process. Alternatively, the molecular, neuroanatomic, or neurochemical abnormalities seen in ADHD may contribute to the development of de novo late life neurodegenerative disease. The present review examines the issue of causality vs confound regarding the association of ADHD with MCI, suggesting that both are tenable hypotheses.
Collapse
Affiliation(s)
- Nikki Ivanchak
- Department of Neurology and the Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kristen Fletcher
- Department of Neurology and the Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Gregory A. Jicha
- Department of Neurology and the Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA. Sanders-Brown Center on Aging, Room 223, 800 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
48
|
Synthesis and biological evaluation of 1-(4-(4-(4-[18F]fluorobenzyl)-1-piperazinyl)butyl)indolin-2-one as dopamine D4 receptor ligand. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1861-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Mol Psychiatry 2012; 17:650-62. [PMID: 21844870 PMCID: PMC3219836 DOI: 10.1038/mp.2011.93] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polymorphic variants of the dopamine D(4) receptor have been consistently associated with attention-deficit hyperactivity disorder (ADHD). However, the functional significance of the risk polymorphism (variable number of tandem repeats in exon 3) is still unclear. Here, we show that whereas the most frequent 4-repeat (D(4.4)) and the 2-repeat (D(4.2)) variants form functional heteromers with the short isoform of the dopamine D(2) receptor (D(2S)), the 7-repeat risk allele (D(4.7)) does not. D(2) receptor activation in the D(2S)-D(4) receptor heteromer potentiates D(4) receptor-mediated MAPK signaling in transfected cells and in the striatum, which did not occur in cells expressing D(4.7) or in the striatum of knockin mutant mice carrying the 7 repeats of the human D(4.7) in the third intracellular loop of the D(4) receptor. In the striatum, D(4) receptors are localized in corticostriatal glutamatergic terminals, where they selectively modulate glutamatergic neurotransmission by interacting with D(2S) receptors. This interaction shows the same qualitative characteristics than the D(2S)-D(4) receptor heteromer-mediated mitogen-activated protein kinase (MAPK) signaling and D(2S) receptor activation potentiates D(4) receptor-mediated inhibition of striatal glutamate release. It is therefore postulated that dysfunctional D(2S)-D(4.7) heteromers may impair presynaptic dopaminergic control of corticostriatal glutamatergic neurotransmission and explain functional deficits associated with ADHD.
Collapse
|
50
|
Cserjési R, Vermeulen N, Lénárd L, Luminet O. Reduced capacity in automatic processing of facial expression in restrictive anorexia nervosa and obesity. Psychiatry Res 2011; 188:253-7. [PMID: 21208661 DOI: 10.1016/j.psychres.2010.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 11/29/2022]
Abstract
There is growing evidence that disordered eating is associated with facial expression recognition and emotion processing problems. In this study, we investigated the question of whether anorexia and obesity occur on a continuum of attention bias towards negative facial expressions in comparison with healthy individuals of normal weight. Thirty-three patients with restrictive anorexia nervosa (AN-R), 30 patients with obesity (OB) and 63 healthy age and social-economic status matched controls were recruited. Our results indicated that AN-R patients were more attentive to angry faces and had difficulties in being attentive to positive expressions, whilst OB patients had problems in looking for or being attentive to negative expressions independently of self-reported depression and anxiety. Our findings did not support the idea that AN-R and OB occur on a continuum. We found that AN-R was associated with a reduced capacity in positive facial expression processing, whereas OB was associated with a reduced capacity in negative facial expressions processing. The social relevance of our findings and a possible explanation based upon neuroscience are discussed.
Collapse
Affiliation(s)
- Renáta Cserjési
- Institute of Physiology and Neurophysiology Research Group of the HAS, Pécs University Medical School, Szigeti str. 12, H-7624 Pécs, Hungary.
| | | | | | | |
Collapse
|