1
|
Caminski ES, Antunes FTT, Souza IA, Dallegrave E, Zamponi GW. Regulation of N-type calcium channels by nociceptin receptors and its possible role in neurological disorders. Mol Brain 2022; 15:95. [PMID: 36434658 PMCID: PMC9700961 DOI: 10.1186/s13041-022-00982-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neurotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiological features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context of neurological conditions such as anxiety, addiction, and pain.
Collapse
Affiliation(s)
- Emanuelle Sistherenn Caminski
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Flavia Tasmin Techera Antunes
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Ivana Assis Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Eliane Dallegrave
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| |
Collapse
|
2
|
Little HJ. L-Type Calcium Channel Blockers: A Potential Novel Therapeutic Approach to Drug Dependence. Pharmacol Rev 2021; 73:127-154. [PMID: 34663686 DOI: 10.1124/pharmrev.120.000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review describes interactions between compounds, primarily dihydropyridines, that block L-type calcium channels and drugs that cause dependence, and the potential importance of these interactions. The main dependence-inducing drugs covered are alcohol, psychostimulants, opioids, and nicotine. In preclinical studies, L-type calcium channel blockers prevent or reduce important components of dependence on these drugs, particularly their reinforcing actions and the withdrawal syndromes. The channel blockers also reduce the development of tolerance and/or sensitization, and they have no intrinsic dependence liability. In some instances, their effects include reversal of brain changes established during drug dependence. Prolonged treatment with alcohol, opioids, psychostimulant drugs, or nicotine causes upregulation of dihydropyridine binding sites. Few clinical studies have been carried out so far, and reports are conflicting, although there is some evidence of effectiveness of L-channel blockers in opioid withdrawal. However, the doses of L-type channel blockers used clinically so far have necessarily been limited by potential cardiovascular problems and may not have provided sufficient central levels of the drugs to affect neuronal dihydropyridine binding sites. New L-type calcium channel blocking compounds are being developed with more selective actions on subtypes of L-channel. The preclinical evidence suggests that L-type calcium channels may play a crucial role in the development of dependence to different types of drugs. Mechanisms for this are proposed, including changes in the activity of mesolimbic dopamine neurons, genomic effects, and alterations in synaptic plasticity. Newly developed, more selective L-type calcium channel blockers could be of considerable value in the treatment of drug dependence. SIGNIFICANCE STATEMENT: Dependence on drugs is a very serious health problem with little effective treatment. Preclinical evidence shows drugs that block particular calcium channels, the L-type, reduce dependence-related effects of alcohol, opioids, psychostimulants, and nicotine. Clinical studies have been restricted by potential cardiovascular side effects, but new, more selective L-channel blockers are becoming available. L-channel blockers have no intrinsic dependence liability, and laboratory evidence suggests they reverse previously developed effects of dependence-inducing drugs. They could provide a novel approach to addiction treatment.
Collapse
Affiliation(s)
- Hilary J Little
- Section of Alcohol Research, National Addiction Centre, Institute of Psychiatry, King's College, London, United Kingdom
| |
Collapse
|
3
|
Ortiz-Romero P, González-Simón A, Egea G, Pérez-Jurado LA, Campuzano V. Co-Treatment With Verapamil and Curcumin Attenuates the Behavioral Alterations Observed in Williams-Beuren Syndrome Mice by Regulation of MAPK Pathway and Microglia Overexpression. Front Pharmacol 2021; 12:670785. [PMID: 34413771 PMCID: PMC8369570 DOI: 10.3389/fphar.2021.670785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by a distinctive cognitive phenotype for which there are currently no effective treatments. We investigated the progression of behavioral deficits present in WBS complete deletion (CD) mice, after chronic treatment with curcumin, verapamil, and a combination of both. These compounds have been proven to have beneficial effects over different cognitive aspects of various murine models and, thus, may have neuroprotective effects in WBS. Treatment was administered orally dissolved in drinking water. A set of behavioral tests demonstrated the efficiency of combinatorial treatment. Some histological and molecular analyses were performed to analyze the effects of treatment and its underlying mechanism. CD mice showed an increased density of activated microglia in the motor cortex and CA1 hippocampal region, which was prevented by co-treatment. Behavioral improvement correlated with the molecular recovery of several affected pathways regarding MAPK signaling, in tight relation to the control of synaptic transmission, and inflammation. Therefore, the results show that co-treatment prevented behavioral deficits by recovering altered gene expression in the cortex of CD mice and reducing activated microglia. These findings unravel the mechanisms underlying the beneficial effects of this novel treatment on behavioral deficits observed in CD mice and suggest that the combination of curcumin and verapamil could be a potential candidate to treat the cognitive impairments in WBS patients.
Collapse
Affiliation(s)
- Paula Ortiz-Romero
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro González-Simón
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Gustavo Egea
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer, IDIBAPS-UB, Barcelona, Spain
| | - Luis A Pérez-Jurado
- Unitat de Genètica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain.,Servei de Genètica, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Victoria Campuzano
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
4
|
Tarragon E, Calleja-Conde J, Giné E, Segovia-Rodríguez L, Durán-González P, Echeverry-Alzate V. Alcohol mixed with energy drinks: what about taurine? Psychopharmacology (Berl) 2021; 238:1-8. [PMID: 33175215 DOI: 10.1007/s00213-020-05705-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/04/2020] [Indexed: 01/31/2023]
Abstract
RATIONALE Since energy drinks (EDs) were marketed to the general public as recreational and soft drinks, mixing these with alcohol has become a popular practice, especially in the younger population. Alcohol mixed with EDs (AmEDs) is a particularly alarming combination, given the evidence that consistently associate these drinks with increased risk behaviours and greater alcohol consumption. Caffeine and taurine are commonly found in EDs. In contrast to caffeine, the studies on taurine psychoactive properties and how this amino acid influences ethanol intake alone or in combination with caffeine are not so numerous. OBJECTIVES We summarised relevant and available data on the studies focusing on taurine as a psychoactive agent and its influence on ethanol (EtOH)-induced behaviours. Given the increased risk that represents mixing alcohol with energy drinks, we put emphasis on the research exploring the impact of these combinations on motivated behaviour towards EtOH consumption. RESULTS The research on taurine properties on motivated behaviour towards EtOH consumption is limited, and mostly all done in combination with caffeine or other molecules. This makes it difficult to elucidate the effect of this amino acid when combined with alcohol. CONCLUSIONS Incomplete understanding of the properties and effects of AmEDs is unavoidable until more studies are performed on the influence of taurine on motivation to consume alcohol. Taurine should be further explored, particularly in regard to its potential beneficial applications, motivational properties and synergies with other psychoactive ingredients (i.e. caffeine).
Collapse
Affiliation(s)
- E Tarragon
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain.
- Universidad Internacional de La Rioja, Faculty of Health Sciences, Avenida de la Paz, 137, 26006, Logroño, La Rioja, Spain.
| | - J Calleja-Conde
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain
| | - E Giné
- Department of Cellular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - L Segovia-Rodríguez
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain
| | - P Durán-González
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain
| | - V Echeverry-Alzate
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Bosse KE, Ghoddoussi F, Eapen AT, Charlton JL, Susick LL, Desai K, Berkowitz BA, Perrine SA, Conti AC. Calcium/calmodulin-stimulated adenylyl cyclases 1 and 8 regulate reward-related brain activity and ethanol consumption. Brain Imaging Behav 2019; 13:396-407. [PMID: 29594872 PMCID: PMC6202255 DOI: 10.1007/s11682-018-9856-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidence suggests a predictive link between elevated basal activity within reward-related networks (e.g., cortico-basal ganglia-thalamic networks) and vulnerability for alcoholism. Both calcium channel function and cyclic adenosine monophosphate (cAMP)/protein kinase A-mediated signaling are critical modulators of reward neurocircuitry and reward-related behaviors. Calcium/calmodulin-stimulated adenylyl cyclases (AC) 1 and 8 are sensitive to activity-dependent increases in intracellular calcium and catalyze cAMP production. Therefore, we hypothesized AC1 and 8 regulate brain activity in reward regions of the cortico-basal ganglia-thalamic circuit and that this regulatory influence predicts voluntary ethanol drinking responses. This hypothesis was evaluated by manganese-enhanced magnetic resonance imaging and chronic, intermittent ethanol access procedures. Ethanol-naïve mice with genetic deletion of both AC1 and 8 (DKO mice) exhibited bilateral reductions in baseline activity within cortico-basal ganglia-thalamic regions associated with reward processing compared to wild-type controls (WT, C57BL/6 mice). Significant activity changes were not evident in regions either outside of the cortico-basal ganglia-thalamic network or within the network that are not associated with reward processing. Parallel studies demonstrated that reward network hypoactivity in DKO mice predicted a significant attenuation in consumption and preference levels to escalating ethanol concentrations (12, 20 and 30%) compared to WT mice, an effect that was maintained over extended access (14 sessions) to 20% ethanol. Summarizing, these data support a contribution of AC1 and 8 in cortico-basal ganglia-thalamic activity and the predictive value of this regulatory influence on ethanol drinking behavior, which merits the future evaluation of calcium-stimulated ACs in the neural processes that engender vulnerability to maladaptive alcohol drinking.
Collapse
Affiliation(s)
- Kelly E Bosse
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ajay T Eapen
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jennifer L Charlton
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Laura L Susick
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kirt Desai
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alana C Conti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Neurosurgery, Wayne State University, 4646 John R St., Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Alboghobeish S, Naghizadeh B, Kheirollah A, Ghorbanzadeh B, Mansouri MT. Fluoxetine increases analgesic effects of morphine, prevents development of morphine tolerance and dependence through the modulation of L-type calcium channels expression in mice. Behav Brain Res 2018; 361:86-94. [PMID: 30550947 DOI: 10.1016/j.bbr.2018.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
Here, we aimed to investigate the effects of fluoxetine on morphine-induced analgesia, as well as preventive effects of it on morphine induced tolerance and dependence in mice. We also elucidate the involvement of L-type Ca2+ channels in these phenomena. To induce morphine tolerance, mice were treated with morphine (50 mg/kg) for 3 consecutive days. To evaluate the involvement of the calcium channel in the effects of fluoxetine (5, 20 mg/kg), combination ineffective doses of the two L-type calcium channel blockers, nimodipine (5 mg/kg) or diltiazem (20 mg/kg) with flouxetine were used with each morphine dose. Nociceptive behavior was evaluated using hot-plate test, while physical dependence assessed by naloxone-precipitated withdrawal on the fourth day of experiment. The expression of Cav1.2 and Cav1.3 subunits of the L-type calcium channels in cortex and mesolimbic tissues were measured using western immunoassay. Results showed that co-administration of fluoxetine (20 mg/kg) with morphine increased its acute analgesia effect and prevented the induction of morphine antinociceptive tolerance and physical dependence in mice. Moreover, these effects was potentiated by pre-treatment with diltiazem or nimodipine. Results also showed up-regulation of the Cav1.3 and Cav1.2 expression in the cerebral cortex and mesolimbic regions through the development of morphine dependence. Moreover, chronic administration of fluoxetine with morphine reduced the observed up-regulation of Cav1.3 and Cav1.2 expression in cortex and mesolimbic tissues. Our data indicated that co-administering of fluoxetine with morphine could potentiate the antinociceptive effect of morphine, prevent morphine analgesia tolerance and attenuated the morphine withdrawal signs during induction phases. Moreover, we also pointed out for the first time the role of L-type Ca2+ channel channels in the modulatory effects of fluoxetine on the morphine-related effects.
Collapse
Affiliation(s)
- Soheila Alboghobeish
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahareh Naghizadeh
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Cellular &Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohammad Taghi Mansouri
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Neuroanesthesia Laboratory, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Kabir ZD, Martínez-Rivera A, Rajadhyaksha AM. From Gene to Behavior: L-Type Calcium Channel Mechanisms Underlying Neuropsychiatric Symptoms. Neurotherapeutics 2017; 14:588-613. [PMID: 28497380 PMCID: PMC5509628 DOI: 10.1007/s13311-017-0532-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The L-type calcium channels (LTCCs) Cav1.2 and Cav1.3, encoded by the CACNA1C and CACNA1D genes, respectively, are important regulators of calcium influx into cells and are critical for normal brain development and plasticity. In humans, CACNA1C has emerged as one of the most widely reproduced and prominent candidate risk genes for a range of neuropsychiatric disorders, including bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. Separately, CACNA1D has been found to be associated with BD and autism spectrum disorder, as well as cocaine dependence, a comorbid feature associated with psychiatric disorders. Despite growing evidence of a significant link between CACNA1C and CACNA1D and psychiatric disorders, our understanding of the biological mechanisms by which these LTCCs mediate neuropsychiatric-associated endophenotypes, many of which are shared across the different disorders, remains rudimentary. Clinical studies with LTCC blockers testing their efficacy to alleviate symptoms associated with BD, SCZ, and drug dependence have provided mixed results, underscoring the importance of further exploring the neurobiological consequences of dysregulated Cav1.2 and Cav1.3. Here, we provide a review of clinical studies that have evaluated LTCC blockers for BD, SCZ, and drug dependence-associated symptoms, as well as rodent studies that have identified Cav1.2- and Cav1.3-specific molecular and cellular cascades that underlie mood (anxiety, depression), social behavior, cognition, and addiction.
Collapse
Affiliation(s)
- Zeeba D Kabir
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Arlene Martínez-Rivera
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Anjali M Rajadhyaksha
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Olszewski RT, Janczura KJ, Bzdega T, Der EK, Venzor F, O'Rourke B, Hark TJ, Craddock KE, Balasubramanian S, Moussa C, Neale JH. NAAG Peptidase Inhibitors Act via mGluR3: Animal Models of Memory, Alzheimer's, and Ethanol Intoxication. Neurochem Res 2017; 42:2646-2657. [PMID: 28285415 PMCID: PMC5603630 DOI: 10.1007/s11064-017-2181-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/08/2017] [Accepted: 01/16/2017] [Indexed: 11/26/2022]
Abstract
Glutamate carboxypeptidase II (GCPII) inactivates the peptide neurotransmitter N-acetylaspartylglutamate (NAAG) following synaptic release. Inhibitors of GCPII increase extracellular NAAG levels and are efficacious in animal models of clinical disorders via NAAG activation of a group II metabotropic glutamate receptor. mGluR2 and mGluR3 knock-out (ko) mice were used to test the hypothesis that mGluR3 mediates the activity of GCPII inhibitors ZJ43 and 2-PMPA in animal models of memory and memory loss. Short- (1.5 h) and long- (24 h) term novel object recognition tests were used to assess memory. Treatment with ZJ43 or 2-PMPA prior to acquisition trials increased long-term memory in mGluR2, but not mGluR3, ko mice. Nine month-old triple transgenic Alzheimer's disease model mice exhibited impaired short-term novel object recognition memory that was rescued by treatment with a NAAG peptidase inhibitor. NAAG peptidase inhibitors and the group II mGluR agonist, LY354740, reversed the short-term memory deficit induced by acute ethanol administration in wild type mice. 2-PMPA also moderated the effect of ethanol on short-term memory in mGluR2 ko mice but failed to do so in mGluR3 ko mice. LY354740 and ZJ43 blocked ethanol-induced motor activation. Both GCPII inhibitors and LY354740 also significantly moderated the loss of motor coordination induced by 2.1 g/kg ethanol treatment. These data support the conclusion that inhibitors of glutamate carboxypeptidase II are efficacious in object recognition models of normal memory and memory deficits via an mGluR3 mediated process, actions that could have widespread clinical applications.
Collapse
Affiliation(s)
- Rafal T Olszewski
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Karolina J Janczura
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Tomasz Bzdega
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Elise K Der
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Faustino Venzor
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Brennen O'Rourke
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Timothy J Hark
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Kirsten E Craddock
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Shankar Balasubramanian
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA
| | - Charbel Moussa
- Department of Neuroscience, Georgetown University, Washington, D.C., 20057, USA
| | - Joseph H Neale
- Department of Biology, Georgetown University, 37th and O Sts., N.W., Washington, D.C., 20057-1225, USA.
| |
Collapse
|
9
|
Baliño P, Ledesma JC, Aragon CMG. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis. Neuropharmacology 2015; 101:271-8. [PMID: 26449868 DOI: 10.1016/j.neuropharm.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.
Collapse
Affiliation(s)
- Pablo Baliño
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Juan Carlos Ledesma
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Carlos M G Aragon
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
10
|
Baliño P, Ledesma JC, Aragon CMG. Role of CA2+/calmodulin on ethanol neurobehavioral effects. Psychopharmacology (Berl) 2014; 231:4611-21. [PMID: 24853690 DOI: 10.1007/s00213-014-3610-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 04/29/2014] [Indexed: 01/13/2023]
Abstract
RATIONALE The cAMP-dependent protein kinase A (PKA) signaling transduction pathway has been shown to play an important role in the modulation of several ethanol-induced behaviors. Different studies have demonstrated intracellular calcium (Ca(2+))-dependent activation of the PKA cascade after ethanol administration. Thus, the cAMP cascade mediator Ca(2+)-dependent calmodulin (CaM) has been strongly implicated in the central effects of ethanol. OBJECTIVES In this study, we assessed the role of the CaM inhibitor W7 on ethanol-induced stimulation, ethanol intake, and ethanol-induced activation of PKA. METHODS Swiss mice were pretreated with W7 (0-10 mg/kg) 30 min before ethanol (0-3.75 g/kg) administration. Immediately, animals were placed during 20 min in an open-field chamber. Ethanol (10 %, v/v) intake in 2 h was assessed using a limited access paradigm. Experiments with caffeine (0-15 mg/kg), cocaine (0-4 mg/kg), and saccharine (0.1 %, w/v) were designed to compare their results to those obtained with ethanol. Western blot was assayed 45 min after ethanol administration. RESULTS Results showed that pretreatment with W7, reduced selectively in a dose-dependent fashion ethanol-induced locomotor stimulation and ethanol intake. The ethanol-induced activation of PKA was also prevented by W7 administration. CONCLUSIONS These results demonstrate that CaM inhibition resulted in a selective reduction of ethanol-stimulating effects and ethanol intake. The PKA activation induced by ethanol was blocked after the CaM blockade with W7. These results provide further evidence of the key role of cellular Ca(2+)-dependent pathways on the central effects of ethanol.
Collapse
Affiliation(s)
- Pablo Baliño
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain,
| | | | | |
Collapse
|
11
|
Kim MC, Kim MG, Jo YS, Song HS, Eom TI, Sim SS. Effects of C18 Fatty Acids on Intracellular Ca(2+) Mobilization and Histamine Release in RBL-2H3 Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:241-7. [PMID: 24976764 PMCID: PMC4071177 DOI: 10.4196/kjpp.2014.18.3.241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 11/15/2022]
Abstract
To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and α-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular Ca2+ mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular Ca2+ mobilization, whereas linoleic acid and α-linolenic acid gradually increased this mobilization. In the absence of extracellular Ca2+, stearic acid (100 µM) did not cause any increase of intracellular Ca2+ mobilization. Both linoleic acid and α-linolenic acid increased intracellular Ca2+ mobilization, but the increase was smaller than that in the presence of extracellular Ca2+. These results suggest that C18 fatty acid-induced intracellular Ca2+ mobilization is mainly dependent on extracellular Ca2+ influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular Ca2+ mobilization, but did not affect both linoleic acid and α-linolenic acid-induced intracellular Ca2+ mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and α-linolenic acid on intracellular Ca2+ mobilization may differ. Linoleic acid and α-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: ω-6)-induced intracellular Ca2+ mobilization and histamine release were more prominent than α-linolenic acid (C18:3: ω-3). These data support the view that the intake of more α-linolenic acid than linoleic acid is useful in preventing inflammation.
Collapse
Affiliation(s)
- Myung Chul Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Min Gyu Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Young Soo Jo
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ho Sun Song
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Tae In Eom
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Sang Soo Sim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
12
|
Baliño P, Ledesma JC, Aragon CMG. In vivo study of ethanol-activated brain protein kinase A: manipulations of Ca2+ distribution and flux. Alcohol Clin Exp Res 2013; 38:629-40. [PMID: 24117724 DOI: 10.1111/acer.12289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/21/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND The cAMP-dependent protein kinase (PKA) signaling transduction pathway has been shown to play an important role in the modulation of several ethanol (EtOH)-induced behavioral actions. In vivo, short-term exposure to EtOH up-regulates the cAMP-signaling cascade. Interestingly, different Ca(2+) -dependent cAMP-PKA cascade mediators play a critical role in the neurobehavioral response to EtOH, being of special relevance to the Ca(2+) -dependent adenylyl cyclases 1 and 8. We hypothesize an intracellular PKA activation elicited by EtOH administration, which may be regulated by a Ca(2+) -dependent mechanism as an early cellular response. Thus, the present work aims to explore the role of Ca(2+) (internal and external) on the EtOH-activated PKA cascade. METHODS Swiss male mice received an intraperitoneal injection of EtOH (0 or 4 g/kg), and brains were dissected following a temporal pattern (7, 15, 30, 45, 90, or 120 minutes). Either the enzymatic PKA activity or its fingerprint was analyzed on different brain areas (cortex, hypothalamus, hippocampus, and striatum). To explore the role of Ca(2+) on the EtOH-activated PKA cascade, mice were pretreated with diltiazem (0 or 20 mg/kg), dantrolene (0 or 5 mg/kg), or 3,7-Dimethyl-1-(2-propynyl)xanthine (0 or 1 mg/kg) 30 minutes before EtOH (4 g/kg) administration. After 45 minutes of EtOH administration, brains were removed and dissected to measure the PKA activity or its fingerprint. RESULTS Results from these experiments showed an EtOH-dependent activation of PKA in different brain areas. Manipulations involving a disruption of intracellular Ca(2+) release from the endoplasmic reticulum resulted in a decreased EtOH-induced activation of PKA. On the contrary, extracellular-to-cytoplasm Ca(2+) manipulations did not prevent the PKA activation by EtOH. CONCLUSIONS Altogether, these results show the critical role of stored Ca(2+) as an intracellular mediator of different neurobiological actions of EtOH and provide further evidence of a possible new target for EtOH within the central nervous system.
Collapse
Affiliation(s)
- Pablo Baliño
- Area de Psicobiologia, Universitat Jaume I, Castellón, Spain
| | | | | |
Collapse
|
13
|
The role of L-type calcium channels in the development and expression of behavioral sensitization to ethanol. Neurosci Lett 2013; 553:196-200. [PMID: 23994059 DOI: 10.1016/j.neulet.2013.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/04/2013] [Accepted: 08/05/2013] [Indexed: 11/21/2022]
Abstract
Behavioral sensitization is thought to play a significant role in drug addiction. L-type calcium channels have been implicated in sensitization to stimulant and opiate drugs but it is unclear if these channels also contribute to sensitization to ethanol. The effects of three L-type calcium channel blockers, nifedipine (1-7.5 mg/kg), diltiazem (12.5-50 mg/kg), and verapamil (12.5 and 25 mg/kg), on sensitization to ethanol (2 g/kg) were examined in DBA/2J mice. All three blockers reduced but did not prevent expression of sensitization. Only nifedipine blocked acquisition of sensitization. Nifedipine and verapamil decreased blood ethanol levels. The current findings suggest L-type calcium channels do not play a substantial role in sensitization to ethanol and that the neural mechanisms underlying sensitization to ethanol are distinct from those mediating sensitization to stimulants and opiates.
Collapse
|
14
|
Ledesma JC, Font L, Aragon CMG. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice. Drug Alcohol Depend 2012; 124:42-9. [PMID: 22261181 DOI: 10.1016/j.drugalcdep.2011.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/28/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. METHODS Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). RESULTS Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. CONCLUSIONS Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Àrea de Psicobiologia, Universitat Jaume I, Avda Sos Baynat, 12071 Castellón, Spain
| | | | | |
Collapse
|
15
|
Tarragon E, Baliño P, Aragon CMG. Dantrolene blockade of ryanodine receptor impairs ethanol-induced behavioral stimulation, ethanol intake and loss of righting reflex. Behav Brain Res 2012; 233:554-62. [PMID: 22677274 DOI: 10.1016/j.bbr.2012.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/22/2012] [Accepted: 05/26/2012] [Indexed: 12/21/2022]
Abstract
Calcium has been characterized as one of the most ubiquitous, universal and versatile intracellular signals. Among other substances with the ability to alter intracellular calcium levels, ethanol has been described as particularly relevant because of its social and economic impact. Ethanol effects on calcium distribution and flux in vitro have been widely studied, showing that acute ethanol administration can modulate intracellular calcium concentrations in a dose dependent manner. Intracellular calcium released from the endoplasmic reticulum plays a determinant role in several cellular processes. In this study, we aim to assess the effect of dantrolene, a ryanodine receptor antagonist, on three different ethanol-elicited behaviors: locomotor activity, loss of righting reflex and ethanol intake. Mice were challenged with an injection of dantrolene (0-5 mg/kg, i.p.) 30 min before ethanol (0-4 g/kg, i.p.) administration. Animals were immediately placed in an open field cylinder to monitor distance travelled horizontally or in a V-shaped trough to measure righting reflex recovery time. For ethanol intake, dantrolene (0-5mg/kg, i.p.) was administered 30 min before ethanol (20%, v/v) exposure, following a drinking in the dark paradigm. Our results showed that dantrolene selectively reduces ethanol-induced stimulation, loss of righting reflex, and ethanol intake in a dose dependent manner. Together, these data suggest that intracellular calcium released from the endoplasmic reticulum may play a critical role in behavioral effects caused by ethanol, and point to a calcium-dependent pathway as a possible cellular mechanism of action for ethanol.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Area de Psicobiologia, Universitat Jaume I, 12071 Castellón, Spain
| | | | | |
Collapse
|
16
|
Bhutada P, Mundhada Y, Patil J, Rahigude A, Zambare K, Deshmukh P, Tanwar D, Jain K. Cilnidipine, an L/N-type calcium channel blocker prevents acquisition and expression of ethanol-induced locomotor sensitization in mice. Neurosci Lett 2012; 514:91-5. [DOI: 10.1016/j.neulet.2012.02.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
17
|
Intracellular calcium chelation with BAPTA-AM modulates ethanol-induced behavioral effects in mice. Exp Neurol 2012; 234:446-53. [PMID: 22306018 DOI: 10.1016/j.expneurol.2012.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/23/2022]
Abstract
Calcium (Ca(2+)) has been characterized as one of the most ubiquitous, universal and versatile intracellular signaling molecules responsible for controlling numerous cellular processes. Ethanol-induced effects on Ca(2+) distribution and flux have been widely studied in vitro, showing that acute ethanol administration can modulate intracellular Ca(2+) concentrations in a dose dependent manner. In vivo, the relationship between Ca(2+) manipulation and the corresponding ethanol-induced behavioral effects have focused on Ca(2+) flux through voltage-gated Ca(2+) channels. The present study investigated the role of inward Ca(2+) currents in ethanol-induced psychomotor effects (stimulation and sedation) and ethanol intake. We studied the effects of the fast Ca(2+) chelator, BAPTA-AM, on ethanol-induced locomotor activity and the sedative effects of ethanol. Swiss (RjOrl) mice were pretreated with BAPTA-AM (0-10 mg/kg) 30 min before an ethanol (0-4 g/kg) challenge. Our results revealed that pretreatment with BAPTA-AM prevented locomotor stimulation produced by ethanol without altering basal locomotion. In contrast, BAPTA-AM reversed ethanol-induced hypnotic effects. In a second set of experiments, we investigated the effects of intracellular Ca(2+) chelation on ethanol intake. Following a drinking-in-the-dark methodology, male C57BL/6J mice were offered 20% v/v ethanol, tap water, or 0.1% sweetened water. The results of these experiments revealed that BAPTA-AM pretreatment (0-5 mg/kg) reduced ethanol consumption in a dose-dependent manner while leaving water and sweetened water intake unaffected. Our findings support the role of inward Ca(2+) currents in mediating different behavioral responses induced by ethanol. Our results are discussed together with data indicating that ethanol appears to be more sensitive to intracellular Ca(2+) manipulations than other psychoactive drugs.
Collapse
|