1
|
Jankovic T, Bogicevic M, Knezevic NN. The role of nitric oxide and hormone signaling in chronic stress, anxiety, depression and post-traumatic stress disorder. Mol Cell Endocrinol 2024; 590:112266. [PMID: 38718853 DOI: 10.1016/j.mce.2024.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024]
Abstract
This paper provides a summary of the role of nitric oxide (NO) and hormones in the development of chronic stress, anxiety, depression, and post-traumatic stress disorder (PTSD). These mental health conditions are prevalent globally and involve complex molecular interactions. Although there is a significant amount of research and therapeutic options available, the underlying mechanisms of these disorders are still not fully understood. The primary pathophysiologic processes involved in chronic stress, anxiety, depression, and PTSD include dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, the intracellular influence of neuronal nitric oxide synthase (nNOS) on transcription factors, an inflammatory response with the formation of nitrergic oxidative species, and reduced serotonergic transmission in the dorsal raphe nucleus. Despite the extensive literature on this topic, there is a great need for further research to clarify the complexities inherent in these pathways, with the primary aim of improving psychiatric care.
Collapse
Affiliation(s)
- Tamara Jankovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Marko Bogicevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
2
|
Woodruff JL, Bykalo MK, Loyo-Rosado FZ, Maissy ES, Sadek AT, Hersey M, Erichsen JM, Maxwell ND, Wilson MA, Wood SK, Hashemi P, Grillo CA, Reagan LP. Differential effects of high-fat diet on endocrine, metabolic and depressive-like behaviors in male and female rats. Appetite 2024; 199:107389. [PMID: 38697221 PMCID: PMC11139556 DOI: 10.1016/j.appet.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
The complications of obesity extend beyond the periphery to the central nervous system (CNS) and include an increased risk of developing neuropsychiatric co-morbidities like depressive illness. Preclinical studies support this concept, including studies that have examined the effects of a high-fat diet (HFD) on depressive-like behaviors. Although women are approximately two-fold more likely to develop depressive illness compared to men, most preclinical studies have focused on the effects of HFD in male rodents. Accordingly, the goal of this study was to examine depressive-like behaviors in male and female rats provided access to a HFD. In agreement with prior studies, male and female rats provided a HFD segregate into an obesity phenotype (i.e., diet-induced obesity; DIO) or a diet resistant (DR) phenotype. Upon confirmation of the DR and DIO phenotypes, behavioral assays were performed in control chow, DR, and DIO rats. In the sucrose preference test, male DIO rats exhibited significant decreases in sucrose consumption (i.e., anhedonia) compared to male DR and male control rats. In the forced swim test (FST), male DIO rats exhibited increases in immobility and decreases in climbing behaviors in the pre-test sessions. Interestingly, male DR rats exhibited these same changes in both the pre-test and test sessions of the FST, suggesting that consumption of a HFD, even in the absence of the development of an obesity phenotype, has behavioral consequences. Female rats did not exhibit differences in sucrose preference, but female DIO rats exhibited increases in immobility exclusively in the test session of the FST, behavioral changes that were not affected by the stage of the estrous cycle. Collectively, these studies demonstrate that access to a HFD elicits different behavioral outcomes in male and female rats.
Collapse
Affiliation(s)
- J L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - M K Bykalo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - F Z Loyo-Rosado
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - E S Maissy
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - A T Sadek
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M Hersey
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - J M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - N D Maxwell
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M A Wilson
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - S K Wood
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - P Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Bioengineering, Imperial College, London, SW7 2AZ, UK
| | - C A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - L P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA.
| |
Collapse
|
3
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Khawagi WY, Al-Kuraishy HM, Hussein NR, Al-Gareeb AI, Atef E, Elhussieny O, Alexiou A, Papadakis M, Jabir MS, Alshehri AA, Saad HM, Batiha GES. Depression and type 2 diabetes: A causal relationship and mechanistic pathway. Diabetes Obes Metab 2024; 26:3031-3044. [PMID: 38802993 DOI: 10.1111/dom.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.
Collapse
Affiliation(s)
- Wael Y Khawagi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Nawar R Hussein
- College of Pharmacy, Pharmacology Department, Al-Farahidi University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Esraa Atef
- Respiratory Therapy Department, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University Chandigarh-Ludhiana Highway, Mohali, India
- Department of Research and Development, Funogen, Athens, Greece
- Department of Research and Development, AFNP Med, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Majid S Jabir
- Applied Science Department, University of Technology, Baghdad, Iraq
| | - Abdullah A Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Yaribeygi H, Maleki M, Sathyapalan T, Rizzo M, Sahebkar A. Cognitive Benefits of Sodium-Glucose Co-Transporters-2 Inhibitors in the Diabetic Milieu. Curr Med Chem 2024; 31:138-151. [PMID: 36733247 DOI: 10.2174/0929867330666230202163513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 02/04/2023]
Abstract
Patients with diabetes are at higher risk of cognitive impairment and memory loss than the normal population. Thus, using hypoglycemic agents to improve brain function is important for diabetic patients. Sodium-glucose cotransporters-2 inhibitors (SGLT2i) are a class of therapeutic agents used in the management of diabetes that has some pharmacologic effects enabling them to fight against the onset and progress of memory deficits. Although the exact mediating pathways are not well understood, emerging evidence suggests that SGLT2 inhibition is associated with improved brain function. This study reviewed the possible mechanisms and provided evidence suggesting SGLT2 inhibitors could ameliorate cognitive deficits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Baenas I, Mora-Maltas B, Etxandi M, Lucas I, Granero R, Fernández-Aranda F, Tovar S, Solé-Morata N, Gómez-Peña M, Moragas L, Del Pino-Gutiérrez A, Tapia J, Diéguez C, Goudriaan AE, Jiménez-Murcia S. Cluster analysis in gambling disorder based on sociodemographic, neuropsychological, and neuroendocrine features regulating energy homeostasis. Compr Psychiatry 2024; 128:152435. [PMID: 37976998 DOI: 10.1016/j.comppsych.2023.152435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The heterogeneity of gambling disorder (GD) has led to the identification of different subtypes, mostly including phenotypic features, with distinctive implications on the GD severity and treatment outcome. However, clustering analyses based on potential endophenotypic features, such as neuropsychological and neuroendocrine factors, are scarce so far. AIMS This study firstly aimed to identify empirical clusters in individuals with GD based on sociodemographic (i.e., age and sex), neuropsychological (i.e., cognitive flexibility, inhibitory control, decision making, working memory, attention, and set-shifting), and neuroendocrine factors regulating energy homeostasis (i.e., leptin, ghrelin, adiponectin, and liver-expressed antimicrobial peptide 2, LEAP-2). The second objective was to compare the profiles between clusters, considering the variables used for the clustering procedure and other different sociodemographic, clinical, and psychological features. METHODS 297 seeking-treatment adult outpatients with GD (93.6% males, mean age of 39.58 years old) were evaluated through a semi-structured clinical interview, self-reported psychometric assessments, and a protocolized neuropsychological battery. Plasma concentrations of neuroendocrine factors were assessed in peripheral blood after an overnight fast. Agglomerative hierarchical clustering was applied using sociodemographic, neuropsychological, and neuroendocrine variables as indicators for the grouping procedure. Comparisons between the empirical groups were performed using Chi-square tests (χ2) for categorical variables, and analysis of variance (ANOVA) for quantitative measures. RESULTS Three-mutually-exclusive groups were obtained, being neuropsychological features those with the greatest weight in differentiating groups. The largest cluster (Cluster 1, 65.3%) was composed by younger males with strategic and online gambling preferences, scoring higher on self-reported impulsivity traits, but with a lower cognitive impairment. Cluster 2 (18.2%) and 3 (16.5%) were characterized by a significantly higher proportion of females and older patients with non-strategic gambling preferences and a worse neuropsychological performance. Particularly, Cluster 3 had the poorest neuropsychological performance, especially in cognitive flexibility, while Cluster 2 reported the poorest inhibitory control. This latter cluster was also distinguished by a poorer self-reported emotion regulation, the highest prevalence of food addiction, as well as a metabolic profile characterized by the highest mean concentrations of leptin, adiponectin, and LEAP-2. CONCLUSIONS To the best of our knowledge, this is the first study to identify well-differentiated GD clusters using neuropsychological and neuroendocrine features. Our findings reinforce the heterogeneous nature of the disorder and emphasize a role of potential endophenotypic features in GD subtyping. This more comprehensive characterization of GD profiles could contribute to optimize therapeutic interventions based on a medicine of precision.
Collapse
Affiliation(s)
- Isabel Baenas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Bernat Mora-Maltas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Mikel Etxandi
- Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain; Department of Psychiatry, Hospital Universitari Germans Trias i Pujol, IGTP Campus Can Ruti, Badalona, Spain
| | - Ignacio Lucas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Roser Granero
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Sulay Tovar
- Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Neus Solé-Morata
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Mónica Gómez-Peña
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Laura Moragas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Amparo Del Pino-Gutiérrez
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, Barcelona, Spain
| | - Javier Tapia
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain; Medical Direction of Ambulatory Processes, South Metropolitan Territorial Management, Bellvitge University Hospital, Barcelona, Spain
| | - Carlos Diéguez
- Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Anna E Goudriaan
- Arkin Mental Health Care, Jellinek, Amsterdam Institute for Addiction Research, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Susana Jiménez-Murcia
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Palazzo E, Marabese I, Boccella S, Belardo C, Pierretti G, Maione S. Affective and Cognitive Impairments in Rodent Models of Diabetes. Curr Neuropharmacol 2024; 22:1327-1343. [PMID: 38279738 PMCID: PMC11092917 DOI: 10.2174/1570159x22666240124164804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 01/28/2024] Open
Abstract
Diabetes and related acute and long-term complications have a profound impact on cognitive, emotional, and social behavior, suggesting that the central nervous system (CNS) is a crucial substrate for diabetic complications. When anxiety, depression, and cognitive deficits occur in diabetic patients, the symptoms and complications related to the disease worsen, contributing to lower quality of life while increasing health care costs and mortality. Experimental models of diabetes in rodents are a fundamental and valuable tool for improving our understanding of the mechanisms underlying the close and reciprocal link between diabetes and CNS alterations, including the development of affective and cognitive disorders. Such models must reproduce the different components of this pathological condition in humans and, therefore, must be associated with affective and cognitive behavioral alterations. Beyond tight glycemic control, there are currently no specific therapies for neuropsychiatric comorbidities associated with diabetes; animal models are, therefore, essential for the development of adequate therapies. To our knowledge, there is currently no review article that summarizes changes in affective and cognitive behavior in the most common models of diabetes in rodents. Therefore, in this review, we have reported the main evidence on the alterations of affective and cognitive behavior in the different models of diabetes in rodents, the main mechanisms underlying these comorbidities, and the applicable therapeutic strategy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gorizio Pierretti
- Department of Plastic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
8
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Loss of brain energy metabolism control as a driver for memory impairment upon insulin resistance. Biochem Soc Trans 2023; 51:287-301. [PMID: 36606696 DOI: 10.1042/bst20220789] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
The pathophysiological mechanisms intersecting metabolic and neurodegenerative disorders include insulin resistance, which has a strong involvement of environmental factors. Besides central regulation of whole-body homeostasis, insulin in the central nervous system controls molecular signalling that is critical for cognitive performance, namely signalling through pathways that modulate synaptic transmission and plasticity, and metabolism in neurons and astrocytes. This review provides an overview on how insulin signalling in the brain might regulate brain energy metabolism, and further identified molecular mechanisms by which brain insulin resistance might impair synaptic fuelling, and lead to cognitive deterioration.
Collapse
|
11
|
Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. Brain insulin signaling and cognition: Possible links. EXCLI JOURNAL 2023; 22:237-249. [PMID: 36998706 PMCID: PMC10043452 DOI: 10.17179/excli2023-5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Poor cognitive ability is a consequence of a wide variety of neurobehavioral disorders and is a growing health problem, especially among the elderly and patients with diabetes. The precise underlying cause of this complication is not well-defined. However, recent studies have highlighted the possible role of insulin hormone signaling in brain tissue. Insulin is a metabolic peptide integral to whole body energy homeostasis; it does, however, have extrametabolic impacts, such as upon neuronal circuits. Therefore, it has been suggested that insulin signaling may modify cognitive ability by yet unknown pathways. In the current review, we discuss the cognitive role of brain insulin signaling and consider the possible links between brain insulin signaling and cognitive ability.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- *To whom correspondence should be addressed: Habib Yaribeygi, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran, E-mail:
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Xue CY, Gao T, Mao E, Kou ZZ, Dong L, Gao F. Hippocampus Insulin Receptors Regulate Episodic and Spatial Memory Through Excitatory/Inhibitory Balance. ASN Neuro 2023; 15:17590914231206657. [PMID: 37908089 PMCID: PMC10621302 DOI: 10.1177/17590914231206657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 11/02/2023] Open
Abstract
It is well known that the hippocampus is a vital brain region playing a key role in both episodic and spatial memory. Insulin receptors (InsRs) are densely distributed in the hippocampus and are important for its function. However, the effects of InsRs on the function of the specific hippocampal cell types remain elusive. In this study, hippocampal InsRs knockout mice had impaired episodic and spatial memory. GABAergic neurons and glutamatergic neurons in the hippocampus are involved in the balance between excitatory and inhibitory (E/I) states and participate in the processes of episodic and spatial memory. InsRs are located mainly at excitatory neurons in the hippocampus, whereas 8.5% of InsRs are glutamic acid decarboxylase 2 (GAD2)::Ai9-positive (GABAergic) neurons. Next, we constructed a transgenic mouse system in which InsR expression was deleted from GABAergic (glutamate decarboxylase 2::InsRfl/fl, GAD2Cre::InsRfl/fl) or glutamatergic neurons (vesicular glutamate transporter 2::InsRfl/fl,Vglut2Cre::InsRfl/fl). Our results showed that in comparison to the InsRfl/fl mice, both episodic and spatial memory were lower in GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl. In addition, both GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl were associated with more anxiety and lower glucose tolerance. These findings reveal that hippocampal InsRs might be crucial for episodic and spatial memory through E/I balance hippocampal regulation.
Collapse
Affiliation(s)
- Cai-Yan Xue
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Tian Gao
- Division of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - E Mao
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
13
|
Alvarez-Monell A, Subias-Gusils A, Mariné-Casadó R, Boqué N, Caimari A, Solanas M, Escorihuela RM. Impact of Calorie-Restricted Cafeteria Diet and Treadmill Exercise on Sweet Taste in Diet-Induced Obese Female and Male Rats. Nutrients 2022; 15:nu15010144. [PMID: 36615803 PMCID: PMC9823820 DOI: 10.3390/nu15010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The goal of the present study was to evaluate the sweet taste function in obese rats fed with a 30% calorie-restricted cafeteria diet (CAFR) and/or subjected to moderate treadmill exercise (12-17 m/min, 35 min, 5 days per week) for 9 weeks. A two-bottle preference test, a taste reactivity test, and a brief-access licking test were carried out when animals were aged 21 weeks; biometric and metabolic parameters were also measured along the interventions. Two separate experiments for females and males were performed. Behaviorally, CAF diet decreased sucrose intake and preference, as well as perceived palatability, in both sexes and decreased hedonic responses in males. Compared to the CAF diet, CAFR exerted a corrective effect on sweet taste variables in females by increasing sucrose intake in the preference test and licking responses, while exercise decreased sucrose intake in both sexes and licking responses in females. As expected, CAF diet increased body weight and Lee index and worsened the metabolic profile in both sexes, whereas CAFR diet ameliorated these effects mainly in females. Exercise had no noticeable effects on these parameters. We conclude that CAF diet might diminish appetitive behavior toward sucrose in both sexes, and that this effect could be partially reverted by CAFR diet in females only, while exercise might exert protective effects against overconsumption of sucrose in both sexes.
Collapse
Affiliation(s)
- Adam Alvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
| | - Alex Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Noemi Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Montserrat Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| | - Rosa M. Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| |
Collapse
|
14
|
Hamzé R, Delangre E, Tolu S, Moreau M, Janel N, Bailbé D, Movassat J. Type 2 Diabetes Mellitus and Alzheimer's Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232315287. [PMID: 36499613 PMCID: PMC9739879 DOI: 10.3390/ijms232315287] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3β and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic β-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Rim Hamzé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Etienne Delangre
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Stefania Tolu
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Manon Moreau
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Danielle Bailbé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Jamileh Movassat
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
- Correspondence: ; Tel.: +33-1-57-27-77-82; Fax: +33-1-57-27-77-91
| |
Collapse
|
15
|
Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells 2022; 11:3629. [PMID: 36429060 PMCID: PMC9688574 DOI: 10.3390/cells11223629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.
Collapse
Affiliation(s)
- Meenakshi Bose
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Farias Quipildor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Campbell IH, Campbell H, Smith DJ. Insulin signaling as a therapeutic mechanism of lithium in bipolar disorder. Transl Psychiatry 2022; 12:350. [PMID: 36038539 PMCID: PMC9424309 DOI: 10.1038/s41398-022-02122-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
In this paper, we propose that lithium may exert its therapeutic effect in bipolar disorder by acting on insulin signaling pathways. Specifically, we assess the importance of the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) insulin signaling pathway and we assess how the action of lithium on both glycogen synthase kinase-3 (GSK3) and the phosphatidylinositol cycle may lead to mood stabilization mediated by PI3K/Akt insulin signaling. We also highlight evidence that several other actions of lithium (including effects on Akt, Protein kinase C (PKC), and sodium myo-inositol transporters) are putative mediators of insulin signaling. This novel mode of action of lithium is consistent with an emerging consensus that energy dysregulation represents a core deficit in bipolar disorder. It may also provide context for the significant co-morbidity between bipolar disorder, type 2 diabetes, and other forms of metabolic illness characterized by impaired glucose metabolism. It is suggested that developments in assessing neuronal insulin signaling using extracellular vesicles would allow for this hypothesis to be tested in bipolar disorder patients.
Collapse
Affiliation(s)
- Iain H. Campbell
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel J. Smith
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Falling Short: The Contribution of Central Insulin Receptors to Gait Dysregulation in Brain Aging. Biomedicines 2022; 10:biomedicines10081923. [PMID: 36009470 PMCID: PMC9405648 DOI: 10.3390/biomedicines10081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Insulin resistance, which manifests as a reduction of insulin receptor signaling, is known to correlate with pathological changes in peripheral tissues as well as in the brain. Central insulin resistance has been associated with impaired cognitive performance, decreased neuronal health, and reduced brain metabolism; however, the mechanisms underlying central insulin resistance and its impact on brain regions outside of those associated with cognition remain unclear. Falls are a leading cause of both fatal and non-fatal injuries in the older population. Despite this, there is a paucity of work focused on age-dependent alterations in brain regions associated with ambulatory control or potential therapeutic approaches to target these processes. Here, we discuss age-dependent alterations in central modalities that may contribute to gait dysregulation, summarize current data supporting the role of insulin signaling in the brain, and highlight key findings that suggest insulin receptor sensitivity may be preserved in the aged brain. Finally, we present novel results showing that administration of insulin to the somatosensory cortex of aged animals can alter neuronal communication, cerebral blood flow, and the motivation to ambulate, emphasizing the need for further investigations of intranasal insulin as a clinical management strategy in the older population.
Collapse
|
18
|
Martins LB, Braga Tibães JR, Berk M, Teixeira AL. Diabetes and mood disorders: shared mechanisms and therapeutic opportunities. Int J Psychiatry Clin Pract 2022; 26:183-195. [PMID: 34348557 DOI: 10.1080/13651501.2021.1957117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this manuscript is to provide a comprehensive and critical overview of the current evidence on the association between Diabetes mellitus (DM) and mood disorders [i.e., Major depressive disorder (MDD) and bipolar disorder (BD)], and therapeutic opportunities. METHODS We searched in MEDLINE (via Ovid) for placebo-controlled clinical trials published in the last 20 years that assessed drug repurposing approaches for the treatment of DM or mood disorders. RESULTS We found seven studies that aimed to verify the effects of antidepressants in patients diagnosed with DM, and eight studies that tested the effect of antidiabetic drugs in patients diagnosed with MDD or BD. Most studies published in the last two decades did not report a positive effect of antidepressants on glycemic control in patients with DM. On the other hand, antidiabetic drugs seem to have a positive effect on the treatment of MDD and BD. CONCLUSIONS While effect of antidepressants on glycemic control in patients with DM is still controversial, the use of antidiabetic drugs may be a promising strategy for patients with MDD or BD. Prospective studies are still needed.Key pointsMood disorders in patients with DM affect glycemic control, potentially increasing mortality risk.The effect of antidepressants on glycemic control in patients with DM is still controversial. The coexistence of complicated DM and a mood disorders would require a careful, individualised, and comprehensive evaluation.Insulin resistance may increase the risk of depressive symptoms and is associated with worse outcomes in BD.The use antidiabetic drugs may be a promising strategy for patients with MDD or BD. However, prospective trials are needed to prove a potential antidepressant activity of antidiabetic drugs.
Collapse
Affiliation(s)
- Laís Bhering Martins
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.,Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jenneffer Rayane Braga Tibães
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Agricultural, Food and Nutritional Science, Division of Human Nutrition, University of Alberta, Edmonton, Canada
| | - Michael Berk
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health, Parkville, Australia.,Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.,Instituto de Ensino e Pesquisa, Belo Horizonte, Brazil
| |
Collapse
|
19
|
De Felice FG, Gonçalves RA, Ferreira ST. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat Rev Neurosci 2022; 23:215-230. [DOI: 10.1038/s41583-022-00558-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
|
20
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
21
|
Shared metabolic and neuroimmune mechanisms underlying Type 2 Diabetes Mellitus and Major Depressive Disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110351. [PMID: 34000290 DOI: 10.1016/j.pnpbp.2021.110351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease with symptoms that go beyond the domain of glucose metabolism. In fact, research has shown that T2DM is accompanied by neurodegeneration and neuroinflammation. Interestingly, Major Depressive Disorder (MDD), a mood disorder characterized mainly by depressed mood and anhedonia is a key feature of T2DM. A body of evidence demonstrates that there are many shared neuroimmune mechanisms underlying the pathophysiology of T2DM and MDD. Therefore, here we review the state-of-art regarding the underlying factors common to both T2DM and MDD. Furthermore, we briefly discuss how depressive symptoms in diabetic patients could be tackled by using novel therapeutic approaches uncovered by these shared mechanisms. Understanding the comorbidity of depression in diabetic patients is essential to fully address T2DM pathophysiology and treatment.
Collapse
|
22
|
Reagan L, Cowan H, Woodruff J, Piroli G, Erichsen J, Evans A, Burzynski H, Maxwell N, Loyo-Rosado F, Macht V, Grillo C. Hippocampal-specific insulin resistance elicits behavioral despair and hippocampal dendritic atrophy. Neurobiol Stress 2021; 15:100354. [PMID: 34258333 PMCID: PMC8252121 DOI: 10.1016/j.ynstr.2021.100354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/02/2023] Open
Abstract
Insulin resistance is a major contributor to the neuroplasticity deficits observed in patients with metabolic disorders. However, the relative contribution of peripheral versus central insulin resistance in the development of neuroplasticity deficits remains equivocal. To distinguish between peripheral and central insulin resistance, we developed a lentiviral vector containing an antisense sequence selective for the insulin receptor (LV-IRAS). We previously demonstrated that intra-hippocampal injection of this vector impairs synaptic transmission and hippocampal-dependent learning and memory in the absence of peripheral insulin resistance. In view of the increased risk for the development of neuropsychiatric disorders in patients with insulin resistance, the current study examined depressive and anxiety-like behaviors, as well as hippocampal structural plasticity in rats with hippocampal-specific insulin resistance. Following hippocampal administration of either the LV-control virus or the LV-IRAS, anhedonia was evaluated by the sucrose preference test, despair behavior was assessed in the forced swim test, and anxiety-like behaviors were determined in the elevated plus maze. Hippocampal neuron morphology was studied by Golgi-Cox staining. Rats with hippocampal insulin resistance exhibited anxiety-like behaviors and behavioral despair without differences in anhedonia, suggesting that some but not all components of depressive-like behaviors were affected. Morphologically, hippocampal-specific insulin resistance elicited atrophy of the basal dendrites of CA3 pyramidal neurons and dentate gyrus granule neurons, and also reduced the expression of immature dentate gyrus granule neurons. In conclusion, hippocampal-specific insulin resistance elicits structural deficits that are accompanied by behavioral despair and anxiety-like behaviors, identifying hippocampal insulin resistance as a key factor in depressive illness.
Collapse
Affiliation(s)
- L.P. Reagan
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.B. Cowan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.L. Woodruff
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - G.G. Piroli
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.M. Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - A.N. Evans
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.E. Burzynski
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - N.D. Maxwell
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - F.Z. Loyo-Rosado
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - V.A. Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - C.A. Grillo
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| |
Collapse
|
23
|
Insulin and Insulin Resistance in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189987. [PMID: 34576151 PMCID: PMC8472298 DOI: 10.3390/ijms22189987] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Insulin plays a range of roles as an anabolic hormone in peripheral tissues. It regulates glucose metabolism, stimulates glucose transport into cells and suppresses hepatic glucose production. Insulin influences cell growth, differentiation and protein synthesis, and inhibits catabolic processes such as glycolysis, lipolysis and proteolysis. Insulin and insulin-like growth factor-1 receptors are expressed on all cell types in the central nervous system. Widespread distribution in the brain confirms that insulin signaling plays important and diverse roles in this organ. Insulin is known to regulate glucose metabolism, support cognition, enhance the outgrowth of neurons, modulate the release and uptake of catecholamine, and regulate the expression and localization of gamma-aminobutyric acid (GABA). Insulin is also able to freely cross the blood–brain barrier from the circulation. In addition, changes in insulin signaling, caused inter alia insulin resistance, may accelerate brain aging, and affect plasticity and possibly neurodegeneration. There are two significant insulin signal transduction pathways: the PBK/AKT pathway which is responsible for metabolic effects, and the MAPK pathway which influences cell growth, survival and gene expression. The aim of this study is to describe the role played by insulin in the CNS, in both healthy people and those with pathologies such as insulin resistance and Alzheimer’s disease.
Collapse
|
24
|
Nasca C, Dobbin J, Bigio B, Watson K, de Angelis P, Kautz M, Cochran A, Mathé AA, Kocsis JH, Lee FS, Murrough JW, McEwen BS, Rasgon N. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol Psychiatry 2021; 26:5140-5149. [PMID: 32536688 PMCID: PMC7787430 DOI: 10.1038/s41380-020-0804-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/17/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Insulin signaling is critical for neuroplasticity, cerebral metabolism as well as for systemic energy metabolism. In rodent studies, impaired brain insulin signaling with resultant insulin resistance (IR) modulates synaptic plasticity and the corresponding behavioral functions. Despite discoveries of central actions of insulin, in vivo molecular mechanisms of brain IR until recently have proven difficult to study in the human brain. In the current study, we leveraged recent technological advances in molecular biology and herein report an increased number of exosomes enriched for L1CAM, a marker predominantly expressed in the brain, in subjects with major depressive disorder (MDD) as compared with age- and sex-matched healthy controls (HC). We also report increased concentration of the insulin receptor substrate-1 (IRS-1) in L1CAM+ exosomes in subjects with MDD as compared with age- and sex-matched HC. We found a relationship between expression of IRS-1 in L1CAM+ exosomes and systemic IR as assessed by homeostatic model assessment of IR in HC, but not in subjects with MDD. The increased IRS-1 levels in L1CAM+ exosomes were greater in subjects with MDD and were associated with suicidality and anhedonia. Finally, our data suggested sex differences in serine-312 phosphorylation of IRS-1 in L1CAM+ exosomes in subjects with MDD. These findings provide a starting point for creating mechanistic framework of brain IR in further development of personalized medicine strategies to effectively treat MDD.
Collapse
Affiliation(s)
- Carla Nasca
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | - Josh Dobbin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, USA
| | - Benedetta Bigio
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, USA
| | - Kathleen Watson
- Center for Neuroscience in Women’s Health, Stanford University, Palo Alto, CA 91304, USA
| | - Paolo de Angelis
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, USA
| | - Marin Kautz
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Ashly Cochran
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - James H Kocsis
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA.,Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY, USA
| | - James W Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, USA
| | - Natalie Rasgon
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA. .,Center for Neuroscience in Women's Health, Stanford University, Palo Alto, CA, 91304, USA.
| |
Collapse
|
25
|
Hersey M, Woodruff JL, Maxwell N, Sadek AT, Bykalo MK, Bain I, Grillo CA, Piroli GG, Hashemi P, Reagan LP. High-fat diet induces neuroinflammation and reduces the serotonergic response to escitalopram in the hippocampus of obese rats. Brain Behav Immun 2021; 96:63-72. [PMID: 34010713 PMCID: PMC8319113 DOI: 10.1016/j.bbi.2021.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Clinical studies indicate that obese individuals have an increased risk of developing co-morbid depressive illness and that these patients have reduced responses to antidepressant therapy, including selective serotonin reuptake inhibitors (SSRIs). Obesity, a condition of chronic mild inflammation including obesity-induced neuroinflammation, is proposed to contribute to decreases in synaptic concentrations of neurotransmitters like serotonin (5HT) by decreasing 5HT synthesis in the dorsal raphe nucleus (DRN) and/or affecting 5HT reuptake in DRN target regions like the hippocampus. In view of these observations, the goal of the current study was to examine inflammatory markers and serotonergic dynamics in co-morbid obesity and depression. Biochemical and behavioral assays revealed that high-fat diet produced an obesity and depressive-like phenotype in one cohort of rats and that these changes were marked by increases in key pro-inflammatory cytokines in the hippocampus. In real time using fast scan cyclic voltammetry (FSCV), we observed no changes in basal levels of hippocampal 5HT; however responses to escitalopram were significantly impaired in the hippocampus of obese rats compared to diet resistant rats and control rats. Further studies revealed that these neurochemical observations could be explained by increases in serotonin transporter (SERT) expression in the hippocampus driven by elevated neuroinflammation. Collectively, these results demonstrate that obesity-induced increases in neuroinflammation adversely affect SERT expression in the hippocampus of obese rats, thereby providing a potential synaptic mechanism for reduced SSRI responsiveness in obese subjects with co-morbid depressive illness.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Jennifer L. Woodruff
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA,Columbia VA Health Care System, Columbia, SC, USA
| | - Nicholas Maxwell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Alia T. Sadek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Maria K. Bykalo
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Ian Bain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Claudia A. Grillo
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA,Columbia VA Health Care System, Columbia, SC, USA
| | - Gerardo G. Piroli
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA,Columbia VA Health Care System, Columbia, SC, USA,Corresponding author: Lawrence P. Reagan, Ph.D., Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, D40, Columbia, SC, USA 29208, Phone: 001 803 216 3515; Fax: 001 803 216 3538,
| |
Collapse
|
26
|
Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ. Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrinol Metab 2021; 321:E156-E163. [PMID: 34056920 PMCID: PMC8321819 DOI: 10.1152/ajpendo.00642.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The brain has been traditionally thought to be insensitive to insulin, primarily because insulin does not stimulate glucose uptake/metabolism in the brain (as it does in classic insulin-sensitive tissues such as muscle, liver, and fat). However, over the past 20 years, research in this field has identified unique actions of insulin in the brain. There is accumulating evidence that insulin crosses into the brain and regulates central nervous system functions such as feeding, depression, and cognitive behavior. In addition, insulin acts in the brain to regulate systemic functions such as hepatic glucose production, lipolysis, lipogenesis, reproductive competence, and the sympathoadrenal response to hypoglycemia. Decrements in brain insulin action (or brain insulin resistance) can be observed in obesity, type 2 diabetes (T2DM), aging, and Alzheimer's disease (AD), indicating a possible link between metabolic and cognitive health. Here, we describe recent findings on the pleiotropic actions of insulin in the brain and highlight the precise sites, specific neuronal population, and roles for supportive astrocytic cells through which insulin acts in the brain. In addition, we also discuss how boosting brain insulin action could be a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases such as AD and T2DM. Overall, this perspective article serves to highlight some of these key scientific findings, identify unresolved issues, and indicate future directions of research in this field that would serve to improve the lives of people with metabolic and cognitive dysfunctions.
Collapse
Affiliation(s)
- Rahul Agrawal
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Candace M Reno
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sunny Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Camille Christensen
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yiqing Huang
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Simon J Fisher
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
27
|
Chakraborti A, Graham C, Chehade S, Vashi B, Umfress A, Kurup P, Vickers B, Chen HA, Telange R, Berryhill T, Van Der Pol W, Powell M, Barnes S, Morrow C, Smith DL, Mukhtar MS, Watts S, Kennedy G, Bibb J. High Fructose Corn Syrup-Moderate Fat Diet Potentiates Anxio-Depressive Behavior and Alters Ventral Striatal Neuronal Signaling. Front Neurosci 2021; 15:669410. [PMID: 34121997 PMCID: PMC8187874 DOI: 10.3389/fnins.2021.669410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
The neurobiological mechanisms that mediate psychiatric comorbidities associated with metabolic disorders such as obesity, metabolic syndrome and diabetes remain obscure. High fructose corn syrup (HFCS) is widely used in beverages and is often included in food products with moderate or high fat content that have been linked to many serious health issues including diabetes and obesity. However, the impact of such foods on the brain has not been fully characterized. Here, we evaluated the effects of long-term consumption of a HFCS-Moderate Fat diet (HFCS-MFD) on behavior, neuronal signal transduction, gut microbiota, and serum metabolomic profile in mice to better understand how its consumption and resulting obesity and metabolic alterations relate to behavioral dysfunction. Mice fed HFCS-MFD for 16 weeks displayed enhanced anxiogenesis, increased behavioral despair, and impaired social interactions. Furthermore, the HFCS-MFD induced gut microbiota dysbiosis and lowered serum levels of serotonin and its tryptophan-based precursors. Importantly, the HFCS-MFD altered neuronal signaling in the ventral striatum including reduced inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β), increased expression of ΔFosB, increased Cdk5-dependent phosphorylation of DARPP-32, and reduced PKA-dependent phosphorylation of the GluR1 subunit of the AMPA receptor. These findings suggest that HFCS-MFD-induced changes in the gut microbiota and neuroactive metabolites may contribute to maladaptive alterations in ventral striatal function that underlie neurobehavioral impairment. While future studies are essential to further evaluate the interplay between these factors in obesity and metabolic syndrome-associated behavioral comorbidities, these data underscore the important role of peripheral-CNS interactions in diet-induced behavioral and brain function. This study also highlights the clinical need to address neurobehavioral comorbidities associated with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ayanabha Chakraborti
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher Graham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sophie Chehade
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bijal Vashi
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alan Umfress
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pradeep Kurup
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Benjamin Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - H. Alexander Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rahul Telange
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Taylor Berryhill
- Department of Pharmacology, University of Alabama at Birmingham Medical Center, Birmingham, AL, United States
| | - William Van Der Pol
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mickie Powell
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Barnes
- Department of Pharmacology, University of Alabama at Birmingham Medical Center, Birmingham, AL, United States
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gregory Kennedy
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Sen ZD, Danyeli LV, Woelfer M, Lamers F, Wagner G, Sobanski T, Walter M. Linking atypical depression and insulin resistance-related disorders via low-grade chronic inflammation: Integrating the phenotypic, molecular and neuroanatomical dimensions. Brain Behav Immun 2021; 93:335-352. [PMID: 33359233 DOI: 10.1016/j.bbi.2020.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance (IR) and related disorders, such as T2DM, increase the risk of major depressive disorder (MDD) and vice versa. Current evidence indicates that psychological stress and overeating can induce chronic low-grade inflammation that can interfere with glutamate metabolism in MDD as well as insulin signaling, particularly in the atypical subtype. Here we first review the interactive role of inflammatory processes in the development of MDD, IR and related metabolic disorders. Next, we describe the role of the anterior cingulate cortex in the pathophysiology of MDD and IR-related disorders. Furthermore, we outline how specific clinical features of atypical depression, such as hyperphagia, are more associated with inflammation and IR-related disorders. Finally, we examine the regional specificity of the effects of inflammation on the brain that show an overlap with the functional and morphometric brain patterns activated in MDD and IR-related disorders.
Collapse
Affiliation(s)
- Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, University Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Thomas Sobanski
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Thueringen-Kliniken "Georgius Agricola" GmbH, Rainweg 68, 07318 Saalfeld, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| |
Collapse
|
29
|
Rawlinson S, Andrews ZB. Hypothalamic insulin signalling as a nexus regulating mood and metabolism. J Neuroendocrinol 2021; 33:e12939. [PMID: 33634518 DOI: 10.1111/jne.12939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
Insulin has long been known as a metabolic hormone critical in the treatment of diabetes for its peripheral effects on blood glucose. However, in the last 50 years, insulin has entered the realm of neuroendocrinology and many studies have described its function on insulin receptors in the brain in relation to both metabolic and mood disorders. Indeed, rodent models of impaired insulin signalling show signs of dysregulated energy and glucose homeostasis, as well as anxiety-like and depressive behaviours. Importantly, many metabolic diseases such as obesity and diabetes increase the risk of developing mood disorders; however, the brain mechanisms underlying the connection between metabolism and mood remain unresolved. We present the current literature on the importance of the insulin receptor with respect to regulating glucose and energy homeostasis and mood-related behaviours. Specifically, we hypothesise that the insulin receptor in the hypothalamus, classically known as the homeostatic centre of the brain, plays a causal role in linking metabolic and behavioural effects of insulin signalling. In this review, we discuss insulin signalling in the hypothalamus as a critical point of neural integration controlling metabolism and mood.
Collapse
Affiliation(s)
- Sasha Rawlinson
- Department of Physiology, Monash Biomedicine Discovery Institute Monash University, Clayton, VIC, Australia
| | - Zane B Andrews
- Department of Physiology, Monash Biomedicine Discovery Institute Monash University, Clayton, VIC, Australia
| |
Collapse
|
30
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
31
|
Dionysopoulou S, Charmandari E, Bargiota A, Vlahos NF, Mastorakos G, Valsamakis G. The Role of Hypothalamic Inflammation in Diet-Induced Obesity and Its Association with Cognitive and Mood Disorders. Nutrients 2021; 13:498. [PMID: 33546219 PMCID: PMC7913301 DOI: 10.3390/nu13020498] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is often associated with cognitive and mood disorders. Recent evidence suggests that obesity may cause hypothalamic inflammation. Our aim was to investigate the hypothesis that there is a causal link between obesity-induced hypothalamic inflammation and cognitive and mood disorders. Inflammation may influence hypothalamic inter-connections with regions important for cognition and mood, while it may cause dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and influence monoaminergic systems. Exercise, healthy diet, and glucagon-like peptide receptor agonists, which can reduce hypothalamic inflammation in obese models, could improve the deleterious effects on cognition and mood.
Collapse
Affiliation(s)
- Sofia Dionysopoulou
- Division of Endocrinology, Metabolism and Diabetes, Hippocratio General Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics and Gynecology, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgios Valsamakis
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
32
|
Martin H, Bullich S, Guiard BP, Fioramonti X. The impact of insulin on the serotonergic system and consequences on diabetes-associated mood disorders. J Neuroendocrinol 2021; 33:e12928. [PMID: 33506507 DOI: 10.1111/jne.12928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The idea that insulin could influence emotional behaviours has long been suggested. However, the underlying mechanisms have yet to be solved and there is no direct and clear-cut evidence demonstrating that such action involves brain serotonergic neurones. Indeed, initial arguments in favour of the association between insulin, serotonin and mood arise from clinical or animal studies showing that impaired insulin action in type 1 or type 2 diabetes causes anxiety- and depressive symptoms along with blunted plasma and brain serotonin levels. The present review synthesises the main mechanistic hypotheses that might explain the comorbidity between diabetes and depression. It also provides a state of knowledge of the direct and indirect experimental evidence that insulin modulates brain serotonergic neurones. Finally, it highlights the literature suggesting that antidiabetic drugs present antidepressant-like effects and, conversely, that serotonergic antidepressants impact glucose homeostasis. Overall, this review provides mechanistic insights into how insulin signalling alters serotonergic neurotransmission and related behaviours bringing new targets for therapeutic options.
Collapse
Affiliation(s)
- Hugo Martin
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| | - Sébastien Bullich
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| |
Collapse
|
33
|
Abstract
Brain insulin signaling contributes to memory function and might be a viable target in the prevention and treatment of memory impairments including Alzheimer's disease. This short narrative review explores the potential of central nervous system (CNS) insulin administration via the intranasal pathway to improve memory performance in health and disease, with a focus on the most recent results. Proof-of-concept studies and (pilot) clinical trials in individuals with mild cognitive impairment or Alzheimer's disease indicate that acute and prolonged intranasal insulin administration enhances memory performance, and suggest that brain insulin resistance is a pathophysiological factor in Alzheimer's disease with or without concomitant metabolic dysfunction. Intranasally administered insulin is assumed to trigger improvements in synaptic plasticity and regional glucose uptake as well as alleviations of Alzheimer's disease neuropathology; additional contributions of changes in hypothalamus-pituitary-adrenocortical axis activity and sleep-related mechanisms are discussed. While intranasal insulin delivery has been conclusively demonstrated to be effective and safe, the recent outcomes of large-scale clinical studies underline the need for further investigations, which might also yield new insights into sex differences in the response to intranasal insulin and contribute to the optimization of delivery devices to grasp the full potential of intranasal insulin for Alzheimer's disease.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
| |
Collapse
|
34
|
Zou X, Sun Y. Bibliometrics Analysis of the Research Status and Trends of the Association Between Depression and Insulin From 2010 to 2020. Front Psychiatry 2021; 12:683474. [PMID: 34366917 PMCID: PMC8339804 DOI: 10.3389/fpsyt.2021.683474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Depression is one of the common mental illnesses. Because it is an important complication of diabetes, its association with changes in insulin levels and insulin resistance, the causative factors of diabetes, has attracted widespread attention. However, the association between insulin and depression has not been systematically studied through bibliometric and visual analysis. This study is based on 3131 publications of Web of Science to identify the current research status and research trends in this field. The results show that since 2010, the number of publications has been growing rapidly. Cooperative network analysis shows that the United States, the University of Toronto and Roger S Mcintyre are the most influential countries, research institutes and scholars, respectively. Insulin resistance, obesity, and metabolic syndrome are hot topics in this field. Analysis of keywords and references reveals that "sex hormones," is new research area that constantly emerging. As far as we know, this study is the first one to visualize the association between depression and insulin and predict potential future research trends through bibliometric and visual analysis.
Collapse
Affiliation(s)
- Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yuan Sun
- Public Computer Education and Research Center, Jilin University, Changchun, China
| |
Collapse
|
35
|
Clinical Evidence of Antidepressant Effects of Insulin and Anti-Hyperglycemic Agents and Implications for the Pathophysiology of Depression-A Literature Review. Int J Mol Sci 2020; 21:ijms21186969. [PMID: 32971941 PMCID: PMC7554794 DOI: 10.3390/ijms21186969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Close connections between depression and type 2 diabetes (T2DM) have been suggested by many epidemiological and experimental studies. Disturbances in insulin sensitivity due to the disruption of various molecular pathways cause insulin resistance, which underpins many metabolic disorders, including diabetes, as well as depression. Several anti-hyperglycemic agents have demonstrated antidepressant properties in clinical trials, probably due to their action on brain targets based on the shared pathophysiology of depression and T2DM. In this article, we review reports of clinical trials examining the antidepressant effect of these medications, including insulin, metformin, glucagon like peptide-1 receptor agonists (GLP-1RA), and peroxisome proliferator-activated receptor (PPAR)-γ agonists, and briefly consider possible molecular mechanisms underlying the associations between amelioration of insulin resistance and improvement of depressive symptoms. In doing so, we intend to suggest an integrative perspective for understanding the pathophysiology of depression.
Collapse
|
36
|
Li RZ, Ding XW, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Beneficial Effect of Genistein on Diabetes-Induced Brain Damage in the ob/ob Mouse Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3325-3336. [PMID: 32884237 PMCID: PMC7443039 DOI: 10.2147/dddt.s249608] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
Purpose Diabetes mellitus (DM)-induced brain damage is characterized by cellular, molecular and functional changes. The mechanisms include oxidative stress, neuroinflammation, reduction of neurotrophic factors, insulin resistance, excessive amyloid beta (Aβ) deposition and Tau phosphorylation. Both antidiabetic and neuroprotective effects of the phytoestrogen genistein have been reported. However, the beneficial effect of genistein in brain of the ob/ob mouse model of severe obesity and diabetes remains to be determined. Methods In this study, female ob/ob mice and lean control mice were fed with either a standard diet or a diet containing genistein (600mg/kg) for a period of 4 weeks. Body weight was monitored weekly. Blood was collected for the measurement of glucose, insulin and common cytokines. Mice brains were isolated for Western immunoblotting analyses. Results Treatment with genistein reduced weight gain of ob/ob mice and decreased hyperglycemia compared to ob/ob mice fed the standard diet. The main findings show that genistein treatment increased insulin sensitivity and the expression levels of the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factors (BDNF). In these mice, genistein also reduced Aβ deposition and the level of hyper-phosphorylated Tau protein. Conclusion The results of our study indicate the beneficial effects of genistein in the obese diabetic mouse brain, including improving brain insulin signaling, increasing neurotrophic support, and alleviating Alzheimer’s disease-related pathology.
Collapse
Affiliation(s)
- Rong-Zi Li
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Xiao-Wen Ding
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Layla Al-Nakkash
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
37
|
Jiang FH, Liu XM, Yu HR, Qian Y, Chen HL. The Incidence of Depression in Patients With Diabetic Foot Ulcers: A Systematic Review and Meta-Analysis. INT J LOW EXTR WOUND 2020; 21:161-173. [PMID: 32527164 DOI: 10.1177/1534734620929892] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Some patients with diabetic foot ulcers (DFUs) may suffer from depression, but the latest information regarding the incidence of depression in patients with DFUs is limited. This review aimed to provide up-to-date information concerning the incidence of depression in patients with DFUs. We searched the literature in PubMed and Web of Science databases, limited to English publications. 11 eligible studies with a total of 2117 participants were included in this review. A random-effects model was applied due to high heterogeneity. The incidence of depression in patients with DFUs ranged from 26% (95% confidence interval [CI] = 19% to 33%) to 85% (95% CI = 78% to 92%), and was 47% (95% CI = 36% to 58%) after systematically summarizing. Subgroup analyses suggested that the incidence of depression were 49% (95%CI = 35% to 63%) in Europe, 37% (95% CI = 23% to 51%) in Asia, 62% (95% CI = 48% to 76%) in North America. Additionally, the incidence of depression were 40% (95% CI = 29% to 50%) in prospective studies, 55% (95% CI = 28% to 82%) in retrospective studies, 40% (95% CI = 29% to 50%) in cross-sectional studies. Furthermore, the incidence of depression were 43% (95% CI = 25% to 60%), 49% (95% CI = 35% to 63%), 68% (95% CI = 35% to 102%), 32% (95% CI = 26% to 38%), and 28% (95% CI = 18% to 38%) in patients with DFUs assessed by the Hospital Anxiety and Depression Scale, EuroQol 5-Dimension Questionnaire, Geriatric Depression Scale, Diagnostic and Statistical Manual of Mental Disorders, 4th edition, and the Center for Epidemiologic Studies Depression Scale, respectively. The estimates were robust in the sensitivity analysis. According to the meta-regression analyses, diabetes mellitus duration (t = 0.93, P = .422), publication years (t = -0.72, P = .488), and age of subjects (t = 0.01, P = .989) were not the sources of high heterogeneity. Our meta-analysis showed nearly half of patients with DFUs had depression problems.
Collapse
Affiliation(s)
- Fu-Hui Jiang
- Medical College, Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Xiao-Man Liu
- Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Hai-Rong Yu
- Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Yan Qian
- Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Hong-Lin Chen
- Public Health College, Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| |
Collapse
|
38
|
Zou XH, Sun LH, Yang W, Li BJ, Cui RJ. Potential role of insulin on the pathogenesis of depression. Cell Prolif 2020; 53:e12806. [PMID: 32281722 PMCID: PMC7260070 DOI: 10.1111/cpr.12806] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The regulation of insulin on depression and depression-like behaviour has been widely reported. Insulin and activation of its receptor can promote learning and memory, affect the hypothalamic-pituitary-adrenal axis (HPA) balance, regulate the secretion of neurotrophic factors and neurotransmitters, interact with gastrointestinal microbiome, exert neuroprotective effects and have an impact on depression. However, the role of insulin on depression remains largely unclear. Therefore, in this review, we summarized the potential role of insulin on depression. It may provide new insight for clarifying role of insulin on the pathogenesis of depression.
Collapse
Affiliation(s)
- Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Grillo CA, Woodruff JL, Macht VA, Reagan LP. Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Exp Neurol 2019; 318:71-77. [PMID: 31028829 DOI: 10.1016/j.expneurol.2019.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
In the periphery insulin plays a critical role in the regulation of metabolic homeostasis by stimulating glucose uptake into peripheral organs. In the central nervous system (CNS), insulin plays a critical role in the formation of neural circuits and synaptic connections from the earliest stages of development and facilitates and promotes neuroplasticity in the adult brain. Beyond these physiological roles of insulin, a shared feature between the periphery and CNS is that decreases in insulin receptor activity and signaling (i.e. insulin resistance) contributes to the pathological consequences of type 2 diabetes (T2DM) and obesity. Indeed, clinical and preclinical studies illustrate that CNS insulin resistance elicits neuroplasticity deficits that lead to decreases in cognitive function and increased risk of neuropsychiatric disorders. The goals of this review are to provide an overview of the literature that have identified the neuroplasticity deficits observed in T2DM and obesity, as well as to discuss the potential causes and consequences of insulin resistance in the CNS, with a particular focus on how insulin resistance impacts hippocampal neuroplasticity. Interestingly, studies that have examined the effects of hippocampal-specific insulin resistance illustrate that brain insulin resistance may impair neuroplasticity independent of peripheral insulin resistance, thereby supporting the concept that restoration of brain insulin activity is an attractive therapeutic strategy to ameliorate or reverse cognitive decline observed in patients with CNS insulin resistance such as T2DM and Alzheimer's Disease.
Collapse
Affiliation(s)
- Claudia A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Jennifer L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Victoria A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA.
| |
Collapse
|
40
|
Takekawa D, Kudo T, Saito J, Kimura F, Nikaido Y, Sawada K, Yasui-Furukori N, Hirota K. Higher plasma leptin and lower C-peptide levels are associated with depression: A cross-sectional study. J Affect Disord 2019; 243:70-74. [PMID: 30236760 DOI: 10.1016/j.jad.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/03/2018] [Accepted: 09/09/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Depression is a seriously disabling public health problem with very high world-wide prevalence. This study examined cross-sectional association between depression and both inflammatory markers and laboratory data involved in metabolic disturbance among Japanese subjects. METHODS This cross-sectional study is a secondly analysis for the data of the Iwaki Health Promotion Project 2014 (1167 subjects). Plasma inflammatory markers and laboratory metabolic data involved were used. Center for Epidemiologic Studies Depression Scale (CES-D) was used to assess the prevalence and severity of depressive symptoms. Participants with CES-D scores ≥ 16 were assigned to the 'Depression' group (Group D). Differences between group Non-depression (ND) and D were estimated using χ2 test or Fisher's exact test for categorical variables and Student's t-test or Mann-Whitney test for continuous variables. Multivariate logistic regression analysis was also used to identify characteristics, co-morbidities, conditions and laboratory data associated with depression after adjusting for possible confounding factors. RESULTS There were significant differences in sex, age, blood pressure, interleukin (IL)-6, fasting blood sugar (FBS), hemoglobin A1c (HbA1c), and cortisol level using univariate analysis between the two groups. However, multivariate logistic regression analysis indicated that lower age, lower C-peptide, and higher leptin were associated with the depression. CONCLUSION This study showed that higher plasma leptin and lower C-peptide levels were significantly associated with depressive symptoms. No significant association was found between plasma inflammatory markers and depressive symptoms after adjusting for possible confounding factors.
Collapse
Affiliation(s)
- Daiki Takekawa
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Takashi Kudo
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Junichi Saito
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Futoshi Kimura
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yoshikazu Nikaido
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kaori Sawada
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Norio Yasui-Furukori
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
41
|
Lyra E Silva NDM, Lam MP, Soares CN, Munoz DP, Milev R, De Felice FG. Insulin Resistance as a Shared Pathogenic Mechanism Between Depression and Type 2 Diabetes. Front Psychiatry 2019; 10:57. [PMID: 30837902 PMCID: PMC6382695 DOI: 10.3389/fpsyt.2019.00057] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/25/2019] [Indexed: 12/28/2022] Open
Abstract
Neuropsychiatric disorders and type 2 diabetes (T2D) are major public health concerns proposed to be intimately connected. T2D is associated with increased risk of dementia, neuropsychiatric and mood disorders. Evidences of the involvement of insulin signaling on brain mechanisms related to depression indicate that insulin resistance, a hallmark of type 2 diabetes, could develop in the brains of depressive patients. In this article, we briefly review possible molecular mechanisms associating defective brain insulin signaling with reward system, neurogenesis, synaptic plasticity and hypothalamic-pituitary-adrenal (HPA) stress axis in depression. We further discuss the involvement of tumor necrosis factor α (TNFα) promoting defective insulin signaling and depressive-like behavior in rodent models. Finally, due to the high resistant rate of anti-depressants, novel insights into the link between insulin resistance and depression may advance the development of alternative treatments for this disease.
Collapse
Affiliation(s)
| | - Minh P Lam
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Claudio N Soares
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Roumen Milev
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Mueller PL, Pritchett CE, Wiechman TN, Zharikov A, Hajnal A. Antidepressant-like effects of insulin and IGF-1 are mediated by IGF-1 receptors in the brain. Brain Res Bull 2018; 143:27-35. [DOI: 10.1016/j.brainresbull.2018.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
|
43
|
Carboni L, Marchetti L, Lauria M, Gass P, Vollmayr B, Redfern A, Jones L, Razzoli M, Malki K, Begni V, Riva MA, Domenici E, Caberlotto L, Mathé AA. Cross-species evidence from human and rat brain transcriptome for growth factor signaling pathway dysregulation in major depression. Neuropsychopharmacology 2018; 43:2134-2145. [PMID: 29950584 PMCID: PMC6098161 DOI: 10.1038/s41386-018-0117-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 01/10/2023]
Abstract
An enhanced understanding of the pathophysiology of depression would facilitate the discovery of new efficacious medications. To this end, we examined hippocampal transcriptional changes in rat models of disease and in humans to identify common disease signatures by using a new algorithm for signature-based clustering of expression profiles. The tool identified a transcriptomic signature comprising 70 probesets able to discriminate depression models from controls in both Flinders Sensitive Line and Learned Helplessness animals. To identify disease-relevant pathways, we constructed an expanded protein network based on signature gene products and performed functional annotation analysis. We applied the same workflow to transcriptomic profiles of depressed patients. Remarkably, a 171-probesets transcriptional signature which discriminated depressed from healthy subjects was identified. Rat and human signatures shared the SCARA5 gene, while the respective networks derived from protein-based significant interactions with signature genes contained 25 overlapping genes. The comparison between the most enriched pathways in the rat and human signature networks identified a highly significant overlap (p-value: 3.85 × 10-6) of 67 terms including ErbB, neurotrophin, FGF, IGF, and VEGF signaling, immune responses and insulin and leptin signaling. In conclusion, this study allowed the identification of a hippocampal transcriptional signature of resilient or susceptible responses in rat MDD models which overlapped with gene expression alterations observed in depressed patients. These findings are consistent with a loss of hippocampal neural plasticity mediated by altered levels of growth factors and increased inflammatory responses causing metabolic impairments as crucial factors in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Luca Marchetti
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
| | - Mario Lauria
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Department of Mathematics, University of Trento, Povo, Trento, Italy
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Vollmayr
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Amanda Redfern
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Maria Razzoli
- Department of Integrative Biology and Physiology University of Minnesota, 2231 6th Street SE, Minneapolis, USA
| | - Karim Malki
- King's College London, at the Institute of Psychiatry, Psychology and Neuroscience (IOPPN), London, UK
| | - Veronica Begni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marco A Riva
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Enrico Domenici
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of Trento, Povo, Trento, Italy
| | - Laura Caberlotto
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- The Aptuit Center for Drug Discovery & Development, Via Fleming, 4, 37135, Verona, Italy
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
44
|
Greenwood EA, Pasch LA, Cedars MI, Legro RS, Eisenberg E, Huddleston HG. Insulin resistance is associated with depression risk in polycystic ovary syndrome. Fertil Steril 2018; 110:27-34. [PMID: 29908775 DOI: 10.1016/j.fertnstert.2018.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To test the hypothesis that insulin resistance is associated with depression risk in polycystic ovary syndrome (PCOS). DESIGN Secondary analysis of data from a multicenter randomized trial. SETTING Multicenter university-based clinical practices. PATIENT(S) Seven hundred thirty-eight women with PCOS by modified Rotterdam criteria seeking pregnancy enrolled in a randomized clinical trial comparing clomiphene citrate versus letrozole. INTERVENTION(S) The Primary Care Evaluation of Mental Disorders Patient Health Questionnaire was self-administered to identify depression using a validated algorithm at enrollment. Demographic and anthropometric data were collected, and serum assays were performed. Insulin resistance was estimated using the homeostatic model of insulin resistance (HOMA-IR), with a cutoff of >2.2 considered abnormal. MAIN OUTCOME MEASURE(S) Demographic, endocrine, and metabolic parameters associated with depression. RESULT(S) In a univariate logistic regression analysis, elevated HOMA-IR was associated with 2.3-fold increased odds of depression (odds ratio [OR] = 2.32; 95% confidence interval [CI], 1.28-4.21). This association remained significant after controlling for age and body mass index (adjusted OR [aOR] = 2.23; 95% CI, 1.11-4.46) and in a model including additional potential confounders (aOR = 2.03; 95% CI, 1.00-4.16). CONCLUSION(S) Insulin resistance has a strong and independent association with depression in PCOS and may serve as a physiologic mediator. Our findings corroborate a growing body of evidence linking insulin resistance to depressed mood. The association between insulin resistance and depressed mood warrants further investigation to elucidate mechanisms and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Eleni A Greenwood
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California-San Francisco, San Francisco, California.
| | - Lauri A Pasch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California-San Francisco, San Francisco, California
| | - Marcelle I Cedars
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California-San Francisco, San Francisco, California
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University, Hershey, Pennsylvania
| | - Esther Eisenberg
- Fertility and Infertility Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland
| | - Heather G Huddleston
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California-San Francisco, San Francisco, California
| | | |
Collapse
|
45
|
Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 2018; 23:1432-1445. [PMID: 29257131 DOI: 10.1038/mp.2017.237] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Stress-related psychopathology is highly prevalent among elderly individuals and is associated with detrimental effects on mood, appetite and cognition. Conversely, under certain circumstances repeated mild-to-moderate stressors have been shown to enhance cognitive performance in rodents and exert stress-inoculating effects in humans. As most stress-related favorable outcomes have been reported in adolescence and young-adulthood, this apparent disparity could result from fundamental differences in how aging organisms respond to stress. Furthermore, given prominent age-related alterations in sex hormones, the effect of chronic stress in aging females remains a highly relevant yet little studied issue. In the present study, female C57BL/6 mice aged 3 (young-adult) and 20-23 (old) months were subjected to 8 weeks of chronic unpredictable stress (CUS). Behavioral outcomes were measured during the last 3 weeks of the CUS protocol, followed by brain dissection for histological and molecular end points. We found that in young-adult female mice, CUS resulted in decreased anxiety-like behavior and enhanced cognitive performance, whereas in old female mice it led to weight loss, dysregulated locomotion and memory impairment. These phenotypes were paralleled by differential changes in the expression of hypothalamic insulin and melanocortin-4 receptors and were consistent with an age-dependent reduction in the dynamic range of stress-related changes in the hippocampal transcriptome. Supported by an integrated microRNA (miRNA)-mRNA expression analysis, the present study proposes that, when confronted with ongoing stress, neuroprotective mechanisms involving the upregulation of neurogenesis, Wnt signaling and miR-375 can be harnessed more effectively during young-adulthood. Conversely, we suggest that aging alters the pattern of immune activation elicited by stress. Ultimately, interventions that modulate these processes could reduce the burden of stress-related psychopathology in late life.
Collapse
|
46
|
Esin RG, Khairullin IK, Esin OR. [Cerebral insulin resistance: current concepts of the pathogenesis and possible therapeutic strategies]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:92-95. [PMID: 29460912 DOI: 10.17116/jnevro20181181192-95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The review presents current concepts about the problem of cerebral insulin resistance (IR). It has now been established that cerebral IR plays a key role in the pathogenesis of degenerative and metabolic diseases of the brain. Based on literature data and own clinical experience, the authors recommend to use the standardized extract of ginkgo biloba EGb761 as a cellular protector, which increases insulin sensitivity of cells and reduces atherogenesis, in order to improve cognitive functions and quality of life in patients with diabetes mellitus.
Collapse
Affiliation(s)
- R G Esin
- Kazan State Medical Academy - the branch of Russian Medical Academy of Continuous Professional Education, Kazan, Russia; Kazan Federal University, Kazan, Russia
| | | | - O R Esin
- Kazan Federal University, Kazan, Russia
| |
Collapse
|
47
|
Soto M, Herzog C, Pacheco JA, Fujisaka S, Bullock K, Clish CB, Kahn CR. Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism. Mol Psychiatry 2018; 23:2287-2301. [PMID: 29910467 PMCID: PMC6294739 DOI: 10.1038/s41380-018-0086-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/13/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
Obesity and diabetes in humans are associated with increased rates of anxiety and depression. To understand the role of the gut microbiome and brain insulin resistance in these disorders, we evaluated behaviors and insulin action in brain of mice with diet-induced obesity (DIO) with and without antibiotic treatment. We find that DIO mice have behaviors reflective of increased anxiety and depression. This is associated with decreased insulin signaling and increased inflammation in in the nucleus accumbens and amygdala. Treatment with oral metronidazole or vancomycin decreases inflammation, improves insulin signaling in the brain and reduces signs of anxiety and depression. These effects are associated with changes in the levels of tryptophan, GABA, BDNF, amino acids, and multiple acylcarnitines, and are transferable to germ-free mice by fecal transplant. Thus, changes in gut microbiota can control brain insulin signaling and metabolite levels, and this leads to altered neurobehaviors.
Collapse
Affiliation(s)
- Marion Soto
- 000000041936754Xgrid.38142.3cSection of Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215 USA
| | - Clémence Herzog
- 000000041936754Xgrid.38142.3cSection of Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215 USA
| | - Julian A. Pacheco
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Shiho Fujisaka
- 0000 0001 2171 836Xgrid.267346.2First Department of Internal Medicine, University of Toyama, Toyama, 930-0194 Japan
| | - Kevin Bullock
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Clary B. Clish
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - C. Ronald Kahn
- 000000041936754Xgrid.38142.3cSection of Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215 USA
| |
Collapse
|
48
|
Gancheva S, Galunska B, Zhelyazkova-Savova M. Diets rich in saturated fat and fructose induce anxiety and depression-like behaviours in the rat: is there a role for lipid peroxidation? Int J Exp Pathol 2017; 98:296-306. [PMID: 29210119 DOI: 10.1111/iep.12254] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Epidemiological studies reveal associations between obesity/metabolic syndrome and mood disorders. We assessed behavioural changes in rats fed diets enriched in fat and fructose in different proportions and correlated the observed alterations with biochemical changes induced by the diets. Three groups of rats were used as follows: control (C) animals fed regular rat chow, rats fed high-fat diet (HF) and rats fed high-fat and high-fructose diet (HFHF). HF and HFHF animals were also given a 10% fructose solution as drinking water. Behavioural and biochemical parameters were determined. Anxiety was measured by the open-field and the social interaction test. Depression-like behaviour was evaluated by the forced swimming test. The object recognition test was utilized to assess effects on memory. Diet-exposed animals displayed signs of anxiety in the open-field (HF rats had reduced central time; HFHF rats had reduced number of central entries) and in the social interaction test (decreased time of interaction in HF group). In the forced swimming test, the immobility time was prolonged in the HFHF group. While different measures of anxiety scores correlated with visceral adiposity and dyslipidemia, results from both social interaction and forced swimming tests were significantly associated with lipid peroxidation, which in turn also correlated with the metabolic parameters. The experimental diets did not affect the object recognition memory. Both experimental diets induced metabolic derangements in rats and provoked similar anxiety- and depression-like behaviours. Lipid peroxidation seems to play a role in translating diet-induced metabolic alterations into behavioural disorders.
Collapse
Affiliation(s)
- Silvia Gancheva
- Department of Pharmacology and Clinical Pharmacology and Therapeutics, Medical University of Varna, Varna, Bulgaria
| | - Bistra Galunska
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - Maria Zhelyazkova-Savova
- Department of Pharmacology and Clinical Pharmacology and Therapeutics, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
49
|
Wijesekara N, Gonçalves RA, De Felice FG, Fraser PE. Impaired peripheral glucose homeostasis and Alzheimer's disease. Neuropharmacology 2017; 136:172-181. [PMID: 29169962 DOI: 10.1016/j.neuropharm.2017.11.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Recent studies suggest that metabolic disturbances, particularly type 2 diabetes (T2D) increase the risk of cognitive decline and AD. AD is also a risk factor for T2D, and a growing body of evidence indicates that these diseases are connected both at clinical and molecular levels. In T2D, peripheral insulin resistance, hyperglycemia and eventually insulin deficiency develops, leading to an overall decline in tissue health. More recently, brain insulin resistance has been shown to be a key feature of AD that is linked to neuronal dysfunction and cognitive impairment. Furthermore, both AD and T2D are amyloidogenic diseases, with abnormal aggregation of amyloid-β peptide (Aβ) and islet amyloid polypeptide (IAPP) respectively contributing to cellular death and disease pathogenesis. Emerging data suggests that Aβ may have peripheral effects including its co-deposition in the pancreas. In this review, we discuss how peripheral effects of Aβ and metabolic disturbances may impact AD pathogenesis. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.
| | - Rafaella Araujo Gonçalves
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
50
|
Intranasal insulin treatment alleviates methamphetamine induced anxiety-like behavior and neuroinflammation. Neurosci Lett 2017; 660:122-129. [DOI: 10.1016/j.neulet.2017.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023]
|