1
|
King CP, Chitre AS, Leal-Gutiérrez JD, Tripi JA, Hughson AR, Horvath AP, Lamparelli AC, George A, Martin C, Pierre CLS, Sanches T, Bimschleger HV, Gao J, Cheng R, Nguyen KM, Holl KL, Polesskaya O, Ishiwari K, Chen H, Woods LCS, Palmer AA, Robinson TE, Flagel SB, Meyer PJ. Genomic Loci Influencing Cue-Reactivity in Heterogeneous Stock Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584852. [PMID: 38559127 PMCID: PMC10980002 DOI: 10.1101/2024.03.13.584852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.
Collapse
Affiliation(s)
- Christopher P. King
- Department of Psychology, University at Buffalo, Buffalo, USA
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Apurva S. Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, USA
| | - Alesa R. Hughson
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Aidan P. Horvath
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Anthony George
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Connor Martin
- Clinical and Research Institute on Addictions, Buffalo, USA
| | | | - Thiago Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Katie L. Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, Buffalo, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, USA
| | | | - Shelly B. Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, USA
| |
Collapse
|
2
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre AS, Polesskaya O, Richards JB, Solberg Woods LC, Gancarz AM, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. Sci Rep 2024; 14:4182. [PMID: 38378969 PMCID: PMC10879139 DOI: 10.1038/s41598-024-53943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n = 200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n = 64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (ii) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
Hagen C, Ogallar PM, Papini MR. Open field activity is linked to, but is not affected by, the rate of recovery from reward downshift in female Wistar rats. Behav Processes 2023; 213:104966. [PMID: 37981247 DOI: 10.1016/j.beproc.2023.104966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Frustration is an aversive emotion triggered by unexpected reward downshifts. Using the consummatory successive negative contrast (cSNC) task, a 32-to-2% sucrose downshift was shown to initially suppress consummatory behavior. Such suppression was followed by behavioral recovery over subsequent sessions. Individual differences often emerge in the rate of recovery after the initial consummatory suppression. These experiments were designed to determine whether a stable trait of sensation/novelty seeking (SNS) is related to such individual differences in recovery from reward downshift. In Experiment 1, open field (OF) activity in the central area served as a measure of SNS. A week later, animals received training in the cSNC task involving ten 5-min sessions of access to 32% sucrose followed by four sessions of access to 2% sucrose. Higher OF activity predicted greater consummatory suppression after downshift, but a steeper recovery rate across downshifted sessions. Controls not exposed to the OF showed cSNC, but downshifted animals performed at equivalent levels whether they had OF exposure or not. In Experiment 2, after a 32-to-2% sucrose downshift, fast vs. slow recovery animals displayed similar levels of central activity in the OF. In Experiment 3, animals exhibited similar levels of central activity whether after a 32-to-2% or an 8-to-2% sucrose downshift. In both experiments, activity levels were similar whether immediately after session 12 (onset of recovery) or after session 15 (fully recovered). These results suggest that individual variations in recovery from reward downshift are correlated with levels of SNS as a stable trait.
Collapse
Affiliation(s)
- Christopher Hagen
- Department of Psychology, Texas Christian University, Fort Worth TX 76129, USA
| | - Pedro M Ogallar
- Department of Psychology, Texas Christian University, Fort Worth TX 76129, USA
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth TX 76129, USA.
| |
Collapse
|
4
|
Gancarz AM, Hagarty DP, Cobb MM, Kausch MA, Krieg B, Alammari N, Gilbert K, Russo J, Dietz DM. Operant novelty seeking predicts cue-induced reinstatement following cocaine but not water reinforcement in male rats. Psychopharmacology (Berl) 2023; 240:2201-2215. [PMID: 37552291 PMCID: PMC10506955 DOI: 10.1007/s00213-023-06441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
RATIONALE An important facet of cocaine addiction is a high propensity to relapse, with increasing research investigating factors that predispose individuals toward uncontrolled drug use and relapse. A personality trait linked to drug addiction is high sensation seeking, i.e., a preference for novel sensations/experiences. In an animal model of sensation seeking, operant novelty seeking predicts the acquisition of drug self-administration. OBJECTIVE The primary goal of this research was to evaluate the hypothesis that sensitivity to the reinforcing effects of novel sensory stimuli predicts more intensive aspects of drug-taking behaviors, such as relapse. METHODS Rats were first tested for Operant Novelty Seeking, during which responses resulted in complex visual/auditory stimuli. Next, rats were trained to respond to water/cocaine reinforcers signaled by a cue light. Finally, rats were exposed to extinction in the absence of discrete cues and subsequently tested in a single session of cue-induced reinstatement, during which active responses resulted in cues previously paired with water/cocaine delivery. RESULTS The present study showed operant responses to produce novel sensory stimuli positively correlate with responding for cocaine during self-administration and during discrete cue-induced reinstatement, but no association with performance during extinction. A different pattern of associations was observed for a natural reward, in this case, water reinforcement. Here, the degree of novelty seeking also correlated with responding to water reinforcement and extinction responding; however, operant novelty seeking did not correlate with responding to water cues during testing of cue-induced reinstatement. Taken together, the incongruence of relationships indicates an underlying difference between natural and drug reinforcers. CONCLUSION In summary, we found a reinforcer-dependent relationship between operant novelty seeking (i.e., sensation seeking) and responsivity to extinction and discrete cues signaling availability for cocaine (i.e., craving), demonstrating the validity of the operant novelty seeking model to investigate drug seeking and relapse.
Collapse
Affiliation(s)
- Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Dorothy Donahoe Hall (DDH) H106, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA.
| | - Devin P Hagarty
- Department of Psychology, California State University, Bakersfield, Dorothy Donahoe Hall (DDH) H106, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA
| | - Moriah M Cobb
- Department of Psychology, California State University, Bakersfield, Dorothy Donahoe Hall (DDH) H106, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA
| | - Michael A Kausch
- Department of Psychology, California State University, Bakersfield, Dorothy Donahoe Hall (DDH) H106, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA
| | - Brandon Krieg
- Department of Psychology, California State University, Bakersfield, Dorothy Donahoe Hall (DDH) H106, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA
| | - Nora Alammari
- Department of Psychology, California State University, Bakersfield, Dorothy Donahoe Hall (DDH) H106, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA
| | - Kameron Gilbert
- Department of Psychology, California State University, Bakersfield, Dorothy Donahoe Hall (DDH) H106, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA
| | - Jacqueline Russo
- Department of Psychology, California State University, Bakersfield, Dorothy Donahoe Hall (DDH) H106, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA
| | - David M Dietz
- Clinical and Research Institute On Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
5
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre A, Polesskaya O, Richards JB, Woods LCS, Gancarz A, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547228. [PMID: 37503161 PMCID: PMC10369912 DOI: 10.1101/2023.06.30.547228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects to mimic the genetic variability found in the human population. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n=200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n=64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (iI) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P. King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Connor D. Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Anthony M. George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B. Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H. Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Hagen C, Ogallar PM, Guarino S, Papini MR. Behavioral and neural correlates of licking for 66% alcohol in Wistar rats: Caloric balance or sensation/novelty seeking? Physiol Behav 2023; 263:114114. [PMID: 36764424 DOI: 10.1016/j.physbeh.2023.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Whereas rodents generally reject high alcohol concentrations, access to 66% alcohol can reinforce operant licking in a progressive ratio situation. Three experiments were conducted to identify a potential mechanism underlying this effect. In Experiment 1, food-restricted male and female Wistar rats received access to either 66% alcohol or water in their home cage for one hour over four sessions. Consumption of alcohol and water was similar, showing that rats neither preferred nor rejected 66% alcohol. Peripheral (but not central) activity in an open field (OF) was higher after access to 66% alcohol than water, a result inconsistent with motor impairment. Blood alcohol concentration was higher after 66% alcohol than water and was positively correlated with fluid displacement and peripheral distance in the OF. c-Fos immunoreactivity after exposure to 66% alcohol vs. water showed increased activation in the nucleus accumbens shell, anterior cingulate cortex, and insular cortex. In Experiment 2, whether access to food was restricted (to an 81-84% of the ad libitum weight) or free (ad libitum), female Wistar rats licked at similar frequency from a sipper tube delivering 66% alcohol. This result is inconsistent with an account based on the caloric content of 66% alcohol. In Experiment 3, food-restricted male and female Wistar rats exhibited a positive correlation between activity in the central area of an OF (an index of sensation/novelty seeking) and licking for 66% alcohol. These results are consistent with the hypothesis that the reinforcing value of 66% alcohol is related to sensation/novelty seeking.
Collapse
Affiliation(s)
- Christopher Hagen
- Department of Psychology, Texas Christian University, Fort Worth, TX, 76129
| | - Pedro M Ogallar
- Department of Psychology, Texas Christian University, Fort Worth, TX, 76129
| | - Sara Guarino
- Department of Psychology, Texas Christian University, Fort Worth, TX, 76129
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth, TX, 76129.
| |
Collapse
|
7
|
Decrease in the rewarding value of spatial novelty due to the contamination of the stimulus field with light - evidence from a free exploration test involving rats. Behav Processes 2022; 202:104738. [PMID: 36064066 DOI: 10.1016/j.beproc.2022.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
Abstract
It has been shown that rearranging the spatial properties of a familiar environment consistently elicits a positive response in rats directed toward the source of novelty. Previous studies have been conducted under red light or darkness. The purpose of this study was to test the effect of rearranging the spatial properties of a familiar environment in conjunction with a change in lighting conditions. The results have shown specific effects of the light presence and its intensity on different behavioral measures. We propose that this study provides a basis for hypothesizing a two-way mechanism of the behavioral response to light regulation in rats. The first is based on ON/OFF states. This level may be related to fundamental, evolutionarily early, emergent components of behavioral antipredator adaptations. Another level of behavioral regulation involves mechanisms sensitive to light intensity. These appear to be involved in the regulation of more advanced behavioral acts, such as exploratory responses. This may suggest that light intensity analysis may require the involvement of more advanced cognitive components in the behavioral regulation system.
Collapse
|
8
|
Wang R, Martin CD, Lei AL, Hausknecht KA, Turk M, Micov V, Kwarteng F, Ishiwari K, Oubraim S, Wang AL, Richards JB, Haj-Dahmane S, Shen RY. Prenatal ethanol exposure impairs sensory processing and habituation to visual stimuli, effects normalized by enrichment of postnatal environmental. Alcohol Clin Exp Res 2022; 46:891-906. [PMID: 35347730 PMCID: PMC9122102 DOI: 10.1111/acer.14818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Individuals with fetal alcohol spectrum disorders (FASD) often show processing deficits in all sensory modalities. Using an operant light reinforcement model, we tested whether prenatal ethanol exposure (PE) alters operant responding to elicit a contingent sensory stimulus-light onset (turning on the light) and habituation to this behavior in rats. We also explored whether postnatal environmental enrichment could ameliorate PE-induced deficits. METHODS Pregnant Sprague Dawley rats were gavaged twice/day with 0 or 3 g/kg/treatment ethanol (15% w/v) during gestational days 8-20, mimicking second-trimester heavy PE in humans. The offspring were reared in a standard housing condition or an enriched condition. Adult male and female offspring underwent an operant light reinforcement experiment with either a short-access or a long-access procedure. A dishabituation test was also conducted to characterize the habituation process. RESULTS In the short-access procedure, PE led to increased operant responding to the contingent light onset in both sexes reared in the standard housing condition. Such an effect was not observed in rats reared in enriched conditions due to an overall decrease in responding. Moreover, rats reared in enriched conditions showed greater short-term habituation. In the long access procedure, PE rats showed increased responding and impaired long-term habituation. The long-access procedure facilitated both short-term and long-term habituation in control and PE rats. CONCLUSION Prenatal ethanol exposure increases responding to contingent light onset and impairs the long-term habituation process. The PE-induced deficits were ameliorated by rearing in the enriched environment and increasing the duration and frequency of exposure to light onset. The PE-induced effects are like increased sensation-seeking, a subtype of sensory-processing deficit that is often observed in individuals with FASD. Our findings could inform a suitable animal model for investigating the underlying mechanisms and possible intervention strategies for sensory deficits in FASD.
Collapse
Affiliation(s)
- Ruixiang Wang
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Connor D Martin
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Anna L Lei
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Kathryn A Hausknecht
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Marisa Turk
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Veronika Micov
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Francis Kwarteng
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Keita Ishiwari
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Saida Oubraim
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - An-Li Wang
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
9
|
Patwell R, Yang H, Pandey SC, Glover EJ. An operant ethanol self-administration paradigm that discriminates between appetitive and consummatory behaviors reveals distinct behavioral phenotypes in commonly used rat strains. Neuropharmacology 2021; 201:108836. [PMID: 34648771 PMCID: PMC8578460 DOI: 10.1016/j.neuropharm.2021.108836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Alcohol use disorder (AUD) constitutes a major burden to global health. Recently, the translational success of animal models of AUD has come under increased scrutiny. Efforts to refine models to gain a more precise understanding of the neurobiology of addiction are warranted. Appetitive responding for ethanol (seeking) and its consumption (taking) are governed by distinct neurobiological mechanisms. However, consumption is often inferred from appetitive responding in operant ethanol self-administration paradigms, preventing identification of distinct experimental effects on seeking and taking. In the present study, male Long-Evans, Wistar, and Sprague-Dawley rats were trained to lever press for ethanol using a lickometer-equipped system that precisely measures both appetitive and consummatory behavior. Three distinct operant phenotypes emerged during training: 1) Drinkers, who lever press and consume ethanol; 2) Responders, who lever press but consume little to no ethanol; and 3) Non-responders, who do not lever press. While the prevalence of each phenotype differed across strains, appetitive and consummatory behavior was similar across strains within each phenotype. Appetitive and consummatory behaviors were significantly correlated in Drinkers, but not Responders. Analysis of drinking microstructure showed that greater consumption in Drinkers relative to Responders is due to increased incentive for ethanol rather than increased palatability. Importantly, withdrawal from chronic ethanol exposure resulted in a significant increase in appetitive responding in both Drinkers and Responders, but only Drinkers exhibited a concomitant increase in ethanol consumption. Together, these data reveal important strain differences in appetitive and consummatory responding for ethanol and uncover the presence of distinct operant phenotypes.
Collapse
Affiliation(s)
- Ryan Patwell
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hyerim Yang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
King CP, Tripi JA, Hughson AR, Horvath AP, Lamparelli AC, Holl KL, Chitre AS, Polesskaya O, Ishiwari K, Solberg Woods LC, Palmer AA, Robinson TE, Flagel SB, Meyer PJ. Sensitivity to food and cocaine cues are independent traits in a large sample of heterogeneous stock rats. Sci Rep 2021; 11:2223. [PMID: 33500444 PMCID: PMC7838206 DOI: 10.1038/s41598-020-80798-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/15/2020] [Indexed: 11/09/2022] Open
Abstract
Sensitivity to cocaine and its associated stimuli ("cues") are important factors in the development and maintenance of addiction. Rodent studies suggest that this sensitivity is related, in part, to the propensity to attribute incentive salience to food cues, which, in turn, contributes to the maintenance of cocaine self-administration, and cue-induced relapse of drug-seeking. Whereas each of these traits has established links to drug use, the relatedness between the individual traits themselves has not been well characterized in preclinical models. To this end, the propensity to attribute incentive salience to a food cue was first assessed in two distinct cohorts of 2716 outbred heterogeneous stock rats (HS; formerly N:NIH). We then determined whether each cohort was associated with performance in one of two paradigms (cocaine conditioned cue preference and cocaine contextual conditioning). These measure the unconditioned locomotor effects of cocaine, as well as conditioned approach and the locomotor response to a cocaine-paired floor or context. There was large individual variability and sex differences among all traits, but they were largely independent of one another in both males and females. These findings suggest that these traits may contribute to drug-use via independent underlying neuropsychological processes.
Collapse
Affiliation(s)
- Christopher P King
- Behavioral Neuroscience Program, Department of Psychology, University At Buffalo, Park Hall B72, Buffalo, NY, 14260, USA
| | - Jordan A Tripi
- Behavioral Neuroscience Program, Department of Psychology, University At Buffalo, Park Hall B72, Buffalo, NY, 14260, USA
| | - Alesa R Hughson
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Aidan P Horvath
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Alexander C Lamparelli
- Behavioral Neuroscience Program, Department of Psychology, University At Buffalo, Park Hall B72, Buffalo, NY, 14260, USA
| | - Katie L Holl
- Department of Pediatrics, Human and Molecular Genetics Center and Children's Research Institute, Medical College of Wisconsin, Milwaukee, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Keita Ishiwari
- Clinical and Research Institute On Addictions, Buffalo, USA
- Department of Pharmacology and Toxicology, University At Buffalo, Buffalo, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, USA
| | - Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Shelly B Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Paul J Meyer
- Behavioral Neuroscience Program, Department of Psychology, University At Buffalo, Park Hall B72, Buffalo, NY, 14260, USA.
| |
Collapse
|
11
|
Peterson VL, Richards JB, Meyer PJ, Cabrera-Rubio R, Tripi JA, King CP, Polesskaya O, Baud A, Chitre AS, Bastiaanssen TFS, Woods LS, Crispie F, Dinan TG, Cotter PD, Palmer AA, Cryan JF. Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats. EBioMedicine 2020; 55:102769. [PMID: 32403084 PMCID: PMC7218262 DOI: 10.1016/j.ebiom.2020.102769] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli ("sign-trackers", ST) are more impulsive compared to those that do not ("goal-trackers", GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype. METHODS Outbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype. RESULTS Overall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae. CONCLUSIONS These data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex.
Collapse
Affiliation(s)
- Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Raul Cabrera-Rubio
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | | | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Amelie Baud
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, CA, USA; Institute for Genomic Medicine, University of California San Diego, CA, USA; Center for Microbiome Innovation, University of California San Diego, CA, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
12
|
Synthetic cathinones and their phenethylamine analogues produce distinct psychomotor and reward behavior in crayfish. Behav Brain Res 2020; 379:112368. [PMID: 31743730 DOI: 10.1016/j.bbr.2019.112368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
Synthetic cathinones share potent sympathomimetic properties with amphetamines due to their shared phenethylamine backbone. Despite recent work focused on understanding the behavioral effects of synthetic cathinones, a systematic comparison of neuropharmacology, behavior, and physiological effects with other stimulants, has remained elusive. In the present study, we explore the behavioral effects of cathinones in crayfish, a model system which combines a well characterized behavioral paradigm for addiction-like behaviors, a modularly organized nervous system, the lack of a formal blood-brain barrier, and experimental tractability. The objective of this study was to characterize the psychomotor and rewarding effects of methylated cathinones (methylone, mephedrone), and their non β-ketone substituted amphetamine analogs (4-methylmethamphetamine, 4-MMA and 3,4-methylenedioxymethamphetamine MDMA) in crayfish. Our results suggest that these drugs produce psychostimulation, which sensitizes upon repeated drug administration. Furthermore, crayfish demonstrated a conditioned substrate preference for mephedrone and 4-MMA drug-pairings at a 10 μg/g dose, a preference which persisted even through a series of extinction trials. Our study indicates that synthetic cathinones and substituted amphetamine analogues produce distinct behavioral effects in an invertebrate system which consists of a relatively simple neuronal organization. The present findings provide an evolutionary context to our understanding about how drugs of abuse initiate reward at levels far beyond those specific to humans.
Collapse
|
13
|
Castelli V, Lavanco G, Brancato A, Plescia F. Targeting the Stress System During Gestation: Is Early Handling a Protective Strategy for the Offspring? Front Behav Neurosci 2020; 14:9. [PMID: 32082129 PMCID: PMC7006220 DOI: 10.3389/fnbeh.2020.00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/15/2020] [Indexed: 12/28/2022] Open
Abstract
The perinatal window is a critical developmental time when abnormal gestational stimuli may alter the development of the stress system that, in turn, influences behavioral and physiological responses in the newborns. Individual differences in stress reactivity are also determined by variations in maternal care, resulting from environmental manipulations. Despite glucocorticoids are the primary programming factor for the offspring's stress response, therapeutic corticosteroids are commonly used during late gestation to prevent preterm negative outcomes, exposing the offspring to potentially aberrant stress reactivity later in life. Thus, in this study, we investigated the consequences of one daily s.c. injection of corticosterone (25 mg/kg), from gestational day (GD) 14-16, and its interaction with offspring early handling, consisting in a brief 15-min maternal separation until weaning, on: (i) maternal behavior; and (ii) behavioral reactivity, emotional state and depressive-like behavior in the adolescent offspring. Corticosterone plasma levels, under non-shock- and shock-induced conditions, were also assessed. Our results show that gestational exposure to corticosterone was associated with diminished maternal care, impaired behavioral reactivity, increased emotional state and depressive-like behavior in the offspring, associated with an aberrant corticosterone response. The early handling procedure, which resulted in increased maternal care, was able to counteract the detrimental effects induced by gestational corticosterone exposure both in the behavioral- and neurochemical parameters examined. These findings highlight the potentially detrimental consequences of targeting the stress system during pregnancy as a vulnerability factor for the occurrence of emotional and affective distress in the adolescent offspring. Maternal extra-care proves to be a protective strategy that confers resiliency and restores homeostasis.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, Neuro Centre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Fulvio Plescia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Schatz KC, Martin CD, Ishiwari K, George AM, Richards JB, Paul MJ. Mutation in the vasopressin gene eliminates the sex difference in social reinforcement in adolescent rats. Physiol Behav 2019; 206:125-133. [PMID: 30951747 DOI: 10.1016/j.physbeh.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
Abstract
The neuropeptide, arginine vasopressin (AVP), is thought to contribute to sex differences in normative and pathological social development by regulating social motivation. Recent studies using Brattleboro rats that have a mutation in the Avp gene, however, have suggested that AVP impacts adolescent social behaviors of males and females in a similar manner through actions on behavioral state (i.e., arousal). In the present study, we made use of a recently developed operant conditioning paradigm to test whether the chronic, lifelong AVP deficiency caused by the Brattleboro mutation impacts the reinforcement value of social stimuli during adolescence. Operant responding for access to a familiar conspecific was assessed in male and female adolescent wild type (WT; normal AVP), heterozygous Brattleboro (HET), and homozygous Brattleboro (HOM) rats. Following the social reinforcement test, rats were tested in the same operant paradigm except that the social reinforcer was replaced with a light reinforcer to determine whether effects of the Brattleboro mutation were specific to social stimuli or a general characteristic of operant conditioning. WT males directed a greater proportion of their responding toward the social and light stimuli than WT females; only males exhibited a preference for these reinforcers over unreinforced ports. The sex difference in social reinforcement was absent in HOM rats, whereas the sex difference in light reinforcement was present in all genotypes. These data indicate that adolescent males are more sensitive to the reinforcing properties of social and light stimuli, and that the sex difference in social, but not light, reinforcement depends upon normal levels of AVP. These findings support the hypothesis that AVP plays a critical role in sex differences in social development by acting on factors that influence social motivation.
Collapse
Affiliation(s)
- K C Schatz
- Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| | - C D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - K Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - A M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - J B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - M J Paul
- Department of Psychology, University at Buffalo, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, Buffalo, NY, USA; Evolution, Ecology and Behavior Program, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
15
|
Egervari G, Ciccocioppo R, Jentsch JD, Hurd YL. Shaping vulnerability to addiction - the contribution of behavior, neural circuits and molecular mechanisms. Neurosci Biobehav Rev 2018; 85:117-125. [PMID: 28571877 PMCID: PMC5708151 DOI: 10.1016/j.neubiorev.2017.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022]
Abstract
Substance use disorders continue to impose increasing medical, financial and emotional burdens on society in the form of morbidity and overdose, family disintegration, loss of employment and crime, while advances in prevention and treatment options remain limited. Importantly, not all individuals exposed to abused substances effectively develop the disease. Genetic factors play a significant role in determining addiction vulnerability and interactions between innate predisposition, environmental factors and personal experiences are also critical. Thus, understanding individual differences that contribute to the initiation of substance use as well as on long-term maladaptations driving compulsive drug use and relapse propensity is of critical importance to reduce this devastating disorder. In this paper, we discuss current topics in the field of addiction regarding individual vulnerability related to behavioral endophenotypes, neural circuits, as well as genetics and epigenetic mechanisms. Expanded knowledge of these factors is of importance to improve and personalize prevention and treatment interventions in the future.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - J David Jentsch
- Department of Psychology, Binghamton University, 13902 Binghamton, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA.
| |
Collapse
|
16
|
King CP, Militello L, Hart A, St Pierre CL, Leung E, Versaggi CL, Roberson N, Catlin J, Palmer AA, Richards JB, Meyer PJ. Cdh13 and AdipoQ gene knockout alter instrumental and Pavlovian drug conditioning. GENES, BRAIN, AND BEHAVIOR 2017; 16:686-698. [PMID: 28387990 PMCID: PMC5595635 DOI: 10.1111/gbb.12382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies in humans have suggested that variants of the cadherin-13 (CDH13) gene are associated with substance use disorder, subjective response to amphetamine, and attention deficit hyperactivity disorder. To examine the role of the Cdh13 and its peptide ligand adiponectin (AdipoQ) in addiction-related behaviors, we assessed Cdh13 knockout (KO) rats and AdipoQ KO mice using intravenous cocaine self-administration and conditioned place preference (CPP) paradigms. During intravenous cocaine self-administration, male Cdh13 heterozygous (+/-) and KO (-/-) rats showed increased cue-induced reinstatement compared with wild-type (WT) rats when presented with a cocaine-paired stimulus, whereas female Cdh13 rats showed no differences across genotype. Cdh13 -/- rats showed higher responding for a saccharin reinforcer and learned the choice reaction time (RT) task more slowly than WTs. However, we found no differences between Cdh13 -/- and +/+ rats in responding for sensory reinforcement, number of premature responses in the RT task, tendency to approach a Pavlovian food cue, CPP and locomotor activation to cocaine (10 or 20 mg/kg). In AdipoQ -/- mice, there was a significant increase in CPP to methamphetamine (1 mg/kg) but not to a range of d-amphetamine doses (0.5, 1, 2 and 4 mg/kg). Taken together, these data suggest that Cdh13 and AdipoQ regulate sensitivity to psychomotor stimulants and palatable rewards without producing major changes in other behaviors. In humans, these two genes may regulate sensitivity to natural and drug rewards, thus influencing susceptibility to the conditioned drug effects and relapse.
Collapse
Affiliation(s)
| | | | - Amy Hart
- Dept. of Human Genetics, Univ. of Chicago, Chicago, IL
- Dept. of Immunology, Janssen R&D, Spring House, PA
| | - Celine L. St Pierre
- Dept. of Human Genetics, Univ. of Chicago, Chicago, IL
- Dept. of Psychiatry, Univ. of California San Diego, La Jolla, CA
| | - Emily Leung
- Dept. of Human Genetics, Univ. of Chicago, Chicago, IL
| | | | | | - James Catlin
- Dept. of Psychology, Univ. at Buffalo, Buffalo, NY
| | - Abraham A. Palmer
- Dept. of Human Genetics, Univ. of Chicago, Chicago, IL
- Dept. of Psychiatry, Univ. of California San Diego, La Jolla, CA
- Institute for Genomic Medicine, Univ. of California San Diego, La Jolla, CA
| | | | | |
Collapse
|
17
|
Norbury A, Husain M. Sensation-seeking: Dopaminergic modulation and risk for psychopathology. Behav Brain Res 2015; 288:79-93. [DOI: 10.1016/j.bbr.2015.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 12/22/2022]
|
18
|
Lloyd DR, Hausknecht KA, Richards JB. Nicotine and methamphetamine disrupt habituation of sensory reinforcer effectiveness in male rats. Exp Clin Psychopharmacol 2014; 22:166-75. [PMID: 24708147 PMCID: PMC4083460 DOI: 10.1037/a0034741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The reinforcing effectiveness of a sensory stimulus such as light-onset rapidly habituates (Lloyd, Gancarz, Ashrafioun, Kausch, & Richards, 2012). According to memory-based theories, habituation occurs if a memory exists for perceived stimulation, and dishabituation occurs if a memory does not exist and the stimulation is "unexpected." According to Redgrave and Gurney (2006), unexpected response-contingent sensory stimuli increase phasic firing of dopamine neurons, providing a sensory error signal that reflects the difference between perceived and expected stimuli. Together, memory-based theories of habituation and the sensory error signal hypothesis predict a disruption (slowing) of habituation rate by novel response-contingent sensory stimulation or by artificial increases in dopamine neurotransmission by stimulant drugs. To test these predictions, we examined the effects of stimulant drugs on both the operant level of responding (snout-poking) and operant responding for a sensory reinforcer (light-onset) presented according to a fixed ratio 1 schedule. Robust within-session decreases in responding indicating habituation were observed. The effects of stimulant drugs (saline, n = 10; nicotine, 0.40 mg/kg, n = 10; and methamphetamine, 0.75 mg/kg, n = 9) on habituation in rats were determined. Nicotine was found to decrease habituation rate and did not affect response rate, while methamphetamine decreased habituation rate and increased response rate. In addition, introduction of a novel visual stimulus reinforcer decreased habituation rate and increased responding. These findings show that habituation of reinforcer effectiveness modulates operant responding for sensory reinforcers, and that stimulant drugs may disrupt normally occurring habituation of reinforcer effectiveness by increasing dopamine neurotransmission.
Collapse
Affiliation(s)
- David R Lloyd
- Research Institute on Addictions, State University of New York at Buffalo
| | | | - Jerry B Richards
- Research Institute on Addictions, State University of New York at Buffalo
| |
Collapse
|
19
|
Lloyd DR, Medina DJ, Hawk LW, Fosco WD, Richards JB. Habituation of reinforcer effectiveness. Front Integr Neurosci 2014; 7:107. [PMID: 24409128 PMCID: PMC3885986 DOI: 10.3389/fnint.2013.00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/19/2013] [Indexed: 01/07/2023] Open
Abstract
In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect “accelerated-HRE.” Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.
Collapse
Affiliation(s)
- David R Lloyd
- Research Institute on Addictions, State University of New York at Buffalo Buffalo, NY, USA ; School of Medicine and Biomedical Sciences, State University of New York at Buffalo Buffalo, NY, USA
| | - Douglas J Medina
- Research Institute on Addictions, State University of New York at Buffalo Buffalo, NY, USA
| | - Larry W Hawk
- Department of Psychology, State University of New York at Buffalo Buffalo, NY, USA
| | - Whitney D Fosco
- Department of Psychology, State University of New York at Buffalo Buffalo, NY, USA
| | - Jerry B Richards
- Research Institute on Addictions, State University of New York at Buffalo Buffalo, NY, USA
| |
Collapse
|
20
|
Richards JB, Lloyd DR, Kuehlewind B, Militello L, Paredez M, Solberg Woods L, Palmer AA. Strong genetic influences on measures of behavioral-regulation among inbred rat strains. GENES BRAIN AND BEHAVIOR 2013; 12:490-502. [PMID: 23710681 DOI: 10.1111/gbb.12050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/22/2013] [Accepted: 05/14/2013] [Indexed: 11/27/2022]
Abstract
A fundamental challenge for any complex nervous system is to regulate behavior in response to environmental challenges. Three measures of behavioral-regulation were tested in a panel of eight inbred rat strains. These measures were: (1) sensation seeking as assessed by locomotor response to novelty and the sensory reinforcing effects of light onset, (2) attention and impulsivity, as measured by a choice reaction time task and (3) impulsivity as measured by a delay discounting task. Deficient behavioral-regulation has been linked to a number of psychopathologies, including ADHD, Schizophrenia, Autism, drug abuse and eating disorders. Eight inbred rat strains (August Copenhagen Irish, Brown Norway, Buffalo, Fischer 344, Wistar Kyoto, Spontaneous Hypertensive Rat, Lewis, Dahl Salt Sensitive) were tested. With n = 9 for each strain, we observed robust strain differences for all tasks; heritability was estimated between 0.43 and 0.66. Performance of the eight inbred rat strains on the choice reaction time task was compared to the performance of outbred Sprague Dawley (n = 28) and Heterogeneous strain rats (n = 48). The results indicate a strong genetic influence on complex tasks related to behavioral-regulation and indicate that some of the measures tap common genetically driven processes. Furthermore, our results establish the potential for future studies aimed at identifying specific alleles that influence variability for these traits. Identification of such alleles could contribute to our understanding of the molecular genetic basis of behavioral-regulation, which is of fundamental importance and likely contributes to multiple psychiatric disorders.
Collapse
Affiliation(s)
- J B Richards
- Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY 14203, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Gancarz AM, Robble MA, Kausch MA, Lloyd DR, Richards JB. Sensory reinforcement as a predictor of cocaine and water self-administration in rats. Psychopharmacology (Berl) 2013; 226:335-46. [PMID: 23142958 PMCID: PMC3581756 DOI: 10.1007/s00213-012-2907-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 10/18/2012] [Indexed: 11/26/2022]
Abstract
RATIONALE The ability of locomotor activity in a novel environment (Loco) and visual stimulus reinforcement (VSR) to predict acquisition of responding for cocaine and water reinforcers in the absence of explicit audiovisual signals was evaluated. METHODS In Experiment 1 (Exp 1), rats (n = 60) were tested for VSR, followed by Loco, and finally acquisition of responding for cocaine (0.3 mg/kg/inf). In Experiment 2 (Exp 2), rats (n = 32) were tested for VSR, followed by Loco, and finally acquisition of responding for water (0.01 mL/reinforcer). RESULTS There were three main findings. First, Loco and VSR were significantly associated (Exp 1: r = 0.49, p < 0.00; Exp 2: r = 0.35, p < 0.05). Second, neither Loco (r = .00, p = 0.998) nor VSR (r = -0.12, p = 0.352) predicted acquisition of cocaine SA. Third, in the subgroup of animals that acquired cocaine SA, VSR (r = 0.41, p < 0.01) but not Loco (r = 0.28, p = 0.10) was positively associated with operant responding for cocaine. Both Loco and VSR (Loco: r = 0.37, p < 0.04; VSR: r = 0.51, p < 0.00) were positively associated with operant responding for water reinforcers. CONCLUSIONS The results indicate that VSR is at least as good a predictor of cocaine reinforced responding as Loco. VSR was predictive of operant responding for both drug and water reinforcers, while Loco was found to be predictive of responding only for water reinforcers. In studies that present visual stimuli in association with drug delivery, Loco may be predicting acquisition of responding for VSR rather than drug.
Collapse
Affiliation(s)
- Amy M Gancarz
- Department of Psychology, State University of New York at Buffalo, Park Hall Room 204, Buffalo, NY 14260, USA.
| | | | | | | | | |
Collapse
|
22
|
Lloyd DR, Kausch MA, Gancarz AM, Beyley LJ, Richards JB. Effects of novelty and methamphetamine on conditioned and sensory reinforcement. Behav Brain Res 2012; 234:312-22. [PMID: 22814112 PMCID: PMC3422403 DOI: 10.1016/j.bbr.2012.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Light onset can be both a sensory reinforcer (SR) with intrinsic reinforcing properties, and a conditioned reinforcer (CR) which predicts a biologically important reinforcer. Stimulant drugs, such as methamphetamine (METH), may increase the reinforcing effectiveness of CRs by enhancing the predictive properties of the CR. In contrast, METH-induced increases in the reinforcing effectiveness of SRs, are mediated by the immediate sensory consequences of the light. METHODS The effects of novelty (on SRs) and METH (on both CRs and SRs) were tested. Experiment 1: rats were pre-exposed to 5 s light and water pairings presented according to a variable-time (VT) 2 min schedule or unpaired water and light presented according to independent, concurrent VT 2 min schedules. Experiment 2: rats were pre-exposed to 5 s light presented according to a VT 2 min schedule, or no stimuli. In both experiments, the pre-exposure phase was followed by a test phase in which 5 s light onset was made response-contingent on a variable-interval (VI) 2 min schedule and the effects of METH (0.5 mg/kg) were determined. RESULTS Novel light onset was a more effective reinforcer than familiar light onset. METH increased the absolute rate of responding without increasing the relative frequency of responding for both CRs and SRs. CONCLUSION Novelty plays a role in determining the reinforcing effectiveness of SRs. The results are consistent with the interpretation that METH-induced increases in reinforcer effectiveness of CRs and SRs may be mediated by immediate sensory consequences, rather than prediction.
Collapse
Affiliation(s)
- David R Lloyd
- Research Institute on Addictions, University at Buffalo, 1021 Main St., Buffalo, NY 14203, United States.
| | | | | | | | | |
Collapse
|
23
|
Lloyd DR, Gancarz AM, Ashrafioun L, Kausch MA, Richards JB. Habituation and the reinforcing effectiveness of visual stimuli. Behav Processes 2012; 91:184-91. [PMID: 22868172 DOI: 10.1016/j.beproc.2012.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/03/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
The term "sensory reinforcer" has been used to refer to sensory stimuli (e.g. light onset) that are primary reinforcers in order to differentiate them from other more biologically important primary reinforcers (e.g. food and water). Acquisition of snout poke responding for a visual stimulus (5 s light onset) with fixed ratio 1 (FR 1), variable-interval 1 min (VI 1 min), or variable-interval 6 min (VI 6 min) schedules of reinforcement was tested in three groups of rats (n=8/group). The VI 6 min schedule of reinforcement produced a higher response rate than the FR 1 or VI 1 min schedules of visual stimulus reinforcement. One explanation for greater responding on the VI 6 min schedule relative to the FR 1 and VI 1 min schedules is that the reinforcing effectiveness of light onset habituated more rapidly in the FR 1 and VI 1 min groups as compared to the VI 6 min group. The inverse relationship between response rate and the rate of visual stimulus reinforcement is opposite to results from studies with biologically important reinforcers which indicate a positive relationship between response and reinforcement rate. Rapid habituation of reinforcing effectiveness may be a fundamental characteristic of sensory reinforcers that differentiates them from biologically important reinforcers, which are required to maintain homeostatic balance.
Collapse
Affiliation(s)
- David R Lloyd
- Research Institute on Addictions, University at Buffalo, 1021 Main St., Buffalo, NY 14203, United States.
| | | | | | | | | |
Collapse
|