1
|
Liu SB, Wu HY, Duan ML, Yang RL, Ji CH, Liu JJ, Zhao H. Delirium in the ICU: how much do we know? A narrative review. Ann Med 2024; 56:2405072. [PMID: 39308447 PMCID: PMC11421129 DOI: 10.1080/07853890.2024.2405072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 09/26/2024] Open
Abstract
Delirium in critical ill patients is a complex and common neurological syndrome in the intensive care unit (ICU) that is caused by a range of structural or functional abnormalities. ICU Delirium is associated with reduced compliance, prolonged hospital stays, greater use or delayed withdrawal of sedatives, higher rates and durations of mechanical ventilation, and higher rates of mortality. The aetiology and pathogenesis of ICU delirium are unclear, and the lack of better prediction, prevention, and treatment measures leads to a non-standardized control of delirium. By searching the relevant literature, we aim in this narrative review to describe progress in the pathogenesis, predictive biomarkers, diagnosis, and treatment of ICU delirium.
Collapse
Affiliation(s)
- Si Bo Liu
- Intensive Care Unit, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian, China
| | - Hong Yu Wu
- Intensive Care Unit, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian, China
| | - Mei Li Duan
- Intensive Care Unit, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Rong Li Yang
- Intensive Care Unit, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian, China
| | - Chen Hua Ji
- General Medicine Ward, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian, China
| | - Jin Jie Liu
- General Medicine Ward, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian, China
| | - Hongtao Zhao
- General Medicine Ward, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian, China
| |
Collapse
|
2
|
Minami H, Toyoda K, Hata T, Nishihara M, Neo M, Nishida K, Kanazawa T. How much risk does delirium represent for the development of dementia?: Retrospective cohort study from over 260,000 patients record in a solitary institution. Front Psychiatry 2024; 15:1387615. [PMID: 39345923 PMCID: PMC11427876 DOI: 10.3389/fpsyt.2024.1387615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background Delirium frequently affects the consciousness of the elderly, particularly those in hospitals. Evidence increasingly associates linking delirium history to an increased risk of dementia. However, most studies are limited in scope, focusing mainly on postoperative or intensive care units with small patient samples, which affects the broader applicability of their findings. Aims To elucidate the precise incidence of delirium and the subsequent onset of dementia within whole inpatients. Additionally, we aimed to explore the correlation between the emergence of delirium during hospitalization and the subsequent manifestation of dementia. Design setting and participants We conducted a retrospective cohort analysis employing a decade-long electronic medical record dataset consisted of 261,123 patients in Osaka Medical and Pharmaceutical University Hospital. Key analyses were performed October 2022 to January 2023. Main outcomes and measures The primary outcome, dementia onset, was determined by prescriptions for the anti-dementia drugs donepezil, galantamine, memantine, or rivastigmine, which are approved for use in Japan. Results 10,781 patients met the inclusion criteria. The median interval between the onset of dementia was 972.5 days for individuals without a history of delirium, whereas for those with a history of delirium, it was notably shorter at 592.5 days. This disparity culminated in a hazard ratio of 5.29 (95% confidence interval: 1.35-20.75) for subsequent dementia onset. Conclusions and relevance This investigation underscores the imperative significance of directing attention toward preventive measures against delirium during hospitalization, alongside the necessity of diligent monitoring and intervention for cognitive decline in patients who encounter delirium.
Collapse
Affiliation(s)
- Hironari Minami
- Department of Neuropsychiatry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Katsunori Toyoda
- Department of Neuropsychiatry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Takeo Hata
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Osaka, Japan
| | - Masami Nishihara
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Osaka, Japan
| | - Masashi Neo
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Osaka, Japan
| | - Keiichiro Nishida
- Department of Neuropsychiatry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Tetsufumi Kanazawa
- Department of Neuropsychiatry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
3
|
Nishizawa Y, Yamanashi T, Nishiguchi T, Kajitani N, Miura A, Matsuo R, Tanio A, Yamamoto M, Sakamoto T, Fujiwara Y, Thompson K, Malicoat J, Yamanishi K, Seki T, Kanazawa T, Iwata M, Shinozaki G. The Genome-wide DNA methylation changes in gastrointestinal surgery patients with and without postoperative delirium: Evidence of immune process in its pathophysiology. J Psychiatr Res 2024; 177:249-255. [PMID: 39043004 DOI: 10.1016/j.jpsychires.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
AIM The pathophysiological mechanisms of postoperative delirium (POD) are still unclear, and there is no reliable biomarker to distinguish between those with and without POD. Our aim was to discover DNAm markers associated with POD in blood collected from patients before and after gastrointestinal surgery. METHOD We collected blood samples from 16 patients including 7 POD patients at three timepoints; before surgery (pre), the first and third postoperative days (day1 and day3). We measured differences in DNA methylation between POD and control groups between pre and day1 as well as between pre and day3 using the Illumina EPIC array method. Besides, enrichment analysis with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes terms were also performed after excluding influence of common factors related to surgery and anesthesia. RESULT The results showed that pre and day1 comparisons showed that immune and inflammatory signals such as 'T-cell activation' were significantly different, consistent with our previous studies with non-Hispanic White subjects. In contrast, we found that these signals were not significant any more when pre was compared with day3. CONCLUSION These results provide strong evidence for the involvement of inflammatory and immune-related epigenetic signals in the pathogenesis of delirium, including POD, regardless of ethnic background. These findings also suggest that DNAm, which is involved in inflammation and immunity, is dynamically altered in patients with POD. In summary, the present results indicate that these signals may serve as a new diagnostic tool for POD.
Collapse
Affiliation(s)
- Yoshitaka Nishizawa
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA; Osaka Medical and Pharmaceutical University School of Medicine, Department of Psychiatry, Osaka, Japan
| | - Takehiko Yamanashi
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA; Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago-shi, Tottori, Japan; University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA.
| | - Tsuyoshi Nishiguchi
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA; Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago-shi, Tottori, Japan
| | - Naofumi Kajitani
- Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago-shi, Tottori, Japan
| | - Akihiko Miura
- Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago-shi, Tottori, Japan
| | - Ryoichi Matsuo
- Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago-shi, Tottori, Japan
| | - Akimitsu Tanio
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago, 683-8504, Japan
| | - Manabu Yamamoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago, 683-8504, Japan
| | - Teruhisa Sakamoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago, 683-8504, Japan
| | - Yoshiyuki Fujiwara
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago, 683-8504, Japan
| | - Kaitlyn Thompson
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA; University of Nebraska Medical Center, Omaha, NE, USA
| | - Johnny Malicoat
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Kyosuke Yamanishi
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA; Hyogo Medical University, College of Medicine, Department of Neuropsychiatry, Nishinomiya, Hyogo, Japan
| | - Tomoteru Seki
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA; Department of Psychiatry, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Tetsufumi Kanazawa
- Osaka Medical and Pharmaceutical University School of Medicine, Department of Psychiatry, Osaka, Japan
| | - Masaaki Iwata
- Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago-shi, Tottori, Japan
| | - Gen Shinozaki
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA; University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA.
| |
Collapse
|
4
|
Tang C, Li Y, Lai Y. Intraoperative Dexmedetomidine for Prevention of Postoperative Cognitive Dysfunction and Delirium in Elderly Patients with Lobectomy: A Propensity Score-Matched, Retrospective Study. Int J Gen Med 2024; 17:2673-2680. [PMID: 38863738 PMCID: PMC11166154 DOI: 10.2147/ijgm.s456762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose This study aims to investigate whether dexmedetomidine could prevent postoperative cognitive dysfunction and delirium in patients with lobectomy. Patients and Methods Patients with lung cancer who underwent thoracoscopic lobectomy under general anesthesia were enrolled in this study and divided into dexmedetomidine group or control group. Propensity-score match (PSM) was used to reduce the bias and imbalance of confounding variables. After PSM, 87 patients in each group were included. Primary outcomes were postoperative cognitive function and delirium. Secondary outcomes include plasma TNF-α, IL-6, and S100 β protein concentrations. Adverse events were also collected. Results There were no significant differences in the demographic characteristics and hemodynamic parameters between the two groups. Compared with the control group, the MoCA scores were significantly higher (P<0.01), while the incidence of delirium (P<0.01) and the plasma TNF-α (P<0.01), IL-6 (P<0.01), and S100 β protein (P<0.01) concentrations were significantly lower in the dexmedetomidine group at 7 days post-operatively. The incidences of adverse events were similar between the two groups. Conclusion Dexmedetomidine could prevent postoperative cognitive dysfunction and delirium in patients with lobectomy by decreasing neuroinflammation.
Collapse
Affiliation(s)
- Chaojun Tang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Yong Lai
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|
5
|
Ko H, Kayumov M, Lee KS, Oh SG, Na KJ, Jeong IS. Immunological Analysis of Postoperative Delirium after Thoracic Aortic Surgery. J Chest Surg 2024; 57:263-271. [PMID: 38472124 PMCID: PMC11089048 DOI: 10.5090/jcs.23.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/14/2024] Open
Abstract
Background Delirium is a recognized neurological complication following cardiac surgery and is associated with adverse clinical outcomes, including elevated mortality and prolonged hospitalization. While several clinical risk factors for post-cardiac surgery delirium have been identified, the pathophysiology related to the immune response remains unexamined. This study was conducted to investigate the immunological factors contributing to delirium in patients after thoracic aortic surgery. Methods We retrospectively evaluated 43 consecutive patients who underwent thoracic aortic surgery between July 2017 and June 2018. These patients were categorized into 2 groups: those with delirium and those without it. All clinical characteristics were compared between groups. Blood samples were collected and tested on the day of admission, as well as on postoperative days 1, 3, 7, and 30. Levels of helper T cells (CD4), cytotoxic T cells (CD8), B cells (CD19), natural killer cells (CD56+CD16++), and monocytes (CD14+CD16-) were measured using flow cytometry. Results The median patient age was 71 years (interquartile range, 56.7 to 79.0 years), and 21 of the patients (48.8%) were male. Preoperatively, most immune cell counts did not differ significantly between groups. However, the patients with delirium exhibited significantly higher levels of interleukin-6 and lower levels of tumor necrosis factor-alpha (TNF-α) than those without delirium (p<0.05). Multivariate analysis revealed that lower TNF-α levels were associated with an increased risk of postoperative delirium (p<0.05). Conclusion Postoperative delirium may be linked to perioperative changes in immune cells and preoperative cytokine levels. Additional research is required to elucidate the pathophysiological mechanisms underlying delirium.
Collapse
Affiliation(s)
- Haein Ko
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Mukhammad Kayumov
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Kyo Seon Lee
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Sang Gi Oh
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Kook Joo Na
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - In Seok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
6
|
Wang B, Xin Y, Tang X, Wang F, Hua S, Yang Y, Xu S, Gong H, Dong R, Lin Y, Li C, Lin X, Bi Y. Potential value of serum prealbumin and serum albumin in the identification of postoperative delirium in patients undergoing knee/hip replacement: an observational study and internal validation study. Front Neurol 2024; 15:1375383. [PMID: 38694772 PMCID: PMC11061387 DOI: 10.3389/fneur.2024.1375383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Background Postoperative delirium (POD) is a common postoperative neurological complication that can lead to a variety of postoperative complications. At present, the pathogenesis of POD is unclear. This study aims to explore the relationship between serum prealbumin and serum albumin and POD and whether serum prealbumin and serum albumin influence POD through POD core pathology. Objective We enrolled 500 Chinese Han patients between September 2020 to January 2023. We analyzed the risk and protective factors of POD using the multivariate logistic regression. We also assessed the predictive power of serum prealbumin, serum albumin, and both in combination with CSF POD biomarkers. We used Stata MP16.0. to examine whether the association between serum prealbumin and serum albumin and POD was mediated by CSF POD biomarkers, and conducted an internal validation study to verify the accuracy of the combination of serum prealbumin + serum albumin + CSF POD biomarkers for predicting POD. The model was visualized using ROC curve and decision curve analysis (DCA). DynNom and Shiny packages were used to create an online calculator. Ten patients who had POD occurring from February 2023 to October 2023 were selected for internal verification. Results Finally, a total of 364 patients were included in our study. Levels of serum prealbumin, serum albumin in the POD group were lower than those in the NPOD group. The lever of serum prealbumin, serum albumin were protective factors for POD. The relationship between serum prealbumin, serum albumin and POD was partially mediated by T-tau (12.28%) and P-tau (20.61%). The model combining serum prealbumin and serum albumin and POD biomarkers exhibited a relatively better discriminatory ability to predict POD. DCA also showed that the combination of serum prealbumin and serum albumin and POD biomarkers brought high predictive benefits to patients. The dynamic online calculator can accurately predict the occurrence of POD in the internal validation study. Conclusion Preoperative low serum prealbumin and serum albumin levels were the preoperative risk factors for POD, which is partly mediated by T-tau and P-tau. The model combining serum prealbumin and serum albumin and CSF POD biomarkers can accurately predict the occurrence of POD. Clinical trial registration http://www.clinicaltrials.gov, identifier ChiCTR2000033439.
Collapse
Affiliation(s)
- Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yan Xin
- Department of Endoscopy Center, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xinhui Tang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Fei Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shuhui Hua
- Department of Anesthesiology, Binzhou Medical University, Binzhou, Shandong, China
| | - Yunchao Yang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shanling Xu
- Department of Anesthesiology, Weifang Medical College, Weifang, Shandong, China
| | - Hongyan Gong
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yanan Lin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Chuan Li
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
7
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
8
|
Lendvai-Emmert D, Magyar-Sumegi ZD, Hegedus E, Szarka N, Fazekas B, Amrein K, Czeiter E, Buki A, Ungvari Z, Toth P. Mild traumatic brain injury-induced persistent blood-brain barrier disruption is prevented by cyclosporine A treatment in hypertension. Front Neurol 2023; 14:1252796. [PMID: 38073626 PMCID: PMC10699755 DOI: 10.3389/fneur.2023.1252796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Mild traumatic brain injury (mTBI) and hypertension synergize to induce persistent disruption of the blood-brain barrier (BBB), neuroinflammation and cognitive decline. However, the underlying mechanisms are not known. Cerebral production of Cyclophilin A (CyPA) is induced in hypertension and after TBI, and it was demonstrated to activate the nuclear factor-κB (NF-kB)- matrix-metalloproteinase-9 (MMP-9) pathway in cerebral vessels leading to BBB disruption. Methods To test the role of CyPA in mTBI- and hypertension-induced BBB disruption we induced mTBI in normotensive and spontaneously hypertensive rats (SHR), then the animals were treated with cyclosporine A (a specific inhibitor of CyPA production) or vehicle for 7 days. We assessed BBB permeability and integrity, cerebral expression and activity of the CyPA-NF-kB-MMP-9 pathway, extravasation of fibrin and neuroinflammation. Results We found that mild TBI induced BBB disruption and upregulation of the CyPA-NF-kB-MMP-9 pathway in hypertension, which were prevented by blocking CyPA. Cyclosporine treatment and preservation of BBB function prevented accumulation of blood-derived fibrin in the brain parenchyma of hypertensive rats after mTBI and reversed increased neuroinflammation. Discussion We propose that mTBI and hypertension interact to promote BBB disruption via the CyPA-NF-kB-MMP-9 pathway, and inhibition of cyclophilin production after mTBI may exert neuroprotection and improve cognitive function in hypertensive patients.
Collapse
Affiliation(s)
- Dominika Lendvai-Emmert
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Zsofia Dina Magyar-Sumegi
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Emoke Hegedus
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pecs, Pecs, Hungary
| | - Nikolett Szarka
- Department of Primary Health Care, Medical School, University of Pecs, Pecs, Hungary
| | - Balint Fazekas
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Andras Buki
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, Faculty of Medicine and Health, Orebro University, Orebro, Sweden
| | - Zoltan Ungvari
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
El-Helaly A, Abou-El-Naga AM, Alshehri KM, El-Dein MA. Miracle Tree ( Moringa oleifera) Attuned GFAP and Synaptophysin Levels, Oxidative Stress and Biomarkers in Cerebellar Fluorosis of Pregnant Rats. Pak J Biol Sci 2023; 26:628-650. [PMID: 38334155 DOI: 10.3923/pjbs.2023.628.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
<b>Background and Objective:</b> Cerebellar fluorosis is a health issue associated with excessive exposure to fluoride (F) either in direct or indirect ways as pesticides, drinking water and caries preventing prescriptions. It is characterized by elevation in oxidative stress, inflammation, demyelination and Purkinje cell loss. <i>Moringa oleifera</i> (M), is a widely cultivated plant used as a health-booster agent in modulating various disorders because of its high content of vitamins and minerals. The beneficial effect of moringa against fluoride-induced cerebellar toxicity in pregnant rats was investigated in this study. <b>Materials and Methods:</b> Twenty pregnant rats were administered daily 300 mg kg<sup></sup><sup>1</sup> <i>M. oleifera</i> aqueous extract incorporated with 10 mg kg<sup></sup><sup>1</sup> of F intoxication from the 1st day of gestation until the 20th day. Following the termination of the trial, sera were collected and cerebellar tissue was removed for further examinations, along with the assessment of maternity. <b>Results:</b> The <i>M. oleifera</i> significantly normalized serum FSH, LH, progesterone, dopamine and serotonin levels of F-intoxicated mothers. Additionally, <i>M. oleifera</i> markedly prevented the lipid peroxidation and DNA fragmentation indicated by the tail length and moment in comet assay (-34.4 and -75.3%, respectively, when compared to the fluoride intoxicated group), while sustaining the levels of SOD and CAT revealing its antioxidant activity. The <i>M. oleifera</i> regressed the cerebellar α-amylase (-25.4%) and acetylcholinesterase activity (-40.6%), also attenuated GFAP (-73.4%, p<0.0001), synaptophysin level (216.6%, p<0.0001) and IL-6 expression (-91.2%) comparing to fluoride only treated mothers. <b>Conclusion:</b> Histological and ultrastructural examinations confirmed the recuperating effects of <i>M. oleifera</i> on mothers' cerebellar tissue intoxicated with fluoride indicated by intact folia and restored Purkinje cells number and architecture. The maternal study emphasized the anti-abortifacient activity of moringa against fluoride induced-fetotoxicity.
Collapse
|
10
|
Dong B, Yu D, Jiang L, Liu M, Li J. Incidence and risk factors for postoperative delirium after head and neck cancer surgery: an updated meta-analysis. BMC Neurol 2023; 23:371. [PMID: 37848819 PMCID: PMC10580509 DOI: 10.1186/s12883-023-03418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Postoperative delirium (POD) is a frequent neurologic dysfunction that often leads to more negative outcomes. Early identification of patients who are vulnerable to POD and early implementation of appropriate management strategies could decrease its occurrence and improve patient prognosis. Therefore, this meta-analysis comprehensively and quantitatively summarized the prevalence and related predictive factors of POD in head and neck cancer surgical patients. METHODS PubMed, Embase, and Cochrane Library were searched for observational studies that reported the prevalence and risk factors for POD after head and neck cancer surgery and were published from their inception until December 31, 2022. Two reviewers independently selected qualified articles and extracted data. The qualities of related papers were assessed using the Newcastle-Ottawa scale (NOS). RevMan 5.3 and Stata 15.0 were applied to analysis the data and conduct the meta-analysis. RESULTS Sixteen observational studies with 3289 inpatients who underwent head and neck cancer surgery were included in this review. The occurrence of POD ranged from 4.2 to 36.9%, with a pooled incidence of 20% (95% CI 15-24%, I2 = 93.2%). The results of this pooled analysis demonstrated that the statistically significant risk factors for POD were increased age (OR: 1.05, 95% CI: 1.03-1.07, P < 0.001), age > 75 years (OR: 6.52, 95% CI: 3.07-13.87, P < 0.001), male sex (OR: 2.29, 95% CI: 1.06-4.97, P = 0.04), higher American Society of Anesthesiologists grade (OR: 2.19, 95% CI: 1.44-3.33, P < 0.001), diabetes mellitus (OR: 2.73, 95% CI: 1.24-6.01, P = 0.01), and history of smoking (OR: 2.74, 95% CI: 1.13-6.65, P = 0.03). CONCLUSIONS POD frequently occurs after head and neck cancer surgery. Several independent predictors for POD were identified, which might contribute to identifying patients at high risk for POD and play a prominent role in preventing POD in patients following head and neck cancer surgery.
Collapse
Affiliation(s)
- Bo Dong
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang city, China
| | - Dongdong Yu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang city, China
| | - Li Jiang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang city, China
| | - Meinv Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang city, China
| | - Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang city, China.
| |
Collapse
|
11
|
Hua F, Zhu H, Yu W, Zheng Q, Zhang L, Liang W, Lin Y, Xiao F, Yi P, Xiong Y, Dong Y, Li H, Fang L, Liu H, Ying J, Wang X. β-arrestin1 regulates astrocytic reactivity via Drp1-dependent mitochondrial fission: implications in postoperative delirium. J Neuroinflammation 2023; 20:113. [PMID: 37170230 PMCID: PMC10173541 DOI: 10.1186/s12974-023-02794-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Postoperative delirium (POD) is a frequent and debilitating complication, especially amongst high risk procedures, such as orthopedic surgery. This kind of neurocognitive disorder negatively affects cognitive domains, such as memory, awareness, attention, and concentration after surgery; however, its pathophysiology remains unknown. Multiple lines of evidence supporting the occurrence of inflammatory events have come forward from studies in human patients' brain and bio-fluids (CSF and serum), as well as in animal models for POD. β-arrestins are downstream molecules of guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). As versatile proteins, they regulate numerous pathophysiological processes of inflammatory diseases by scaffolding with inflammation-linked partners. Here we report that β-arrestin1, one type of β-arrestins, decreases significantly in the reactive astrocytes of a mouse model for POD. Using β-arrestin1 knockout (KO) mice, we find aggravating effect of β-arrestin1 deficiency on the cognitive dysfunctions and inflammatory phenotype of astrocytes in POD model mice. We conduct the in vitro experiments to investigate the regulatory roles of β-arrestin1 and demonstrate that β-arrestin1 in astrocytes interacts with the dynamin-related protein 1 (Drp1) to regulate mitochondrial fusion/fission process. β-arrestin1 deletion cancels the combination of β-arrestin1 and cellular Drp1, thus promoting the translocation of Drp1 to mitochondrial membrane to provoke the mitochondrial fragments and the subsequent mitochondrial malfunctions. Using β-arrestin1-biased agonist, cognitive dysfunctions of POD mice and pathogenic activation of astrocytes in the POD-linked brain region are reduced. We, therefore, conclude that β-arrestin1 is a promising target for the understanding of POD pathology and development of POD therapeutics.
Collapse
Affiliation(s)
- Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Weidong Liang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hua Li
- Department of Anesthesiology, First People's Hospital of Yihuang County, Fuzhou, 344400, Jiangxi, People's Republic of China
| | - Lanran Fang
- Department of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, Jiangxi, People's Republic of China
| | - Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, 17# Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
12
|
Payne T, Taylor J, Casey C, Kunkel D, Parker M, Blennow K, Zetterberg H, Pearce RA, Lennertz RC, Sanders RD. Prospective analysis of plasma amyloid beta and postoperative delirium in the Interventions for Postoperative Delirium: Biomarker-3 study. Br J Anaesth 2023; 130:546-556. [PMID: 36842841 PMCID: PMC10273086 DOI: 10.1016/j.bja.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND The effect of postoperative delirium on the amyloid cascade of Alzheimer's dementia is poorly understood. Using early postoperative plasma biomarkers, we explored whether surgery and delirium are associated with changes in amyloid pathways. METHODS We analysed data from 100 participants in the Interventions for Postoperative Delirium: Biomarker-3 (IPOD-B3) cohort study in the USA (NCT03124303 and NCT01980511), which recruited participants aged >65 yr undergoing non-intracranial surgery. We assessed the relationship between the change in plasma amyloid beta ratio (AβR; Aβ42:Aβ40) and delirium incidence (defined by the 3-Minute Diagnostic Confusion Assessment Method) and severity (quantified by the Delirium Rating Scale-Revised-98, the study's primary outcome). We also tested the relationship between plasma amyloid beta and intraoperative variables. RESULTS Across all participants, the plasma AβR increased from the preoperative period to postoperative Day 1 (Wilcoxon P<0.001). However, this increase was not associated with delirium incidence (Wilcoxon P=0.22) or peak severity after adjusting for confounders (log[incidence rate ratio]=0.43; P=0.14). Postoperative Day 1 change in plasma AβR was not associated with postoperative Day 1 change in plasma tau, neurofilament light, or inflammatory markers (interleukin [IL]-1β, IL-1Ra, IL-2, IL-4, IL-6, IL-8, IL-10, and IL-12), or with operative time or low intraoperative arterial pressure. CONCLUSIONS Perioperative changes in plasma amyloid do not appear to be associated with postoperative delirium. Our findings do not support associations of dynamic changes in amyloid with postoperative delirium. CLINICAL TRIAL REGISTRATION .NCT03124303 and NCT01980511.
Collapse
Affiliation(s)
- Thomas Payne
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Jennifer Taylor
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Cameron Casey
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Kunkel
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Maggie Parker
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Robert A Pearce
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard C Lennertz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert D Sanders
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia; Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia; NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Xiao Z, Zhang X, Li G, Sun L, Li J, Jing Z, Qiu Q, He G, Gao C, Sun X. Tibial fracture surgery in elderly mice caused postoperative neurocognitive disorder via SOX2OT lncRNA in the hippocampus. Mol Brain 2023; 16:36. [PMID: 37098623 PMCID: PMC10131420 DOI: 10.1186/s13041-023-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Increasing evidence indicates the major role of mitochondrial function in neurodegenerative disease. However, it is unclear whether mitochondrial dynamics directly affect postoperative neurocognitive disorder (PND). This study aimed to analyze the underlying mechanisms of mitochondrial dynamics in the pathogenesis of PND. Tibial fracture surgery was performed in elderly mice to generate a PND model in vivo. Cognitive behavior was evaluated 3 days post-surgery using novel object recognition and fear conditioning. A gradual increase in the SOX2OT mRNA level and decrease in the SOX2 mRNA level were noted, with impaired cognitive function, in the mice 3 days after tibial surgery compared with mice in the sham group. To evaluate the role of SOX2OT in PND, SOX2OT knockdown was performed in vitro and in vivo using lentivirus transfection in HT22 cells and via brain stereotactic injection of lentivirus, respectively. SOX2OT knockdown reduced apoptosis, inhibited oxidative stress, suppressed mitochondrial hyperdivision, attenuated surgery-induced cognitive dysfunction, and promoted downstream SOX2 expression in elderly mice. Furthermore, Sox2 alleviated mitochondrial functional damage by inhibiting the transcription of mitochondrial division protein Drp1. Our study findings indicate that SOX2OT knockout alleviates surgery-induced mitochondrial fission and cognitive function defects by upregulating the expression of Sox2 in mice, resulting in the inhibition of drp1 transcription. Therefore, regulation of the SOX2/Drp1 pathway may be a potential mechanism for the treatment of patients with PND.
Collapse
Affiliation(s)
- Zhibin Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Anesthesiology, The 986th Air Force Hospital, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiajing Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710032, Shaanxi, China
| | - Guangyao Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ziwei Jing
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Qingya Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Guangxiang He
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Chen D, Wang W, Wang S, Tan M, Su S, Wu J, Yang J, Li Q, Tang Y, Cao J. Predicting postoperative delirium after hip arthroplasty for elderly patients using machine learning. Aging Clin Exp Res 2023; 35:1241-1251. [PMID: 37052817 DOI: 10.1007/s40520-023-02399-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Postoperative delirium (POD) is a common and severe complication in elderly hip-arthroplasty patients. AIM This study aims to develop and validate a machine learning (ML) model that determines essential features related to POD and predicts POD for elderly hip-arthroplasty patients. METHODS The electronic record data of elderly patients who received hip-arthroplasty surgery between January 2017 and April 2021 were enrolled as the dataset. The Confusion Assessment Method (CAM) was administered to the patients during their perioperative period. The feature section method was employed as a filter to determine leading features. The classical machine learning algorithms were trained in cross-validation processing, and the model with the best performance was built in predicting the POD. Metrics of the area under the curve (AUC), accuracy (ACC), sensitivity, specificity, and F1-score were calculated to evaluate the predictive performance. RESULTS 476 Arthroplasty elderly patients with general anesthesia were included in this study, and the final model combined feature selection method mutual information (MI) and linear binary classifier using logistic regression (LR) achieved an encouraging performance (AUC = 0.94, ACC = 0.88, sensitivity = 0.85, specificity = 0.90, F1-score = 0.87) on a balanced test dataset. CONCLUSION The model could predict POD with satisfying accuracy and reveal important features of suffering POD such as age, Cystatin C, GFR, CHE, CRP, LDH, monocyte count, history of mental illness or psychotropic drug use and intraoperative blood loss. Proper preoperative interventions for these factors could reduce the incidence of POD among elderly patients.
Collapse
Affiliation(s)
- Daiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weijia Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Siqi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minghe Tan
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Su
- Center for Artificial Intelligence in Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiali Wu
- Center for Artificial Intelligence in Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingshu Li
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Proteomic Signature and mRNA Expression in Hippocampus of SAMP8 and SAMR1 Mice during Aging. Int J Mol Sci 2022; 23:ijms232315097. [PMID: 36499421 PMCID: PMC9740614 DOI: 10.3390/ijms232315097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Aging is a complex process often accompanied by cognitive decline that represents a risk factor for many neurodegenerative disorders including Alzheimer's and Parkinson's disease. The molecular mechanisms involved in age-related cognitive decline are not yet fully understood, although increased neuroinflammation is considered to play a significant role. In this study, we characterized a proteomic view of the hippocampus of the senescence-accelerated mouse prone-8 (SAMP8), a model of enhanced senescence, in comparison with the senescence-accelerated-resistant mouse (SAMR1), a model of normal aging. We additionally investigated inflammatory cytokines and cholinergic components gene expression during aging in the mouse brain tissues. Proteomic data defined the expression of key proteins involved in metabolic and cellular processes in neuronal and glial cells of the hippocampus. Gene Ontology revealed that most of the differentially expressed proteins are involved in the cytoskeleton and cell motility regulation. Molecular analysis results showed that both inflammatory cytokines and cholinergic components are differentially expressed during aging, with a downward trend of cholinergic receptors and esterase enzymes expression, in contrast to an upward trend of inflammatory cytokines in the hippocampus of SAMP8. Together, our results support the important role of the cholinergic and cytokine systems in the aging of the murine brain.
Collapse
|
16
|
Epigenetic Mechanisms of Postoperative Cognitive Impairment Induced by Anesthesia and Neuroinflammation. Cells 2022; 11:cells11192954. [PMID: 36230916 PMCID: PMC9563723 DOI: 10.3390/cells11192954] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment after surgery is a common problem, affects mainly the elderly, and can be divided into postoperative delirium and postoperative cognitive dysfunction. Both phenomena are accompanied by neuroinflammation; however, the precise molecular mechanisms underlying cognitive impairment after anesthesia are not yet fully understood. Anesthesiological drugs can have a longer-term influence on protein transcription, thus, epigenetics is a possible mechanism that impacts on cognitive function. Epigenetic mechanisms may be responsible for long-lasting effects and may implicate novel therapeutic approaches. Hence, we here summarize the existing literature connecting postoperative cognitive impairment to anesthesia. It becomes clear that anesthetics alter the expression of DNA and histone modifying enzymes, which, in turn, affect epigenetic markers, such as methylation, histone acetylation and histone methylation on inflammatory genes (e.g., TNF-alpha, IL-6 or IL1 beta) and genes which are responsible for neuronal development (such as brain-derived neurotrophic factor). Neuroinflammation is generally increased after anesthesia and neuronal growth decreased. All these changes can induce cognitive impairment. The inhibition of histone deacetylase especially alleviates cognitive impairment after surgery and might be a novel therapeutic option for treatment. However, further research with human subjects is necessary because most findings are from animal models.
Collapse
|
17
|
Mi J, He Y, Yang J, Zhou Y, Zhu G, Wu A, Liu W, Sang Z. Development of naringenin-O-carbamate derivatives as multi-target-directed liagnds for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2022; 60:128574. [PMID: 35065231 DOI: 10.1016/j.bmcl.2022.128574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/23/2021] [Accepted: 01/15/2022] [Indexed: 12/15/2022]
Abstract
In this work, a series of naringenin-O-carbamate derivatives was designed and synthesized as multifunctional agents for the treatment of Alzheimer's disease (AD) through multi-target-directed ligands (MTDLs) strategy. The biological activity in vitro showed that compound 3c showed good antioxidant potency (ORAC = 1.0 eq), and it was a reversible huAChE (IC50 = 9.7 μM) inhibitor. In addition, compound 3c significantly inhibited self-induced Aβ1-42 aggregation, and it could activate UPS degradation pathway in HT22 cells and clear the aggregated proteins associated with AD. Moreover, compound 3c was a selective metal chelator, and it significantly inhibited and disaggregated Cu2+-mediated Aβ1-42 aggregation. Furthermore, compound 3c displayed remarkable neuroprotective effect and anti-inflammatory property. Interestingly, compound 3c displayed good hepatoprotective effect by its antioxidant activity. More importantly, compound 3c demonstrated favourable blood-brain barrier penetration in vitro and drug-like property. Therefore, compound 3c was a promising multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ying He
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jing Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yi Zhou
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Southwest Medical University, Luzhou 646000, China.
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
18
|
Li K, Wang J, Chen L, Guo M, Zhou Y, Li X, Peng M. Netrin-1 Ameliorates Postoperative Delirium-Like Behavior in Aged Mice by Suppressing Neuroinflammation and Restoring Impaired Blood-Brain Barrier Permeability. Front Mol Neurosci 2022; 14:751570. [PMID: 35095412 PMCID: PMC8797926 DOI: 10.3389/fnmol.2021.751570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Postoperative delirium (POD) is a common and serious postoperative complication in elderly patients, and its underlying mechanism is elusive and without effective therapy at present. In recent years, the neuroinflammatory hypothesis has been developed in the pathogenesis of POD, in which the damaged blood-brain barrier (BBB) plays an important role. Netrin-1 (NTN-1), an axonal guidance molecule, has been reported to have strong inflammatory regulatory and neuroprotective effects. We applied NTN-1 (45 μg/kg) to aged mice using a POD model with a simple laparotomy to assess their systemic inflammation and neuroinflammation by detecting interleukin-6 (IL-6), interleukin-10 (IL-10), and high mobility group box chromosomal protein-1 (HMGB-1) levels. We also assessed the reactive states of microglia and the permeability of the BBB by detecting cell junction proteins and the leakage of dextran. We found that a single dose of NTN-1 prophylaxis decreased the expression of IL-6 and HMGB-1 and upregulated the expression of IL-10 in the peripheral blood, hippocampus, and prefrontal cortex. Nerin-1 reduced the activation of microglial cells in the hippocampus and prefrontal cortex and improved POD-like behavior. NTN-1 also attenuated the anesthesia/surgery-induced increase in BBB permeability by upregulating the expression of tight junction-associated proteins such as ZO-1, claudin-5, and occludin. These findings confirm the anti-inflammatory and BBB protective effects of NTN-1 in an inflammatory environment in vivo and provide better insights into the pathophysiology and potential treatment of POD.
Collapse
|
19
|
Hamzaoui K, Borhani-Haghighi A, Dhifallah IB, Hamzaoui A. Elevated levels of IL-32 in cerebrospinal fluid of neuro-Behcet disease: Correlation with NLRP3 inflammasome. J Neuroimmunol 2022; 365:577820. [DOI: 10.1016/j.jneuroim.2022.577820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
|
20
|
Hollenbeck BK, Dunn RL, Sukul D, Modi PK, Nallamothu BK, Sen A, Bynum JP. Aortic valve replacement among patients with Alzheimer's disease and related dementias. J Am Geriatr Soc 2021; 69:3468-3475. [PMID: 34498253 DOI: 10.1111/jgs.17432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/16/2021] [Accepted: 07/31/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transcatheter aortic valve replacement (TAVR) has made palliation from aortic stenosis more broadly available to populations previously thought to be too high risk for surgery, such as those with Alzheimer's disease and related dementias (ADRD); however, its safety and effectiveness in this context are uncertain. METHODS We performed a retrospective cohort study of national Medicare beneficiaries, aged 66 and older with Parts A and B, between 2010 and 2016. Patients undergoing AVR were identified, and follow-up was available through 2017. Multivariable regression was used to measure the independent association between having a diagnosis of ADRD at the time of AVR, stratified by TAVR and surgery, and outcomes (mortality and Medicare institutional days at 1 year after AVR). RESULTS The average rate of increase in AVR per year was 17.5 cases per 100,000 ADRD and 8.4 per 100,000 non-ADRD beneficiaries, largely driven by more rapid adoption of TAVR. Adjusted mortality following AVR declined significantly between those treated in 2010 and 2016, from 13.5% (95% CI 10.2%-17.7%) to 6.3% (95% CI 5.2%-7.6%) and from 13.7% (95% CI 12.7%-14.7%) to 6.3% (95% CI 5.8%-6.9%) in those with and without ADRD, respectively. The sharpest decline was noted for patients undergoing TAVR between 2011 and 2016, with adjusted mortality declining from 19.9% (95% CI 11.2%-32.8%) to 5.2% (95% CI 4.1%-6.5%) and from 12.2% (95% CI 9.3%-15.8%) to 5.0% (95% CI 4.4%-5.6%) in patients with and without ADRD, respectively. Similar declines were evident for Medicare institutional days in the year after AVR in both patient groups. CONCLUSIONS Rates of AVR in those with ADRD increased during the past decade largely driven by the diffusion of TAVR. The use of TAVR in this vulnerable population did not come at the expense of increasing Medicare institutional days or mortality at 1-year.
Collapse
Affiliation(s)
- Brent K Hollenbeck
- Departments of Urology, Medicine, and Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rodney L Dunn
- Departments of Urology, Medicine, and Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Devraj Sukul
- Departments of Urology, Medicine, and Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Parth K Modi
- Departments of Urology, Medicine, and Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Brahmajee K Nallamothu
- Departments of Urology, Medicine, and Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ananda Sen
- Departments of Urology, Medicine, and Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Julie P Bynum
- Departments of Urology, Medicine, and Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Zhou H, Gu Y, Guan Y, Liu F. Reflections on dexmedetomidine as an optimum therapy for emergence delirium in the elderly with emergency abdominal surgery. IBRAIN 2021; 7:257-262. [PMID: 37786795 PMCID: PMC10528764 DOI: 10.1002/j.2769-2795.2021.tb00089.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 10/04/2023]
Abstract
Emergence delirium (ED) is a common complication in elderly patients in post post-anesthesia care units (PACU), To our knowledge, there is currently no specific treatment for ED in the elderly, especially for patients combined with vital organs dysfunction. This article described an elderly patient with ED was successfully treated with dexmedetomidine. Although dexmedetomidine has been widely used in recent years, there are few articles on the administration of dexmedetomidine in PACU. The purpose of this paper is to review the literature and analyze related hazardous factors for ED in the elderly with complications of emergency abdominal surgery and angiocardiopathy, and to further confirm and explain the effectiveness and validation of dexmedetomidine as a rescue therapy in PACU. Finally, we look forward to more samples being collected to persuasively prove our opinion in this case.
Collapse
Affiliation(s)
- Hong‐Su Zhou
- Department of AnesthesiaWest China Hospital, Sichuan UniversityChengduChina
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Yue Gu
- Department of AnesthesiaWest China Hospital, Sichuan UniversityChengduChina
| | - Yi‐Huan Guan
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Fei Liu
- Department of AnesthesiaWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
22
|
The Effects of the Infusion of Hypertonic Sodium Chloride on the Prevention of Delirium After Surgery: Randomized Controlled. Indian J Surg 2021. [DOI: 10.1007/s12262-021-02986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
23
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
24
|
Racine AM, Touroutoglou A, Abrantes T, Wong B, Fong TG, Cavallari M, Travison TG, Gou Y, Marcantonio ER, Alsop DC, Jones RN, Inouye SK, Dickerson BC. Older Patients with Alzheimer's Disease-Related Cortical Atrophy Who Develop Post-Operative Delirium May Be at Increased Risk of Long-Term Cognitive Decline After Surgery. J Alzheimers Dis 2021; 75:187-199. [PMID: 32250290 DOI: 10.3233/jad-190380] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Older surgical patients with Alzheimer's disease (AD) dementia and delirium are at increased risk for accelerated long-term cognitive decline. OBJECTIVE Investigate associations between a probabilistic marker of preclinical AD, delirium, and long-term cognitive decline. METHODS The Successful Aging after Elective Surgery cohort includes older adults (≥70 years) without dementia who underwent elective surgery. 140 patients underwent preoperative magnetic resonance imaging and had≥6 months cognitive follow-up. Cortical thickness was measured in 'AD-Signature' regions. Delirium was evaluated each postoperative day by the Confusion Assessment Method. Cognitive performance was assessed using a detailed neuropsychological battery at baseline; months 1, 2, and 6; and every 6 months thereafter until 36 months. Using either a General Cognitive Performance composite (GCP) or individual test scores as outcomes, we performed linear mixed effects models to examine main effects of AD-signature atrophy and the interaction of AD-signature atrophy and delirium on slopes of cognitive change from post-operative months 2-36. RESULTS Reduced baseline AD-signature cortical thickness was associated with greater 36-month cognitive decline in GCP (standardized beta coefficient, β = -0.030, 95% confidence interval [-0.060, -0.001]). Patients who developed delirium who also had thinner AD signature cortex showed greater decline on a verbal learning test (β = -0.100 [-0.192, -0.007]). CONCLUSION Patients with the greatest baseline AD-related cortical atrophy who develop delirium after elective surgery appear to experience the greatest long-term cognitive decline. Thus, atrophy suggestive of preclinical AD and the development of delirium may be high-risk indicators for long-term cognitive decline following surgery.
Collapse
Affiliation(s)
- Annie M Racine
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra Touroutoglou
- Harvard Medical School, Boston, MA, USA.,Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tatiana Abrantes
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Bonnie Wong
- Harvard Medical School, Boston, MA, USA.,Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Tamara G Fong
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michele Cavallari
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas G Travison
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yun Gou
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Edward R Marcantonio
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David C Alsop
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Richard N Jones
- Departments of Psychiatry and Human Behavior and Neurology, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Sharon K Inouye
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bradford C Dickerson
- Harvard Medical School, Boston, MA, USA.,Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
25
|
Ye C, Xu R, Cao Z, Song Q, Yu G, Shi Y, Liu Z, Liu X, Deng Y. Design, synthesis, and in vitro evaluation of 4-aminoalkyl-1(2H)-phthalazinones as potential multifunctional anti-Alzheimer's disease agents. Bioorg Chem 2021; 111:104895. [PMID: 33887586 DOI: 10.1016/j.bioorg.2021.104895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/21/2021] [Accepted: 04/04/2021] [Indexed: 01/03/2023]
Abstract
A series of 4-aminoalkyl-1(2H)-phthalazinone derivatives was designed and synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. In vitro biological assay results demonstrated that most synthesized compounds exhibited significant AChE inhibition, moderate to high MAOs inhibitory potencies and good anti-platelet aggregation abilities. Among them, compound 15b exhibited the highest inhibitory potencies towards MAO-B and MAO-A (IC50 = 0.7 µM and 6.4 µM respectively), moderate inhibition towards AChE (IC50 = 8.2 µM), and good activities against self- and Cu2+-induced Aβ1-42 aggregation and platelet aggregation. Moreover, 15b also displayed antioxidant capacity, neuroprotective potency, anti-neuroinflammation and BBB permeability. These excellent results indicated that compound 15b could be worthy of further studies to be considered as a promising multifunctional candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chanyuan Ye
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rui Xu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhongcheng Cao
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Song
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yichun Shi
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhuoling Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiuxiu Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Xin X, Chen J, Hua W, Wang H. Intraoperative dexmedetomidine for prevention of postoperative delirium in elderly patients with mild cognitive impairment. Int J Geriatr Psychiatry 2021; 36:143-151. [PMID: 33411362 DOI: 10.1002/gps.5406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Delirium is the most common postoperative neurological complication and some evidence suggests that dexmedetomidine is associated with a decreased incidence of delirium. This study is designed to assess the effect of dexmedetomidine on postoperative delirium (POD) in elderly patients with mild cognitive impairment (MCI). METHODS Sixty geriatric patients with MCI were enrolled and ramdomly divided into two groups by a computer-generated randomisation sequence: dexmedetomidine group (D group) and normal saline group (C group). Patients in D group received a loading dose of 0.5 μg/kg dexmedetomidine over 10 minutes before anesthesia induction, followed by a continuous infusion of 0.4 μg·kg-1·h-1 until 30 minutes before the end of surgery; equal volume of normal saline was given in C group. Blood samples were extracted to detect the concentration of cytokines, including tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), heme oxygenase-1 (HO-1), matrix metalloproteinase-9 (MMP-9), and glial fibrillary acidic protein (GFAP) before anesthesia induction (T1), before suture (T2), and 30 minutes after surgery (T3). Postoperative recovery times were recorded. Delirium was assessed with the 3-Minute Diagnostic Interview for confusion assessment method during the first 7 days postoperatively. RESULTS POD occurred in 10 (33.3%) of 30 patients in C group, and in 3 (10%) of 30 patients given dexmedetomidine (odds ratio [OR] 0.222, 95% CI 0.054-0.914; P = 0.028). The serum concentrations of TNF-α, MMP-9, and GFAP were significantly increased and IL-10 was decreased in the C group than in the D group at T2 and T3. No differences were observed between groups in the level of HO-1. Analysis using random-effect multivariable logistic regression indicated that POD was associated with GFAP (odds ratio [OR] 16.691, 95% CI 2.288-121.746; P = 0.005). The positive predictive ability of the multivariate logistic regression model tested by ROC analysis showed an area under the curve of 0.713 (95% CI, 0.584-0.842). CONCLUSIONS Dexmedetomidine can alleviate POD in elderly patients with MCI and may be related to reduce the neuroinflammation by lowering the permeability of blood-brain barrier.
Collapse
Affiliation(s)
- Xi Xin
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Jing Chen
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Wei Hua
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
27
|
Interleukin 32: A novel player in perioperative neurocognitive disorders. Med Hypotheses 2020; 144:110158. [PMID: 33254483 DOI: 10.1016/j.mehy.2020.110158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
Perioperative neurocognitive disorders (PND) are highly prevalent after surgery, especially in aged patients. PND results in long-term morbidity and mortality with unclear pathophysiologic mechanisms. As a key hallmark of PND, surgery-induced neuroinflammation resulted from the invading of exogenous tracers into the cerebral parenchyma, causing hippocampal neuroinflammation and cognitive impairment. IL-32, with different isoforms, played a significant regulatory role in various inflammatory diseases. Its prevalence in peripheral circulating blood was closely associated with the central nervous system (CNS) diseases. Beyond that, specific subtype of IL-32 was reported to involve in the neuroinflammation regulation in cerebral ischemia impairment, multiple sclerosis, Alzheimer's Disease, and so on. Thus, we speculate that IL-32 may participate in the regulation of the surgery-induced neuroinflammation during the parthenogenesis of PND. The isoforms, spatio-temporal regulation of IL-32 may determine its pro- or anti-inflammation properties in parthenogenesis of PND. Therefore, IL-32 could be a putative therapeutic target for the prevention and reversal of PND in the future.
Collapse
|
28
|
Jiang S, Yu LJ, Yang H, Jin Y, Chen J, Zhang JH, Liu Y, Xu Y. A study on inhibition of the Aβ 1-42-induced inflammatory response by the Huatuo Zaizao pill through the NF-κB signaling pathway. Arch Med Sci 2020; 19:1136-1144. [PMID: 37560736 PMCID: PMC10408018 DOI: 10.5114/aoms.2020.99427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/15/2019] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION The pathology of Alzheimer's disease (AD) includes β-amyloid (Aβ) (plaques) and neurofibrillary tangles (NFTs). This study aimed to explore the efficacy of Huatuo Zaizao pill (HTZP) in an AD mouse model induced by injecting Aβ1-42, and the neuroprotective mechanism of HTZP in AD. MATERIAL AND METHODS C57BL/6 (B6) mice were randomly divided into 4 groups (n = 10, per group): control group, AD model group, and 2 different doses of HTZP treated groups. The Morris water maze test was carried out on AD mice to assess the learning ability after treatment with HTZP for 15 day. The levels of inflammatory factors and the nuclear factor-κB (NF-κB) pathway were examined by western blot and real-time polymerase chain reaction (PCR). The content of microglia was investigated by immunofluorescence. RESULTS This study revealed that a cognitive disorder could be mitigated when the AD mice were treated with HTZP, which might be associated with the decreased level of pro-inflammatory factors, and the inhibitory activities of microglia. Additionally, phosphorylation of IκB and NF-κB p65 could be reduced by prohibiting the neuroinflammation of NF-κB activation in the hippocampus of AD mice. CONCLUSIONS These results showed that HTZP could mitigate a cognitive disorder, diminish the activation of microglia, and inhibit the content of inflammatory factors through the NF-κB pathway in Aβ1-42-induced AD mice. HTZP may be an appropriate agent for AD treatment in the future.
Collapse
Affiliation(s)
- Su Jiang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Neurology, Jiangsu Taizhou People’s Hospital, Taizhou, Jiangsu, China
- Department of Neurology, Jiangsu Taizhou People’s Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuexinzi Jin
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing-Hua Zhang
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Liu
- Department of Neurology, Jiangsu Taizhou People’s Hospital, Taizhou, Jiangsu, China
- Department of Neurology, Jiangsu Taizhou People’s Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Fong TG, Vasunilashorn SM, Ngo L, Libermann TA, Dillon ST, Schmitt EM, Pascual-Leone A, Arnold SE, Jones RN, Marcantonio ER, Inouye SK. Association of Plasma Neurofilament Light with Postoperative Delirium. Ann Neurol 2020; 88:984-994. [PMID: 32881052 DOI: 10.1002/ana.25889] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To examine the association of the plasma neuroaxonal injury markers neurofilament light (NfL), total tau, glial fibrillary acid protein, and ubiquitin carboxyl-terminal hydrolase L1 with delirium, delirium severity, and cognitive performance. METHODS Delirium case-no delirium control (n = 108) pairs were matched by age, sex, surgery type, cognition, and vascular comorbidities. Biomarkers were measured in plasma collected preoperatively (PREOP), and 2 days (POD2) and 30 days postoperatively (PO1MO) using Simoa technology (Quanterix, Lexington, MA). The Confusion Assessment Method (CAM) and CAM-S (Severity) were used to measure delirium and delirium severity, respectively. Cognitive function was measured with General Cognitive Performance (GCP) scores. RESULTS Delirium cases had higher NfL on POD2 and PO1MO (median matched pair difference = 16.2pg/ml and 13.6pg/ml, respectively; p < 0.05). Patients with PREOP and POD2 NfL in the highest quartile (Q4) had increased risk for incident delirium (adjusted odds ratio [OR] = 3.7 [95% confidence interval (CI) = 1.1-12.6] and 4.6 [95% CI = 1.2-18.2], respectively) and experienced more severe delirium, with sum CAM-S scores 7.8 points (95% CI = 1.6-14.0) and 9.3 points higher (95% CI = 3.2-15.5). At PO1MO, delirium cases had continued high NfL (adjusted OR = 9.7, 95% CI = 2.3-41.4), and those with Q4 NfL values showed a -2.3 point decline in GCP score (-2.3 points, 95% CI = -4.7 to -0.9). INTERPRETATION Patients with the highest PREOP or POD2 NfL levels were more likely to develop delirium. Elevated NfL at PO1MO was associated with delirium and greater cognitive decline. These findings suggest NfL may be useful as a predictive biomarker for delirium risk and long-term cognitive decline, and once confirmed would provide pathophysiological evidence for neuroaxonal injury following delirium. ANN NEUROL 2020;88:984-994.
Collapse
Affiliation(s)
- Tamara G Fong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Aging Brain Center, Hebrew SeniorLife, Boston, Massachusetts, USA.,Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Sarinnapha M Vasunilashorn
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Long Ngo
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Towia A Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics, and Systems Biology Center, Boston, Massachusetts, USA
| | - Simon T Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics, and Systems Biology Center, Boston, Massachusetts, USA
| | - Eva M Schmitt
- Aging Brain Center, Hebrew SeniorLife, Boston, Massachusetts, USA.,Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Guttmann Brain Health Institute, Guttmann Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Richard N Jones
- Departments of Psychiatry and Human Behavior and Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Edward R Marcantonio
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sharon K Inouye
- Aging Brain Center, Hebrew SeniorLife, Boston, Massachusetts, USA.,Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA.,Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
30
|
Nicholson K, MacLusky NJ, Leranth C. Synaptic effects of estrogen. VITAMINS AND HORMONES 2020; 114:167-210. [PMID: 32723543 DOI: 10.1016/bs.vh.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The concept that estradiol may act as a local neuromodulator in the brain, rapidly affecting connectivity and synaptic function, has been firmly established by research over the last 30 years. De novo synthesis of estradiol within the brain as well as signaling mechanisms mediating responses to the hormone have been demonstrated, along with morphological evidence indicating rapid changes in synaptic input following increases in local estradiol levels. These rapid synaptic effects may play important roles in both physiological and pathophysiological responses to changes in circulating hormone levels, as well as in neurodegenerative disease. How local effects of estradiol on synaptic plasticity are integrated into changes in the overall activity of neural networks in the brain, however, remains a subject that is only incompletely understood.
Collapse
Affiliation(s)
- Kate Nicholson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Csaba Leranth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, New Haven, CT, United States.
| |
Collapse
|
31
|
Untangling anaesthesia and amyloid. Br J Anaesth 2020; 125:232-235. [PMID: 32690248 DOI: 10.1016/j.bja.2020.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022] Open
|
32
|
Katsumi Y, Racine AM, Torrado-Carvajal A, Loggia ML, Hooker JM, Greve DN, Hightower BG, Catana C, Cavallari M, Arnold SE, Fong TG, Vasunilashorn SM, Marcantonio ER, Schmitt EM, Xu G, Libermann TA, Barrett LF, Inouye SK, Dickerson BC, Touroutoglou A, Collins JA. The Role of Inflammation after Surgery for Elders (RISE) study: Examination of [ 11C]PBR28 binding and exploration of its link to post-operative delirium. Neuroimage Clin 2020; 27:102346. [PMID: 32712451 PMCID: PMC7390821 DOI: 10.1016/j.nicl.2020.102346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Major surgery is associated with a systemic inflammatory cascade that is thought, in some cases, to contribute to transient and/or sustained cognitive decline, possibly through neuroinflammatory mechanisms. However, the relationship between surgery, peripheral and central nervous system inflammation, and post-operative cognitive outcomes remains unclear in humans, primarily owing to limitations of in vivo biomarkers of neuroinflammation which vary in sensitivity, specificity, validity, and reliability. In the present study, [11C]PBR28 positron emission tomography, cerebrospinal fluid (CSF), and blood plasma biomarkers of inflammation were assessed pre-operatively and 1-month post-operatively in a cohort of patients (N = 36; 30 females; ≥70 years old) undergoing major orthopedic surgery under spinal anesthesia. Delirium incidence and severity were evaluated daily during hospitalization. Whole-brain voxel-wise and regions-of-interest analyses were performed to determine the magnitude and spatial extent of changes in [11C]PBR28 uptake following surgery. Results demonstrated that, compared with pre-operative baseline, [11C]PBR28 binding in the brain was globally downregulated at 1 month following major orthopedic surgery, possibly suggesting downregulation of the immune system of the brain. No significant relationship was identified between post-operative delirium and [11C]PBR28 binding, possibly due to a small number (n = 6) of delirium cases in the sample. Additionally, no significant relationships were identified between [11C]PBR28 binding and CSF/plasma biomarkers of inflammation. Collectively, these results contribute to the literature by demonstrating in a sizeable sample the effect of major surgery on neuroimmune activation and preliminary evidence identifying no apparent associations between [11C]PBR28 binding and fluid inflammatory markers or post-operative delirium.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Psychology, Northeastern University, Boston, MA, United States; Japan Society for the Promotion of Science, Tokyo, Japan; Harvard Medical School, Boston, MA, United States
| | - Annie M Racine
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - Angel Torrado-Carvajal
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Marco L Loggia
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jacob M Hooker
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Douglas N Greve
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Baileigh G Hightower
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Ciprian Catana
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Michele Cavallari
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Steven E Arnold
- Harvard Medical School, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Tamara G Fong
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Sarinnapha M Vasunilashorn
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Edward R Marcantonio
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Eva M Schmitt
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - Guoquan Xu
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - Towia A Libermann
- Harvard Medical School, Boston, MA, United States; Genomics, Proteomics, Bioinformatics and Systems Biology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Sharon K Inouye
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Bradford C Dickerson
- Harvard Medical School, Boston, MA, United States; Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Alexandra Touroutoglou
- Harvard Medical School, Boston, MA, United States; Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jessica A Collins
- Harvard Medical School, Boston, MA, United States; Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
33
|
Tam BT, Morais JA, Santosa S. Obesity and ageing: Two sides of the same coin. Obes Rev 2020; 21:e12991. [PMID: 32020741 DOI: 10.1111/obr.12991] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
Conditions and comorbidities of obesity mirror those of ageing and age-related diseases. Obesity and ageing share a similar spectrum of phenotypes such as compromised genomic integrity, impaired mitochondrial function, accumulation of intracellular macromolecules, weakened immunity, shifts in tissue and body composition, and enhanced systemic inflammation. Moreover, it has been shown that obesity reduces life expectancy by 5.8 years in men and 7.1 years in women after the age of 40. Shorter life expectancy could be because obesity holistically accelerates ageing at multiple levels. Besides jeopardizing nuclear DNA and mitochondrial DNA integrity, obesity modifies the DNA methylation pattern, which is associated with epigenetic ageing in different tissues. Additionally, other signs of ageing are seen in individuals with obesity including telomere shortening, systemic inflammation, and functional declines. This review aims to show how obesity and ageing are "two sides of the same coin" through discussing how obesity predisposes an individual to age-related conditions, illness, and disease. We will further demonstrate how the mechanisms that perpetuate the early-onset of chronic diseases in obesity parallel those of ageing.
Collapse
Affiliation(s)
- Bjorn T Tam
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Quebec, Montreal, Canada
| | - Jose A Morais
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Division of Geriatric Medicine and Research Institute, McGill University Health Centre, Quebec, Montreal, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Quebec, Montreal, Canada.,Research Centre, Centre intégré universitarie de santé et de services sociaux du Nord-de-I'Île-de-Montréal, Hôpital du Sacré-Cœur de Monréal (CIUSS-NIM, HSCM), Quebec, Montreal, Canada
| |
Collapse
|
34
|
Sajjad MU, Blennow K, Knapskog AB, Idland AV, Chaudhry FA, Wyller TB, Zetterberg H, Watne LO. Cerebrospinal Fluid Levels of Interleukin-8 in Delirium, Dementia, and Cognitively Healthy Patients. J Alzheimers Dis 2020; 73:1363-1372. [DOI: 10.3233/jad-190941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | - Ane-Victoria Idland
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway
| | - Farrukh Abbas Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Torgeir Bruun Wyller
- Department of Geriatric Medicine, Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Leiv Otto Watne
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Zheng F, Zhou YT, Feng DD, Li PF, Tang T, Luo JK, Wang Y. Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. Brain Behav 2020; 10:e01520. [PMID: 31908160 PMCID: PMC7010586 DOI: 10.1002/brb3.1520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) has increased in rank among traumatic injuries worldwide. Traumatic brain injury is a serious obstacle given that its complex pathology represents a long-term process. Recently, systems biology strategies such as metabolomics to investigate the multifactorial nature of TBI have facilitated attempts to find biomarkers and probe molecular pathways for its diagnosis and therapy. METHODS This study included a group of 20 rats with controlled cortical impact and a group of 20 sham rats. We utilized mNSS tests to investigate neurological metabolic impairments on day 1 and day 3. Furthermore, we applied metabolomics and bioinformatics to determine the metabolic perturbation caused by TBI during the acute period in the hippocampus tissue of controlled cortical impact (CCI) rats. Notably, TBI-protein-metabolite subnetworks identified from a database were assessed for associations between metabolites and TBI by the dysregulation of related enzymes and transporters. RESULTS Our results identified 7 and 8 biomarkers on day 1 and day 3, respectively. Additionally, related pathway disorders showed effects on arginine and proline metabolism as well as taurine and hypotaurine metabolism on day 3 in acute TBI. Furthermore, according to metabolite-protein database searches, 25 metabolite-protein pairs were established as causally associated with TBI. Further, bioinformation indicated that these TBI-associated proteins mainly take part in 5'-nucleotidase activity and carboxylic acid transmembrane transport. In addition, interweaved networks were constructed to show that the development of TBI might be affected by metabolite-related proteins and their protein pathways. CONCLUSION The overall results show that acute TBI is susceptible to metabolic disorders, and the joint metabolite-protein network analysis provides a favorable prediction of TBI pathogenesis mechanisms in the brain. The signatures in the hippocampus might be promising for the development of biomarkers and pathways relevant to acute TBI and could further guide testable predictions of the underlying mechanism of TBI.
Collapse
Affiliation(s)
- Fei Zheng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yan-Tao Zhou
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Dan-Dan Feng
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Li
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Kun Luo
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Preoperative C-Reactive Protein/Albumin Ratio, a Risk Factor for Postoperative Delirium in Elderly Patients After Total Joint Arthroplasty. J Arthroplasty 2019; 34:2601-2605. [PMID: 31326244 DOI: 10.1016/j.arth.2019.06.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Postoperative delirium (POD), as an acute brain failure, is widely reported as a very common postoperative complication, and it is closely associated with increased morbidity and mortality. This study aimed to investigate potential risk factors including C-reactive protein/albumin ratio (CAR) for POD in elderly subjects after total joint arthroplasty (TJA). METHODS A total of 272 elderly patients (aged 65∼85 years) who were scheduled to undergo elective TJA with epidural anesthesia were consecutively recruited. The data of baseline characteristics, operation-associated indexes, and preoperative laboratory tests were collected. POD assessment was performed daily within postoperative 7 days. Receiver operating characteristic curve analysis was utilized for evaluating the predictive and cut-off value of CAR for POD. Risk factors for POD were evaluated by the binary univariate and multivariate logistic regression analyses. RESULTS Within postoperative 7 days, there were 55 patients who had suffered POD with an incidence of 20.2% (55/272). The area under the curve of CAR for POD was 0.804, with the cut-off value of 2.35, a sensitivity of 66.82%, and a specificity of 80.00%, respectively (95% confidence interval [CI]: 0.737-0.872, P < .001). Age (odds ratio: 2.02, 95% CI: 1.03-3.96, P = .038) and preoperative CAR level (odds ratio: 3.04, 95% CI: 1.23-7.23, P = .016) were 2 independent risk factors for POD in elderly subjects undergoing TJA. CONCLUSIONS Preoperative CAR level may be a promising predictor for POD in elderly subjects following TJA.
Collapse
|
37
|
Slor CJ, Witlox J, Adamis D, Jansen RWMM, Houdijk APJ, van Gool WA, de Jonghe JFM, Eikelenboom P. The trajectory of C-reactive protein serum levels in older hip fracture patients with postoperative delirium. Int J Geriatr Psychiatry 2019; 34:1438-1446. [PMID: 31058343 DOI: 10.1002/gps.5139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Important precipitating risk factors for delirium such as infections, vascular disorders, and surgery are accompanied by a systemic inflammatory response. Systemic inflammatory mediators can induce delirium in susceptible individuals. Little is known about the trajectory of systemic inflammatory markers and their role in the development and outcome of delirium. METHODS This is a prospective cohort study of older patients undergoing acute surgery for hip fracture. Baseline characteristics were assessed preoperatively. During hospital admission, presence of delirium was assessed daily according to the Confusion Assessment Method criteria. This study compared the trajectory of serum levels of the C-reactive protein (CRP) between people with and without postoperative delirium. Blood samples were taken at baseline and at postoperative day 1 through postoperative day 5. RESULTS Forty-one out of 121 patients developed postoperative delirium after hip fracture surgery. Longitudinal analysis of the trajectory of serum CRP levels using the Generalized Estimating Equations (GEE) method identified that higher CRP levels were associated with postoperative delirium. CRP levels were higher from postoperative day 2 through postoperative day 5. No significant differences in serum CRP levels were found when we compared patients with short (1-2 days) and more prolonged delirium (3 days or more). CONCLUSIONS Delirium is associated with an increased systemic inflammatory response, and our results suggest that CRP plays a role in the underlying (inflammatory-vascular) pathological pathway of postoperative delirium.
Collapse
Affiliation(s)
- Chantal J Slor
- Department of Geriatric Medicine, NoordWest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Joost Witlox
- Department of Geriatric Medicine, NoordWest Ziekenhuisgroep, Alkmaar, The Netherlands
- Psychogeriatric Observation Unit, Institution for Mental Health Care, Dijk en Duin (Parnassia Groep), Castricum, The Netherlands
| | - Dimitrios Adamis
- Department of Psychiatry, Sligo Mental Health Services, Sligo, Ireland
- Department of Psychiatry, Research and Academic Institute of Athens, Athens, Greece
| | - Rene W M M Jansen
- Department of Geriatric Medicine, NoordWest Ziekenhuisgroep, Alkmaar, The Netherlands
| | | | - Willem A van Gool
- Psychogeriatric Observation Unit, Institution for Mental Health Care, Dijk en Duin (Parnassia Groep), Castricum, The Netherlands
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jos F M de Jonghe
- Department of Geriatric Medicine, NoordWest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Piet Eikelenboom
- Department of Psychiatry, GGZinGeest and VuMC, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Wang N, Wang M. Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway. BMC Anesthesiol 2019; 19:134. [PMID: 31351473 PMCID: PMC6661092 DOI: 10.1186/s12871-019-0808-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022] Open
Abstract
Background Sevoflurane, an inhalational general anesthetic, has become one of the most widely used inhalational anesthetics in surgery. However, previous studies have found that sevoflurane anesthesia can trigger an inflammatory response, resulting in secondary damage. Dexmedetomidine (DEX), a highly-selective α adrenergic receptor agonist, is widely used as an anesthetic adjuvant in the clinic. In this study we investigated whether DEX was able to suppress sevoflurane-induced neuroinflammation. Methods The aim was to determine the mechanism of action of the suppressive effect of DEX using a rat model. Rats were randomly divided into a control group (n = 10), low-dose sevoflurane group (L-Sev; n = 10), high-dose sevoflurane group (H-Sev; n = 10), vehicle group (n = 10), DEX group (n = 10) and DEX + LY294002 (a specific inhibitor of PI3K) group (n = 10). The rats in vehicle, DEX and DEX + LY294002 groups were in the presence of high-dose sevoflurane exposure. Western blotting was used to measure the expression of proinflammatory cytokines (IL-6, IL-8, TNF-α) and the activity level of the phosphatidylinositol 3-hydroxy kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. Results We found that sevoflurane anesthesia induced an increase in the levels of pro-inflammatory cytokines, while decreasing activation of the PI3K/Akt/mTOR pathway in both the cortex and hippocampus of rats. Treatment with DEX reduced pro-inflammatory cytokine levels and prevented inactivation of the PI3K/Akt/mTOR pathway. Moreover, LY294002, an inhibitor of the PI3K/Akt/mTOR pathway, reduced the anti-inflammatory activity of DEX. Conclusions These data suggest that the PI3K/Akt/mTOR pathway contributes to sevoflurane-induced neuroinflammation and that activation of PI3K/Akt/mTOR signaling by DEX could help reduce the neuroinflammatory effects of sevoflurane.
Collapse
Affiliation(s)
- Nan Wang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Dalian Medical University Clinical Oncology College, Shenyang, 110042, Liaoning, China
| | - Mingyu Wang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Dalian Medical University Clinical Oncology College, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
39
|
Szarka N, Toth L, Czigler A, Kellermayer Z, Ungvari Z, Amrein K, Czeiter E, Bali ZK, Tadepalli SA, Wahr M, Hernadi I, Koller A, Buki A, Toth P. Single Mild Traumatic Brain Injury Induces Persistent Disruption of the Blood-Brain Barrier, Neuroinflammation and Cognitive Decline in Hypertensive Rats. Int J Mol Sci 2019; 20:E3223. [PMID: 31262044 PMCID: PMC6651357 DOI: 10.3390/ijms20133223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) induces blood-brain barrier (BBB) disruption, which contributes to secondary injury of brain tissue and development of chronic cognitive decline. However, single mild (m)TBI, the most frequent form of brain trauma disrupts the BBB only transiently. We hypothesized, that co-morbid conditions exacerbate persistent BBB disruption after mTBI leading to long term cognitive dysfunction. Since hypertension is the most important cerebrovascular risk factor in populations prone to mild brain trauma, we induced mTBI in normotensive Wistar and spontaneously hypertensive rats (SHR) and we assessed BBB permeability, extravasation of blood-borne substances, neuroinflammation and cognitive function two weeks after trauma. We found that mTBI induced a significant BBB disruption two weeks after trauma in SHRs but not in normotensive Wistar rats, which was associated with a significant accumulation of fibrin and increased neuronal expression of inflammatory cytokines TNFα, IL-1β and IL-6 in the cortex and hippocampus. SHRs showed impaired learning and memory two weeks after mild TBI, whereas cognitive function of normotensive Wistar rats remained intact. Future studies should establish the mechanisms through which hypertension and mild TBI interact to promote persistent BBB disruption, neuroinflammation and cognitive decline to provide neuroprotection and improve cognitive function in patients with mTBI.
Collapse
Affiliation(s)
- Nikolett Szarka
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
- Clinical Medicine Doctoral School, University of Szeged, Tisza Lajos krt. 109., H-6725 Szeged, Hungary
| | - Luca Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Zoltan Kellermayer
- Department of Immunology and Biotechnology, University of Pecs, Medical School, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Krisztina Amrein
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
| | - Endre Czeiter
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2, H-7623 Pecs, Hungary
| | - Zsolt Kristof Bali
- Translational Neuroscience Research Group, Szentagothai Research Center, University of Pecs, Ifjusag utja 20, H-7624 Pecs, Hungary
- Grastyan Translational Research Center, University of Pecs, Ifjusag utja 6, H-7624 Pecs, Hungary
| | - Sai Ambika Tadepalli
- Translational Neuroscience Research Group, Szentagothai Research Center, University of Pecs, Ifjusag utja 20, H-7624 Pecs, Hungary
| | - Matyas Wahr
- Cellular Neurobiology, Institute of Physiology, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Istvan Hernadi
- Translational Neuroscience Research Group, Szentagothai Research Center, University of Pecs, Ifjusag utja 20, H-7624 Pecs, Hungary
- Grastyan Translational Research Center, University of Pecs, Ifjusag utja 6, H-7624 Pecs, Hungary
- Department of Experimental Neurobiology, Faculty of Sciences, University of Pecs, Ifjusag utja 6, H-7624 Pecs, Hungary
| | - Akos Koller
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Andras Buki
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
| | - Peter Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary.
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary.
- Clinical Medicine Doctoral School, University of Szeged, Tisza Lajos krt. 109., H-6725 Szeged, Hungary.
- MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2, H-7623 Pecs, Hungary.
| |
Collapse
|
40
|
Fong TG, Vasunilashorn SM, Libermann T, Marcantonio ER, Inouye SK. Delirium and Alzheimer disease: A proposed model for shared pathophysiology. Int J Geriatr Psychiatry 2019; 34:781-789. [PMID: 30773695 PMCID: PMC6830540 DOI: 10.1002/gps.5088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/07/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Tamara G. Fong
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA,Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, MA,Harvard Medical School, Boston, MA
| | | | - Towia Libermann
- Harvard Medical School, Boston, MA,Division of Interdisciplinary Medicine and Biotechnology, BIDMC, Boston, MA.,BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, MA
| | - Edward R. Marcantonio
- Harvard Medical School, Boston, MA,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Sharon K. Inouye
- Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, MA,Harvard Medical School, Boston, MA,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
41
|
Berger M, Oyeyemi D, Olurinde MO, Whitson HE, Weinhold KJ, Woldorff MG, Lipsitz LA, Moretti E, Giattino CM, Roberts KC, Zhou J, Bunning T, Ferrandino M, Scheri RP, Cooter M, Chan C, Cabeza R, Browndyke JN, Murdoch DM, Devinney MJ, Shaw LM, Cohen HJ, Mathew JP. The INTUIT Study: Investigating Neuroinflammation Underlying Postoperative Cognitive Dysfunction. J Am Geriatr Soc 2019; 67:794-798. [PMID: 30674067 DOI: 10.1111/jgs.15770] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVES Every year, up to 40% of the more than 16 million older Americans who undergo anesthesia/surgery develop postoperative cognitive dysfunction (POCD) or delirium. Each of these distinct syndromes is associated with decreased quality of life, increased mortality, and a possible increased risk of Alzheimer's disease. One pathologic process hypothesized to underlie both delirium and POCD is neuroinflammation. The INTUIT study described here will determine the extent to which postoperative increases in cerebrospinal fluid (CSF) monocyte chemoattractant protein 1 (MCP-1) levels and monocyte numbers are associated with delirium and/or POCD and their underlying brain connectivity changes. DESIGN Observational prospective cohort. SETTING Duke University Medical Center, Duke Regional Hospital, and Duke Raleigh Hospital. PARTICIPANTS Patients 60 years of age or older (N = 200) undergoing noncardiac/nonneurologic surgery. MEASUREMENTS Participants will undergo cognitive testing before, 6 weeks, and 1 year after surgery. Delirium screening will be performed on postoperative days 1 to 5. Blood and CSF samples are obtained before surgery, and 24 hours, 6 weeks, and 1 year after surgery. CSF MCP-1 levels are measured by enzyme-linked immunosorbent assay, and CSF monocytes are assessed by flow cytometry. Half the patients will also undergo pre- and postoperative functional magnetic resonance imaging scans. 32-channel intraoperative electroencephalogram (EEG) recordings will be performed to identify intraoperative EEG correlates of neuroinflammation and/or postoperative cognitive resilience. Eighty patients will also undergo home sleep apnea testing to determine the relationships between sleep apnea severity, neuroinflammation, and impaired postoperative cognition. Additional assessments will help evaluate relationships between delirium, POCD, and other geriatric syndromes. CONCLUSION INTUIT will use a transdisciplinary approach to study the role of neuroinflammation in postoperative delirium and cognitive dysfunction and their associated functional brain connectivity changes, and it may identify novel targets for treating and/or preventing delirium and POCD and their sequelae. J Am Geriatr Soc 67:794-798, 2019.
Collapse
Affiliation(s)
- Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina.,Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina.,Center for Cognitive Neuroscience, Duke University Medical Center, Durham, North Carolina
| | - Deborah Oyeyemi
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Mobolaji O Olurinde
- Department of Anesthesiology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Heather E Whitson
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kent J Weinhold
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Marty G Woldorff
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Lewis A Lipsitz
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts.,Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Eugene Moretti
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Charles M Giattino
- Center for Cognitive Neuroscience, Duke University Medical Center, Durham, North Carolina.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Kenneth C Roberts
- Center for Cognitive Neuroscience, Duke University Medical Center, Durham, North Carolina
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts.,Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Thomas Bunning
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Michael Ferrandino
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Randall P Scheri
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Roberto Cabeza
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Jeffrey N Browndyke
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - David M Murdoch
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Michael J Devinney
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harvey Jay Cohen
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
42
|
Kang S, Ha S, Park H, Nam E, Suh WH, Suh YH, Chang KA. Effects of a Dehydroevodiamine-Derivative on Synaptic Destabilization and Memory Impairment in the 5xFAD, Alzheimer's Disease Mouse Model. Front Behav Neurosci 2018; 12:273. [PMID: 30483077 PMCID: PMC6243640 DOI: 10.3389/fnbeh.2018.00273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/24/2018] [Indexed: 01/22/2023] Open
Abstract
Carboxy-dehydroevodiamine·HCl (cx-DHED) is a derivative of DHED, which improves memory impairment. Carboxyl modification increases solubility in water, indicating that its bioavailability is higher than that of DHED. Cx-DHED is expected to have better therapeutic effects on Alzheimer's disease (AD) than DHED. In this study, we investigated the therapeutic effects of cx-DHED and the underlying mechanism in 5xFAD mice, transgenic (Tg) mouse model of AD model mice. In several behavioral tests, such as Y-maze, passive avoidance, and Morris water maze test, memory deficits improved significantly in cx-DHED-treated transgenic (Tg) mice compared with vehicle-treated Tg mice. We also found that AD-related pathologies, including amyloid plaque deposition and tau phosphorylation, were reduced after the treatment of Tg mice with cx-DHED. We determined the levels of synaptic proteins, such as GluN1, GluN2A, GluN2B, PSD-95 and Rabphilin3A, and Rab3A in the brains of mice of each group and found that GluN2A and PSD-95 were significantly increased in the brains of cx-DHED-treated Tg mice when compared with the brains of Tg-vehicle mice. These results suggest that cx-DHED has therapeutic effects on 5xFAD, AD model mice through the improvement of synaptic stabilization.
Collapse
Affiliation(s)
- Shinwoo Kang
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Neuroscience Research Institute Gachon University, Incheon, South Korea
| | - Sungji Ha
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Neuroscience Research Institute Gachon University, Incheon, South Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST Gachon University, Incheon, South Korea
| | - Eunjoo Nam
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Neuroscience Research Institute Gachon University, Incheon, South Korea
| | - Won Hyuk Suh
- Department of Bioengineering, College of Engineering, Temple University Philadelphia, PA, United States
| | - Yoo-Hun Suh
- Neuroscience Research Institute Gachon University, Incheon, South Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine Gachon University, Incheon, South Korea.,Neuroscience Research Institute Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST Gachon University, Incheon, South Korea
| |
Collapse
|
43
|
Cascella M, Bimonte S, Muzio MR. Towards a better understanding of anesthesia emergence mechanisms: Research and clinical implications. World J Methodol 2018; 8:9-16. [PMID: 30345225 PMCID: PMC6189114 DOI: 10.5662/wjm.v8.i2.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023] Open
Abstract
Emergence from anesthesia (AE) is the ending stage of anesthesia featuring the transition from unconsciousness to complete wakefulness and recovery of consciousness (RoC). A wide range of undesirable complications, including coughing, respiratory/cardiovascular events, and mental status changes such as emergence delirium, and delayed RoC, may occur during this critical phase. In general anesthesia processes, induction and AE represent a neurobiological example of “hysteresis”. Indeed, AE mechanisms should not be simply considered as reverse events of those occurring in the induction phase. Anesthesia-induced loss of consciousness (LoC) and AE until RoC are quite distinct phenomena with, in part, a distinct neurobiology. Althoughanaesthetics produce LoC mostly by affecting cortical connectivity, arousal processes at the end of anesthesia are triggered by structures deep in the brain, rather than being induced within the neocortex. This work aimed to provide an overview on AE processes research, in terms of mechanisms, and EEG findings. Because most of the research in this field concerns preclinical investigations, translational suggestions and research perspectives are proposed. However, little is known about the relationship between AE neurobiology, and potential complications occurring during the emergence, and after the RoC. Thus, another scope of this review is to underline why a better understanding of AE mechanisms could have significant clinical implications, such as improving the patients’ quality of recovery, and avoiding early and late postoperative complications.
Collapse
Affiliation(s)
- Marco Cascella
- Division of Anesthesia and Pain Management, Department of Supportive Care, Istituto Nazionale Tumori “Fondazione G. Pascale” - IRCSS, Naples 80131, Italy
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Management, Department of Supportive Care, Istituto Nazionale Tumori “Fondazione G. Pascale” - IRCSS, Naples 80131, Italy
| | - Maria Rosaria Muzio
- Division of Infantile Neuropsychiatry, UOMI-Maternal and Infant Health, ASL NA3 SUD Torre del Greco, Naples 80059, Italy
| |
Collapse
|
44
|
In-depth characterization of the neuroinflammatory reaction induced by peripheral surgery in an animal model. J Neural Transm (Vienna) 2018; 125:1487-1494. [DOI: 10.1007/s00702-018-1909-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
|
45
|
Fluoride Induces Neuroinflammation and Alters Wnt Signaling Pathway in BV2 Microglial Cells. Inflammation 2018; 40:1123-1130. [PMID: 28405851 DOI: 10.1007/s10753-017-0556-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fluoride is a common element in nature and our daily life, and excessive intake of this element can cause fluorosis and irreversible brain damage. The toxic effects of fluoride on the central nervous system may be attributed to the release of inflammatory cytokines and ROS. GSK3β is a key protein that modulates NF-κB activity and inflammatory cytokine levels and plays an important role in the Wnt signaling pathway. In this study, we found that fluoride altered the inflammatory status and oxidative stress by inhibiting Wnt signaling pathway activity. This study thus provides a valid basis for the fluorine-induced neuroinflammation injury theory.
Collapse
|
46
|
Zang G, Fang L, Chen L, Wang C. Ameliorative effect of nicergoline on cognitive function through the PI3K/AKT signaling pathway in mouse models of Alzheimer's disease. Mol Med Rep 2018; 17:7293-7300. [PMID: 29568940 DOI: 10.3892/mmr.2018.8786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 09/26/2017] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease is one of the most common age‑associated diseases that frequently leads to memory disorders, cognitive decline and dementia. Evidence suggests that nicergoline serves an important role in the apoptosis of hippocampal cells, memory recovery, cognitive function and neuronal survival. However, the signaling pathway affected by nicergoline treatment remains to be elucidated. The purpose of the present study was to investigate the role of nicergoline in the cognitive competence of a mouse model of Alzheimer's disease. The apoptosis rates of hippocampal cells were studied in mice with Alzheimer's disease treated with nicergoline compared with the negative control. Apoptosis‑associated gene expression levels in hippocampal cells, and hippocampus area, were analyzed in the experimental mice. Visual attention and inhibitory control were assessed and neural counting was performed in brain regions of interest. The phosphatidylinositol 3‑kinase (PI3K)/RAC‑α serine/threonine‑protein kinase (AKT) signaling pathway was additionally analyzed in hippocampal cells following treatment with nicergoline. The results of the present study demonstrated that nicergoline ameliorated apoptosis in hippocampal cells and hippocampus tissue in 3xTg‑AD mice with Alzheimer's disease. The data indicated that apoptosis‑associated genes, including caspase‑3, BCL2 associated X, BH3 interacting domain death agonist and caspase‑9, were downregulated in hippocampal cells isolated from nicergoline-treated experimental mice. In addition, the expression levels of inflammatory factors, in addition to oxidative stress, were decreased in hippocampal cells treated with nicergoline. Additionally, amyloid precursor protein accumulation was cleared in the hippocampal area in nicergoline‑treated mice. Nicergoline inhibited neuronal loss and prevented cognitive impairment through the restoration of learning/memory ability. It was additionally demonstrated in the present study that nicergoline improved motor attention impairment and cognitive competence in hippocampal cells by acting on the PI3K/AKT signaling pathway. Therefore, memory recovery, cognitive function and neuronal survival were repaired by nicergoline via inhibition of the PI3K/AKT signaling pathway, suggesting that nicergoline may be an efficient drug for the clinical treatment of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Guoyao Zang
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lizheng Fang
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Liying Chen
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chenyao Wang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
47
|
Abstract
This study aimed to assess cognition in patients with severe sepsis or septic shock and whether cognitive impairment was associated with clinical and laboratory parameters. We conducted a cohort study of patients with severe sepsis and septic shock evaluated within 24 h and one year after ICU discharge. Demographic, clinical and laboratory data were analyzed, and the following neuropsychological tests were applied: Consortium to Establish Registry for Alzheimer’s Disease, Mini-Mental State Examination, and Trail Making Test forms A and B. We included 33 patients, mean age of 49, 19% were female. Patients underperformed on most measures 24 h after ICU discharge, with improvement on follow-up. IQCODE, APACHE II scores, NSE and IFN-γ levels at ICU discharge were associated with poor cognitive performance, while higher educational level was associated with good cognitive performance. The time to first antibiotic dose, accumulated dose of haloperidol during UCI stay and mean glycemia were also associated with poor cognitive outcome. In general, patients with severe sepsis or septic shock have cognitive impairment that can improve over time. This improvement was associated with factors identified during their ICU stay, such as cognitive reserve, educational level, mean glycemia during ICU stay and NSE level.
Collapse
|
48
|
Browndyke JN, Berger M, Smith PJ, Harshbarger TB, Monge ZA, Panchal V, Bisanar TL, Glower DD, Alexander JH, Cabeza R, Welsh‐Bohmer K, Newman MF, Mathew JP. Task-related changes in degree centrality and local coherence of the posterior cingulate cortex after major cardiac surgery in older adults. Hum Brain Mapp 2018; 39:985-1003. [PMID: 29164774 PMCID: PMC5764802 DOI: 10.1002/hbm.23898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Older adults often display postoperative cognitive decline (POCD) after surgery, yet it is unclear to what extent functional connectivity (FC) alterations may underlie these deficits. We examined for postoperative voxel-wise FC changes in response to increased working memory load demands in cardiac surgery patients and nonsurgical controls. EXPERIMENTAL DESIGN Older cardiac surgery patients (n = 25) completed a verbal N-back working memory task during MRI scanning and cognitive testing before and 6 weeks after surgery; nonsurgical controls with cardiac disease (n = 26) underwent these assessments at identical time intervals. We measured postoperative changes in degree centrality, the number of edges attached to a brain node, and local coherence, the temporal homogeneity of regional functional correlations, using voxel-wise graph theory-based FC metrics. Group × time differences were evaluated in these FC metrics associated with increased N-back working memory load (2-back > 1-back), using a two-stage partitioned variance, mixed ANCOVA. PRINCIPAL OBSERVATIONS Cardiac surgery patients demonstrated postoperative working memory load-related degree centrality increases in the left dorsal posterior cingulate cortex (dPCC; p < .001, cluster p-FWE < .05). The dPCC also showed a postoperative increase in working memory load-associated local coherence (p < .001, cluster p-FWE < .05). dPCC degree centrality and local coherence increases were inversely associated with global cognitive change in surgery patients (p < .01), but not in controls. CONCLUSIONS Cardiac surgery patients showed postoperative increases in working memory load-associated degree centrality and local coherence of the dPCC that were inversely associated with postoperative global cognitive outcomes and independent of perioperative cerebrovascular damage.
Collapse
Affiliation(s)
- Jeffrey N. Browndyke
- Geriatric Behavioral Health Division, Department of Psychiatry & Behavioral SciencesDuke University Health SystemDurhamNorth Carolina
- Duke Institute for Brain Sciences, Duke UniversityDurhamNorth Carolina
- Duke Brain Imaging and Analysis Center, Duke UniversityDurhamNorth Carolina
| | - Miles Berger
- Division of Neuroanesthesiology, Department of AnesthesiologyDuke University Medical CenterDurhamNorth Carolina
| | - Patrick J. Smith
- Behavioral Medicine Division, Department of Psychiatry & Behavioral SciencesDuke University Medical CenterDurhamNorth Carolina
| | - Todd B. Harshbarger
- Duke Brain Imaging and Analysis Center, Duke UniversityDurhamNorth Carolina
- Department of RadiologyDuke University Medical CenterDurhamNorth Carolina
| | - Zachary A. Monge
- Center for Cognitive Neuroscience, Duke UniversityDurhamNorth Carolina
| | - Viral Panchal
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth Carolina
| | - Tiffany L. Bisanar
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth Carolina
| | - Donald D. Glower
- Cardiovascular & Thoracic Division, Department of SurgeryDuke University Medical CenterDurhamNorth Carolina
| | - John H. Alexander
- Duke Clinical Research Institute, Duke University Medical CenterDurhamNorth Carolina
| | - Roberto Cabeza
- Duke Institute for Brain Sciences, Duke UniversityDurhamNorth Carolina
- Duke Brain Imaging and Analysis Center, Duke UniversityDurhamNorth Carolina
- Center for Cognitive Neuroscience, Duke UniversityDurhamNorth Carolina
| | - Kathleen Welsh‐Bohmer
- Geriatric Behavioral Health Division, Department of Psychiatry & Behavioral SciencesDuke University Health SystemDurhamNorth Carolina
- Department of NeurologyDuke University Medical CenterDurhamNorth Carolina
| | - Mark F. Newman
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth Carolina
| | - Joseph P. Mathew
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth Carolina
| | | |
Collapse
|
49
|
Cortese GP, Olin A, O'Riordan K, Hullinger R, Burger C. Environmental enrichment improves hippocampal function in aged rats by enhancing learning and memory, LTP, and mGluR5-Homer1c activity. Neurobiol Aging 2017; 63:1-11. [PMID: 29207276 DOI: 10.1016/j.neurobiolaging.2017.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/20/2023]
Abstract
Previous studies from our laboratory have shown that environmental enrichment (EE) in young rats results in improved learning ability and enhanced metabotropic glutamate receptor-dependent long-term potentiation (mGluR-dependent LTP) resulting from sustained activation of p70S6 kinase. Here, we investigated whether 1-month EE is sufficient to improve hippocampus-dependent learning and memory and enhance hippocampal LTP in 23-24 month-old Fischer 344 male rats. Aged rats were housed in environmentally enriched, socially enriched, or standard housing conditions. We find that aged rats exposed to 1-month of EE demonstrate enhanced learning and memory relative to standard housed controls when tested in the Morris water maze and novel object recognition behavioral tasks. Furthermore, we find that environmentally enriched rats perform significantly better than socially enriched or standard housed rats in the radial-arm water maze and display enhanced mGluR5-dependent hippocampal LTP. Enhanced hippocampal function results from activity-dependent increases in the levels of mGluR5, Homer1c, and phospho-p70S6 kinase. These findings demonstrate that a short exposure of EE to aged rats can have significant effects on hippocampal function.
Collapse
Affiliation(s)
- Giuseppe P Cortese
- Department of Neurology, Medical Sciences Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew Olin
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth O'Riordan
- Department of Pharmacology & Therapeutics, Trinity College, Dublin, Ireland
| | - Rikki Hullinger
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinna Burger
- Department of Neurology, Medical Sciences Center, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
50
|
Xin X, Xin F, Chen X, Zhang Q, Li Y, Huo S, Chang C, Wang Q. Hypertonic saline for prevention of delirium in geriatric patients who underwent hip surgery. J Neuroinflammation 2017; 14:221. [PMID: 29137628 PMCID: PMC5686947 DOI: 10.1186/s12974-017-0999-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/08/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Postoperative delirium (POD) is a common disorder in the elderly patients, and neuroinflammation is the possible underlying mechanism. This study is designed to determine whether or not hypertonic saline (HS) pre-injection can alleviate POD in aged patients. METHODS This prospective study recruited 120 geriatric patients who underwent hip surgery. The patients were randomly divided into two groups: control group (NS group) and HS group. Patients in the NS group were pre-injected with 4 mL/kg isotonic saline, and those in the HS group were pre-injected with 4 mL/kg 7.5% HS. All 120 patients were then subjected to general anesthesia. Blood samples were extracted to detect the concentration of inflammatory factors, namely, IL-1β, IL-6, IL-10, and TNF-α, and the nerve injury factor S100β. Flow cytometry was used to detect the number of monocytes in peripheral venous blood and evaluate the relationship of inflammation to delirium. The nursing delirium screening scale (Nu-DESC) was used to determine cognitive function 1 to 3 days postoperatively. RESULTS Analysis using random-effect multivariable logistic regression indicated that HS administration before anesthesia was associated with a low risk of POD (odds ratio [OR], 0.13; 95% CI, 0.04 to 0.41; P = 0.001) and few CD14 + CD16+ monocytes (β = - 0.61; 95% CI, - 0.74 to - 0.48; P = 0.000) the following day. When the association between HS and delirium was controlled for CD14 + CD16+ monocytes, the effect size became nonsignificant (odds ratio [OR], 0.86; 95% CI, 0.14 to 5.33; P = 0.874). TNF-α was significantly associated with POD (odds ratio [OR], 1.10; 95% CI, 1.05 to 1.16; P = 0.000). However, IL-1β, IL-6, IL-10, and S100β were not significantly related to POD. CONCLUSION HS can alleviate POD in geriatric patients and may inhibit the secretion of inflammatory factors by monocytes.
Collapse
Affiliation(s)
- Xi Xin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Fei Xin
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin, 300350, People's Republic of China
| | - Xuguang Chen
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Qi Zhang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Shuping Huo
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Chongfu Chang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|