1
|
Kumar N, Kumar P, Reddy KS. Magical role of iron nanoparticles for enhancement of thermal efficiency and gene regulation of fish in response to multiple stresses. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109949. [PMID: 39389172 DOI: 10.1016/j.fsi.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The present study addresses the challenges of uncontrolled temperature and pollution in aquatic environments, with a focus on fish ability to tolerate high temperature. The investigation aimed to determine the role of iron nanoparticles (Fe-NPs) in enhancing the thermal tolerance of Pangasianodon hypophthalmus exposed to high-temperature stress, arsenic (As), and ammonia (NH3) toxicity. Fe-NPs were synthesized using green approaches, specifically from fish gill. The dietary Fe-NPs were formulated and supplemented at 10, 15, and 20 mg kg⁻1 of feed. Notably, Fe-NPs at 15 mg kg⁻1 diet significantly reduced the critical thermal minimum (CTmin) (14.44 ± 0.21 °C) and the lethal thermal minimum (LTmin) (13.46 ± 0.15 °C), compared to the control and other treatment groups. Conversely, when Fe-NPs at 15 mg kg⁻1 were supplemented with or without exposure to stressors (As + NH3+T), the critical thermal maximum (CTmax) increased to 47.59 ± 0.16 °C, and the lethal thermal maximum (LTmax) increased to 48.60 ± 0.37 °C, both significantly higher than the control and other groups. A strong correlation was observed between LTmin and CTmin (R2 = 0.90) and between CTmax and LTmax (R2 = 0.98). Furthermore, dietary Fe-NPs at 15 mg kg⁻1 significantly upregulated the expression of stress-related genes, including HSP70, iNOS, Caspase-3a, CYP450, MT, cat, sod, gpx, TNFα, IL, TLR, and Ig. The enhanced thermal tolerance (LTmin and LTmax) can be attributed to these gene regulations, suggesting the mechanistic involvement of Fe-NPs in improving thermal resilience. Overall, the findings demonstrate that dietary supplementation with Fe-NPs, particularly at 15 mg kg⁻1, improves thermal tolerance and stress response in P. hypophthalmus by enhancing gene expression and overall thermal efficiency under stressor conditions.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| |
Collapse
|
2
|
Okura GC, Bharadwaj AG, Waisman DM. Calreticulin-Enigmatic Discovery. Biomolecules 2024; 14:866. [PMID: 39062580 PMCID: PMC11275038 DOI: 10.3390/biom14070866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Calreticulin (CRT) is an intrinsically disordered multifunctional protein that plays essential roles intra-and extra-cellularly. The Michalak laboratory has proposed that CRT was initially identified in 1974 by the MacLennan laboratory as the high-affinity Ca2+-binding protein (HACBP) of the sarcoplasmic reticulin (SR). This widely accepted belief has been ingrained in the scientific literature but has never been rigorously tested. In our report, we have undertaken a comprehensive reexamination of this assumption by meticulously examining the majority of published studies that present a proteomic analysis of the SR. These analyses have utilized proteomic analysis of purified SR preparations or purified components of the SR, namely the longitudinal tubules and junctional terminal cisternae. These studies have consistently failed to detect the HACBP or CRT in skeletal muscle SR. We propose that the existence of the HACBP has failed the test of reproducibility and should be retired to the annals of antiquity. Therefore, the scientific dogma that the HACBP and CRT are identical proteins is a non sequitur.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
3
|
Kumar N, Thorat ST, Gunaware MA, Kumar P, Reddy KS. Unraveling gene regulation mechanisms in fish: insights into multistress responses and mitigation through iron nanoparticles. Front Immunol 2024; 15:1410150. [PMID: 38947331 PMCID: PMC11211354 DOI: 10.3389/fimmu.2024.1410150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
The recent trend of global warming poses a significant threat to ecosystems worldwide. This global climate change has also impacted the pollution levels in aquatic ecosystems, subsequently affecting human health. To address these issues, an experiment was conducted to investigate the mitigating effects of iron nanoparticles (Fe-NPs) on arsenic and ammonia toxicity as well as high temperature stress (As+NH3+T). Fe-NPs were biologically synthesized using fish waste and incorporated into feed formulations at 10, 15, and 20 mg kg-1 diet. A total of 12 treatments were designed in triplicate following a completely randomized design involving 540 fish. Fe-NPs at 15 mg kg-1 diet notably reduced the cortisol levels in fish exposed to multiple stressors. The gene expressions of HSP 70, DNA damage-inducible protein (DDIP), and DNA damage were upregulated by stressors (As+NH3+T) and downregulated by Fe-NPs. Apoptotic genes (Cas 3a and 3b) and detoxifying genes (CYP 450), metallothionein (MT), and inducible nitric oxide synthase (iNOS) were downregulated by Fe-NPs at 15 mg kg-1 diet in fish subjected to As+NH3+T stress. Immune-related genes such as tumor necrosis factor (TNFα), immunoglobulin (Ig), and interleukin (IL) were upregulated by Fe-NPs, indicating enhanced immunity in fish under As+NH3+T stress. Conversely, Toll-like receptor (TLR) expression was notably downregulated by Fe-NPs at 15 mg kg-1 diet in fish under As+NH3+T stress. Immunological attributes such as nitro blue tetrazolium chloride, total protein, albumin, globulin, A:G ratio, and myeloperoxidase (MPO) were improved by dietary Fe-NPs at 15 mg kg-1 diet in fish, regardless of stressors. The antioxidant genes (CAT, SOD, and GPx) were also strengthened by Fe-NPs in fish. Genes associated with growth performance, such as growth hormone regulator (GHR1 and GHRβ), growth hormone (GH), and insulin-like growth factor (IGF 1X and IGF 2X), were upregulated, enhancing fish growth under stress, while SMT and MYST were downregulated by Fe-NPs in the diet. Various growth performance indicators were improved by dietary Fe-NPs at 15 mg kg-1 diet. Notably, Fe-NPs also enhanced arsenic detoxification and reduced the cumulative mortality after a bacterial infection. In conclusion, this study highlights that dietary Fe-NPs can effectively mitigate arsenic and ammonia toxicity as well as high temperature stress by modulating gene expression in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- School of Edaphic Stress Management (SESM), ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | | | | | | | | |
Collapse
|
4
|
Moretti AIS, Baksheeva VE, Roman AY, De Bessa TC, Devred F, Kovacic H, Tsvetkov PO. Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase. Int J Mol Sci 2024; 25:2095. [PMID: 38396772 PMCID: PMC10889200 DOI: 10.3390/ijms25042095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The interplay between metal ion binding and the activity of thiol proteins, particularly within the protein disulfide isomerase family, remains an area of active investigation due to the critical role that these proteins play in many vital processes. This research investigates the interaction between recombinant human PDIA1 and zinc ions, focusing on the subsequent implications for PDIA1's conformational stability and enzymatic activity. Employing isothermal titration calorimetry and differential scanning calorimetry, we systematically compared the zinc binding capabilities of both oxidized and reduced forms of PDIA1 and assessed the structural consequences of this interaction. Our results demonstrate that PDIA1 can bind zinc both in reduced and oxidized states, but with significantly different stoichiometry and more pronounced conformational effects in the reduced form of PDIA1. Furthermore, zinc binding was observed to inhibit the catalytic activity of reduced-PDIA1, likely due to induced alterations in its conformation. These findings unveil a potential regulatory mechanism in PDIA1, wherein metal ion binding under reductive conditions modulates its activity. Our study highlights the potential role of zinc in regulating the catalytic function of PDIA1 through conformational modulation, suggesting a nuanced interplay between metal binding and protein stability in the broader context of cellular redox regulation.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory (LIM64), School of Medicine, Heart Institute (InCor), Cardiopneumology Department, University of São Paulo, Campus Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Viktoria E. Baksheeva
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Andrei Yu. Roman
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Tiphany Coralie De Bessa
- Vascular Biology Laboratory (LIM64), School of Medicine, Heart Institute (InCor), Cardiopneumology Department, University of São Paulo, Campus Sao Paulo, Sao Paulo 05403-000, Brazil
| | - François Devred
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Hervé Kovacic
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Philipp O. Tsvetkov
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| |
Collapse
|
5
|
Navarro-Gómez C, León-Mediavilla J, Küpper H, Rodríguez-Simón M, Paganelli-López A, Wen J, Burén S, Mysore KS, Bokhari SNH, Imperial J, Escudero V, González-Guerrero M. Nodule-specific Cu + -chaperone NCC1 is required for symbiotic nitrogen fixation in Medicago truncatula root nodules. THE NEW PHYTOLOGIST 2024; 241:793-810. [PMID: 37915139 DOI: 10.1111/nph.19360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Hendrik Küpper
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Department of Experimental Plant Biology, Faculty of Sciences, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Mario Rodríguez-Simón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Alba Paganelli-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Syed Nadeem Hussain Bokhari
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
6
|
Ponzar N, Pozzi N. Probing the conformational dynamics of thiol-isomerases using non-canonical amino acids and single-molecule FRET. Methods 2023; 214:8-17. [PMID: 37068599 PMCID: PMC10203983 DOI: 10.1016/j.ymeth.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Disulfide bonds drive protein correct folding, prevent protein aggregation, and stabilize three-dimensional structures of proteins and their assemblies. Dysregulation of this activity leads to several disorders, including cancer, neurodegeneration, and thrombosis. A family of 20+ enzymes, called thiol-isomerases (TIs), oversee this process in the endoplasmic reticulum of human cells to ensure efficacy and accuracy. While the biophysical and biochemical properties of cysteine residues are well-defined, our structural knowledge of how TIs select, interact and process their substrates remains poorly understood. How TIs structurally and functionally respond to changes in redox environment and other post-translational modifications remain unclear, too. We recently developed a workflow for site-specific incorporation of non-canonical amino acids into protein disulfide isomerase (PDI), the prototypical member of TIs. Combined with click chemistry, this strategy enabled us to perform single-molecule biophysical studies of PDI under various solution conditions. This paper details protocols and discusses challenges in performing these experiments. We expect this approach, combined with other emerging technologies in single-molecule biophysics and structural biology, to facilitate the exploration of the mechanisms by which TIs carry out their fascinating but poorly understood roles in humans, especially in the context of thrombosis.
Collapse
Affiliation(s)
- Nathan Ponzar
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
7
|
QTL Mapping and a Transcriptome Integrative Analysis Uncover the Candidate Genes That Control the Cold Tolerance of Maize Introgression Lines at the Seedling Stage. Int J Mol Sci 2023; 24:ijms24032629. [PMID: 36768951 PMCID: PMC9917090 DOI: 10.3390/ijms24032629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Chilling injury owing to low temperatures severely affects the growth and development of maize (Zea mays.L) seedlings during the early and late spring seasons. The existing maize germplasm is deficient in the resources required to improve maize's ability to tolerate cold injury. Therefore, it is crucial to introduce and identify excellent gene/QTLs that confer cold tolerance to maize for sustainable crop production. Wild relatives of maize, such as Z. perennis and Tripsacum dactyloides, are strongly tolerant to cold and can be used to improve the cold tolerance of maize. In a previous study, a genetic bridge among maize that utilized Z. perennis and T. dactyloides was created and used to obtain a highly cold-tolerant maize introgression line (MIL)-IB030 by backcross breeding. In this study, two candidate genes that control relative electrical conductivity were located on MIL-IB030 by forward genetics combined with a weighted gene co-expression network analysis. The results of the phenotypic, genotypic, gene expression, and functional verification suggest that two candidate genes positively regulate cold tolerance in MIL-IB030 and could be used to improve the cold tolerance of cultivated maize. This study provides a workable route to introduce and mine excellent genes/QTLs to improve the cold tolerance of maize and also lays a theoretical and practical foundation to improve cultivated maize against low-temperature stress.
Collapse
|
8
|
Andresen E, Flores-Sanchez IJ, Brückner D, Bokhari SNH, Falkenberg G, Küpper H. Sublethal and lethal Cd toxicity in soybean roots specifically affects the metabolome, Cd binding to proteins and cellular distribution of Cd. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130062. [PMID: 36183514 DOI: 10.1016/j.jhazmat.2022.130062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Soybean (Glycine max (L.) Merr.) plants were exposed to various Cd concentrations from background and low non-toxic (0.5-50 nM) via sublethally toxic (< 550 nM) to highly, ultimately lethally toxic (3 µM) concentrations. Plants were cultivated hydroponically for 10 weeks until pod development stage of the control plants. The threshold and mechanism of sublethal Cd toxicity was investigated by metabolomics and metalloproteomics (HPLC-ICP-MS) measuring metal binding to proteins in the harvested roots. Spatial distribution of Cd was revealed by µXRF-CT. Specific binding of Cd to proteins already at 50 nM Cd revealed the likely high-affinity protein binding targets in roots, identified by protein purification from natural abundance. This revealed allantoinase, aquaporins, peroxidases and protein disulfide isomerase as the most likely high-affinity targets of Cd binding. Cd was deposited in cortex cell vacuoles at sublethal and bound to the cell walls of the outer cortex and the vascular bundle at lethal Cd. Cd binding to proteins likely inhibits them, and possibly induces detoxification mechanisms, as verified by metabolomics: allantoic acid and allantoate increased due to sublethal Cd toxicity. Changes of the Cd binding pattern indicated a detoxification strategy at lower Cd, but saturated binding sites at higher Cd concentrations.
Collapse
Affiliation(s)
- Elisa Andresen
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic
| | - Isvett Josefina Flores-Sanchez
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
9
|
Cui JR, Bing XL, Tang YJ, Liu F, Ren L, Zhou JY, Liu HH, Wang MK, Hoffmann AA, Hong XY. A conserved protein disulfide isomerase enhances plant resistance against herbivores. PLANT PHYSIOLOGY 2023; 191:660-678. [PMID: 36269175 PMCID: PMC9806597 DOI: 10.1093/plphys/kiac489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/05/2022] [Indexed: 05/22/2023]
Abstract
Herbivore-associated molecular patterns (HAMPs) enable plants to recognize herbivores and may help plants adjust their defense responses. Here, we report on herbivore-induced changes in a protein disulfide isomerase (PDI) widely distributed across arthropods. PDI from the spider mite Tetranychus evansi (TePDI), a mesophyll-feeding agricultural pest worldwide, triggered immunity in multiple Solanaceae plants. TePDI-mediated cell death in Nicotiana benthamiana required the plant signaling proteins SGT1 (suppressor of the G2 allele of skp1) and HSP90 (heat shock protein 90), but was suppressed by spider mite effectors Te28 and Te84. Moreover, PDIs from phylogenetically distinct herbivorous and nonherbivorous arthropods triggered plant immunity. Finally, although PDI-induced plant defenses impaired the performance of spider mites on plants, RNAi experiments revealed that PDI genes are essential for the survival of mites and whiteflies. Our findings indicate that plants recognize evolutionarily conserved HAMPs to activate plant defense and resist pest damage, pointing to opportunities for broad-spectrum pest management.
Collapse
Affiliation(s)
- Jia-Rong Cui
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Li Bing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Jing Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lu Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Yi Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huan-Huan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng-Ke Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiao-Yue Hong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
10
|
Wen MH, Xie X, Huang PS, Yang K, Chen TY. Crossroads between membrane trafficking machinery and copper homeostasis in the nerve system. Open Biol 2021; 11:210128. [PMID: 34847776 PMCID: PMC8633785 DOI: 10.1098/rsob.210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Imbalanced copper homeostasis and perturbation of membrane trafficking are two common symptoms that have been associated with the pathogenesis of neurodegenerative and neurodevelopmental diseases. Accumulating evidence from biophysical, cellular and in vivo studies suggest that membrane trafficking orchestrates both copper homeostasis and neural functions-however, a systematic review of how copper homeostasis and membrane trafficking interplays in neurons remains lacking. Here, we summarize current knowledge of the general trafficking itineraries for copper transporters and highlight several critical membrane trafficking regulators in maintaining copper homeostasis. We discuss how membrane trafficking regulators may alter copper transporter distribution in different membrane compartments to regulate intracellular copper homeostasis. Using Parkinson's disease and MEDNIK as examples, we further elaborate how misregulated trafficking regulators may interplay parallelly or synergistically with copper dyshomeostasis in devastating pathogenesis in neurodegenerative diseases. Finally, we explore multiple unsolved questions and highlight the existing challenges to understand how copper homeostasis is modulated through membrane trafficking.
Collapse
Affiliation(s)
- Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Xihong Xie
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Karen Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
11
|
Lu Y, Yuan L, Zhou Z, Wang M, Wang X, Zhang S, Sun Q. The thiol-disulfide exchange activity of AtPDI1 is involved in the response to abiotic stresses. BMC PLANT BIOLOGY 2021; 21:557. [PMID: 34814838 PMCID: PMC8609882 DOI: 10.1186/s12870-021-03325-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Arabidopsis protein disulfide isomerase 1 (AtPDI1) has been demonstrated to have disulfide isomerase activity and to be involved in the stress response. However, whether the anti-stress function is directly related to the activities of thiol-disulfide exchange remains to be elucidated. RESULTS In the present study, encoding sequences of AtPDI1 of wild-type (WT) and double-cysteine-mutants were transformed into an AtPDI1 knockdown Arabidopsis line (pdi), and homozygous transgenic plants named pdi-AtPDI1, pdi-AtPDI1m1 and pdi-AtPDI1m2 were obtained. Compared with the WT and pdi-AtPDI1, the respective germination ratios of pdi-AtPDI1m1 and pdi-AtPDI1m2 were significantly lower under abiotic stresses and exogenous ABA treatment, whereas the highest germination rate was obtained with AtPDI1 overexpression in the WT (WT- AtPDI1). The root length among different lines was consistent with the germination rate; a higher germination rate was observed with a longer root length. When seedlings were treated with salt, drought, cold and high temperature stresses, pdi-AtPDI1m1, pdi-AtPDI1m2 and pdi displayed lower survival rates than WT and AtPDI1 overexpression plants. The transcriptional levels of ABA-responsive genes and genes encoding ROS-quenching enzymes were lower in pdi-AtPDI1m1 and pdi-AtPDI1m2 than in pdi-AtPDI1. CONCLUSION Taken together, these results clearly suggest that the anti-stress function of AtPDI1 is directly related to the activity of disulfide isomerase.
Collapse
Affiliation(s)
- Ying Lu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
- Institute of Shandong River Wetlands, Jinan, Shandong, 271100, People's Republic of China
| | - Li Yuan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Zhou Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Mengyu Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shizhong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Qinghua Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
12
|
Biochemical pathways of copper complexes: progress over the past 5 years. Drug Discov Today 2021; 26:1086-1096. [PMID: 33486113 DOI: 10.1016/j.drudis.2021.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Copper is an essential trace element with vital roles in many metalloenzymes; it is also prominent among nonplatinum anticancer metallodrugs. Copper-based complexes are endogenously biocompatible, tenfold more potent than cisplatin, exhibit fewer adverse effects, and have a wide therapeutic window. In cancer biology, copper acts as an antitumor agent by inhibiting cancer via multiple pathways. Herein, we present an overview of advances in copper complexes as 'lead' antitumor drug candidates, and in understanding their biochemical and pharmacological pathways over the past 5 years. This review will help to develop more efficacious therapeutics to improve clinical outcomes for cancer treatments.
Collapse
|
13
|
Li J, Nadeem M, Chen L, Wang M, Wan M, Qiu L, Wang X. Differential proteomic analysis of soybean anthers by iTRAQ under high-temperature stress. J Proteomics 2020; 229:103968. [PMID: 32911126 DOI: 10.1016/j.jprot.2020.103968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
High-temperature has severe impacts on the functionality and development of soybean male reproductive organs. However, the molecular mechanism of thermo-tolerance in soybean remains unclear. In this study, a differential proteomic analysis was conducted between the anthers of heat-tolerant (JD21) and heat-sensitive (HD14) cultivars using an iTRAQ based approach. In total, 371, 479, and 417 differentially abundant proteins were identified between HD14 anthers treated with high-temperature stress vs HD14 anthers in the natural field conditions, JD21 anthers treated with high-temperature stress vs JD21 anthers in the natural field conditions, and HD14 vs JD21 anthers treated with high-temperature stress, respectively. The differentially abundant proteins associated with thermo-tolerance were predominantly involved in carbohydrate and energy metabolism, protein synthesis and degradation, nitrogen assimilation, and ROS detoxification. Sixteen common differentially abundant proteins were involved in known protein-protein interaction networks in three comparisons associated with heat, which may strongly influence anther growth and development. The qRT-PCR analysis validated the reliability of the iTRAQ results. In conclusion, the heat-tolerant cultivar performed better under stress than heat-sensitive cultivar through modulation of HSP family proteins, pectinesterase, profilin, S-adenosylmethionine synthase, peroxidase, GST, peptidylprolyl isomerase, and disulfide-isomerase. The results provide novel insight into the mechanism of high-temperature stress response of soybean. SIGNIFICANCE: In recent years, with the high temperature (HT) stress brought by climate change frequently occurs at anthesis and negatively affects soybean productivity. The molecular mechanism underlying the response of soybean anthers to HT is a relatively complex process and thus difficult to elucidate; however, it is possible to identify differentially expressed genes or proteins between heat-sensitive and heat-tolerant cultivars under HT stress. The potential candidate genes or proteins may then be utilized in elucidating the molecular mechanism underlying the response of soybean to HT stress, as well as provide genetic resource for the improvement of heat-tolerant characteristics in soybean. In present study, quantitative and qualitative proteomic changes occurring in anthers were compared between the heat-tolerant (JD21) and heat-sensitive (HD14) cultivars under HT stress using iTRAQ-based proteomics strategy. Our results provide new insight into translational alterations in HT-resistant and HT-sensitive soybean cultivars under HT stress, which helps to address the underlying molecular mechanism of soybean in response to HT stress.
Collapse
Affiliation(s)
- Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Linying Chen
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Minghua Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Mingyue Wan
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Gupta S, Mishra SK, Misra S, Pandey V, Agrawal L, Nautiyal CS, Chauhan PS. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:88-102. [PMID: 32203884 DOI: 10.1016/j.plaphy.2020.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 05/02/2023]
Abstract
Global warming has reached an alarming situation, which led to a dangerous climatic condition. The irregular rainfalls and land degradation are the significant consequences of these climatic changes causing a decrease in crop productivity. The effect of drought and its tolerance mechanism, a comparative roots proteomic analysis of chickpea seedlings grown under hydroponic conditions for three weeks, performed at different time points using 2-Dimensional gel electrophoresis (2-DE). After PD-Quest analysis, 110 differentially expressed spots subjected to MALDI-TOF/TOF and 75 spots identified with a significant score. These identified proteins classified into eight categories based on their functional annotation. Proteins involved in carbon and energy metabolism comprised 23% of total identified proteins include mainly glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase, transaldolase, and isocitrate dehydrogenase. Proteins related to stress response (heat-shock protein, CS domain protein, and chitinase 2-like) contributed 16% of total protein spots followed by 13% involved in protein metabolism (adenosine kinase 2, and protein disulfide isomerase). ROS metabolism contributed 13% (glutathione S-transferase, ascorbate peroxidase, and thioredoxin), and 9% for signal transduction (actin-101, and 14-3-3-like protein B). Five percent protein identified for secondary metabolism (cinnamoyl-CoA reductase-1 and chalcone-flavononeisomerase 2) and 7% for nitrogen (N) and amino acid metabolism (glutamine synthetase and homocysteine methyltransferase). The abundance of some proteins validated by using Western blotting and Real-Time-PCR. The detailed information for drought-responsive root protein(s) through comparative proteomics analysis can be utilized in the future for genetic improvement programs to develop drought-tolerant chickpea lines.
Collapse
Affiliation(s)
- Swati Gupta
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashank Kumar Mishra
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vivek Pandey
- Plant Ecology and Environmental Sciences, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Lalit Agrawal
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Agriculture and Allied Sciences, Doon Business School, Dehradun, 248001, India.
| | - Chandra Shekhar Nautiyal
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| | - Puneet Singh Chauhan
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
15
|
Carcelli M, Tegoni M, Bartoli J, Marzano C, Pelosi G, Salvalaio M, Rogolino D, Gandin V. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur J Med Chem 2020; 194:112266. [PMID: 32248006 DOI: 10.1016/j.ejmech.2020.112266] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
Certain metal complexes can have a great antitumor activity, as the use of cisplatin in therapy has been demonstrating for the past fifty years. Copper complexes, in particular, have attracted much attention as an example of anticancer compounds based on an endogenous metal. In this paper we present the synthesis and the activity of a series of copper(II) complexes with variously substituted salicylaldehyde thiosemicarbazone ligands. The in vitro activity of both ligands and copper complexes was assessed on a panel of cell lines (HCT-15, LoVo and LoVo oxaliplatin resistant colon carcinoma, A375 melanoma, BxPC3 and PSN1 pancreatic adenocarcinoma, BCPAP thyroid carcinoma, 2008 ovarian carcinoma, HEK293 non-transformed embryonic kidney), highlighting remarkable activity of the metal complexes, in some cases in the low nanomolar range. The copper(II) complexes were also screened, with good results, against 3D spheroids of colon (HCT-15) and pancreatic (PSN1) cancer cells. Detailed investigations on the mechanism of action of the copper(II) complexes are also reported: they are able to potently inhibit Protein Disulfide Isomerase, a copper-binding protein, that is recently emerging as a new therapeutic target for cancer treatment. Good preliminary results obtained in C57BL mice indicate that this series of metal-based compounds could be a very promising weapon in the fight against cancer.
Collapse
Affiliation(s)
- Mauro Carcelli
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Jennifer Bartoli
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Giorgio Pelosi
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Marika Salvalaio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Dominga Rogolino
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy.
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy.
| |
Collapse
|
16
|
Huang WL, Wu FL, Huang HY, Huang WT, Deng CL, Yang LT, Huang ZR, Chen LS. Excess Copper-Induced Alterations of Protein Profiles and Related Physiological Parameters in Citrus Leaves. PLANTS (BASEL, SWITZERLAND) 2020; 9:E291. [PMID: 32121140 PMCID: PMC7154894 DOI: 10.3390/plants9030291] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
This present study examined excess copper (Cu) effects on seedling growth, leaf Cu concentration, gas exchange, and protein profiles identified by a two-dimensional electrophoresis (2-DE) based mass spectrometry (MS) approach after Citrus sinensis and Citrus grandis seedlings were treated for six months with 0.5 (control), 200, 300, or 400 μM CuCl2. Forty-one and 37 differentially abundant protein (DAP) spots were identified in Cu-treated C. grandis and C. sinensis leaves, respectively, including some novel DAPs that were not reported in leaves and/or roots. Most of these DAPs were identified only in C. grandis or C. sinensis leaves. More DAPs increased in abundances than DAPs decreased in abundances were observed in Cu-treated C. grandis leaves, but the opposite was true in Cu-treated C. sinensis leaves. Over 50% of DAPs were associated with photosynthesis, carbohydrate, and energy metabolism. Cu-toxicity-induced reduction in leaf CO2 assimilation might be caused by decreased abundances of proteins related to photosynthetic electron transport chain (PETC) and CO2 assimilation. Cu-effects on PETC were more pronounced in C. sinensis leaves than in C. grandis leaves. DAPs related to antioxidation and detoxification, protein folding and assembly (viz., chaperones and folding catalysts), and signal transduction might be involved in Citrus Cu-toxicity and Cu-tolerance.
Collapse
Affiliation(s)
- Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Feng-Lin Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Hui-Yu Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Wei-Tao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Zeng-Rong Huang
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
18
|
Hager S, Korbula K, Bielec B, Grusch M, Pirker C, Schosserer M, Liendl L, Lang M, Grillari J, Nowikovsky K, Pape VFS, Mohr T, Szakács G, Keppler BK, Berger W, Kowol CR, Heffeter P. The thiosemicarbazone Me 2NNMe 2 induces paraptosis by disrupting the ER thiol redox homeostasis based on protein disulfide isomerase inhibition. Cell Death Dis 2018; 9:1052. [PMID: 30323190 PMCID: PMC6189190 DOI: 10.1038/s41419-018-1102-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/04/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022]
Abstract
Due to their high biological activity, thiosemicarbazones have been developed for treatment of diverse diseases, including cancer, resulting in multiple clinical trials especially of the lead compound Triapine. During the last years, a novel subclass of anticancer thiosemicarbazones has attracted substantial interest based on their enhanced cytotoxic activity. Increasing evidence suggests that the double-dimethylated Triapine derivative Me2NNMe2 differs from Triapine not only in its efficacy but also in its mode of action. Here we show that Me2NNMe2- (but not Triapine)-treated cancer cells exhibit all hallmarks of paraptotic cell death including, besides the appearance of endoplasmic reticulum (ER)-derived vesicles, also mitochondrial swelling and caspase-independent cell death via the MAPK signaling pathway. Subsequently, we uncover that the copper complex of Me2NNMe2 (a supposed intracellular metabolite) inhibits the ER-resident protein disulfide isomerase, resulting in a specific form of ER stress based on disruption of the Ca2+ and ER thiol redox homeostasis. Our findings indicate that compounds like Me2NNMe2 are of interest especially for the treatment of apoptosis-resistant cancer and provide new insights into mechanisms underlying drug-induced paraptosis.
Collapse
Affiliation(s)
- Sonja Hager
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", Vienna, Austria
| | - Katharina Korbula
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", Vienna, Austria
| | - Björn Bielec
- Research Cluster "Translational Cancer Therapy Research", Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Vienna, Austria
| | - Lisa Liendl
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Vienna, Austria
| | - Magdalena Lang
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Muthgasse 18, A-1190, Vienna, Austria.,Evercyte GmbH, Muthgasse 18, A-1190, Vienna, Austria
| | - Karin Nowikovsky
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria
| | - Veronika F S Pape
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117, Budapest, Hungary
| | - Thomas Mohr
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Science Consult DI Thomas Mohr KG, Enzianweg 10a, A-2353, Guntramsdorf, Austria
| | - Gergely Szakács
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117, Budapest, Hungary
| | - Bernhard K Keppler
- Research Cluster "Translational Cancer Therapy Research", Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", Vienna, Austria
| | - Christian R Kowol
- Research Cluster "Translational Cancer Therapy Research", Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria. .,Research Cluster "Translational Cancer Therapy Research", Vienna, Austria.
| |
Collapse
|
19
|
Li LJ, Lu XC, Ma HY, Lyu DG. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata. JOURNAL OF PLANT RESEARCH 2018; 131:865-878. [PMID: 29855747 DOI: 10.1007/s10265-018-1045-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/10/2018] [Indexed: 05/16/2023]
Abstract
Soil temperature is known to affect plant growth and productivity. In this study we found that low root-zone temperature (LRT) inhibited the growth of apple (Malus baccata Borkh.) seedlings. To elucidate the molecular mechanism of LRT response, we performed comparative proteome analysis of the apple roots under LRT for 6 days. Total proteins of roots were extracted and separated by two-dimensional gel electrophoresis (2-DE) and 29 differentially accumulated proteins were successfully identified by MALDI-TOF/TOF mass spectrometry. They were involved in protein transport/processing/degradation (21%), glycometabolism (20%), response to stress (14%), oxidoreductase activity (14%), protein binding (7%), RNA metabolism (7%), amino acid biosynthesis (3%) and others (14%). The results revealed that LRT inhibited glycometabolism and RNA metabolism. The up-regulated proteins which were associated with oxidoreductase activity, protein metabolism and defense response, might be involved in protection mechanisms against LRT stress in the apple seedlings. Subsequently, 8 proteins were selected for the mRNA quantification analysis, and we found 6 of them were consistently regulated between protein and mRNA levels. In addition, the enzyme activities in ascorbate-glutathione (AsA-GSH) cycle were determined, and APX activity was increased and GR activity was decreased under LRT, in consistent with the protein levels. This study provides new insights into the molecular mechanisms of M. baccata in responding to LRT.
Collapse
Affiliation(s)
- Li-Jie Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao-Chen Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huai-Yu Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China.
| | - De-Guo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
20
|
Zhang Z, Liu X, Li R, Yuan L, Dai Y, Wang X. Identification and Functional Analysis of a Protein Disulfide Isomerase ( AtPDI1) in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:913. [PMID: 30073003 PMCID: PMC6060501 DOI: 10.3389/fpls.2018.00913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/08/2018] [Indexed: 05/30/2023]
Abstract
Protein disulfide isomerase (PDI) catalyzes the conversion of thiol-disulfide and plays an important role in various physiological events in animals. A PDI (OaPDI) from a tropical plant was detailed studied and it was found to be involved in response of biotic stress (Gruber et al., 2007). However, the activities of PDI related to physiological functions in plants are poorly understood. In the present study, a homolog of human PDI in Arabidopsis (AtPDI1), encoded by the gene (At3g54960), was characterized. The recombinant AtPDI1 protein had disulfide isomerase activity in vitro and two pairs of conservative cysteines in catalytic domains play a crucial role in the PDI activities. Expression of AtPDI1 in Escherichia coli significantly enhanced stress tolerance of cells and the mutations of critical cysteines almost lose this function. In plants, AtPDI1 was strongly induced by abiotic stresses and exogenous abscisic acid. An ArabidopsisAtPDI1 knockdown mutant (pdi1) and overexpression lines of transgenic plants obtained by this investigation were used to further examine the function of AtPDI1. The mutant line was more sensitive to stresses than the wild-type, while overexpressing AtPDI1 increased tolerance of seedlings to abiotic stresses, with a higher germination ratio and longer length of roots than the wild-type. Our results suggested AtPDI1 played roles in anti-stresses in Arabidopsis, which relate to the activities of PDI.
Collapse
|
21
|
Youneszadeh-Fashalami M, Salati AP, Keyvanshokooh S. Comparison of proteomic profiles in the ovary of Sterlet sturgeon (Acipenser ruthenus) during vitellogenic stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:23-29. [PMID: 29738886 DOI: 10.1016/j.cbd.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 11/29/2022]
Abstract
One of the challenges of sturgeon aquaculture is that sturgeon takes an extended amount of time to reach sexual maturity. The pattern of the protein expression in relation to the late maturity of sturgeon can help to better understand changes in sexual maturity. 17β-estradiol (E2), testosterone (T) and vitellogenin (Vtg) levels were examined at all stages of sexual maturation in Sterlet sturgeon (Acipenser ruthenus). Two-dimensional gel electrophoresis and mass spectrometry analysis were used to show the pattern of the ovarian proteins. The T levels increased from the previtellogenic to the postvitellogenic stages (P < 0.05) and Vtg showed a decremental pattern in pre- and postvitellogenic, and atresia (not significantly). The analysis showed 900 protein spots, 19 of which were successfully identified and had significant differences between the previtellogenic and the vitellogenic groups (P < 0.05). Among the identified proteins, 40% involved in cell defense (heat shock protein, Glutathione peroxidase, natural killer enhancing factor, peroxiredoxin-2), 30% in transcription and translation (constitutive photomorphogenesis 9 and Ybx2), 20% in metabolism and energy production (triose-phosphate isomerase (TPI)) and 10% in transport (glycolipid transfer protein). In the vitellogenic stage, the proteins were related to metabolism and energy production (TPI, ES1, creatin kinase, enolase, nucleoside diphosphate kinase, 50%), cell defense (thioredoxin and dislophid isomerase, 20%) and transport (fatty acid binding protein, 10%). Our findings show changes in protein expression pattern from cell defense to metabolism during egg development.
Collapse
Affiliation(s)
- Mohammad Youneszadeh-Fashalami
- Department of Fisheries, Faculty of marine Natural Resources, Khorramshahr University of Marine Science and Technology, Iran; South Iranian Aquaculture Research Center, Ahwaz, Iran
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of marine Natural Resources, Khorramshahr University of Marine Science and Technology, Iran.
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of marine Natural Resources, Khorramshahr University of Marine Science and Technology, Iran
| |
Collapse
|
22
|
Characterization of mercury-binding proteins in human neuroblastoma SK-N-SH cells with immobilized metal affinity chromatography. Talanta 2017; 178:811-817. [PMID: 29136899 DOI: 10.1016/j.talanta.2017.10.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022]
Abstract
Metal-binding proteins play important roles in biological functions of metals. However, only very limited mercury-binding proteins with high abundance were characterized in cells or organisms. Characterization of mercury-binding proteins in proteome-wide is important for elucidating mechanisms of mercury toxicity comprehensively. In this study, a method based on immobilized mercury ion affinity chromatography was developed for identification of putative mercury-binding proteins. The method was then successfully applied to profile mercury-binding proteins in human neuroblastoma SK-N-SH cells. In total, 38 proteins were identified as mercury-binding proteins, in which most of them were uncharacterized to associate with mercury in cells. The identified mercury-binding proteins did not show obvious relevance to protein abundance and were mainly involved in protein processing in endoplasmic reticulum, protein folding, and cytoskeleton organization. The newly built metalloproteomic approach provided valuable information on the possible molecular mechanisms and protein candidates for mercury transport and toxicity.
Collapse
|
23
|
Rupp JC, Locatelli M, Grieser A, Ramos A, Campbell PJ, Yi H, Steel J, Burkhead JL, Bortz E. Host Cell Copper Transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol J 2017; 14:11. [PMID: 28115001 PMCID: PMC5259989 DOI: 10.1186/s12985-016-0671-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The essential role of copper in eukaryotic cellular physiology is known, but has not been recognized as important in the context of influenza A virus infection. In this study, we investigated the effect of cellular copper on influenza A virus replication. METHODS Influenza A/WSN/33 (H1N1) virus growth and macromolecule syntheses were assessed in cultured human lung cells (A549) where the copper concentration of the growth medium was modified, or expression of host genes involved in copper homeostasis was targeted by RNA interference. RESULTS Exogenously increasing copper concentration, or chelating copper, resulted in moderate defects in viral growth. Nucleoprotein (NP) localization, neuraminidase activity assays and transmission electron microscopy did not reveal significant defects in virion assembly, morphology or release under these conditions. However, RNAi knockdown of the high-affinity copper importer CTR1 resulted in significant viral growth defects (7.3-fold reduced titer at 24 hours post-infection, p = 0.04). Knockdown of CTR1 or the trans-Golgi copper transporter ATP7A significantly reduced polymerase activity in a minigenome assay. Both copper transporters were required for authentic viral RNA synthesis and NP and matrix (M1) protein accumulation in the infected cell. CONCLUSIONS These results demonstrate that intracellular copper regulates the influenza virus life cycle, with potentially distinct mechanisms in specific cellular compartments. These observations provide a new avenue for drug development and studies of influenza virus pathogenesis.
Collapse
Affiliation(s)
- Jonathan C. Rupp
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| | - Manon Locatelli
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
- Present address: Institute Albert Bonniot – INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Alexis Grieser
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| | - Andrea Ramos
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| | - Patricia J. Campbell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Hong Yi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia USA
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Jason L. Burkhead
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| |
Collapse
|
24
|
Schneider T, Persson DP, Husted S, Schellenberg M, Gehrig P, Lee Y, Martinoia E, Schjoerring JK, Meyer S. A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:131-42. [PMID: 22974502 DOI: 10.1111/tpj.12022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 05/22/2023]
Abstract
Zinc (Zn) is an essential trace element in all living organisms, but is toxic in excess. Several plant species are able to accumulate Zn at extraordinarily high concentrations in the leaf epidermis without showing any toxicity symptoms. However, the molecular mechanisms of this phenomenon are still poorly understood. A state-of-the-art quantitative 2D liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics approach was used to investigate the abundance of proteins involved in Zn hyperaccumulation in leaf epidermal and mesophyll tissues of Noccaea caerulescens. Furthermore, the Zn speciation in planta was analyzed by a size-exclusion chromatography/inductively coupled plasma mass spectrometer (SEC-ICP-MS) method, in order to identify the Zn-binding ligands and mechanisms responsible for Zn hyperaccumulation. Epidermal cells have an increased capability to cope with the oxidative stress that results from excess Zn, as indicated by a higher abundance of glutathione S-transferase proteins. A Zn importer of the ZIP family was more abundant in the epidermal tissue than in the mesophyll tissue, but the vacuolar Zn transporter MTP1 was equally distributed. Almost all of the Zn located in the mesophyll was stored as Zn-nicotianamine complexes. In contrast, a much lower proportion of the Zn was found as Zn-nicotianamine complexes in the epidermis. However, these cells have higher concentrations of malate and citrate, and these organic acids are probably responsible for complexation of most epidermal Zn. Here we provide evidence for a cell type-specific adaptation to excess Zn conditions and an increased ability to transport Zn into the epidermal vacuoles.
Collapse
Affiliation(s)
- Thomas Schneider
- Institute of Plant Biology, Department of Molecular Plant Physiology, University of Zurich, Zollikerstraße 107, 8008, Zurich, Switzerland
| | - Daniel Pergament Persson
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Søren Husted
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Maja Schellenberg
- Institute of Plant Biology, Department of Molecular Plant Physiology, University of Zurich, Zollikerstraße 107, 8008, Zurich, Switzerland
| | - Peter Gehrig
- Functional Genomics Center, University and ETH Zurich, Winterthurerstraße 190, 8057, Zurich, Switzerland
| | - Youngsook Lee
- Postech-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Enrico Martinoia
- Institute of Plant Biology, Department of Molecular Plant Physiology, University of Zurich, Zollikerstraße 107, 8008, Zurich, Switzerland
- Postech-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Jan K Schjoerring
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Stefan Meyer
- Institute of Plant Biology, Department of Molecular Plant Physiology, University of Zurich, Zollikerstraße 107, 8008, Zurich, Switzerland
| |
Collapse
|
25
|
Chen Z, Pan Y, Wang S, Ding Y, Yang W, Zhu C. Overexpression of a protein disulfide isomerase-like protein from Methanothermobacter thermoautotrophicum enhances mercury tolerance in transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:10-20. [PMID: 23116667 DOI: 10.1016/j.plantsci.2012.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/28/2012] [Accepted: 08/03/2012] [Indexed: 05/07/2023]
Abstract
MTH1745, from thermophilic archaea Methanothermobacter thermoautotrophicum, is a protein disulfide isomerase-like protein (PDIL) with a chaperone function and disulfide isomerase activity. Mercuric cations have a high affinity for sulfhydryl groups and consequently inhibit plant growth. Disulfide compounds (e.g., copper-zinc superoxide dismutase, Cu/Zn SOD) and sulfhydryl compounds (e.g., glutathione, phytochelatins, and metallothioneins) play important roles in mercury (Hg) response. To study the relationship between Hg detoxification and PDILs, we overexpressed MTH1745 in Oryza sativa L. cv. Nipponbare by Agrobacterium-mediated transformation. The transgenic rice seedlings displayed Hg tolerance with obvious phenotypes and more effective photosynthesis compared to wild-type plants. Furthermore, lower levels of superoxide anion radicals, hydrogen peroxide, and malondialdehyde were observed in leaves or roots of transgenic plants. Antioxidant enzyme activities of superoxide dismutase and peroxidase were notably higher in transgenic seedlings under different concentrations of mercuric chloride. Moreover, increased content of non-protein thiols, reduced glutathione (GSH), and GSH/GSSG (GSSG, oxidized glutathione) ratio were also observed in the detoxification of Hg. These results indicated that heterologous expression of a PDIL from extremophiles in rice could protect the synthesis, increase stability of proteins, and enhance Hg tolerance in rice.
Collapse
Affiliation(s)
- Zhen Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Laurindo FRM, Pescatore LA, Fernandes DDC. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic Biol Med 2012; 52:1954-69. [PMID: 22401853 DOI: 10.1016/j.freeradbiomed.2012.02.037] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, 05403-000 São Paulo, Brazil.
| | | | | |
Collapse
|
27
|
Roberts EA. Using metalloproteomics to investigate the cellular physiology of copper in hepatocytes. Metallomics 2012; 4:633-40. [DOI: 10.1039/c2mt20019h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Sheng Y, Han GQ. Possibility of differentiation of hematopoietic stem cells into liver cells. Shijie Huaren Xiaohua Zazhi 2011; 19:925-929. [DOI: 10.11569/wcjd.v19.i9.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived hematopoietic stem cells have the potential to undergo multilineage differentiation. Recent studies have shown that, in a given microenvironment, hematopoietic stem cells can differentiate into liver cells. However, some researchers hold a dissenting view. This review discusses the possibility of differentiation of hematopoietic stem cells into liver cells.
Collapse
|
29
|
Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A 2010; 107:8818-23. [PMID: 20421470 DOI: 10.1073/pnas.0913533107] [Citation(s) in RCA: 542] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus "Nitrosopumilus maritimus" strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea. Here we report the 1,645,259-bp closed genome of strain SCM1, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria. Consistent with in situ isotopic studies of marine archaea, the genome sequence indicates N. maritimus grows autotrophically using a variant of the 3-hydroxypropionate/4-hydroxybutryrate pathway for carbon assimilation, while maintaining limited capacity for assimilation of organic carbon. This unique instance of archaeal biosynthesis of the osmoprotectant ectoine and an unprecedented enrichment of multicopper oxidases, thioredoxin-like proteins, and transcriptional regulators points to an organism responsive to environmental cues and adapted to handling reactive copper and nitrogen species that likely derive from its distinctive biochemistry. The conservation of N. maritimus gene content and organization within marine metagenomes indicates that the unique physiology of these specialized oligophiles may play a significant role in the biogeochemical cycles of carbon and nitrogen.
Collapse
|
30
|
Vargas-Albores F, Martínez-Martínez A, Aguilar-Campos J, Jiménez-Vega F. The expression of protein disulfide isomerase from Litopenaeus vannamei hemocytes is regulated by bacterial inoculation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:141-6. [DOI: 10.1016/j.cbd.2009.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
|
31
|
Roberts EA, Sarkar B. Liver as a key organ in the supply, storage, and excretion of copper. Am J Clin Nutr 2008; 88:851S-4S. [PMID: 18779307 DOI: 10.1093/ajcn/88.3.851s] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The liver plays an important role in the disposition of copper. Most dietary copper passes through the liver where it can be used for protein and energy production or excreted through the biliary route. Because copper is a prooxidant, its intracellular handling is tightly managed. In Wilson disease, in which synthesis of ceruloplasmin and biliary excretion of copper are defective, copper accumulates in the liver and leads to progressive liver damage. The features of hepatic Wilson disease are highly variable. The spectrum of liver disease includes mild inflammation, fatty liver, an autoimmune disorder, and cirrhosis. Wilson disease thus resembles drug hepatotoxicity, and indeed it can be regarded as a prototypic example of endogenous hepatotoxicity. Biomarkers developed for detecting drug hepatotoxicity may be relevant to Wilson disease. Biomarkers developed through metalloproteomics, which for copper seeks to define a set of proteins that have copper-binding capacity, or through genomic studies may also be relevant to Wilson disease and other disorders of copper handling, whether copper is deficient or overloaded.
Collapse
Affiliation(s)
- Eve A Roberts
- Genetics and Genome Biology Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.
| | | |
Collapse
|
32
|
Park SJ, Jung YS, Kim JS, Seo MD, Lee BJ. Structural insight into the distinct properties of copper transport by the Helicobacter pylori CopP protein. Proteins 2008; 71:1007-19. [PMID: 18214986 DOI: 10.1002/prot.21957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori CopP (HpCopP) is a putative copper binding regulatory protein composed of 66 amino acid residues. The small HpCopP protein is homologous to CopZ, encoded by the E. hirae and B. subtilis cop operons. To clarify the role of HpCopP in copper metabolism in H. pylori, we studied the structural and copper binding characteristics by NMR spectroscopy. Based on the resonance assignments, the tertiary structure of HpCopP was determined. Unlike the betaalphabetabetaalphabeta fold of the homologous CopZ, HpCopP adopts the betaalphabetabetaalpha fold. The superposition with structures of other bacterial copper binding proteins showed that the global structure of HpCopP follows the general topology of the family, regardless of absence of the C-terminal beta-strand. The Cu(I) binding property of HpCopP was well conserved like CopZs: the structural changes due to Cu(I) and Ag(I) bindings were primarily restricted to the metal binding motif (CXXC motif). On the other hand, the Cu(II) binding property of CopP was different with that of CopZ: in the absence of reducing agent, Cu(II) ion oxidized a mutant HpCopP, resulting in disulfide bond formation in the CXXC motif. The Cu(II) ion binding property was evaluated using the mutant HpCopP, in which two amino acids were artificially introduced at the C-terminus, since the reduced state of the CXXC motif was more stabile in the mutant HpCopP without a reducing agent. Here, the structure and copper binding property of HpCopP are discussed in detail.
Collapse
Affiliation(s)
- Sung Jean Park
- National Laboratory of Membrane Protein Structure, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
33
|
Talke IN, Hanikenne M, Krämer U. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. PLANT PHYSIOLOGY 2006; 142:148-67. [PMID: 16844841 PMCID: PMC1557598 DOI: 10.1104/pp.105.076232] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 07/04/2006] [Indexed: 05/10/2023]
Abstract
The metal hyperaccumulator Arabidopsis halleri exhibits naturally selected zinc (Zn) and cadmium (Cd) hypertolerance and accumulates extraordinarily high Zn concentrations in its leaves. With these extreme physiological traits, A. halleri phylogenetically belongs to the sister clade of Arabidopsis thaliana. Using a combination of genome-wide cross species microarray analysis and real-time reverse transcription-PCR, a set of candidate genes is identified for Zn hyperaccumulation, Zn and Cd hypertolerance, and the adjustment of micronutrient homeostasis in A. halleri. Eighteen putative metal homeostasis genes are newly identified to be more highly expressed in A. halleri than in A. thaliana, and 11 previously identified candidate genes are confirmed. The encoded proteins include HMA4, known to contribute to root-shoot transport of Zn in A. thaliana. Expression of either AtHMA4 or AhHMA4 confers cellular Zn and Cd tolerance to yeast (Saccharomyces cerevisiae). Among further newly implicated proteins are IRT3 and ZIP10, which have been proposed to contribute to cytoplasmic Zn influx, and FRD3 required for iron partitioning in A. thaliana. In A. halleri, the presence of more than a single genomic copy is a hallmark of several highly expressed candidate genes with possible roles in metal hyperaccumulation and metal hypertolerance. Both A. halleri and A. thaliana exert tight regulatory control over Zn homeostasis at the transcript level. Zn hyperaccumulation in A. halleri involves enhanced partitioning of Zn from roots into shoots. The transcriptional regulation of marker genes suggests that in the steady state, A. halleri roots, but not the shoots, act as physiologically Zn deficient under conditions of moderate Zn supply.
Collapse
Affiliation(s)
- Ina N Talke
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
34
|
Kulkarni PP, She YM, Smith SD, Roberts EA, Sarkar B. Proteomics of Metal Transport and Metal-Associated Diseases. Chemistry 2006; 12:2410-22. [PMID: 16134204 DOI: 10.1002/chem.200500664] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteomics technology has the potential to identify groups of proteins that have similar biological function. However, few attempts have been made to identify and characterize metal-binding proteins by using proteomics strategies. Many transition metals are essential to sustain life. Copper, iron, and zinc are the most abundant transition metals relevant to biological systems. In addition to their important biological functions, metals can also catalyze the formation of damaging free radical species. Hence, their intracellular transport is tightly regulated. Despite recent insights into the intracellular transport of copper and other metals, our overall understanding of intracellular metal metabolism remains incomplete and it is likely that many metal-binding proteins remain undiscovered. Furthermore, the protein targets for metals during metal-associated disease states or during exposure to toxic levels of environmental metals are yet to be unravelled. A proteomics strategy for the analysis of metal-transporting or metal-binding proteins has the potential to uncover how a large number of proteins function in normal or metal-associated diseased states. Here we discuss the principal aspects of metal metabolism, and the recent developments in the area of the proteomics of metal transport.
Collapse
Affiliation(s)
- Prasad P Kulkarni
- Department of Biochemistry, University of Toronto, Medical Sciences Building, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
35
|
Sliskovic I, Raturi A, Mutus B. Characterization of the S-Denitrosation Activity of Protein Disulfide Isomerase. J Biol Chem 2005; 280:8733-41. [PMID: 15611098 DOI: 10.1074/jbc.m408080200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-nitrosoglutathione (GSNO) denitrosation activity of recombinant human protein disulfide isomerase (PDI) has been kinetically characterized by monitoring the loss of the S-NO absorbance, using a NO electrode, and with the aid of the fluorogenic NOx probe 2,3-diaminonaphthalene. The initial rates of denitrosation as a function of [GSNO] displayed hyperbolic behavior irrespective of the method used to monitor denitrosation. The Km values estimated for GSNO were 65 +/- 5 microm and 40 +/- 10 microm for the loss in the S-NO bond and NO production (NO electrode or 2,3-diaminonaphthalene), respectively. Hemoglobin assay provided additional evidence that the final product of PDI-dependent GSNO denitrosation was NO*. A catalytic mechanism, involving a nitroxyl disulfide intermediate stabilized by imidazole (His160 a-domain or His589 a'-domain), which after undergoing a one-electron oxidation decomposes to yield NO plus dithiyl radical, has been proposed. Evidence for the formation of thiyl/dithiyl radicals during PDI-catalyzed denitrosation was obtained with 4-((9-acridinecarbonyl)-amino)-2,2,6,6-tetramethylpiperidine-1-oxyl. Evidence has also been obtained showing that in a NO- and O2-rich environment, PDI can form N2O3 in its hydrophobic domains. This "NO-charged PDI" can perform intra- and intermolecular S-nitrosation reactions similar to that proposed for serum albumin. Interestingly, reduced PDI was able to denitrosate S-nitrosated PDI (PDI-SNO) resulting in the release of NO. PDI-SNO, once formed, is stable at room temperature in the absence of reducing agent over the period of 2 h. It has been established that PDI is continuously secreted from cells that are net producers of NO-like endothelial cells. The present demonstration that PDI can be S-nitrosated and that PDI-SNO can be denitrosated by PDI suggests that this enzyme could be intimately involved in the transport of intracellular NO equivalents to the cell surface as well as the previous demonstration of PDI in the transfer of S-nitrosothiol-bound NO to the cytosol.
Collapse
Affiliation(s)
- Inga Sliskovic
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | | | | |
Collapse
|
36
|
Vernet P, Britan A, Gueux E, Mazur A, Drevet JR. Dietary magnesium depletion does not promote oxidative stress but targets apical cells within the mouse caput epididymidis. Biochim Biophys Acta Gen Subj 2004; 1675:32-45. [PMID: 15535965 DOI: 10.1016/j.bbagen.2004.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 08/09/2004] [Accepted: 08/20/2004] [Indexed: 11/16/2022]
Abstract
It is well documented that a dietary deficiency in magnesium can induce oxidative stress and an inflammatory response in animal models. In our study, we have investigated these responses in the mouse epididymis after mice had been fed a magnesium-deficient diet for a 2-week duration. The extracellular and intracellular concentrations of magnesium where shown to be depleted on this diet. This was followed, however, only in the liver of the Mg-deficient animals, by an increase in both alpha 2-macroglobulin (alpha-2m), an acute phase marker, and interleukin-6 transcripts suggesting that an inflammatory response had been initiated. These changes were correlated with a decrease in circulating neutrophils. To address the question of whether or not peroxidation was induced in mouse epididymis following hypomagnesia, we have monitored the level of endogenous peroxidation, their ability to respond to induced peroxidation as well as the expression and activity of the enzymatic glutathione peroxidase (GPX) antioxidant family. To evaluate if the epididymis had evolved specific protections against peroxidation, other organs such as the liver and the kidney were monitored in parallel. We detected no evidence for increased peroxidation in any of the mouse organs tested. However, GPX activity was found to be significantly lower in the liver and the kidney of Mg-deficient animals while it was unchanged in the epididymides of the same animals during the deficiency. Histological analysis of the epididymis showed no major difference in the overall cytological aspect of the organ. Segment 2 of the caput, however presented a significant increase in the number of apically located cells or blebbing cells. Immunohistochemical analysis proved that these cells were epididymal apical cells and not infiltrated leukocytes. These observations suggested that the mouse caput epididymidis segment 2 specifically responded to Mg deficiency via the apical cells. Finally, a comparative analysis of stress response genes was conducted in control and magnesium-deficient caput epididymidis samples. It brought forward some genes that might be involved in the peculiar response of the caput epithelium following hypomagnesia.
Collapse
Affiliation(s)
- Patrick Vernet
- Laboratoire "Epididyme and Maturation des Gamètes", Université Blaise Pascal, CNRS UMR 6547, 24 avenue des Landais, 63177 Aubière cedex, France
| | | | | | | | | |
Collapse
|
37
|
Horibe T, Iguchi D, Masuoka T, Gomi M, Kimura T, Kikuchi M. Replacement of domain b of human protein disulfide isomerase-related protein with domain b' of human protein disulfide isomerase dramatically increases its chaperone activity. FEBS Lett 2004; 566:311-5. [PMID: 15147915 DOI: 10.1016/j.febslet.2004.03.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 03/31/2004] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
We have reported that human protein disulfide isomerase-related protein (hPDIR) has isomerase and chaperone activities that are lower than those of the human protein disulfide isomerase (hPDI), and that the b domain of hPDIR is critical for its chaperone activity [J. Biol. Chem. 279 (2004) 4604]. To investigate the basis of the differences between hPDI and hPDIR, and to determine the functions of each hPDIR domain in detail, we constructed several hPDIR domain mutants. Interestingly, when the b domain of hPDIR was replaced with the b' domain of hPDI, a dramatic increase in chaperone activity that was close to that of hPDI itself was observed. However, this mutant showed decreased oxidative refolding of alpha1-antitrypsin. The replacement of the b domain of hPDIR with the c domain of hPDI also increased its chaperone activity. These observations suggest that putative peptide-binding sites of hPDI determine both its chaperone activity and its substrate specificity.
Collapse
Affiliation(s)
- Tomohisa Horibe
- Department of Bioscience and Technology, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Smith SD, She YM, Roberts EA, Sarkar B. Using Immobilized Metal Affinity Chromatography, Two-Dimensional Electrophoresis and Mass Spectrometry to Identify Hepatocellular Proteins with Copper-Binding Ability. J Proteome Res 2004; 3:834-40. [PMID: 15359738 DOI: 10.1021/pr049941r] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To further our knowledge of intracellular copper transport, we used a proteomics strategy to search for hepatic proteins with copper-binding ability. Hep G2 cytosolic and microsomal fractions were applied to a copper(II)-loaded immobilized metal-affinity chromatography (IMAC) column. Protein identification was performed with 2-D gel electrophoresis and mass spectrometry. We identified 48 cytosolic proteins and 19 microsomal proteins displaying copper-binding ability. These proteins are diverse in function. Fifty-two of the 67 proteins contain putative metal-binding domains. We have identified many components of the Hep G2 copper metalloproteome including a large number of proteins not previously known to bind copper.
Collapse
Affiliation(s)
- Scott D Smith
- Department of Structural Biology and Biochemistry, The Hospital for Sick Children Research Institute, Toronto, Canada
| | | | | | | |
Collapse
|
39
|
Sarnataro D, Campana V, Paladino S, Stornaiuolo M, Nitsch L, Zurzolo C. PrP(C) association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol Biol Cell 2004; 15:4031-42. [PMID: 15229281 PMCID: PMC515338 DOI: 10.1091/mbc.e03-05-0271] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The pathological conversion of cellular prion protein (PrP(C)) into the scrapie prion protein (PrP(Sc)) isoform appears to have a central role in the pathogenesis of transmissible spongiform encephalopathies. However, the identity of the intracellular compartment where this conversion occurs is unknown. Several lines of evidence indicate that detergent-resistant membrane domains (DRMs or rafts) could be involved in this process. We have characterized the association of PrP(C) to rafts during its biosynthesis. We found that PrP(C) associates with rafts already as an immature precursor in the endoplasmic reticulum. Interestingly, compared with the mature protein, the immature diglycosylated form has a different susceptibility to cholesterol depletion vs. sphingolipid depletion, suggesting that the two forms associate with different lipid domains. We also found that cholesterol depletion, which affects raft-association of the immature protein, slows down protein maturation and leads to protein misfolding. On the contrary, sphingolipid depletion does not have any effect on the kinetics of protein maturation or on the conformation of the protein. These data indicate that the early association of PrP(C) with cholesterol-enriched rafts facilitates its correct folding and reinforce the hypothesis that cholesterol and sphingolipids have different roles in PrP metabolism.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Li D, Sun F, Wang K. Protein profile of aging and its retardation by caloric restriction in neural retina. Biochem Biophys Res Commun 2004; 318:253-8. [PMID: 15110781 DOI: 10.1016/j.bbrc.2004.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Indexed: 11/19/2022]
Abstract
Aging is a slow, gradual deterioration process of an organism. The only experimental intervention, which can reliably retard aging and age-related degenerative diseases, is dietary caloric restriction (CR). To gain insight into the mechanism of CR intervention, we have investigated the protein profile of aging and its retardation by CR in the neural retina of Brown Norway (BN) rats using the comprehensive proteomic approach. We found that the intensities of 18 proteins decreased significantly with age. CR intervention can completely prevent seven of them, and partially protect eight of them, from such age-related declines. The major protein targets protected by CR intervention appear to be glycolytic enzymes and molecular chaperones. These data are the first to suggest that CR may retard the age-related degeneration of retina by maintaining sufficient glucose metabolism, by ensuring proper protein folding, and/or by preventing protein denaturation in the neural retina.
Collapse
Affiliation(s)
- Dayu Li
- Department of Ophthalmology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | | | | |
Collapse
|
41
|
Utsubo R, Sonoda Y, Takahashi R, Iijima S, Aizu-Yokota E, Kasahara T. Proteome Analysis of Focal Adhesion Kinase (FAK)-Overexpressing Cells. Biol Pharm Bull 2004; 27:1735-41. [PMID: 15516715 DOI: 10.1248/bpb.27.1735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We established several focal adhesion kinase (FAK) cDNA-transfected cells and found that FAK-transfected HL-60 (HL-60/FAK) cells are resistant to apoptosis induced with hydrogen peroxide, etoposide and radiation compared with the parental HL-60 or the vector-transfected (HL-60/Vect) cells. We carried out proteome analysis to study the mechanism of resistance to apoptosis in HL-60/FAK cells. Among 300 spots resolved in two-dimensional gels, ca. 10% of them were significantly increased in HL-60/FAK cells compared with HL-60/Vect cells, whereas ca. 2% of them were decreased or disappeared. These proteins were performed for further analysis by Western blots or N-terminal sequencing or mass spectrometry. Increased proteins included stress proteins such as hsp90, ribosomal proteins, and antioxidant enzymes such as peroxyredoxin 2. Some of these proteins are assumed to contribute to the antiapoptotic action of FAK.
Collapse
Affiliation(s)
- Ryoko Utsubo
- Department of Biochemistry, Kyoritsu University of Pharmacy, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
She YM, Narindrasorasak S, Yang S, Spitale N, Roberts EA, Sarkar B. Identification of Metal-binding Proteins in Human Hepatoma Lines by Immobilized Metal Affinity Chromatography and Mass Spectrometry. Mol Cell Proteomics 2003; 2:1306-18. [PMID: 14534351 DOI: 10.1074/mcp.m300080-mcp200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloproteome is defined as the set of proteins that have metal-binding capacity by being metalloproteins or having metal-binding sites. A different metalloproteome may exist for each metal. Mass spectrometric characterization of metalloproteomes provides valuable information relating to cellular disposition of metals physiologically and in metal-associated diseases. We examined the Cu and Zn metalloproteomes in three human hepatoma lines: Hep G2 and Mz-Hep-1, which retain many functional characteristics of normal human hepatocytes, and SK-Hep-1, which is poorly differentiated. Additionally we studied a single specimen of normal human liver and Hep G2 cells depleted in vitro of cellular copper. We used matrix-assisted laser desorption ionization and electrospray ionization quadrupole time-of-flight mass spectrometry to analyze peptide sequences of tryptic digests obtained by either in-gel digestion of metal-binding proteins or peptides on an immobilized metal affinity chromatography column loaded with either Cu or Zn. Mainly high abundance proteins were identified. Cu-binding proteins identified included enolase, albumin, transferrin, and alcohol dehydrogenase as well as certain intracellular chaperone proteins. The Cu metalloproteome was not identical to the Zn metalloproteome. Peptide binding experiments demonstrated that Cu coordination prefers the order of residues histidine > methionine > cysteine. Although the Cu metalloproteome was similar from line to line, subtle differences were apparent. Gel profiling showed more extensive variation in expression of annexin II in SK-Hep-1 and Mz-Hep-1 than in Hep G2 and normal liver tissue. Glycerylphosphorylethanolamine was identified as a post-translational modification at residue Glu-301 of elongation factor 1-alpha in Hep G2. Intracellular copper depletion was associated with loss of the glycerylphosphoryl side group. These findings suggest that post-translational modification could be affected by intracellular actions of copper. Comparison of the Cu and Zn metalloproteomes in Hep G2 with a published general proteome of Hep G2 disclosed little overlap (Seow, T. K., et al. (2001) Proteomics 1, 1249-1263). Proteins in the metalloproteomes of human hepatocytes can be identified by these methods. Variations in these metalloproteomes may have important physiological relevance.
Collapse
Affiliation(s)
- Yi-Min She
- Program in Structural Biology and Biochemistry, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|