1
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Allan CY, Fisher PR. The Dictyostelium Model for Mucolipidosis Type IV. Front Cell Dev Biol 2022; 10:741967. [PMID: 35493081 PMCID: PMC9043695 DOI: 10.3389/fcell.2022.741967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Mucolipidosis type IV, a devastating neurological lysosomal disease linked to mutations in the transient receptor potential channel mucolipin 1, TRPML1, a calcium permeable channel in the membranes of vesicles in endolysosomal system. TRPML1 function is still being elucidated and a better understanding of the molecular pathogenesis of Mucolipidosis type IV, may facilitate development of potential treatments. We have created a model to study mucolipin function in the eukaryotic slime mould Dictyostelium discoideum by altering expression of its single mucolipin homologue, mcln. We show that in Dictyostelium mucolipin overexpression contributes significantly to global chemotactic calcium responses in vegetative and differentiated cells. Knockdown of mucolipin also enhances calcium responses in vegetative cells but does not affect responses in 6–7 h developed cells, suggesting that in developed cells mucolipin may help regulate local calcium signals rather than global calcium waves. We found that both knocking down and overexpressing mucolipin often, but not always, presented the same phenotypes. Altering mucolipin expression levels caused an accumulation or increased acidification of Lysosensor Blue stained vesicles in vegetative cells. Nutrient uptake by phagocytosis and macropinocytosis were increased but growth rates were not, suggesting defects in catabolism. Both increasing and decreasing mucolipin expression caused the formation of smaller slugs and larger numbers of fruiting bodies during multicellular development, suggesting that mucolipin is involved in initiation of aggregation centers. The fruiting bodies that formed from these smaller aggregates had proportionately larger basal discs and thickened stalks, consistent with a regulatory role for mucolipin-dependent Ca2+ signalling in the autophagic cell death pathways involved in stalk and basal disk differentiation in Dictyostelium. Thus, we have provided evidence that mucolipin contributes to chemotactic calcium signalling and that Dictyostelium is a useful model to study the molecular mechanisms involved in the cytopathogenesis of Mucolipidosis type IV.
Collapse
|
3
|
Smith SJ, Fabian L, Sheikh A, Noche R, Cui X, Moore SA, Dowling JJ. Lysosomes and the pathogenesis of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2022; 31:733-747. [PMID: 34568901 PMCID: PMC9989739 DOI: 10.1093/hmg/ddab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/14/2022] Open
Abstract
Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis. We explored this hypothesis using candyfloss (caf), a zebrafish model of MDC1A. We found that lysosome distribution in caf zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome function may be a target for disease modification.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Family Medicine, University of Calgary, Calgary T2R 0X7, Alberta
| | - Lacramioara Fabian
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Adeel Sheikh
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Ramil Noche
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiucheng Cui
- Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Moore
- Department of Pathology, University of Iowa Medical Center, Iowa City, IA, USA
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
4
|
Krogsaeter E, Rosato AS, Grimm C. TRPMLs and TPCs: targets for lysosomal storage and neurodegenerative disease therapy? Cell Calcium 2022; 103:102553. [DOI: 10.1016/j.ceca.2022.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
|
5
|
Misko A, Wood L, Kiselyov K, Slaugenhaupt S, Grishchuk Y. Progress in elucidating pathophysiology of mucolipidosis IV. Neurosci Lett 2021; 755:135944. [PMID: 33965501 PMCID: PMC8253105 DOI: 10.1016/j.neulet.2021.135944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
Mucolipidosis IV (MLIV) is an autosomal-recessive disease caused by loss-of-function mutations in the MCOLN1 gene encoding the non-selective cationic lysosomal channel transient receptor potential mucolipin-1 (TRPML1). Patients with MLIV suffer from severe motor and cognitive deficits that manifest in early infancy and progressive loss of vision leading to blindness in the second decade of life. There are no therapies available for MLIV and the unmet medical need is extremely high. Here we review the spectrum of clinical presentations and the latest research in the MLIV pre-clinical model, with the aim of highlighting the progress in understanding the pathophysiology of the disease. These highlights include elucidation of the neurodevelopmental versus neurodegenerative features over the course of disease, hypomyelination as one of the major brain pathological disease hallmarks, and dysregulation of cytokines, with emerging evidence of IFN-gamma pathway upregulation in response to TRPML1 loss and pro-inflammatory activation of astrocytes and microglia. These scientific advances in the MLIV field provide a basis for future translational research, including biomarker and therapy development, that are desperately needed for this patient population.
Collapse
Affiliation(s)
- Albert Misko
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, 02114, United States
| | - Levi Wood
- Georgia W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, United States
| | - Susan Slaugenhaupt
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, 02114, United States
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
6
|
Qi J, Xing Y, Liu Y, Wang MM, Wei X, Sui Z, Ding L, Zhang Y, Lu C, Fei YH, Liu N, Chen R, Wu M, Wang L, Zhong Z, Wang T, Liu Y, Wang Y, Liu J, Xu H, Guo F, Wang W. MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy 2021; 17:4401-4422. [PMID: 33890549 DOI: 10.1080/15548627.2021.1917132] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is elevated to ensure the high demand for nutrients for the growth of cancer cells. Here we demonstrated that MCOLN1/TRPML1 is a pharmaceutical target of oncogenic autophagy in cancers such as pancreatic cancer, breast cancer, gastric cancer, malignant melanoma, and glioma. First, we showed that activating MCOLN1, by increasing expression of the channel or using the MCOLN1 agonists, ML-SA5 or MK6-83, arrests autophagic flux by perturbing fusion between autophagosomes and lysosomes. Second, we demonstrated that MCOLN1 regulates autophagy by mediating the release of zinc from the lysosome to the cytosol. Third, we uncovered that zinc influx through MCOLN1 blocks the interaction between STX17 (syntaxin 17) in the autophagosome and VAMP8 in the lysosome and thereby disrupting the fusion process that is determined by the two SNARE proteins. Furthermore, we demonstrated that zinc influx originating from the extracellular fluid arrests autophagy by the same mechanism as lysosomal zinc, confirming the fundamental function of zinc as a participant in membrane trafficking. Last, we revealed that activating MCOLN1 with the agonists, ML-SA5 or MK6-83, triggers cell death of a number of cancer cells by evoking autophagic arrest and subsequent apoptotic response and cell cycle arrest, with little or no effect observed on normal cells. Consistent with the in vitro results, administration of ML-SA5 in Patu 8988 t xenograft mice profoundly suppresses tumor growth and improves survival. These results establish that a lysosomal cation channel, MCOLN1, finely controls oncogenic autophagy in cancer by mediating zinc influx into the cytosol.
Collapse
Affiliation(s)
- Jiansong Qi
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yucheng Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Meng-Meng Wang
- Department of Otolaryngology and Neck Surgery, The Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangqing Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhongheng Sui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lin Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Hui Fei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Nan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Rong Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Mengmei Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lijuan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yifan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Wang
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Jiamei Liu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
8
|
Vardi A, Pri-Or A, Wigoda N, Grishchuk Y, Futerman AH. Proteomics analysis of a human brain sample from a mucolipidosis type IV patient reveals pathophysiological pathways. Orphanet J Rare Dis 2021; 16:39. [PMID: 33478506 PMCID: PMC7818904 DOI: 10.1186/s13023-021-01679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background Mucolipidosis type IV (MLIV), an ultra-rare neurodevelopmental and neurodegenerative disorder, is caused by mutations in the MCOLN1 gene, which encodes the late endosomal/lysosomal transient receptor potential channel TRPML1 (mucolipin 1). The precise pathophysiogical pathways that cause neurological disease in MLIV are poorly understood. Recently, the first post-mortem brain sample became available from a single MLIV patient, and in the current study we performed mass spectrometry (MS)-based proteomics on this tissue with a view to delineating pathological pathways, and to compare with previously-published data on MLIV, including studies using the Mcoln1−/− mouse. Results A number of pathways were altered in two brain regions from the MLIV patient, including those related to the lysosome, lipid metabolism, myelination, cellular trafficking and autophagy, mTOR and calmodulin, the complement system and interferon signaling. Of these, levels of some proteins not known previously to be associated with MLIV were altered, including APOD, PLIN4, ATG and proteins related to interferon signaling. Moreover, when proteins detected by proteomics in the human brain were compared with their orthologs detected in the Mcoln1−/− mouse by RNAseq, the results were remarkably similar. Finally, analysis of proteins in human and mouse CSF suggest that calbindin 1 and calbindin 2 might be useful as biomarkers to help chart the course of disease development. Conclusions Despite the sample size limitations, our findings are consistent with the relatively general changes in lysosomal function previously reported in MLIV, and shed light on new pathways of disease pathophysiology, which is required in order to understand the course of disease development and to determine the efficacy of therapies when they become available for this devastating disease.
Collapse
Affiliation(s)
- Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Amir Pri-Or
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Noa Wigoda
- The Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, 02114, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
9
|
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13:e12836. [PMID: 33459519 PMCID: PMC7863408 DOI: 10.15252/emmm.202012836] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,SSM School for Advanced Studies, Federico II University, Naples, Italy
| |
Collapse
|
10
|
Li G, Li PL. Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:275-301. [PMID: 35138619 PMCID: PMC9899368 DOI: 10.1007/978-981-16-4254-8_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysosomal ion channels mediate ion flux from lysosomes and regulate membrane potential across the lysosomal membrane, which are essential for lysosome biogenesis, nutrient sensing, lysosome trafficking, lysosome enzyme activity, and cell membrane repair. As a cation channel, the transient receptor potential mucolipin 1 (TRPML1) channel is mainly expressed on lysosomes and late endosomes. Recently, the normal function of TRPML1 channels has been demonstrated to be important for the maintenance of cardiovascular and renal glomerular homeostasis and thereby involved in the pathogenesis of some cardiovascular and kidney diseases. In arterial myocytes, it has been found that Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP), an intracellular second messenger, can induce Ca2+ release through the lysosomal TRPML1 channel, leading to a global Ca2+ release response from the sarcoplasmic reticulum (SR). In podocytes, it has been demonstrated that lysosomal TRPML1 channels control lysosome trafficking and exosome release, which contribute to the maintenance of podocyte functional integrity. The defect or functional deficiency of lysosomal TRPML1 channels has been shown to critically contribute to the initiation and development of some chronic degeneration or diseases in the cardiovascular system or kidneys. Here we briefly summarize the current evidence demonstrating the regulation of lysosomal TRPML1 channel activity and related signaling mechanisms. We also provide some insights into the canonical and noncanonical roles of TRPML1 channel dysfunction as a potential pathogenic mechanism for certain cardiovascular and kidney diseases and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Huizing M, Gahl WA. Inherited disorders of lysosomal membrane transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183336. [PMID: 32389669 PMCID: PMC7508925 DOI: 10.1016/j.bbamem.2020.183336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Koh JY, Kim HN, Hwang JJ, Kim YH, Park SE. Lysosomal dysfunction in proteinopathic neurodegenerative disorders: possible therapeutic roles of cAMP and zinc. Mol Brain 2019; 12:18. [PMID: 30866990 PMCID: PMC6417073 DOI: 10.1186/s13041-019-0439-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
A number of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, share intra- and/or extracellular deposition of protein aggregates as a common core pathology. While the species of accumulating proteins are distinct in each disease, an increasing body of evidence indicates that defects in the protein clearance system play a crucial role in the gradual accumulation of protein aggregates. Among protein degradation systems, the endosome-autophagosome-lysosome pathway (EALP) is the main degradation machinery, especially for large protein aggregates. Lysosomal dysfunction or defects in fusion with vesicles containing cargo are commonly observed abnormalities in proteinopathic neurodegenerative diseases. In this review, we discuss the available evidence for a mechanistic connection between components of the EALP-especially lysosomes-and neurodegenerative diseases. We also focus on lysosomal pH regulation and its significance in maintaining flux through the EALP. Finally, we suggest that raising cAMP and free zinc levels in brain cells may be beneficial in normalizing lysosomal pH and EALP flux.
Collapse
Affiliation(s)
- Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Ha Na Kim
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jung Jin Hwang
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Sang Eun Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
13
|
Jin W, Dai Y, Li F, Zhu L, Huang Z, Liu W, Li J, Zhang M, Du J, Zhang W, Wen Z. Dysregulation of Microglial Function Contributes to Neuronal Impairment in Mcoln1a-Deficient Zebrafish. iScience 2019; 13:391-401. [PMID: 30897512 PMCID: PMC6426713 DOI: 10.1016/j.isci.2019.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/28/2018] [Accepted: 02/26/2019] [Indexed: 01/21/2023] Open
Abstract
Type IV mucolipidosis (ML-IV) is a neurodegenerative lysosome storage disorder caused by mutations in the MCOLN1 gene. However, the cellular and molecular bases underlying the neuronal phenotypes of ML-IV disease remain elusive. Using a forward genetic screening, we identified a zebrafish mutant, biluo, that harbors a hypomorphic mutation in mcoln1a, one of the two zebrafish homologs of mammalian MCOLN1. The mcoln1a-deficient mutants display phenotypes partially recapitulating the key features of ML-IV disorder, including the accumulation of enlarged late endosomes in microglia and aberrant neuronal activities in both spontaneous and visual-evoking conditions in optic tectal neurons. We further show that the accumulation of enlarged late endosomes in microglia is caused by the impairment of late endosome and lysosome fusion and the aberrant neuronal activities can be partially rescued by the reconstitution of Mcoln1a function in microglia. Our findings suggest that dysregulation of microglial function may contribute to the development and progression of ML-IV disease. mcoln1a-deficient fish display microglia impairment and aberrant neuronal activity The aberrant neuronal activity can be rescued by expressing WT mcoln1a in microglia Impairment of microglia-neuron contact contributes to the aberrant neuronal activity
Collapse
Affiliation(s)
- Wan Jin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Yimei Dai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Funing Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR. China
| | - Lu Zhu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Zhibin Huang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR. China
| | - Wei Liu
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR. China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR. China
| | - Wenqing Zhang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR. China.
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, PR. China.
| |
Collapse
|
14
|
Boudewyn LC, Walkley SU. Current concepts in the neuropathogenesis of mucolipidosis type IV. J Neurochem 2019; 148:669-689. [PMID: 29770442 PMCID: PMC6239999 DOI: 10.1111/jnc.14462] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive, lysosomal storage disorder causing progressively severe intellectual disability, motor and speech deficits, retinal degeneration often culminating in blindness, and systemic disease causing a shortened lifespan. MLIV results from mutations in the gene MCOLN1 encoding the transient receptor potential channel mucolipin-1. It is an ultra-rare disease and is currently known to affect just over 100 diagnosed individuals. The last decade has provided a wealth of research focused on understanding the role of the enigmatic mucolipin-1 protein in cell and brain function and how its absence causes disease. This review explores our current understanding of the mucolipin-1 protein in relation to neuropathogenesis in MLIV and describes recent findings implicating mucolipin-1's important role in mechanistic target of rapamycin and TFEB (transcription factor EB) signaling feedback loops as well as in the function of the greater endosomal/lysosomal system. In addition to addressing the vital role of mucolipin-1 in the brain, we also report new data on the question of whether haploinsufficiency as would be anticipated in MCOLN1 heterozygotes is associated with any evidence of neuron dysfunction or disease. Greater insights into the role of mucolipin-1 in the nervous system can be expected to shed light not only on MLIV disease but also on numerous processes governing normal brain function. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Lauren C. Boudewyn
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Steven U. Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
15
|
Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem 2017; 61:733-749. [PMID: 29233882 PMCID: PMC5869865 DOI: 10.1042/ebc20170055] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
The lysosome plays a pivotal role between catabolic and anabolic processes as the nexus for signalling pathways responsive to a variety of factors, such as growth, nutrient availability, energetic status and cellular stressors. Lysosomes are also the terminal degradative organelles for autophagy through which macromolecules and damaged cellular components and organelles are degraded. Autophagy acts as a cellular homeostatic pathway that is essential for organismal physiology. Decline in autophagy during ageing or in many diseases, including late-onset forms of neurodegeneration is considered a major contributing factor to the pathology. Multiple lines of evidence indicate that impairment in autophagy is also a central mechanism underlying several lysosomal storage disorders (LSDs). LSDs are a class of rare, inherited disorders whose histopathological hallmark is the accumulation of undegraded materials in the lysosomes due to abnormal lysosomal function. Inefficient degradative capability of the lysosomes has negative impact on the flux through the autophagic pathway, and therefore dysregulated autophagy in LSDs is emerging as a relevant disease mechanism. Pathology in the LSDs is generally early-onset, severe and life-limiting but current therapies are limited or absent; recognizing common autophagy defects in the LSDs raises new possibilities for therapy. In this review, we describe the mechanisms by which LSDs occur, focusing on perturbations in the autophagy pathway and present the latest data supporting the development of novel therapeutic approaches related to the modulation of autophagy.
Collapse
|
16
|
Boudewyn LC, Sikora J, Kuchar L, Ledvinova J, Grishchuk Y, Wang SL, Dobrenis K, Walkley SU. N-butyldeoxynojirimycin delays motor deficits, cerebellar microgliosis, and Purkinje cell loss in a mouse model of mucolipidosis type IV. Neurobiol Dis 2017; 105:257-270. [PMID: 28610891 PMCID: PMC5555164 DOI: 10.1016/j.nbd.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease exhibiting progressive intellectual disability, motor impairment, and premature death. There is currently no cure or corrective treatment. The disease results from mutations in the gene encoding mucolipin-1, a transient receptor potential channel believed to play a key role in lysosomal calcium egress. Loss of mucolipin-1 and subsequent defects lead to a host of cellular aberrations, including accumulation of glycosphingolipids (GSLs) in neurons and other cell types, microgliosis and, as reported here, cerebellar Purkinje cell loss. Several studies have demonstrated that N-butyldeoxynojirimycin (NB-DNJ, also known as miglustat), an inhibitor of the enzyme glucosylceramide synthase (GCS), successfully delays the onset of motor deficits, improves longevity, and rescues some of the cerebellar abnormalities (e.g., Purkinje cell death) seen in another lysosomal disease known as Niemann-Pick type C (NPC). Given the similarities in pathology between MLIV and NPC, we examined whether miglustat would be efficacious in ameliorating disease progression in MLIV. Using a full mucolipin-1 knockout mouse (Mcoln1-/-), we found that early miglustat treatment delays the onset and progression of motor deficits, delays cerebellar Purkinje cell loss, and reduces cerebellar microgliosis characteristic of MLIV disease. Quantitative mass spectrometry analyses provided new data on the GSL profiles of murine MLIV brain tissue and showed that miglustat partially restored the wild type profile of white matter enriched lipids. Collectively, our findings indicate that early miglustat treatment delays the progression of clinically relevant pathology in an MLIV mouse model, and therefore supports consideration of miglustat as a therapeutic agent for MLIV disease in humans.
Collapse
Affiliation(s)
- Lauren C Boudewyn
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jakub Sikora
- Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Kuchar
- Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Ledvinova
- Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Yulia Grishchuk
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Shirley L Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven U Walkley
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Di Paola S, Scotto-Rosato A, Medina DL. TRPML1: The Ca (2+)retaker of the lysosome. Cell Calcium 2017; 69:112-121. [PMID: 28689729 DOI: 10.1016/j.ceca.2017.06.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022]
Abstract
Efficient functioning of lysosome is necessary to ensure the correct performance of a variety of intracellular processes such as degradation of cargoes coming from the endocytic and autophagic pathways, recycling of organelles, and signaling mechanisms involved in cellular adaptation to nutrient availability. Mutations in lysosomal genes lead to more than 50 lysosomal storage disorders (LSDs). Among them, mutations in the gene encoding TRPML1 (MCOLN1) cause Mucolipidosis type IV (MLIV), a recessive LSD characterized by neurodegeneration, psychomotor retardation, ophthalmologic defects and achlorhydria. At the cellular level, MLIV patient fibroblasts show enlargement and engulfment of the late endo-lysosomal compartment, autophagy impairment, and accumulation of lipids and glycosaminoglycans. TRPML1 is the most extensively studied member of a small family of genes that also includes TRPML2 and TRPML3, and it has been found to participate in vesicular trafficking, lipid and ion homeostasis, and autophagy. In this review we will provide an update on the latest and more novel findings related to the functions of TRPMLs, with particular focus on the emerging role of TRPML1 and lysosomal calcium signaling in autophagy. Moreover, we will also discuss new potential therapeutic approaches for MLIV and LSDs based on the modulation of TRPML1-mediated signaling.
Collapse
Affiliation(s)
- Simone Di Paola
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy
| | - Anna Scotto-Rosato
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy.
| |
Collapse
|
18
|
Abstract
Lysosomes are cytoplasmic organelles that contain a variety of different hydrolases. A genetic deficiency in the enzymatic activity of one of these hydrolases will lead to the accumulation of the material meant for lysosomal degradation. Examples include glycogen in the case of Pompe disease, glycosaminoglycans in the case of the mucopolysaccharidoses, glycoproteins in the cases of the oligosaccharidoses, and sphingolipids in the cases of Niemann-Pick disease types A and B, Gaucher disease, Tay-Sachs disease, Krabbe disease, and metachromatic leukodystrophy. Sometimes, the lysosomal storage can be caused not by the enzymatic deficiency of one of the hydrolases, but by the deficiency of an activator protein, as occurs in the AB variant of GM2 gangliosidosis. Still other times, the accumulated lysosomal material results from failed egress of a small molecule as a consequence of a deficient transporter, as in cystinosis or Salla disease. In the last couple of decades, enzyme replacement therapy has become available for a number of lysosomal storage diseases. Examples include imiglucerase, taliglucerase and velaglucerase for Gaucher disease, laronidase for Hurler disease, idursulfase for Hunter disease, elosulfase for Morquio disease, galsulfase for Maroteaux-Lamy disease, alglucosidase alfa for Pompe disease, and agalsidase alfa and beta for Fabry disease. In addition, substrate reduction therapy has been approved for certain disorders, such as eliglustat for Gaucher disease. The advent of treatment options for some of these disorders has led to newborn screening pilot studies, and ultimately to the addition of Pompe disease and Hurler disease to the Recommended Uniform Screening Panel (RUSP) in 2015 and 2016, respectively.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- Division of Genetics and Metabolism, Children’s National Health System, Washington, DC, USA
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Erkhembaatar M, Gu DR, Lee SH, Yang YM, Park S, Muallem S, Shin DM, Kim MS. Lysosomal Ca 2+ Signaling is Essential for Osteoclastogenesis and Bone Remodeling. J Bone Miner Res 2017; 32:385-396. [PMID: 27589205 PMCID: PMC9850942 DOI: 10.1002/jbmr.2986] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/21/2023]
Abstract
Lysosomal Ca2+ emerges as a critical component of receptor-evoked Ca2+ signaling and plays a crucial role in many lysosomal and physiological functions. Lysosomal Ca2+ release is mediated by the transient receptor potential (TRP) family member TRPML1, mutations that cause the lysosomal storage disease mucolipidosis type 4. Lysosomes play a key role in osteoclast function. However, nothing is known about the role of lysosomal Ca2+ signaling in osteoclastogenesis and bone metabolism. In this study, we addressed this knowledge gap by studying the role of lysosomal Ca2+ signaling in osteoclastogenesis, osteoclast and osteoblast functions, and bone homeostasis in vivo. We manipulated lysosomal Ca2+ signaling by acute knockdown of TRPML1, deletion of TRPML1 in mice, pharmacological inhibition of lysosomal Ca2+ influx, and depletion of lysosomal Ca2+ storage using the TRPML agonist ML-SA1. We found that knockdown and deletion of TRPML1, although it did not have an apparent effect on osteoblast differentiation and bone formation, markedly attenuated osteoclast function, RANKL-induced cytosolic Ca2+ oscillations, inhibited activation of NFATc1 and osteoclastogenesis-controlling genes, suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), and markedly reduced the differentiation of bone marrow-derived macrophages into osteoclasts. Moreover, deletion of TRPML1 resulted in enlarged lysosomes, inhibition of lysosomal secretion, and attenuated the resorptive activity of mature osteoclasts. Notably, depletion of lysosomal Ca2+ with ML-SA1 similarly abrogated RANKL-induced Ca2+ oscillations and MNC formation. Deletion of TRPML1 in mice reduced the TRAP-positive bone surfaces and impaired bone remodeling, resulting in prominent osteopetrosis. These findings demonstrate the essential role of lysosomal Ca2+ signaling in osteoclast differentiation and mature osteoclast function, which play key roles in bone homeostasis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Munkhsoyol Erkhembaatar
- Department of Oral Physiology, and Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, Iksan, Republic of Korea.,Department of Physiology, School of Pharmacy and Bio-Medicine, Mongolian National University of Medical Science, Ulaanbaatar, Mongolia
| | - Dong Ryun Gu
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Republic of Korea.,Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Seoung Hoon Lee
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Republic of Korea.,Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Yu-Mi Yang
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Soonhong Park
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, and Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
20
|
Enrich C, Rentero C, Grewal T. Annexin A6 in the liver: From the endocytic compartment to cellular physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:933-946. [PMID: 27984093 DOI: 10.1016/j.bbamcr.2016.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin family - a group of Ca2+-dependent membrane binding proteins. AnxA6 is the largest of all annexins and highly expressed in smooth muscle, hepatocytes, endothelial cells and cardiomyocytes. Upon activation, AnxA6 binds to negatively charged phospholipids in a wide range of intracellular localizations, in particular the plasma membrane, late endosomes/pre-lysosomes, but also synaptic vesicles and sarcolemma. In these cellular sites, AnxA6 is believed to contribute to the organization of membrane microdomains, such as cholesterol-rich lipid rafts and confer multiple regulatory functions, ranging from vesicle fusion, endocytosis and exocytosis to programmed cell death and muscle contraction. Growing evidence supports that Ca2+ and Ca2+-binding proteins control endocytosis and autophagy. Their regulatory role seems to operate at the level of the signalling pathways that initiate autophagy or at later stages, when autophagosomes fuse with endolysosomal compartments. The convergence of the autophagic and endocytic vesicles to lysosomes shares several features that depend on Ca2+ originating from lysosomes/late endosomes and seems to depend on proteins that are subsequently activated by this cation. However, the involvement of Ca2+ and its effector proteins in these autophagic and endocytic stages still remains poorly understood. Although AnxA6 makes up almost 0.25% of total protein in the liver, little is known about its function in hepatocytes. Within the endocytic route, we identified AnxA6 in endosomes and autophagosomes of hepatocytes. Hence, AnxA6 and possibly other annexins might represent new Ca2+ effectors that regulate converging steps of autophagy and endocytic trafficking in hepatocytes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Wu X, Indzhykulian AA, Niksch PD, Webber RM, Garcia-Gonzalez M, Watnick T, Zhou J, Vollrath MA, Corey DP. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice. PLoS One 2016; 11:e0155577. [PMID: 27196058 PMCID: PMC4873267 DOI: 10.1371/journal.pone.0155577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/01/2016] [Indexed: 12/17/2022] Open
Abstract
Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction.
Collapse
MESH Headings
- Animals
- Calcium Channels/genetics
- Cochlea/physiology
- Ear, Inner/physiology
- Evoked Potentials, Auditory, Brain Stem/genetics
- Gene Expression Profiling
- Gene Expression Regulation
- Hair Cells, Auditory/physiology
- Hearing
- Mechanotransduction, Cellular
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Scanning
- Patch-Clamp Techniques
- Receptors, Cell Surface/genetics
- TRPM Cation Channels/genetics
- TRPP Cation Channels/genetics
- Transient Receptor Potential Channels/genetics
Collapse
Affiliation(s)
- Xudong Wu
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Artur A. Indzhykulian
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Paul D. Niksch
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Roxanna M. Webber
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Miguel Garcia-Gonzalez
- Department of Medicine, Division of Nephrology, University of Maryland, Baltimore, Maryland, United States of America
| | - Terry Watnick
- Department of Medicine, Division of Nephrology, University of Maryland, Baltimore, Maryland, United States of America
| | - Jing Zhou
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melissa A. Vollrath
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Physiology, McGill University Montréal, Québec, Canada
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:269-84. [DOI: 10.1016/j.bbalip.2016.01.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/30/2022]
|
23
|
Abstract
TRPML1 is a ubiquitously expressed cation channel found on lysosomes and late endosomes. Mutations in TRPML1 cause mucolipidosis type IV and it has been implicated in Alzheimer's disease and HIV. However, the mechanisms by which TRPML1 activity is regulated are not well understood. This review summarizes the current understanding of TRPML1 activation and regulation.
Collapse
|
24
|
Grishchuk Y, Peña KA, Coblentz J, King VE, Humphrey DM, Wang SL, Kiselyov KI, Slaugenhaupt SA. Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV. Dis Model Mech 2015; 8:1591-601. [PMID: 26398942 PMCID: PMC4728313 DOI: 10.1242/dmm.021154] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the MCOLN1 gene, which encodes the lysosomal transient receptor potential ion channel mucolipin-1 (TRPML1). MLIV causes impaired motor and cognitive development, progressive loss of vision and gastric achlorhydria. How loss of TRPML1 leads to severe psychomotor retardation is currently unknown, and there is no therapy for MLIV. White matter abnormalities and a hypoplastic corpus callosum are the major hallmarks of MLIV brain pathology. Here, we report that loss of TRPML1 in mice results in developmental aberrations of brain myelination as a result of deficient maturation and loss of oligodendrocytes. Defective myelination is evident in Mcoln1(-/-) mice at postnatal day 10, an active stage of postnatal myelination in the mouse brain. Expression of mature oligodendrocyte markers is reduced in Mcoln1(-/-) mice at postnatal day 10 and remains lower throughout the course of the disease. We observed reduced Perls' staining in Mcoln1(-/-) brain, indicating lower levels of ferric iron. Total iron content in unperfused brain is not significantly different between Mcoln1(-/-) and wild-type littermate mice, suggesting that the observed maturation delay or loss of oligodendrocytes might be caused by impaired iron handling, rather than by global iron deficiency. Overall, these data emphasize a developmental rather than a degenerative disease course in MLIV, and suggest that there should be a stronger focus on oligodendrocyte maturation and survival to better understand MLIV pathogenesis and aid treatment development.
Collapse
Affiliation(s)
- Yulia Grishchuk
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Karina A Peña
- Department of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jessica Coblentz
- Department of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Victoria E King
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Daniel M Humphrey
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Shirley L Wang
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Kirill I Kiselyov
- Department of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Susan A Slaugenhaupt
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
25
|
Cang C, Aranda K, Seo YJ, Gasnier B, Ren D. TMEM175 Is an Organelle K(+) Channel Regulating Lysosomal Function. Cell 2015; 162:1101-12. [PMID: 26317472 DOI: 10.1016/j.cell.2015.08.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 12/15/2022]
Abstract
Potassium is the most abundant ion to face both plasma and organelle membranes. Extensive research over the past seven decades has characterized how K(+) permeates the plasma membrane to control fundamental processes such as secretion, neuronal communication, and heartbeat. However, how K(+) permeates organelles such as lysosomes and endosomes is unknown. Here, we directly recorded organelle K(+) conductance and discovered a major K(+)-selective channel KEL on endosomes and lysosomes. KEL is formed by TMEM175, a protein with unknown function. Unlike any of the ∼80 plasma membrane K(+) channels, TMEM175 has two repeats of 6-transmembrane-spanning segments and has no GYG K(+) channel sequence signature-containing, pore-forming P loop. Lysosomes lacking TMEM175 exhibit no K(+) conductance, have a markedly depolarized ΔΨ and little sensitivity to changes in [K(+)], and have compromised luminal pH stability and abnormal fusion with autophagosomes during autophagy. Thus, TMEM175 comprises a K(+) channel that underlies the molecular mechanism of lysosomal K(+) permeability.
Collapse
Affiliation(s)
- Chunlei Cang
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Young-jun Seo
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Bruno Gasnier
- Paris Descartes University, Sorbonne Paris Cité, Neurophotonics Laboratory, Centre National de la Recherche Scientifique UMR8250, 45 rue des Saints Pères, 75006 Paris, France
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Grishchuk Y, Stember KG, Matsunaga A, Olivares AM, Cruz NM, King VE, Humphrey DM, Wang SL, Muzikansky A, Betensky RA, Thoreson WB, Haider N, Slaugenhaupt SA. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:199-209. [PMID: 26608452 DOI: 10.1016/j.ajpath.2015.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
Mucolipidosis IV is a debilitating developmental lysosomal storage disorder characterized by severe neuromotor retardation and progressive loss of vision, leading to blindness by the second decade of life. Mucolipidosis IV is caused by loss-of-function mutations in the MCOLN1 gene, which encodes the transient receptor potential channel protein mucolipin-1. Ophthalmic pathology in patients includes corneal haze and progressive retinal and optic nerve atrophy. Herein, we report ocular pathology in Mcoln1(-/-) mouse, a good phenotypic model of the disease. Early, but non-progressive, thinning of the photoreceptor layer, reduced levels of rhodopsin, disrupted rod outer segments, and widespread accumulation of the typical storage inclusion bodies were the major histological findings in the Mcoln1(-/-) retina. Electroretinograms showed significantly decreased functional response (scotopic a- and b-wave amplitudes) in the Mcoln1(-/-) mice. At the ultrastructural level, we observed formation of axonal spheroids and decreased density of axons in the optic nerve of the aged (6-month-old) Mcoln1(-/-) mice, which indicates progressive axonal degeneration. Our data suggest that mucolipin-1 plays a role in postnatal development of photoreceptors and provides a set of outcome measures that can be used for ocular therapy development for mucolipidosis IV.
Collapse
Affiliation(s)
- Yulia Grishchuk
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts.
| | - Katherine G Stember
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Aya Matsunaga
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Ana M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Nelly M Cruz
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Victoria E King
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Humphrey
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Shirley L Wang
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Massachusetts General Hospital Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Wallace B Thoreson
- Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neena Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Susan A Slaugenhaupt
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Abstract
Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body.
Collapse
Affiliation(s)
- Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| | - Paul L McNeil
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
28
|
Remis NN, Wiwatpanit T, Castiglioni AJ, Flores EN, Cantú JA, García-Añoveros J. Mucolipin co-deficiency causes accelerated endolysosomal vacuolation of enterocytes and failure-to-thrive from birth to weaning. PLoS Genet 2014; 10:e1004833. [PMID: 25521295 PMCID: PMC4270466 DOI: 10.1371/journal.pgen.1004833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/16/2014] [Indexed: 12/17/2022] Open
Abstract
During the suckling period, intestinal enterocytes are richly endowed with endosomes and lysosomes, which they presumably utilize for the uptake and intracellular digestion of milk proteins. By weaning, mature intestinal enterocytes replace those rich in lysosomes. We found that mouse enterocytes before weaning express high levels of two endolysosomal cation channels, mucolipins 3 and 1 -products of Trpml3 and Trpml1 genes; moreover neonatal enterocytes of mice lacking both mucolipins (Trpml3-/-;Trpml1-/-) vacuolated pathologically within hours of birth and remained so until weaning. Ultrastructurally and chemically these fast-forming vacuoles resembled those that systemically appear in epithelial cells of mucolipidosis type IV (MLIV) patients, which bear mutations in Trpml1. Hence, lack of both mucolipins 1 and 3 causes an accelerated MLIV-type of vacuolation in enterocytes. The vacuoles were aberrant hybrid organelles with both endosomal and lysosomal components, and were not generated by alterations in endocytosis or exocytosis, but likely by an imbalance between fusion of lysosomes and endosomes and their subsequent scission. However, upon extensive vacuolation enterocytes displayed reduced endocytosis from the intestinal lumen, a defect expected to compromise nutrient uptake. Mice lacking both mucolipins suffered a growth delay that began after birth and continued through the suckling period but recovered after weaning, coinciding with the developmental period of enterocyte vacuolation. Our results demonstrate genetic redundancy between lysosomal mucolipins 3 and 1 in neonatal enterocytes. Furthermore, our Trpml3-/-;Trpml1-/- mice represent a polygenic animal model of the poorly-understood, and often intractable, neonatal failure-to-thrive with intestinal pathology. Our results implicate lysosomes in neonatal intestinal pathologies, a major cause of infant mortality worldwide, and suggest transient intestinal dysfunction might affect newborns with lysosomal storage disorders. Finally, we conclude that mucolipin-endowed lysosomes in the young play an evolutionarily-conserved role in the intracellular digestion of maternally-provided nutrients, whether milk in mammals or yolk in oviparous species.
Collapse
Affiliation(s)
- Natalie N. Remis
- Driskill Graduate Program in the Life Sciences (DGP), Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Teerawat Wiwatpanit
- Driskill Graduate Program in the Life Sciences (DGP), Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Andrew J. Castiglioni
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Emma N. Flores
- Northwestern University Interdepartmental Neuroscience (NUIN) graduate program, Chicago, Illinois, United States of America
| | - Jorge A. Cantú
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jaime García-Añoveros
- Driskill Graduate Program in the Life Sciences (DGP), Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Northwestern University Interdepartmental Neuroscience (NUIN) graduate program, Chicago, Illinois, United States of America
- Departments of Neurology and Physiology, and Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Osellame LD, Duchen MR. Quality control gone wrong: mitochondria, lysosomal storage disorders and neurodegeneration. Br J Pharmacol 2014; 171:1958-72. [PMID: 24116849 PMCID: PMC3976615 DOI: 10.1111/bph.12453] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/04/2013] [Accepted: 09/23/2013] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cell possesses specialized pathways to turn over and degrade redundant proteins and organelles. Each pathway is unique and responsible for degradation of distinctive cytosolic material. The ubiquitin-proteasome system and autophagy (chaperone-mediated, macro, micro and organelle specific) act synergistically to maintain proteostasis. Defects in this equilibrium can be deleterious at cellular and organism level, giving rise to various disease states. Dysfunction of quality control pathways are implicated in neurodegenerative diseases and appear particularly important in Parkinson's disease and the lysosomal storage disorders. Neurodegeneration resulting from impaired degradation of ubiquitinated proteins and α-synuclein is often accompanied by mitochondrial dysfunction. Mitochondria have evolved to control a diverse number of processes, including cellular energy production, calcium signalling and apoptosis, and like every other organelle within the cell, they must be ‘recycled.’ Failure to do so is potentially lethal as these once indispensible organelles become destructive, leaking reactive oxygen species and activating the intrinsic cell death pathway. This process is paramount in neurons which have an absolute dependence on mitochondrial oxidative phosphorylation as they cannot up-regulate glycolysis. As such, mitochondrial bioenergetic failure can underpin neural death and neurodegenerative disease. In this review, we discuss the links between cellular quality control and neurodegenerative diseases associated with mitochondrial dysfunction, with particular attention to the emerging links between Parkinson's and Gaucher diseases in which defective quality control is a defining factor. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8
Collapse
Affiliation(s)
- L D Osellame
- Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Research, University College London, London, UK
| | | |
Collapse
|
30
|
The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 2014; 58:48-56. [PMID: 25465891 DOI: 10.1016/j.ceca.2014.10.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022]
Abstract
Members of the Transient Receptor Potential-Mucolipin (TRPML) constitute a family of evolutionarily conserved cation channels that function predominantly in endolysosomal vesicles. Whereas loss-of-function mutations in human TRPML1 were first identified as being causative for the lysosomal storage disease, Mucolipidosis type IV, most mammals also express two other TRPML isoforms called TRPML2 and TRPML3. All three mammalian TRPMLs as well as TRPML related genes in other species including Caenorhabditis elegans and Drosophila exhibit overlapping functional and biophysical properties. The functions of TRPML proteins include roles in vesicular trafficking and biogenesis, maintenance of neuronal development, function, and viability, and regulation of intracellular and organellar ionic homeostasis. Biophysically, TRPML channels are non-selective cation channels exhibiting variable permeability to a host of cations including Na(+), Ca(2+), Fe(2+), and Zn(2+), and are activated by a phosphoinositide species, PI(3,5)P2, that is mostly found in endolysosomal membranes. Here, we review the functional and biophysical properties of these enigmatic cation channels, which represent the most ancient and archetypical TRP channels.
Collapse
|
31
|
Grishchuk Y, Sri S, Rudinskiy N, Ma W, Stember KG, Cottle MW, Sapp E, Difiglia M, Muzikansky A, Betensky RA, Wong AMS, Bacskai BJ, Hyman BT, Kelleher RJ, Cooper JD, Slaugenhaupt SA. Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV. Acta Neuropathol Commun 2014; 2:133. [PMID: 25200117 PMCID: PMC4173007 DOI: 10.1186/s40478-014-0133-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 12/04/2022] Open
Abstract
Mucolipidosis IV (MLIV) is caused by mutations in the gene MCOLN1. Patients with MLIV have severe neurologic deficits and very little is known about the brain pathology in this lysosomal disease. Using an accurate mouse model of mucolipidosis IV, we observed early behavioral deficits which were accompanied by activation of microglia and astrocytes. The glial activation that persisted during the course of disease was not accompanied by neuronal loss even at the late stage. In vivo [Ca2+]-imaging revealed no changes in resting [Ca2+] levels in Mcoln1−/− cortical neurons, implying their physiological health. Despite the absence of neuron loss, we observed alterations in synaptic plasticity, as indicated by elevated paired-pulse facilitation and enhanced long-term potentiation. Myelination deficits and severely dysmorphic corpus callosum were present early and resembled white matter pathology in mucolipidosis IV patients. These results indicate the early involvement of glia, and challenge the traditional view of mucolipidosis IV as an overtly neurodegenerative condition.
Collapse
|
32
|
Thieleke-Matos C, da Silva ML, Cabrita-Santos L, Pires CF, Ramalho JS, Ikonomov O, Seixas E, Shisheva A, Seabra MC, Barral DC. Host PI(3,5)P2 activity is required for Plasmodium berghei growth during liver stage infection. Traffic 2014; 15:1066-82. [PMID: 24992508 DOI: 10.1111/tra.12190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 01/18/2023]
Abstract
Malaria parasites go through an obligatory liver stage before they infect erythrocytes and cause disease symptoms. In the host hepatocytes, the parasite is enclosed by a parasitophorous vacuole membrane (PVM). Here, we dissected the interaction between the Plasmodium parasite and the host cell late endocytic pathway and show that parasite growth is dependent on the phosphoinositide 5-kinase (PIKfyve) that converts phosphatidylinositol 3-phosphate [PI(3)P] into phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2 ] in the endosomal system. We found that inhibition of PIKfyve by either pharmacological or non-pharmacological means causes a delay in parasite growth. Moreover, we show that the PI(3,5)P2 effector protein TRPML1 that is involved in late endocytic membrane fusion, is present in vesicles closely contacting the PVM and is necessary for parasite growth. Thus, our studies suggest that the parasite PVM is able to fuse with host late endocytic vesicles in a PI(3,5)P2 -dependent manner, allowing the exchange of material between the host and the parasite, which is essential for successful infection.
Collapse
Affiliation(s)
- Carolina Thieleke-Matos
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal; IGC, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu Z, Zhao S, Wu S, Zhang J, Nie Z, Zeng S. A novel role of transient receptor potential mucolipin1 (TRPML1) in protecting against imidazole-induced cytotoxicity. Biochem Cell Biol 2014; 92:279-86. [DOI: 10.1139/bcb-2014-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysosomotropic amines cause serious side effects such as cytoplasmic vacuolation and cell death. TRPML1 (also known as mucolipin1), a member of the transient receptor potential (TRP) protein family, may regulate fusion/fission of vesicles along the endocytic pathway and some aspects of lysosomal ion homeostasis. Nevertheless, it is still unknown whether TRPML1 is involved in death of mammalian cells induced by lysosomotropic agents. In this study, imidazole was used as a model to investigate the role of TRPML1 in the cytotoxicity of lysosomotropic agents. Overexpression of wild-type TRPML1 inhibited imidazole-induced vacuole formation and cell death in human endometrial adenocarcinoma (HEC-1B) cells. In contrast, siRNA-mediated TRPML1 knockdown increased the cell death induced by imidazole. Bafilomycin A1 raises the pH of acidic organelles and therefore suppresses accumulation of weak bases in them. Similarly, lysosomal pH was raised in TRPML1-overexpressing cells; therefore, we inferred that TRPML1 protected against imidazole toxicity by regulating the pH of acidic organelles. We concluded that TRPML1 had a novel role in protecting against lysosomotropic amine toxicity.
Collapse
Affiliation(s)
- Zhenxing Liu
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Shuan Zhao
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Shuaishuai Wu
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Jingyou Zhang
- Reproduction and Breeding Research Center, Animal Husbandry and Veterinary 9 Research Institute, Heilongjiang Academy of Agricultural and Reclamation Science, Harbin 150038, P.R. China
| | - Zunyang Nie
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Shenming Zeng
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
34
|
Kaneko Y, Szallasi A. Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 2014; 171:2474-507. [PMID: 24102319 PMCID: PMC4008995 DOI: 10.1111/bph.12414] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called 'TRP channelopathies') that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field.
Collapse
Affiliation(s)
- Yosuke Kaneko
- Discovery Research Alliance, Ono Pharmaceutical Co. LtdOsaka, Japan
| | - Arpad Szallasi
- Department of Pathology and Laboratory Medicine, Monmouth Medical CenterLong Branch, NJ, USA
| |
Collapse
|
35
|
Ghislat G, Knecht E. Ca²⁺-sensor proteins in the autophagic and endocytic traffic. Curr Protein Pept Sci 2014; 14:97-110. [PMID: 23305313 PMCID: PMC3664516 DOI: 10.2174/13892037112139990033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
Autophagy and endocytosis are two evolutionarily conserved catabolic processes that comprise vesicle trafficking events for the clearance of the sequestered intracellular and extracellular cargo. Both start differently but end in the same compartment, the lysosome. Mounting evidences from the last years have established the involvement of proteins sensitive to intracellular Ca2+ in the control of the early autophagic steps and in the traffic of autophagic, endocytic and lysosomal vesicles. However, this knowledge is based on dispersed outcomes that do not set up a consensus model of the Ca2+-dependent control of autophagy and endocytosis. Here, we will provide a critical synopsis of insights from the last decade on the involvement of Ca2+-sensor proteins in the activation of autophagy and in fusion events of endocytic vesicles, autophagosomes and lysosomes.
Collapse
Affiliation(s)
- Ghita Ghislat
- Laboratorio de Biología Celular, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, Valencia 46012, Spain and CIBERER, Valencia, Spain
| | | |
Collapse
|
36
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
37
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
38
|
Spooner E, McLaughlin BM, Lepow T, Durns TA, Randall J, Upchurch C, Miller K, Campbell EM, Fares H. Systematic screens for proteins that interact with the mucolipidosis type IV protein TRPML1. PLoS One 2013; 8:e56780. [PMID: 23418601 PMCID: PMC3572064 DOI: 10.1371/journal.pone.0056780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Mucolipidosis type IV is a lysosomal storage disorder resulting from mutations in the MCOLN1 gene, which encodes the endosomal/lysosomal Transient Receptor Potential channel protein mucolipin-1/TRPML1. Cells isolated from Mucolipidosis type IV patients and grown in vitro and in in vivo models of this disease both show several lysosome-associated defects. However, it is still unclear how TRPML1 regulates the transport steps implicated by these defects. Identifying proteins that associate with TRPML1 will facilitate the elucidation of its cellular and biochemical functions. We report here two saturation screens for proteins that interact with TRPML1: one that is based on immunoprecipitation/mass spectrometry and the other using a genetic yeast two-hybrid approach. From these screens, we identified largely non-overlapping proteins, which represent potential TRPML1-interactors., Using additional interaction assays on some of the potential interactors from each screen, we validated some proteins as candidate TRPML1 interactors In addition, our analysis indicates that each of the two screens not only identified some false-positive interactors, as expected from any screen, but also failed to uncover potential TRPML1 interactors. Future studies on the true interactors, first identified in these screens, will help elucidate the structure and function of protein complexes containing TRPML1.
Collapse
Affiliation(s)
- Ellen Spooner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Brooke M. McLaughlin
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Talya Lepow
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Tyler A. Durns
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Justin Randall
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Cameron Upchurch
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Katherine Miller
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin M. Campbell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
39
|
Bezprozvanny I. Presenilins: a novel link between intracellular calcium signaling and lysosomal function? ACTA ACUST UNITED AC 2012; 198:7-10. [PMID: 22778275 PMCID: PMC3392935 DOI: 10.1083/jcb.201206003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in presenilins (PS), transmembrane proteins encoding the catalytic subunit of γ-secretase, result in familial Alzheimer's disease (FAD). Several studies have identified lysosomal defects in cells lacking PS or expressing FAD-associated PS mutations, which have been previously attributed to a function for PS in lysosomal acidification. Now, in this issue, Coen et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201076) provide a series of results that challenge this idea and propose instead that presenilins play a role in calcium-mediated lysosomal fusion.
Collapse
Affiliation(s)
- Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
Colletti GA, Miedel MT, Quinn J, Andharia N, Weisz OA, Kiselyov K. Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis. J Biol Chem 2012; 287:8082-91. [PMID: 22262857 DOI: 10.1074/jbc.m111.285536] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the gene MCOLN1, which codes for the transient receptor potential family ion channel TRPML1. MLIV has an early onset and is characterized by developmental delays, motor and cognitive deficiencies, gastric abnormalities, retinal degeneration, and corneal cloudiness. The degenerative aspects of MLIV have been attributed to cell death, whose mechanisms remain to be delineated in MLIV and in most other storage diseases. Here we report that an acute siRNA-mediated loss of TRPML1 specifically causes a leak of lysosomal protease cathepsin B (CatB) into the cytoplasm. CatB leak is associated with apoptosis, which can be prevented by CatB inhibition. Inhibition of the proapoptotic protein Bax prevents TRPML1 KD-mediated apoptosis but does not prevent cytosolic release of CatB. This is the first evidence of a mechanistic link between acute TRPML1 loss and cell death.
Collapse
Affiliation(s)
- Grace A Colletti
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
41
|
Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 2011; 439:349-74. [PMID: 21992097 DOI: 10.1042/bj20110949] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.
Collapse
|
42
|
Wakabayashi K, Gustafson AM, Sidransky E, Goldin E. Mucolipidosis type IV: an update. Mol Genet Metab 2011; 104:206-13. [PMID: 21763169 PMCID: PMC3205274 DOI: 10.1016/j.ymgme.2011.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022]
Abstract
Mucolipidosis type IV (MLIV) is a neurodevelopmental as well as neurodegenerative disorder with severe psychomotor developmental delay, progressive visual impairment, and achlorydria. It is characterized by the presence of lysosomal inclusions in many cell types in patients. MLIV is an autosomal recessive disease caused by mutations in MCOLN1, which encodes for mucolipin-1, a member of the transient receptor potential (TRP) cation channel family. Although approximately 70-80% of patients identified are Ashkenazi Jewish, MLIV is a pan-ethnic disorder. Importantly, while MLIV is thought to be a rare disease, its frequency may be greater than currently appreciated, for its common presentation as a cerebral palsy-like encephalopathy can lead to misdiagnosis. Moreover, patients with milder variants are often not recognized as having MLIV. This review provides an update on the ethnic distribution, clinical manifestations, laboratory findings, methods of diagnosis, molecular genetics, differential diagnosis, and treatment of patients with MLIV. An enhanced awareness of the manifestations of this disorder may help to elucidate the true frequency and range of symptoms associated with MLIV, providing insight into the pathogenesis of this multi-system disease.
Collapse
Affiliation(s)
| | | | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1A213, 35 Convent Dr., MSC 3708, Bethesda, MD 20892-3708
| | - Ehud Goldin
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1A213, 35 Convent Dr., MSC 3708, Bethesda, MD 20892-3708
| |
Collapse
|
43
|
Kiselyov K, Colletti GA, Terwilliger A, Ketchum K, Lyons CWP, Quinn J, Muallem S. TRPML: transporters of metals in lysosomes essential for cell survival? Cell Calcium 2011; 50:288-94. [PMID: 21621258 DOI: 10.1016/j.ceca.2011.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/29/2011] [Indexed: 01/09/2023]
Abstract
Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca(2+)-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe(2+), Ca(2+) and Zn(2+) transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
LaPlante JM, Falardeau JL, Brown EM, Slaugenhaupt SA, Vassilev PM. The cation channel mucolipin-1 is a bifunctional protein that facilitates membrane remodeling via its serine lipase domain. Exp Cell Res 2011; 317:691-705. [PMID: 21256127 DOI: 10.1016/j.yexcr.2011.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 12/03/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022]
Abstract
Phospholipase modulators have been shown to affect the topology of lipid bilayers and the formation of tubulo-vesicular structures, but the specific endogenous phospholipases involved have yet to be identified. Here we show that TRPML1 (MLN1), a Ca(2+)-permeable channel, contributes to membrane remodeling through a serine lipase consensus domain, and thus represents a novel type of bifunctional protein. Remarkably, this serine lipase active site determines the ability of MLN1 to generate tubulo-vesicular extensions in mucolipin-1-expressing oocytes, human fibroblasts and model membrane vesicles. Our demonstration that MLN1 is involved in membrane remodeling and the formation of extensions suggests that it may play a role in the formation of cellular processes linked to the late endosome/lysosome (LE/L) pathway. MLN1 is absent or mutated in patients with mucolipidosis IV (MLIV), a lysosomal disorder with devastating neurological and other consequences. This study provides potential insight into the pathophysiology of MLIV.
Collapse
Affiliation(s)
- Janice M LaPlante
- Division of Endocrinology, Diabetes and Hypertension and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Transient Receptor Potential Genes and Human Inherited Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:1011-32. [DOI: 10.1007/978-94-007-0265-3_52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Abstract
MLIV (mucolipidosis type IV) is a neurodegenerative lysosomal storage disorder caused by mutations in MCOLN1, a gene that encodes TRPML1 (mucolipin-1), a member of the TRPML (transient receptor potential mucolipin) cation channels. Two additional homologues are TRPML2 and TRPML3 comprising the TRPML subgroup in the TRP superfamily. The three proteins play apparently key roles along the endocytosis process, and thus their cellular localization varies among the different group members. Thus TRPML1 is localized exclusively to late endosomes and lysosomes, TRPML2 is primarily located in the recycling clathrin-independent GPI (glycosylphosphatidylinositol)-anchored proteins and early endosomes, and TRPML3 is primarily located in early endosomes. Apparently, all three proteins' main physiological function underlies Ca2+ channelling, regulating the endocytosis process. Recent findings also indicate that the three TRPML proteins form heteromeric complexes at least in some of their cellular content. The physiological role of these complexes in lysosomal function remains to be elucidated, as well as their effect on the pathophysiology of MLIV. Another open question is whether any one of the TRPMLs bears additional function in channel activity
Collapse
|
48
|
Transient receptor potential channelopathies. Pflugers Arch 2010; 460:437-50. [PMID: 20127491 DOI: 10.1007/s00424-010-0788-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/12/2010] [Indexed: 12/31/2022]
Abstract
In the past years, several hereditary diseases caused by defects in transient receptor potential channels (TRP) genes have been described. This review summarizes our current knowledge about TRP channelopathies and their possible pathomechanisms. Based on available genetic indications, we will also describe several putative pathological conditions in which (mal)function of TRP channels could be anticipated.
Collapse
|
49
|
Mucolipins: Intracellular TRPML1-3 channels. FEBS Lett 2010; 584:2013-21. [PMID: 20074572 DOI: 10.1016/j.febslet.2009.12.056] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/23/2009] [Indexed: 11/23/2022]
Abstract
The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration.
Collapse
|
50
|
Kiselyov K, Yamaguchi S, Lyons CW, Muallem S. Aberrant Ca2+ handling in lysosomal storage disorders. Cell Calcium 2010; 47:103-11. [PMID: 20053447 DOI: 10.1016/j.ceca.2009.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/07/2009] [Indexed: 12/27/2022]
Abstract
Lysosomal storage diseases (LSDs) are caused by inability of cells to process the material captured during endocytosis. While they are essentially diseases of cellular "indigestion", LSDs affect large number of cellular activities and, as such, they teach us about the integrative function of the cell, as well as about the gaps in our knowledge of the endocytic pathway and membrane transport. The present review summarizes recent findings on Ca2+ handling in LSDs and attempts to identify the key questions on alterations in Ca2+ signaling and membrane transport in this group of diseases, answers to which may lie in delineating the cellular pathogeneses of LSDs.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|