1
|
Jin Z, Lu J, Xu H, Zhang Y, Zhang S, Zhang D, Hu J, Shi Z, Li Z, Wang J. Exploring the correlation between innate immune activation of inflammasome and regulation of pyroptosis after intracerebral hemorrhage: From mechanism to treatment. Biomed Pharmacother 2024; 179:117382. [PMID: 39241565 DOI: 10.1016/j.biopha.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Stroke has emerged as the primary cause of disability and death globally in recent years. Intracerebral hemorrhage (ICH), a particularly severe kind of stroke, is occurring in an increasing number of people. The two main clinical treatments for ICH now in use are conservative pharmaceutical therapy and surgical intervention, both of which have risks and drawbacks. Consequently, it is crucial to look into the pathophysiology of ICH and consider cutting-edge therapeutic approaches. Recent research has revealed that pyroptosis is a newly identified type of cell death distinguished by the break of the cell membrane and the discharge of pro-inflammatory substances through different routes. Following ICH, glial cells experience pyroptosis, which worsens neuroinflammation. Hence, the onset and progression of ICH are strongly linked to pyroptosis, which is facilitated by different inflammasomes. It is essential to conduct a comprehensive investigation of ICH damage processes and uncover new targets for treatment. The impact and function of pyroptosis in ICH, as well as the activation and regulation of inflammasomes and their mediated pyroptosis pathways will be fully discussed in this review.
Collapse
Affiliation(s)
- Ziqi Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Ying Zhang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Shanshan Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Jing Hu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Zhao Shi
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Zhuyang Li
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Yang Y, Ren C, Xu X, Yang X, Shao W. Decoding the connection between SLE and DNA Sensors: A comprehensive review. Int Immunopharmacol 2024; 137:112446. [PMID: 38878488 DOI: 10.1016/j.intimp.2024.112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
Systemic lupus erythematosus (SLE) is recognized as a prevalent autoimmune disorder characterized by a multifaceted pathogenesis potentially influenced by a combination of environmental factors, genetic predisposition, and hormonal regulation. The continuous study of immune system activation is especially intriguing. Analysis of blood samples from individuals with SLE reveals an abnormal increase in interferon levels, along with the existence of anti-double-stranded DNA antibodies. This evidence suggests that the development of SLE may be initiated by innate immunity. The presence of abnormal dsDNA fragments can activate DNA sensors within cells, particularly immune cells, leading to the initiation of downstream signaling cascades that result in the upregulation of relevant cytokines and the subsequent initiation of adaptive immune responses, such as B cell differentiation and T cell activation. The intricate pathogenesis of SLE results in DNA sensors exhibiting a wide range of functions in innate immune responses that are subject to variation based on cell types, developmental processes, downstream effector signaling pathways and other factors. The review aims to reorganize how DNA sensors influence signaling pathways and contribute to the development of SLE according to current studies, with the aspiration of furnishing valuable insights for future investigations into the pathological mechanisms of SLE and potential treatment approaches.
Collapse
Affiliation(s)
- Yuxiang Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Changhuai Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China
| | - Xiaopeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China
| | - Xinyi Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Moran EA, Salas-Briceno K, Zhao W, Enya T, Aguilera AN, Acosta I, Alonzo F, Kiani D, Behnsen J, Alvarez C, Keane TM, Adams DJ, Lilue J, Ross SR. IFI207, a young and fast-evolving protein, controls retroviral replication via the STING pathway. mBio 2024; 15:e0120924. [PMID: 38860764 PMCID: PMC11253629 DOI: 10.1128/mbio.01209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level, and we show here that it is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207, was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls murine leukemia virus (MLV) infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA, and MLV. IFI207 binds to STING, and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution.IMPORTANCEThe Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore causes higher diversity in virulence factors and immune-related proteins, respectively . The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207. Ifi207, in particular, became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.
Collapse
Affiliation(s)
- Eileen A. Moran
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Wenming Zhao
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Takuji Enya
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Alexya N. Aguilera
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Ivan Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Dara Kiani
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | | | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jingtao Lilue
- Gulbenkian Institute of Science, Oeiras, Portugal
- Oujiang Laboratory, Wenzhou, Zhejiang, China
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Bottardi S, Layne T, Ramòn AC, Quansah N, Wurtele H, Affar EB, Milot E. MNDA, a PYHIN factor involved in transcriptional regulation and apoptosis control in leukocytes. Front Immunol 2024; 15:1395035. [PMID: 38680493 PMCID: PMC11045911 DOI: 10.3389/fimmu.2024.1395035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokines, including type I interferon (IFN), and ii) the initiation of a cascade of events that promote both immediate host responses as well as adaptive immune responses. All human PYRIN and HIN-200 domains (PYHIN) protein family members were initially proposed to be PRRs, although this view has been challenged by reports that revealed their impact on other cellular mechanisms. Of relevance here, the human PYHIN factor myeloid nuclear differentiation antigen (MNDA) has recently been shown to directly control the transcription of genes encoding factors that regulate programmed cell death and inflammation. While MNDA is mainly found in the nucleus of leukocytes of both myeloid (neutrophils and monocytes) and lymphoid (B-cell) origin, its subcellular localization has been shown to be modulated in response to genotoxic agents that induce apoptosis and by bacterial constituents, mediators of inflammation. Prior studies have noted the importance of MNDA as a marker for certain forms of lymphoma, and as a clinical prognostic factor for hematopoietic diseases characterized by defective regulation of apoptosis. Abnormal expression of MNDA has also been associated with altered levels of cytokines and other inflammatory mediators. Refining our comprehension of the regulatory mechanisms governing the expression of MNDA and other PYHIN proteins, as well as enhancing our definition of their molecular functions, could significantly influence the management and treatment strategies of numerous human diseases. Here, we review the current state of knowledge regarding PYHIN proteins and their role in innate and adaptive immune responses. Emphasis will be placed on the regulation, function, and relevance of MNDA expression in the control of gene transcription and RNA stability during cell death and inflammation.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Taylorjade Layne
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Ailyn C. Ramòn
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Xie J, Cheng J, Ko H, Tang Y. Cytosolic DNA sensors in neurodegenerative diseases: from physiological defenders to pathological culprits. EMBO Mol Med 2024; 16:678-699. [PMID: 38467840 PMCID: PMC11018843 DOI: 10.1038/s44321-024-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
6
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
7
|
Li Y, Zhang C, Samad A, Zheng P, Li Y, Chen F, Jin T. Structural mechanism of dsDNA recognition by the hMNDA HIN domain: New insights into the DNA-binding model of a PYHIN protein. Int J Biol Macromol 2023; 245:125461. [PMID: 37348588 DOI: 10.1016/j.ijbiomac.2023.125461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The hematopoietic interferon-inducible nuclear (HIN) domain of the PYHIN family of proteins recognizes double-stranded DNA (dsDNA) through different dsDNA-binding modes. These modes apparently confer different roles upon these proteins in the regulation of innate immune responses, gene transcription, and apoptosis. Myeloid cell nuclear differentiation antigen (MNDA), a member of the human PYHIN family, binds DNA and regulates gene transcription in monocytes. However, the mechanism of DNA recognition and DNA-binding modes of human MNDA (hMNDA) remain unclear. Here, we determined the crystal structure of the hMNDA-HIN domain in complex with dsDNA at 2.4 Å resolution, and reveal that hMNDA-HIN binds to dsDNA in a sequence-independent manner. Structure and mutation studies indicated that hMNDA-HIN binds to dsDNA through a unique mode, involving two dsDNA-binding interfaces. Interface I exhibits an AIM2-like dsDNA-binding mode, and interface II has a previously unreported mode of dsDNA-binding. These results provide new insights into the DNA-binding modes of this PYHIN protein.
Collapse
Affiliation(s)
- Yuelong Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Caiying Zhang
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Abdus Samad
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yajuan Li
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
8
|
Moltrasio C, Cagliani R, Sironi M, Clerici M, Pontremoli C, Maronese CA, Tricarico PM, Crovella S, Marzano AV. Autoinflammation in Syndromic Hidradenitis Suppurativa: The Role of AIM2. Vaccines (Basel) 2023; 11:162. [PMID: 36680007 PMCID: PMC9862365 DOI: 10.3390/vaccines11010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AIM2 is a key cytoplasmatic pathogen-sensor that detects foreign DNA from viruses and bacteria; it can also recognize damaged or anomalous presence of DNA, promoting inflammasome assembly and activation with the secretion of IL-1β, thus sustaining a chronic inflammatory state, potentially leading to the onset of autoinflammatory skin diseases. Given the implication of the IL-1β pathway in the pathogenesis of syndromic hidradenitis suppurativa (HS), an autoinflammatory immune-mediated skin condition, the potential involvement of AIM2 was investigated. METHODS Sequencing of the whole coding region of the AIM2 gene, comprising 5'- and 3' UTR and a region upstream of the first exon of ~800 bp was performed in twelve syndromic HS patients. RESULTS Six out of twelve syndromic HS patients carried a heterozygous variant c.-208 A ≥ C (rs41264459), located on the promoter region of the AIM2 gene, with a minor allele frequency of 0.25, which is much higher than that reported in 1000 G and GnomAD (0.075 and 0.094, respectively). The same variant was found at a lower allelic frequency in sporadic HS and isolated pyoderma gangrenosum (PG) (0.125 and 0.065, respectively). CONCLUSION Our data suggest that this variant might play a role in susceptibility to develop syndromic forms of HS but not to progress to sporadic HS and PG. Furthermore, epigenetic and/or somatic variations could affect AIM2 expression leading to different, context-dependent responses.
Collapse
Affiliation(s)
- Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Medical Surgical and Health Sciences, University of Trieste, 34137 Trieste, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20122 Milan, Italy
| | - Chiara Pontremoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
9
|
Kumar N, Vyas A, Agnihotri SK, Chattopadhyay N, Sachdev M. Small secretory proteins of immune cells can modulate gynecological cancers. Semin Cancer Biol 2022; 86:513-531. [PMID: 35150864 DOI: 10.1016/j.semcancer.2022.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Small secretory proteins of immune cells are mostly Cytokines, which include chemokines, interleukins, interferons, lymphokines and tumor necrosis factors but not hormones or growth factors. These secretory proteins are the molecular messengers and primarily involved in autocrine, paracrine and endocrine signaling as immunomodulating agents. Hence, these proteins actually regulate the cells of immune system to communicate with one another to produce a synchronized, robust, still self-regulated response to a specific antigen. Chemokines are smaller secreted proteins that control overall immune cell movement and location; these chemokines are divided into 4 subgroups, namely, CXC, CC, CX3C and C according to the position of 4 conserved cysteine residues. Complete characterization of cytokines and chemokines can exploit their vast signaling networks to develop cancer treatments. These secretory proteins like IL-6, IL-10, IL-12, TNFα, CCL2, CXCL4 & CXCL8 are predominantly expressed in most of the gynecological cancers, which directly stimulate immune effector cells and stromal cells at the tumor site and augment tumor cell recognition by cytotoxic T-cells. Hence; these secretory proteins are the major regulators, which can actually modulate all kinds of gynecological cancers. Furthermore, advancements in adoptive T-cell treatment have relied on the use of multiple cytokines/chemokines to establish a highly regulated environment for anti-tumor T cell growth. A number of in vitro studies as well as animal models and clinical subjects have also shown that cytokines/chemokines have broad antitumor activity, which has been translated into a number of cancer therapy approaches. This review will focus on the foremost cytokines & chemokines involved in the majority of the gynecological malignancies and discuss their basic biology as well as clinical applications.
Collapse
Affiliation(s)
- Niranjan Kumar
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | - Akanksha Vyas
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| |
Collapse
|
10
|
The Nuclear DNA Sensor IFI16 Indiscriminately Binds to and Diminishes Accessibility of the HSV-1 Genome to Suppress Infection. mSystems 2022; 7:e0019822. [PMID: 35575489 PMCID: PMC9239196 DOI: 10.1128/msystems.00198-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human cells identify invading pathogens and activate immune signaling pathways through a wide array of pattern recognition receptors, including DNA sensors. The interferon-inducible protein 16 (IFI16) is a nuclear DNA sensor that recognizes double-stranded DNA from a number of viral sources, including genomes of nuclear-replicating viruses. Among these is the prevalent human pathogen herpes simplex virus 1 (HSV-1). Upon binding to the HSV-1 DNA genome, IFI16 both induces antiviral cytokine expression and suppresses virus gene expression. Here, we used a multiomics approach of DNA sequencing techniques paired with targeted mass spectrometry to obtain an extensive view of the interaction between IFI16 and the HSV-1 genome and how this binding affects the viral DNA structure and protein expression. Through chromatin immunoaffinity purification coupled with next-generation DNA sequencing (ChIP-seq), we found that IFI16 binds to the HSV-1 genome in a sequence-independent manner while simultaneously exhibiting broad enrichment at two loci: UL30, the viral DNA polymerase gene, and US1 to US7. The assay for transposase-accessible chromatin with sequencing (ATAC-seq) revealed that these two regions are among the most accessible stretches of DNA on the genome, thereby facilitating IFI16 binding. Accessibility of the entire HSV-1 genome is elevated upon IFI16 knockout, indicating that expression of IFI16 globally induces chromatinization of viral DNA. Deletion of IFI16 also results in a global increase in the expression of HSV-1 proteins, as measured by parallel reaction monitoring-mass spectrometry of viral proteins representing 80% of the HSV-1 genome. Altogether, we demonstrate that IFI16 interacts with the HSV-1 genome in a sequence-independent manner, coordinating epigenetic silencing of the viral genome and decreasing protein expression and virus replication. IMPORTANCE Mammalian host defense against viral infection includes broad-acting cellular restriction factors, as well as effectors of intrinsic and innate immunity. IFI16 is a critical nuclear host defense factor and intrinsic immune protein involved in binding viral DNA genomes, thereby repressing the replication of nucleus-replicating viruses, including the human herpes simplex virus 1. What has remained unclear is where on the viral genome IFI16 binds and how binding affects both viral DNA structural accessibility and viral protein expression. Our study provides a global view of where and how a nuclear restriction factor of DNA viruses associates with viral genomes to exert antiviral functions during early stages of an acute virus infection. Our study can additionally serve as a systems-level model to evaluate nuclear DNA sensor interactions with viral genomes, as well as the antiviral outcomes of transcriptionally silencing pathogen-derived DNA.
Collapse
|
11
|
Borucka J, Sterzyńska K, Kaźmierczak D, Świerczewska M, Nowacka M, Wojtowicz K, Klejewski A, Nowicki M, Zabel M, Ramlau R, Januchowski R. The significance of interferon gamma inducible protein 16 (IFI16) expression in drug resistant ovarian cancer cell lines. Biomed Pharmacother 2022; 150:113036. [PMID: 35489285 DOI: 10.1016/j.biopha.2022.113036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Inherent or developed during treatment drug resistance is the main reason for the low effectiveness of chemotherapy in ovarian cancer. IFI16 is a cytoplasmic/nuclear protein involved in response to virus's infection and cell cycle arrest associated with the cellular senescence. METHODS Here we performed a detailed IFI16 expression analysis in ovarian cancer cell lines sensitive (A2780) and resistant to doxorubicin (DOX) (A2780DR1 and A2780DR2) and paclitaxel (PAC) (A2780PR1). IFI16 mRNA level, protein level in the nuclear and cytoplasmic fraction (Western blot analysis), the protein expression in cancer cells and nuclei (immunofluorescence analysis) and cancer patient lesions (immunohistochemistry) were performed in this study. RESULTS We observed upregulation of IFI16 expression in drug resistant cell lines with dominant cytoplasmic localization in DOX-resistant cell lines and nuclear one in the PAC-resistant cell line. The most abundantly overexpressed isoforms of IFI16 were IFI16A and IFI16C. Finally, an analysis of a histological type of ovarian cancer (immunohistochemistry) showed expression in serous ovarian cancer. CONCLUSIONS Expression of IFI16 in drug-resistant cell lines suggests its role in drug resistance development in ovarian cancer. Expression in serous ovarian cancer suggests its role in the pathogenesis of this histological type.
Collapse
Affiliation(s)
- Justyna Borucka
- Department of Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Dominika Kaźmierczak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznań, Poland; Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St, 60-535 Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28 St, 65-046 Zielona Gora, Poland
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland
| | - Radosław Januchowski
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28 St, 65-046 Zielona Gora, Poland.
| |
Collapse
|
12
|
Tupik JD, Markov Madanick JW, Ivester HM, Allen IC. Detecting DNA: An Overview of DNA Recognition by Inflammasomes and Protection against Bacterial Respiratory Infections. Cells 2022; 11:1681. [PMID: 35626718 PMCID: PMC9139316 DOI: 10.3390/cells11101681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a key role in modulating host immune defense during bacterial disease. Upon sensing pathogen-associated molecular patterns (PAMPs), the multi-protein complex known as the inflammasome serves a protective role against bacteria burden through facilitating pathogen clearance and bacteria lysis. This can occur through two mechanisms: (1) the cleavage of pro-inflammatory cytokines IL-1β/IL-18 and (2) the initiation of inflammatory cell death termed pyroptosis. In recent literature, AIM2-like Receptor (ALR) and Nod-like Receptor (NLR) inflammasome activation has been implicated in host protection following recognition of bacterial DNA. Here, we review current literature synthesizing mechanisms of DNA recognition by inflammasomes during bacterial respiratory disease. This process can occur through direct sensing of DNA or indirectly by sensing pathogen-associated intracellular changes. Additionally, DNA recognition may be assisted through inflammasome-inflammasome interactions, specifically non-canonical inflammasome activation of NLRP3, and crosstalk with the interferon-inducible DNA sensors Stimulator of Interferon Genes (STING) and Z-DNA Binding Protein-1 (ZBP1). Ultimately, bacterial DNA sensing by inflammasomes is highly protective during respiratory disease, emphasizing the importance of inflammasome involvement in the respiratory tract.
Collapse
Affiliation(s)
- Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Justin W. Markov Madanick
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Hannah M. Ivester
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
13
|
St Pierre CL, Macias-Velasco JF, Wayhart JP, Yin L, Semenkovich CF, Lawson HA. Genetic, epigenetic, and environmental mechanisms govern allele-specific gene expression. Genome Res 2022; 32:1042-1057. [PMID: 35501130 PMCID: PMC9248887 DOI: 10.1101/gr.276193.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Allele-specific expression (ASE) is a phenomenon in which one allele is preferentially expressed over the other. Genetic and epigenetic factors cause ASE by altering the final composition of a gene's product, leading to expression imbalances that can have functional consequences on phenotypes. Environmental signals also impact allele-specific expression, but how they contribute to this cross talk remains understudied. Here, we explored how genotype, parent-of-origin, tissue, sex, and dietary fat simultaneously influence ASE biases. Male and female mice from a F1 reciprocal cross of the LG/J and SM/J strains were fed a high or low fat diet. We harnessed strain-specific variants to distinguish between two ASE classes: parent-of-origin-dependent (unequal expression based on parental origin) and sequence-dependent (unequal expression based on nucleotide identity). We present a comprehensive map of ASE patterns in 2853 genes across three tissues and nine environmental contexts. We found that both ASE classes are highly dependent on tissue and environmental context. They vary across metabolically relevant tissues, between males and females, and in response to dietary fat. We also found 45 genes with inconsistent ASE biases that switched direction across tissues and/or environments. Finally, we integrated ASE and QTL data from published intercrosses of the LG/J and SM/J strains. Our ASE genes are often enriched in QTLs for metabolic and musculoskeletal traits, highlighting how this orthogonal approach can prioritize candidate genes. Together, our results provide novel insights into how genetic, epigenetic, and environmental mechanisms govern allele-specific expression, which is an essential step toward deciphering the genotype-to-phenotype map.
Collapse
Affiliation(s)
| | | | | | - Li Yin
- Washington University in Saint Louis
| | | | | |
Collapse
|
14
|
Wang S, Bai J. Functions and roles of IFIX, a member of the human HIN-200 family, in human diseases. Mol Cell Biochem 2022; 477:771-780. [PMID: 35039991 DOI: 10.1007/s11010-021-04297-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022]
Abstract
Pyrin and hematopoietic expression, interferon-inducible nature, and nuclear localization (HIN) domain family member 1 (PYHIN1), also known as IFIX, belongs to the family of pyrin proteins. This family includes structurally and functionally related mouse (e.g., p202, p203, and p204 proteins) and human (e.g., the interferon-inducible protein 16, absent in melanoma 2 protein, myeloid cell nuclear differentiation antigen, and pyrin and HIN domain family 1 or IFIX) proteins. The IFIX protein belongs to the HIN-200 family of interferon-inducible proteins that have a 200-amino acid signature motif at their C-termini. The increased expression of pyrin proteins in most cell types inhibits cell cycle control and modulates cell survival. Consistent with this role for pyrin proteins, IFIX is a potential antiviral DNA sensor that is essential for immune responses, the detection of viral DNA in the nucleus and cytoplasm, and the binding of foreign DNA via its HIN domain in a sequence non-specific manner. By promoting the ubiquitination and subsequent degradation of MDM2, IFIX acts as a tumor suppressor, thereby leading to p53/TP53 stabilization, HDAC1 regulation via the ubiquitin-proteasome pathway, and tumor-cell-specific silencing of the maspin gene. These data demonstrate that the potential molecular mechanism(s) underlying the action of the IFIX protein might be associated with the development of human diseases, such as viral infections, malignant tumors, and autoimmune diseases. This review summarizes the current insights into IFIX functions and how its regulation affects the outcomes of various human diseases.
Collapse
Affiliation(s)
- Shan Wang
- Department of Oral Pathology, Hospital of Stomatology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Jie Bai
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, People's Republic of China.
| |
Collapse
|
15
|
Ahmed Bhat E, Sajjad N, Ahmad Tantray J, Hor YY, Rather IA. In vitro complex formation of human PYRIN domain-only protein 3 prevented by self-oligomerization of ASC PYD domain. Saudi J Biol Sci 2021; 28:1607-1614. [PMID: 33732046 PMCID: PMC7938106 DOI: 10.1016/j.sjbs.2020.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
The formation of inflammasome complexes contributes inactivation of inflammatory caspases viz caspase 1, which is generally considered essential for the innate response. Three proteins constituted this inflammasome complex, such as Nod-like receptors (NLRP or AIM2), ASC possessing caspase-recruiting domain, and caspase-1. The ASC proteins comprise two domains, the N-terminal PYD domain responsible for the interaction of various proteins, including PYD only protein 3 (POP3), and the CARD domain for association with other proteins. The PYRIN Domain-Only Protein POP3 negatively regulates responses to DNA virus infection by preventing the ALR inflammasome formation. POP3 directly interacts with ASC, therefore inhibiting ASC recruitment to AIM2-like receptors (ALRs). In the current study, we designed various constructs of the PYRIN Domain-Only Protein 3 (POP3) and ASC PYD domain to find the best-overexpressed construct for biochemical characterization as well as our complex studies. We cloned, purified, and characterized the PYD domain of pyrin only protein 3 and ASC PYD domain under physiological conditions. Our in vitro study clearly shows that the ASC PYD domain of corresponding amino acid 1-96 aa with ease self-oligomerization in physiological buffer conditions, and complex formation of POP3 PYD (1-83 aa) was inhibited by ASC PYD domain. Besides, we purified the PYD of POP3 protein in low and high salt conditions and different pH values for their biochemical characterization. Our results showed that POP3 formed a dimer under normal physiological conditions and was stable under normal buffer conditions; however, the purification in extremely low pH (pH5.0) conditions shows unstable behavior, the high salt conditions (500 mM NaCl) influence the protein aggregation. SDS PAGE arbitrated the homogeneity of the PYD domain of pyrin only protein 3 and ASC PYD domain of corresponding amino acids 1-83 and 1-96, respectively. Furthermore, our native PAGE shows the PYD domain of pyrin; only protein 3 did not form a complex with ASC PYD domain because of oligomerization mediated by the PYD domain.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- Life Science Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Yan-Yan Hor
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, South Korea
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Emerging Role of PYHIN Proteins as Antiviral Restriction Factors. Viruses 2020; 12:v12121464. [PMID: 33353088 PMCID: PMC7767131 DOI: 10.3390/v12121464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Innate immune sensors and restriction factors are cellular proteins that synergize to build an effective first line of defense against viral infections. Innate sensors are usually constitutively expressed and capable of detecting pathogen-associated molecular patterns (PAMPs) via specific pattern recognition receptors (PRRs) to stimulate the immune response. Restriction factors are frequently upregulated by interferons (IFNs) and may inhibit viral pathogens at essentially any stage of their replication cycle. Members of the Pyrin and hematopoietic interferon-inducible nuclear (HIN) domain (PYHIN) family have initially been recognized as important sensors of foreign nucleic acids and activators of the inflammasome and the IFN response. Accumulating evidence shows, however, that at least three of the four members of the human PYHIN family restrict viral pathogens independently of viral sensing and innate immune activation. In this review, we provide an overview on the role of human PYHIN proteins in the innate antiviral immune defense and on viral countermeasures.
Collapse
|
17
|
Howard TR, Cristea IM. Interrogating Host Antiviral Environments Driven by Nuclear DNA Sensing: A Multiomic Perspective. Biomolecules 2020; 10:biom10121591. [PMID: 33255247 PMCID: PMC7761228 DOI: 10.3390/biom10121591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear DNA sensors are critical components of the mammalian innate immune system, recognizing the presence of pathogens and initiating immune signaling. These proteins act in the nuclei of infected cells by binding to foreign DNA, such as the viral genomes of nuclear-replicating DNA viruses herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). Upon binding to pathogenic DNA, the nuclear DNA sensors were shown to initiate antiviral cytokines, as well as to suppress viral gene expression. These host defense responses involve complex signaling processes that, through protein–protein interactions (PPIs) and post-translational modifications (PTMs), drive extensive remodeling of the cellular transcriptome, proteome, and secretome to generate an antiviral environment. As such, a holistic understanding of these changes is required to understand the mechanisms through which nuclear DNA sensors act. The advent of omics techniques has revolutionized the speed and scale at which biological research is conducted and has been used to make great strides in uncovering the molecular underpinnings of DNA sensing. Here, we review the contribution of proteomics approaches to characterizing nuclear DNA sensors via the discovery of functional PPIs and PTMs, as well as proteome and secretome changes that define a host antiviral environment. We also highlight the value of and future need for integrative multiomic efforts to gain a systems-level understanding of DNA sensors and their influence on epigenetic and transcriptomic alterations during infection.
Collapse
|
18
|
Devi S, Stehlik C, Dorfleutner A. An Update on CARD Only Proteins (COPs) and PYD Only Proteins (POPs) as Inflammasome Regulators. Int J Mol Sci 2020; 21:E6901. [PMID: 32962268 PMCID: PMC7555848 DOI: 10.3390/ijms21186901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are protein scaffolds required for the activation of caspase-1 and the subsequent release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death to restore homeostasis following infection and sterile tissue damage. However, excessive inflammasome activation also causes detrimental inflammatory disease. Therefore, extensive control mechanisms are necessary to prevent improper inflammasome responses and inflammatory disease. Inflammasomes are assembled by sequential nucleated polymerization of Pyrin domain (PYD) and caspase recruitment domain (CARD)-containing inflammasome components. Once polymerization is nucleated, this process proceeds in a self-perpetuating manner and represents a point of no return. Therefore, regulation of this key step is crucial for a controlled inflammasome response. Here, we provide an update on two single domain protein families containing either a PYD or a CARD, the PYD-only proteins (POPs) and CARD-only proteins (COPs), respectively. Their structure allows them to occupy and block access to key protein-protein interaction domains necessary for inflammasome assembly, thereby regulating the threshold of these nucleated polymerization events, and consequently, the inflammatory host response.
Collapse
Affiliation(s)
- Savita Devi
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, and Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA 90048, USA
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA 90048, USA
| |
Collapse
|
19
|
Lozano-Ruiz B, González-Navajas JM. The Emerging Relevance of AIM2 in Liver Disease. Int J Mol Sci 2020; 21:ijms21186535. [PMID: 32906750 PMCID: PMC7555176 DOI: 10.3390/ijms21186535] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/18/2023] Open
Abstract
Absent in melanoma 2 (AIM2) is a cytosolic receptor that recognizes double-stranded DNA (dsDNA) and triggers the activation of the inflammasome cascade. Activation of the inflammasome results in the maturation of inflammatory cytokines, such as interleukin (IL)-1 β and IL-18, and a form of cell death known as pyroptosis. Owing to the conserved nature of its ligand, AIM2 is important during immune recognition of multiple pathogens. Additionally, AIM2 is also capable of recognizing host DNA during cellular damage or stress, thereby contributing to sterile inflammatory diseases. Inflammation, either in response to pathogens or due to sterile cellular damage, is at the center of the most prevalent and life-threatening liver diseases. Therefore, during the last 15 years, the study of inflammasome activation in the liver has emerged as a new research area in hepatology. Here, we discuss the known functions of AIM2 in the pathogenesis of different hepatic diseases, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), hepatitis B, liver fibrosis, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Beatriz Lozano-Ruiz
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;
- Department of Pharmacology, Paediatrics and Organic Chemistry, University Miguel Hernández (UMH), 03550 San Juan, Alicante, Spain
| | - José M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;
- Department of Pharmacology, Paediatrics and Organic Chemistry, University Miguel Hernández (UMH), 03550 San Juan, Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández, 03202 Elche, Alicante, Spain
- Correspondence: ; Tel.: +34-(965)-913-928
| |
Collapse
|
20
|
Ahn H, Han BC, Lee SH, Lee GS. Fructose-arginine, a non-saponin molecule of Korean Red Ginseng, attenuates AIM2 inflammasome activation. J Ginseng Res 2020; 44:808-814. [PMID: 33192124 PMCID: PMC7655492 DOI: 10.1016/j.jgr.2020.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023] Open
Abstract
Background Korean Red Ginseng extract (RGE) has been reported to act as an inflammasome modulator. Ginsenosides, saponin molecules of RGE, selectively inhibit activation of NLRP3 and AIM2 inflammasomes, while non-saponin molecules of RGE upregulate inflammasome components associated with the initiation of NLRP3 inflammasome activation. In this study, we investigated the effect of non-saponin components of RGE on AIM2 inflammasome activation. Methods The role of non-saponins of RGE on AIM2 inflammasomes was tested in mouse bone marrow-derived macrophages, a human monocyte-like cell line, and a mouse animal model. Cells or mice were transfected with dsDNA or inoculated with Listeria monocytogenes to activate AIM2 inflammasomes. Several indices of inflammasome activation were examined via immunoblot or ELISA analysis. Results The non-saponin fraction and saponin-eliminating fraction (SEF) of RGE selectively attenuated the activation of AIM2 inflammasomes, but not that of NLRP3 or NLRC4 inflammasomes. Fructose-arginine, an amino-sugar, was shown to be effective against AIM2 inflammasome activation. Conclusion Non-saponins of RGE, such as fructose-arginine, might be effective in regulating infectious and autoimmune diseases resulting from AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung-Cheol Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea.,Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung-Ho Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
21
|
Lin H, Cao X. Nuclear innate sensors for nucleic acids in immunity and inflammation. Immunol Rev 2020; 297:162-173. [PMID: 32564422 DOI: 10.1111/imr.12893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Innate sensors recognize pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to initiate innate immune response by activating downstream signaling. These evolutionarily conserved innate sensors usually locate in the plasma membrane or cytoplasm. However, the nucleus-localized innate sensors are recently found to detect pathogenic nucleic acids for initiating innate response, demonstrating a complicated crosstalk with cytoplasmic sensors and signaling molecules to form an elaborate tiered innate signaling network between nucleus and cytoplasm. Furthermore, these nuclear innate sensors evolve varied mechanisms for discriminating self from non-self nucleic acids to maintain immune homeostasis and avoid autoinflammatory immune response. In this review, we summarize the recent findings on the identification of nuclear innate sensors for nucleic acids, such as hnRNPA2B1, IFI16, SAFA, and their roles in host defense and inflammatory response.
Collapse
Affiliation(s)
- Hongyu Lin
- Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuetao Cao
- Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Laboratory of Immunity and Inflammation, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y, Wang R, Li T, Hu R. AIM2 promotes non‐small‐cell lung cancer cell growth through inflammasome‐dependent pathway. J Cell Physiol 2019; 234:20161-20173. [DOI: 10.1002/jcp.28617] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Minda Zhang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Chenyu Jin
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yunjia Yang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Keke Wang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Tao Li
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| |
Collapse
|
23
|
Modulation of the innate immune response by human cytomegalovirus. INFECTION GENETICS AND EVOLUTION 2018; 64:105-114. [DOI: 10.1016/j.meegid.2018.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
|
24
|
Caneparo V, Landolfo S, Gariglio M, De Andrea M. The Absent in Melanoma 2-Like Receptor IFN-Inducible Protein 16 as an Inflammasome Regulator in Systemic Lupus Erythematosus: The Dark Side of Sensing Microbes. Front Immunol 2018; 9:1180. [PMID: 29892303 PMCID: PMC5985366 DOI: 10.3389/fimmu.2018.01180] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Absent in melanoma 2 (AIM2)-like receptors (ALRs) are a newly characterized class of pathogen recognition receptors (PRRs) involved in cytosolic and nuclear pathogen DNA recognition. In recent years, two ALR family members, the interferon (IFN)-inducible protein 16 (IFI16) and AIM2, have been linked to the pathogenesis of various autoimmune diseases, among which systemic lupus erythematosus (SLE) has recently gained increasing attention. SLE patients are indeed often characterized by constitutively high serum IFN levels and increased expression of IFN-stimulated genes due to an abnormal response to pathogens and/or incorrect self-DNA recognition process. Consistently, we and others have shown that IFI16 is overexpressed in a wide range of autoimmune diseases where it triggers production of specific autoantibodies. In addition, evidence from mouse models supports a model whereby ALRs are required for IFN-mediated host response to both exogenous and endogenous DNA. Following interaction with cytoplasmic or nuclear nucleic acids, ALRs can form a functional inflammasome through association with the adaptor ASC [apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD)] and with procaspase-1. Importantly, inflammasome-mediated upregulation of IL-1β and IL-18 production positively correlates with SLE disease severity. Therefore, targeting ALR sensors and their downstream pathways represents a promising alternative therapeutic approach for SLE and other systemic autoimmune diseases.
Collapse
Affiliation(s)
- Valeria Caneparo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy.,Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy
| | - Marisa Gariglio
- Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy.,Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
25
|
Lugrin J, Martinon F. The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. Immunol Rev 2017; 281:99-114. [DOI: 10.1111/imr.12618] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jérôme Lugrin
- Service of Adult Intensive Care Medicine; Lausanne University Hospital; Epalinges Switzerland
| | - Fabio Martinon
- Department of Biochemistry; University of Lausanne; Epalinges Switzerland
| |
Collapse
|
26
|
AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA. mBio 2017; 8:mBio.00944-17. [PMID: 28679751 PMCID: PMC5573678 DOI: 10.1128/mbio.00944-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs) that stimulate the induction of interferons (IFNs) and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING). Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA.IMPORTANCE Autoimmune diseases like Aicardi-Goutières syndrome and lupus erythematosus arise when cells of the immune system become activated and attack host cells and tissues. We found that DNA generated by endogenous retroviruses and retroelements in inbred mice and mouse cells is recognized by several host proteins found in macrophages that are members of the ALR family and that these proteins both suppress and activate the pathways leading to the generation of cytokines and IFNs. We also show that there is great genetic diversity between different inbred mouse strains in the ALR genes, which might contribute to differential susceptibility to autoimmunity. Understanding how immune cells become activated is important to the control of disease.
Collapse
|
27
|
Choubey D, Panchanathan R. IFI16, an amplifier of DNA-damage response: Role in cellular senescence and aging-associated inflammatory diseases. Ageing Res Rev 2016; 28:27-36. [PMID: 27063514 DOI: 10.1016/j.arr.2016.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
Abstract
DNA-damage induces a DNA-damage response (DDR) in mammalian cells. The response, depending upon the cell-type and the extent of DNA-damage, ultimately results in cell death or cellular senescence. DDR-induced signaling in cells activates the ATM-p53 and ATM-IKKα/β-interferon (IFN)-β signaling pathways, thus leading to an induction of the p53 and IFN-inducible IFI16 gene. Further, upon DNA-damage, DNA accumulates in the cytoplasm, thereby inducing the IFI16 protein and STING-dependent IFN-β production and activation of the IFI16 inflammasome, resulting in the production of proinflammatory cytokines (e.g., IL-1β and IL-18). Increased expression of IFI16 protein in a variety of cell-types promotes cellular senescence. However, reduced expression of IFI16 in cells promotes cell proliferation. Because expression of the IFI16 gene is induced by activation of DNA-damage response in cells and increased levels of IFI16 protein in cells potentiate the p53-mediated transcriptional activation of genes and p53 and pRb-mediated cell cycle arrest, we discuss how an improved understanding of the role of IFI16 protein in cellular senescence and associated inflammatory secretory phenotype is likely to identify the molecular mechanisms that contribute to the development of aging-associated human inflammatory diseases and a failure to cancer therapy.
Collapse
Affiliation(s)
- Divaker Choubey
- Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States; Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P.O. Box-670056, Cincinnati, OH 45267, United States.
| | - Ravichandran Panchanathan
- Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States; Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P.O. Box-670056, Cincinnati, OH 45267, United States
| |
Collapse
|
28
|
Abstract
Inflammasomes are oligomeric signaling complexes that promote caspase activation and maturation of proinflammatory cytokines. Structural and biophysical studies have shed light on the mechanisms of nucleic acid recognition and signaling complex assembly involving the AIM2 (absent in myeloma 2) and IFI16 (γ-interferon-inducible protein 16) inflammasomes. However, our understanding of the mechanisms of the NLRP3 (nucleotide-binding oligomerization-like receptor family, pyrin domain-containing protein 3) activation, either by nucleic acids or by other reported stimuli, has remained elusive. Exciting recent progress on the filament formation by the ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) pyrin domain and the IFI16-double stranded DNA complex has established that the formation of higher order polymers is one of the general mechanisms for signaling platform assembly in innate immune system. The paradigm-changing discovery of the extracellular function of the NLRP3-ASC inflammasome has opened the door for therapeutic targeting the inflammasome filament formation for various clinical conditions. Future characterization of the canonical and non-canonical inflammasome complexes will undoubtedly reveal more surprises on their structure and function and enrich our understanding of the molecular mechanisms of ligand recognition, activation, and regulation.
Collapse
Affiliation(s)
- Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
29
|
Stavrou S, Blouch K, Kotla S, Bass A, Ross SR. Nucleic acid recognition orchestrates the anti-viral response to retroviruses. Cell Host Microbe 2015; 17:478-88. [PMID: 25816774 DOI: 10.1016/j.chom.2015.02.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
Intrinsic restriction factors and viral nucleic acid sensors are important for the anti-viral response. Here, we show how upstream sensing of retroviral reverse transcripts integrates with the downstream effector APOBEC3, an IFN-induced cytidine deaminase that introduces lethal mutations during retroviral reverse transcription. Using a murine leukemia virus (MLV) variant with an unstable capsid that induces a strong IFNβ antiviral response, we identify three sensors, IFI203, DDX41, and cGAS, required for MLV nucleic acid recognition. These sensors then signal using the adaptor STING, leading to increased production of IFNβ and other targets downstream of the transcription factor IRF3. Using knockout and mutant mice, we show that APOBEC3 limits the levels of reverse transcripts that trigger cytosolic sensing, and that nucleic acid sensing in vivo increases expression of IFN-regulated restriction factors like APOBEC3 that in turn reduce viral load. These studies underscore the importance of the multiple layers of protection afforded by host factors.
Collapse
Affiliation(s)
- Spyridon Stavrou
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin Blouch
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Swathi Kotla
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonia Bass
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan R Ross
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Zhao H, Gonzalezgugel E, Cheng L, Richbourgh B, Nie L, Liu C. The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation. Genes Dis 2015; 2:46-56. [PMID: 25815367 PMCID: PMC4372153 DOI: 10.1016/j.gendis.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p204 is a member of the interferon-inducible p200 family proteins in mice. The p200 family has been reported to be multifunctional regulators of cell proliferation, differentiation, apoptosis and senescence. Interferon-inducible protein 16 (IFI16) is regarded as the human ortholog of p204 in several studies. This is possibly due to the similarity of their structures. However the consistency of their functions is still elusive. Currently, an emerging focus has been placed upon the role of the p200 proteins as sensors for microbial DNA in innate immune responses and provides new insights into infections as well as autoimmune diseases. This review specially focuses on IFI16 and p204, the member of p200 family in human and murine respectively, and their pathophysiological roles in innate immune responses, cell differentiation and proliferation.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Elena Gonzalezgugel
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lei Cheng
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Brendon Richbourgh
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lin Nie
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|
31
|
Demaria O, Di Domizio J, Gilliet M. Immune sensing of nucleic acids in inflammatory skin diseases. Semin Immunopathol 2014; 36:519-29. [PMID: 25224103 DOI: 10.1007/s00281-014-0445-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022]
Abstract
Endosomal and cytosolic nucleic acid receptors are important immune sensors required for the detection of infecting or replicating viruses. The intracellular location of these receptors allows viral recognition and, at the same time, avoids unnecessary immune activation to self-nucleic acids that are continuously released by dying host cells. Recent evidence, however, indicates that endogenous factors such as anti-microbial peptides have the ability to break this protective mechanism. Here, we discuss these factors and illustrate how they drive inflammatory responses by promoting immune recognition of self-nucleic acids in skin wounds and inflammatory skin diseases such as psoriasis and lupus.
Collapse
Affiliation(s)
- Olivier Demaria
- Department of Dermatology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | | | | |
Collapse
|
32
|
Connolly DJ, Bowie AG. The emerging role of human PYHIN proteins in innate immunity: implications for health and disease. Biochem Pharmacol 2014; 92:405-14. [PMID: 25199457 DOI: 10.1016/j.bcp.2014.08.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
The innate immune response depends on the ability of immune cells to detect pathogens through germline-encoded pattern recognition receptors (PRRs). Recently discovered PRRs include some members of the Pyrin and HIN domain (PYHIN) family, which are encoded on an interferon-inducible gene cluster located on chromosome 1q23. There are five human PYHIN proteins; Absent in melanoma 2 (AIM2), IFN-γ inducible protein 16 (IFI16), Myeloid cell nuclear differentiation antigen (MNDA), Pyrin and HIN domain family member 1 (PYHIN1) and the recently identified Pyrin domain only protein 3 (POP3). Early studies reported roles for these proteins in cell cycle control, tumour suppression and transcriptional regulation. AIM2 and IFI16 have now been shown to be immune sensors of non-self DNA, such as that produced by viruses in infected cells. AIM2 binds DNA to activate the inflammasome, while IFI16 detection of DNA can lead to the up-regulation of type I interferons or inflammasome activation. Recent studies have shown how IFI16 senses DNA viruses, and also how viruses evade detection by IFI16, while structural studies have greatly advanced our understanding of how AIM2 and IFI16 bind DNA to activate these immune responses. Furthermore, following the identification of POP3, interplay between members of this gene cluster has been established, with POP3 acting as a negative regulator of the AIM2 and IFI16 inflammasomes. In this review we discuss the current understanding of how PYHIN proteins function in innate immunity, their role in disease and the therapeutic possibilities that arise as a result.
Collapse
Affiliation(s)
- Dympna J Connolly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
33
|
Liu Z, Zheng X, Wang Y, Song H. Bacterial expression of the HINab domain of IFI16: purification, characterization of DNA binding activity, and co-crystallization with viral dsDNA. Protein Expr Purif 2014; 102:13-9. [PMID: 25050461 DOI: 10.1016/j.pep.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/05/2014] [Accepted: 07/13/2014] [Indexed: 10/25/2022]
Abstract
Interferon-inducible protein 16 (IFI16) is a multifunctional p200-family protein that plays pivotal roles in p53-mediated apoptosis, tumor suppression and DNA damage response. Recently, another function of IFI16 in innate immune sensing and response has been uncovered, in which IFI16 recognizes the exogenous DNAs through cooperative binding of DNAs via its two DNA binding domains, HINa and HINb. Although the mechanism by which the HINb domain recognizes DNAs has been elucidated, the molecular basis of the cooperativity between HINa and HINb during DNA recognition process is still not clear. Here we report expression and purification of a truncated human IFI16 protein (HINab-GS) containing HINa in tandem with HINb with the joining region between HINa and HINb replaced by a short GS linker in Escherichia coli. DNA binding activities of HINab-GS to various double-stranded DNAs (dsDNAs) of different lengths were then examined using electrophoretic mobility shift assays. HINab-GS exhibited efficient binding activity to dsDNAs, and its DNA binding affinity correlated positively with the length of dsDNAs. A co-crystallization condition of HINab-GS bound to a 30 bp dsDNA derived from vaccinia virus was also found. Together, our work provides a basis for structurally elucidating the mechanism governing cooperative DNA recognition by IFI16.
Collapse
Affiliation(s)
- Zhou Liu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, PR China; Department of Pharmacy, Xiamen Medical College, Xiamen 361008, PR China.
| | - Xiaoxiao Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Yiwen Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Haiwei Song
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
34
|
Jakobsen MR, Paludan SR. IFI16: At the interphase between innate DNA sensing and genome regulation. Cytokine Growth Factor Rev 2014; 25:649-55. [PMID: 25027602 DOI: 10.1016/j.cytogfr.2014.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/18/2022]
Abstract
DNA carries the genetic code, and is also a potent stimulator of innate immune responses. IFI16 is a member of the family of PYHIN proteins and is composed of a PYRIN domain involved in homotypic protein-protein interactions and two HIN domains mediating DNA binding. PYHIN proteins have been described to possess functions as innate pattern recognition receptors or transcriptional regulators. Interestingly, it is now emerging that IFI16, which exhibits both nuclear and cytosolic location, possesses both of these functions. In this review we discuss the current literature on IFI16 and propose key questions now facing this field of research. We propose that IFI16 plays a central role in the close interaction between the innate immune system and cellular regulation of the genome.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
35
|
Comparative Purification and Characterization of Two HIN Domains, Hematopoietic Interferon-Inducible Nuclear Antigens with a 200-Amino-Acid Repeat, in Murine AIM2-Like Receptors. Biosci Biotechnol Biochem 2014; 77:2283-7. [DOI: 10.1271/bbb.130544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Khare S, Ratsimandresy RA, de Almeida L, Cuda CM, Rellick SL, Misharin AV, Wallin MC, Gangopadhyay A, Forte E, Gottwein E, Perlman H, Reed JC, Greaves DR, Dorfleutner A, Stehlik C. The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 2014; 15:343-53. [PMID: 24531343 PMCID: PMC4123781 DOI: 10.1038/ni.2829] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/14/2014] [Indexed: 12/16/2022]
Abstract
The innate immune system responds to infection and tissue damage by activating cytosolic sensory complexes called 'inflammasomes'. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the inflammasome adaptor ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but the regulation of ALR inflammasomes is poorly understood. Here we identified the PYRIN domain (PYD)-only protein POP3, which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced activation of ALR inflammasomes in vivo. Data obtained with a mouse model with macrophage-specific POP3 expression emphasize the importance of the regulation of ALR inflammasomes in monocytes and macrophages.
Collapse
Affiliation(s)
- Sonal Khare
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rojo A. Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lúcia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carla M. Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephanie L. Rellick
- Program in Cancer Cell Biology, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Alexander V. Misharin
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Melissa C. Wallin
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anu Gangopadhyay
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eleonora Forte
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eva Gottwein
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John C. Reed
- Apoptosis and Cell Death Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA and Pharma Research and Early Development, F. Hoffmann-La Roche AG, 4070 Basel, CH
| | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Li H, Wang ZX, Wu JW. Purification, characterization and docking studies of the HIN domain of human myeloid nuclear differentiation antigen (MNDA). Biotechnol Lett 2014; 36:899-905. [DOI: 10.1007/s10529-013-1432-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/11/2013] [Indexed: 02/03/2023]
|
38
|
Ratsimandresy RA, Dorfleutner A, Stehlik C. An Update on PYRIN Domain-Containing Pattern Recognition Receptors: From Immunity to Pathology. Front Immunol 2013; 4:440. [PMID: 24367371 PMCID: PMC3856626 DOI: 10.3389/fimmu.2013.00440] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Cytosolic pattern recognition receptors (PRRs) sense a wide range of endogenous danger-associated molecular patterns as well as exogenous pathogen-associated molecular patterns. In particular, Nod-like receptors containing a pyrin domain (PYD), called NLRPs, and AIM2-like receptors (ALRs) have been shown to play a critical role in host defense by facilitating clearance of pathogens and maintaining a healthy gut microflora. NLRPs and ALRs both encode a PYD, which is crucial for relaying signals that result in an efficient innate immune response through activation of several key innate immune signaling pathways. However, mutations in these PRRs have been linked to the development of auto-inflammatory and autoimmune diseases. In addition, they have been implicated in metabolic diseases. In this review, we summarize the function of PYD-containing NLRPs and ALRs and address their contribution to innate immunity, host defense, and immune-linked diseases.
Collapse
Affiliation(s)
- Rojo A Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA ; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| |
Collapse
|
39
|
Abstract
The oligonucleotide/oligosaccharide binding (OB) fold is employed by proteins to bind nucleic acids during replication, transcription, and translation. Recently, a variation of the OB fold consisting of a tandem pair of OB folds named the HIN (hematopoietic expression, interferon-inducible nature, and nuclear localization) domain was shown to play essential roles in the regulation of innate immune responses originating from binding of nucleic acids in the cytoplasm or the nucleus of the cell. Although the two OB folds of the HIN domain are linked via a long linker region, conserved hydrophobic contacts between the two OB folds hold them together firmly, resulting in a single compact domain. This overall topology of the HIN domain seems to be highly conserved, and proteins containing the HIN domain have been grouped in the PYHIN family. Structures of the recently solved HIN domains reveal that these domains exhibit either absent in melanoma2 (Aim2) HIN-like or p202 HINa-like modes of DNA binding. These two modes of DNA binding seem to result in different responses and as a consequence confer distinct roles on the proteins. This review summarizes our current understanding of the structure and function of the HIN domains in context with the innate immune responses.
Collapse
|
40
|
Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation. Cell Rep 2013; 4:327-39. [PMID: 23850291 DOI: 10.1016/j.celrep.2013.06.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/14/2013] [Accepted: 06/19/2013] [Indexed: 02/05/2023] Open
Abstract
Mouse p202 containing two hemopoietic expression, interferon inducibility, nuclear localization (HIN) domains antagonizes AIM2 inflammasome signaling and potentially modifies lupus susceptibility. We found that only HIN1 of p202 binds double-stranded DNA (dsDNA), while HIN2 forms a homotetramer. Crystal structures of HIN1 revealed that dsDNA is bound on face opposite the site used in AIM2 and IFI16. The structure of HIN2 revealed a dimer of dimers, the face analogous to the HIN1 dsDNA binding site being a dimerization interface. Electron microscopy imaging showed that HIN1 is flexibly linked to HIN2 in p202, and tetramerization provided enhanced avidity for dsDNA. Surprisingly, HIN2 of p202 interacts with the AIM HIN domain. We propose that this results in a spatial separation of the AIM2 pyrin domains, and indeed p202 prevented the dsDNA-dependent clustering of apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) and AIM2 inflammasome activation. We hypothesize that while p202 was evolutionarily selected to limit AIM2-mediated inflammation in some mouse strains, the same mechanism contributes to increased interferon production and lupus susceptibility.
Collapse
|
41
|
Radian AD, de Almeida L, Dorfleutner A, Stehlik C. NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease. Microbes Infect 2013; 15:630-9. [PMID: 23618810 PMCID: PMC3722249 DOI: 10.1016/j.micinf.2013.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/16/2022]
Abstract
Host defense requires the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the induction of pyroptotic cell death, which depends on the activation of inflammatory Caspases within inflammasomes by innate immune cells. Several cytosolic pattern recognition receptors (PRRs) have been implicated in this process in response to infectious and sterile agonists. Here we summarize the current knowledge on inflammasome-organizing PRRs, emphasizing the recently described NLRP7, and their implications in human disease.
Collapse
Affiliation(s)
- Alexander D. Radian
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Driskill Graduate Program in Life Sciences (DGP), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
42
|
Haque A, Koide N, Odkhuu E, Tsolmongyn B, Naiki Y, Komatsu T, Yoshida T, Yokochi T. Mouse pyrin and HIN domain family member 1 (pyhin1) protein positively regulates LPS-induced IFN-β and NO production in macrophages. Innate Immun 2013; 20:40-8. [DOI: 10.1177/1753425913481636] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pyrin and HIN-domain (PYHIN) family member1 (pyhin1) is a member of PYHIN proteins and involved in transcriptional regulation of genes important for cell cycle control, differentiation and apoptosis. The regulatory action of mouse pyhin1 on LPS-induced inflammatory response was examined. LPS augmented the pyhin1 mRNA expression in murine RAW 264.7 macrophage cells and peritoneal macrophages. The augmentation of pyhin1 mRNA expression was abolished by parthenolide, a NF-κB inhibitor. Silencing of pyhin1 with small interfering RNA reduced the production of IFN‐β and NO. However, pyhin1 silencing did not affect the production of TNF-α, IL-6, IL-10 and prostaglandin E2. Reduced IFN-β production by pyhin1 silencing caused inactivation of STAT1 and reduced expression of IRF1. Pyhin1 silencing inhibited the expression of TRAF6, TBK1 and TRIF, which trigger IFN-β production in the MyD88-independent pathway. However, pyhin1 silencing did not affect the expression of MyD88, IRAK4 and several mitogen-activated protein kinases in the MyD88-dependent pathway. Taken together, mouse pyhin1 was suggested to be a NF-κB-responsible gene in response to LPS and positively regulate LPS-induced IFN-β and NO production through up-regulating the MyD88-independent signaling pathway.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Erdenezaya Odkhuu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Bilegtsaikhan Tsolmongyn
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Yoshikazu Naiki
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Takayuki Komatsu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Tomoaki Yoshida
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Takashi Yokochi
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| |
Collapse
|
43
|
Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. ACTA ACUST UNITED AC 2012; 209:1969-83. [PMID: 23045604 PMCID: PMC3478938 DOI: 10.1084/jem.20121960] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An evolutionary and functional analysis of mammalian AIM2-like receptors reveals remarkable diversity and redundancy. Innate immune detection of nucleic acids is important for initiation of antiviral responses. Detection of intracellular DNA activates STING-dependent type I interferons (IFNs) and the ASC-dependent inflammasome. Certain members of the AIM2-like receptor (ALR) gene family contribute to each of these pathways, but most ALRs remain uncharacterized. Here, we identify five novel murine ALRs and perform a phylogenetic analysis of mammalian ALRs, revealing a remarkable diversification of these receptors among mammals. We characterize the expression, localization, and functions of the murine and human ALRs and identify novel activators of STING-dependent IFNs and the ASC-dependent inflammasome. These findings validate ALRs as key activators of the antiviral response and provide an evolutionary and functional framework for understanding their roles in innate immunity.
Collapse
Affiliation(s)
- Rebecca L Brunette
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
44
|
The mammalian PYHIN gene family: phylogeny, evolution and expression. BMC Evol Biol 2012; 12:140. [PMID: 22871040 PMCID: PMC3458909 DOI: 10.1186/1471-2148-12-140] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/27/2012] [Indexed: 01/13/2023] Open
Abstract
Background Proteins of the mammalian PYHIN (IFI200/HIN-200) family are involved in defence against infection through recognition of foreign DNA. The family member absent in melanoma 2 (AIM2) binds cytosolic DNA via its HIN domain and initiates inflammasome formation via its pyrin domain. AIM2 lies within a cluster of related genes, many of which are uncharacterised in mouse. To better understand the evolution, orthology and function of these genes, we have documented the range of PYHIN genes present in representative mammalian species, and undertaken phylogenetic and expression analyses. Results No PYHIN genes are evident in non-mammals or monotremes, with a single member found in each of three marsupial genomes. Placental mammals show variable family expansions, from one gene in cow to four in human and 14 in mouse. A single HIN domain appears to have evolved in the common ancestor of marsupials and placental mammals, and duplicated to give rise to three distinct forms (HIN-A, -B and -C) in the placental mammal ancestor. Phylogenetic analyses showed that AIM2 HIN-C and pyrin domains clearly diverge from the rest of the family, and it is the only PYHIN protein with orthology across many species. Interestingly, although AIM2 is important in defence against some bacteria and viruses in mice, AIM2 is a pseudogene in cow, sheep, llama, dolphin, dog and elephant. The other 13 mouse genes have arisen by duplication and rearrangement within the lineage, which has allowed some diversification in expression patterns. Conclusions The role of AIM2 in forming the inflammasome is relatively well understood, but molecular interactions of other PYHIN proteins involved in defence against foreign DNA remain to be defined. The non-AIM2 PYHIN protein sequences are very distinct from AIM2, suggesting they vary in effector mechanism in response to foreign DNA, and may bind different DNA structures. The PYHIN family has highly varied gene composition between mammalian species due to lineage-specific duplication and loss, which probably indicates different adaptations for fighting infectious disease. Non-genomic DNA can indicate infection, or a mutagenic threat. We hypothesise that defence of the genome against endogenous retroelements has been an additional evolutionary driver for PYHIN proteins.
Collapse
|
45
|
Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, Jiang Z, Horvath G, Rathinam V, Johnstone RW, Hornung V, Latz E, Bowie AG, Fitzgerald KA, Xiao TS. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 2012; 36:561-71. [PMID: 22483801 PMCID: PMC3334467 DOI: 10.1016/j.immuni.2012.02.014] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/23/2011] [Accepted: 02/09/2012] [Indexed: 01/07/2023]
Abstract
Recognition of DNA by the innate immune system is central to antiviral and antibacterial defenses, as well as an important contributor to autoimmune diseases involving self DNA. AIM2 (absent in melanoma 2) and IFI16 (interferon-inducible protein 16) have been identified as DNA receptors that induce inflammasome formation and interferon production, respectively. Here we present the crystal structures of their HIN domains in complex with double-stranded (ds) DNA. Non-sequence-specific DNA recognition is accomplished through electrostatic attraction between the positively charged HIN domain residues and the dsDNA sugar-phosphate backbone. An intramolecular complex of the AIM2 Pyrin and HIN domains in an autoinhibited state is liberated by DNA binding, which may facilitate the assembly of inflammasomes along the DNA staircase. These findings provide mechanistic insights into dsDNA as the activation trigger and oligomerization platform for the assembly of large innate signaling complexes such as the inflammasomes.
Collapse
Affiliation(s)
- Tengchuan Jin
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Perry
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jiansheng Jiang
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Smith
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James A. Curry
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonie Unterholzner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Zhaozhao Jiang
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gabor Horvath
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | - Vijay Rathinam
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ricky W. Johnstone
- Gene Regulation Laboratory, Cancer Therapeutics Program, The Peter MacCallum Cancer Institute, St. Andrews Place, East Melbourne 3002, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3054, Victoria, Australia
| | - Veit Hornung
- Unit for Clinical Biochemistry, Institute for Clinical Chemistry and Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - T. Sam Xiao
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- To whom correspondence should be addressed.
| |
Collapse
|
46
|
Veeranki S, Choubey D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol 2011; 49:567-71. [PMID: 22137500 DOI: 10.1016/j.molimm.2011.11.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/06/2011] [Accepted: 11/09/2011] [Indexed: 01/09/2023]
Abstract
The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P. O. Box-670056, Cincinnati, OH 45267, USA
| | | |
Collapse
|
47
|
Veeranki S, Duan X, Panchanathan R, Liu H, Choubey D. IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS One 2011; 6:e27040. [PMID: 22046441 PMCID: PMC3203938 DOI: 10.1371/journal.pone.0027040] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/09/2011] [Indexed: 01/09/2023] Open
Abstract
Background Type-I interferons (IFNs) are used to treat certain inflammatory diseases. Moreover, activation of type-I IFN-signaling in immune cells inhibits the production of proinflammatory cytokines and activation of inflammasomes. However, the molecular mechanisms remain largely unknown. Upon sensing cytosolic double-stranded DNA, the AIM2 protein forms the AIM2-ASC inflammasome, resulting in activation of caspase-1. Given that the IFI16 and AIM2 proteins are IFN-inducible and can heterodimerize with each other, we investigated the regulation of IFI16, AIM2, and inflammasome proteins by type-I and type-II IFNs and explored whether the IFI16 protein could negatively regulate the activation of the AIM2 (or other) inflammasome. Methodology/ Principal Findings We found that basal levels of the IFI16 and AIM2 proteins were relatively low in peripheral blood monocytes (CD14+) and in the THP-1 monocytic cell line. However, treatment of THP-1 cells with type-I (IFN-α or β) or type-II (IFN-γ) IFN induced the expression levels of IFI16, AIM2, ASC and CASP1 proteins. The induced levels of IFI16 and AIM2 proteins were detected primarily in the cytoplasm. Accordingly, relatively more IFI16 protein bound with the AIM2 protein in the cytoplasmic fraction. Notably, increased expression of IFI16 protein in transfected HEK-293 cells inhibited activation of caspase-1 by the AIM2-ASC inflammasome. Moreover, the constitutive knockdown of the IFI16 expression in THP-1 cells increased the basal and induced [induced by poly(dA:dT) or alum] activation of the caspase-1 by the AIM2 and NLRP3 inflammasomes. Conclusions/Significance Our observations revealed that the type-I and type-II IFNs induce the expression of IFI16, AIM2, and inflammasome proteins to various extents in THP-1 cells and the expression of IFI16 protein in THP-1 cells suppresses the activation of caspase-1 by the AIM2 and NLRP3 inflammasomes. Thus, our observations identify the IFI16 protein as a mediator of the anti-inflammatory actions of the type-I IFNs.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Xin Duan
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - Hongzhu Liu
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
48
|
|
49
|
Liao JC, Lam R, Brazda V, Duan S, Ravichandran M, Ma J, Xiao T, Tempel W, Zuo X, Wang YX, Chirgadze NY, Arrowsmith CH. Interferon-inducible protein 16: insight into the interaction with tumor suppressor p53. Structure 2011; 19:418-29. [PMID: 21397192 PMCID: PMC3760383 DOI: 10.1016/j.str.2010.12.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 02/09/2023]
Abstract
IFI16 is a member of the interferon-inducible HIN-200 family of nuclear proteins. It has been implicated in transcriptional regulation by modulating protein-protein interactions with p53 tumor suppressor protein and other transcription factors. However, the mechanisms of interaction remain unknown. Here, we report the crystal structures of both HIN-A and HIN-B domains of IFI16 determined at 2.0 and 2.35 Å resolution, respectively. Each HIN domain comprises a pair of tightly packed OB-fold subdomains that appear to act as a single unit. We show that both HIN domains of IFI16 are capable of enhancing p53-DNA complex formation and transcriptional activation via distinctive means. HIN-A domain binds to the basic C terminus of p53, whereas the HIN-B domain binds to the core DNA-binding region of p53. Both interactions are compatible with the DNA-bound state of p53 and together contribute to the effect of full-length IFI16 on p53-DNA complex formation and transcriptional activation.
Collapse
Affiliation(s)
- Jack C.C. Liao
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Robert Lam
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Vaclav Brazda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Shili Duan
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mani Ravichandran
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Justin Ma
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ting Xiao
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Xiaobing Zuo
- Protein–Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein–Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Nickolay Y. Chirgadze
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cheryl H. Arrowsmith
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| |
Collapse
|
50
|
Abstract
The innate immune system relies on the recognition of pathogens by pattern recognition receptors as a first line of defense and to initiate the adaptive immune response. Substantial progress has been made in defining the role of Nod (nucleotide-binding oligimerization domain)-like receptors and AIM2 (absent in melanoma 2) as pattern recognition receptors that activate inflammasomes in macrophages. Inflammasomes are protein platforms essential for the activation of inflammatory caspases and subsequent maturation of their pro-inflammatory cytokine substrates and induction of pyroptosis. This paper summarizes recent developments regarding the function of Nod-like receptors in immunity and disease.
Collapse
Affiliation(s)
- Sonal Khare
- Division of Rheumatology, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|